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Motivation

• local projections (LP) widely
used in time series to estimate
impulse responses (IRs)

• see Jorda (2006), Plagborg-Moller
and Wolf (2021), Jorda (2023)
among others

• IRs on cross-sectional
dimension are gaining interest,
can NLP be a new tool?

• measure spillovers, peer effects
• on networks, space
• eventually spatio-temporal settings

From AER Jorda (2006)

From Nature RG Cowen et al. (2017)
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Potentially Interesting Applications

• Production networks
• How shocks to suppliers affect customers and viceversa
• Transmission of prices changes through PN

• Financial networks
• How shocks to certain asset classes affect others
• Contagion across intermediaries

• Social networks
• Effects of cash transfers
• Diffusion of adoption of new products
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Preview of the preliminary results

• what is different between LP and NLP?

• Forward and Backward
• Endogenous effects (yi−d → yi ) may not be identified
• Because of recursivity (yi−d ↔ yi )
• Network Embedded IV can be used to identify them
• NLP-SAR (as for LP-AR) relationship
• NLP more robust to misspecification
• but more demanding for identification

• were they implicitly already used in applied work?

• Specifications close to NLP were used
• Using production networks data
• 2 close examples:

• Carvalho et al. QJE (2021)
• Huremovic et al. WP (2024)
• Barrot and Sauvagnat QJE (2016)
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Impulse responses as a comparison of two ’averages’
Over time

Rsy (h, δ) = E [yt+h|ut = u0 + δ, xt ]− E [yt+h|ut = u0, xt ] (1)

Over a network (or space)

Rsy (d , δ) = E [yi+d |ui = u0 + δ, xi ]− E [yi+d |ui = u0, xi ] (2)

y : outcome
t: time
h: time interval
i : individual unit
d : distance in a network, d(i , j) = 1 if g∗

ij = 1, d(i , j) = 2 if g∗
ij = 0,∑

k g
∗
ikg

∗
kj > 0. gij = g∗

ij /
∑

i g
∗
ij (row-normalized)

gij = 1 if i and j have a link.
s: intervention
u0: baseline, e.g.,s0=0
δ: treatment
x : vector of exogenous and predetermined variables. trivial example
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Estimation by Network Local Projections (NLP)
Suppose the network is direct ”circular”, i.e.
gij = gjk = gkt = · · · = 1, intervention is ui = δ and u−i = 0.

Linear case:
yi+d = αd + βdui + vi+d ; (3)

As long as ui exogenous w.r.t.vi+d

Rsy (d , δ) = βdδ (4)

This is very similar to time series.
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Relationship with spatial autoregressive (SAR) models
Suppose:

yi = φ
∑

j

gijyj + ui ; (5)

In matrix form:
y = φGy + u; (6)

by recursive substitution:

y = (I−φG )−1u = [I +φG +(φG )2 +(φG )3 + · · ·+(φG )inf ]u; (7)

Rsy (d , δ) = E [yi+d |ui = δ]− E [yi+d |ui = 0] = φdδ; (8)
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Propagation in spatial autoregressive (SAR) models

Rsy (d , δ) = E [yi+d |ui = δ]− E [yi+d |ui = 0] = φdδ;

More complex if the network is not circular!
Suppose intervention is u = Σ then:

Rsy (d ,Σ) = (φG )d Σ. (9)
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Main difference 1: LP - Forward and Backward
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Main difference 1: NLP - Forward and Backward
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Simple Example

G =


g1,1 g1,2 g1,3 g1,4
g2,1 g2,2 g2,3 g2,4
g3,1 g3,2 g3,3 g3,4
g4,1 g4,2 g4,3 g4,4

 =


0 1 0 0
0 0 1 1
0 0 0 1
1 0 0 0

 , i =


0
0
1
1

 .

(a) Impulse (i > 0) (b) 1 step F (Gi > 0)

(c) 3 steps F and 2 B
(G ′2G 3i > 0)11 / 31



More Complex Example

(d) Impulse (i > 0) (e) 1 step F (Gi > 0)

(f) 3 steps F and 2 B
(G ′2G 3i > 0)
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Main difference 1: NLP Forward and Backward

Forward
G ′d+1y = αd+1 + φd+1y + v

needs E [(Gy)′v ] = 0 for identification.
Backward

y = α1 + φd+1G
d+1y + u

needs E [(Gd+1)′u] = 0 for identification.

• Differently from time series, F and B are conceptually similar,
but different.

• Same root cause: recursivity

formal difference under SAR
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General Networks

Focus on backward NLP. If DGP is SAR and u are iid.

y = αd+1 + φd+1G
d+1y + v (10)

v =
d∑

k=0

(φG )ku (11)

It follows that φd+1 can be identified if

E [yi−1vi+d ] = E [(Gd+1y)′v ] = 0
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Main difference 2: Identification

which translates into

E [(Gd+1y)′(
d∑

k=0

G ku)] = E [(Gd+1Mu)′(
d∑

k=0

G ku)] = 0

where M = (I − φG )−1 =
∑∞

l=0(φG )l .

E [(
∞∑

l=0

φlG (d+1)+lu)′(
d∑

k=0

G ku)] = E [u′∆u] = 0

where ∆ =
∑∞

l=0

∑d
k=0 φ

lG ′(d+1)+lG k

Result 1: as long as φ 6= 0 and trace(∆) 6= 0, φd+1 is not
identified.
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Endogeneity

• if no links from i − 1, i − 2, ..., i − d to i − (d + 1),

• yi−(d+1) is econometrically exogenous
• estimation follows standard LP.

• if there are links,

• yi−(d+1) is econometrically endogenous
• no standard LP.

• endogeneity is endemic in networks because of recursivity.
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A more General Specification

y = αd+1 + φd+1G
d+1y + Gd+1xγd+1 +

d∑
k=0

G kxγk + v . (12)

v =
d∑

k=0

G ku (13)

• Same issues with φd+1

• Identification possible through instrumental variables.
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Network Embedded Instrumental Variables

G (d+1)+lx , l > 1 can be used as instrument if (it is relevant):

E [(Gd+1y)′(G (d+1)+lx)] = E [(Gd+1Mx)′(G (d+1)+lx)]

= E [(
∞∑

l=0

φlG (d+1)+lx)′G (d+1)+lx ] 6= 0

which is true if φ 6= 0, and exogenous:

E [v ′(G (d+1)+lx)] = E [(
d∑

k=0

G ku)′(G (d+1)+lx)] = 0

which is true because x is orthogonal to u also on different
net-lags.
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Network Embedded Instrumental Variables/2
Second step:

y = αd+1 + φd+1G
d+1y + Gd+1xγd+1 +

d∑
k=0

G kxγk + v . (14)

1-lag approximation first step:

Gd+1y = α∗d+1 +
d+1∑
k=0

G kxγ∗k + Gd+1+1xβ∗ + v∗
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Identification

• NLP identified if I ,G ,G 2, ...,Gd+1,Gd+1+1, ...,Gd+1+p

linearly independent and β∗ 6= 0, γ∗k 6= 0, ∀k .

• in SAR φ is not dentified if I ,G ,G 2 linearly dependent
(Bramoulle et al. 2009).

• I.e. intransitive triads in the network.

• NLP is more demanding, requires more intransitivity

• Result 2: Not fully similarly to LP-AR, NLP and SAR are not
identified under the same sufficient conditions.

20 / 31



Reduced form NLP (RF-NLP)

NLP can be used in reduced form, to estimate the effects of the
treatment at distance d directly

Forward

G ′dy = αd+1 + φd+1Gx +
d∑

k=0

G ′kxγk + v

Backward

y = α1 + φd+1G
d+1x +

d∑
k=0

G kxγk + u

21 / 31



SAR mispecification
Suppose the true DGP is

y = φ1G1y + φ2G2y + φ3G3y + xβ + ε

Gp can be higher order lags or due to heterogeneous transmission.
Assume G1 = G , G2 = G 2, G3 = G 3.
If you use

y = φGy + xβ + ε

to estimate δyi/δxj |d(i , j) = d ∈ [1, 2, 3, 4],

Distance True effect SAR(1) estimated effect

1 φ1β φ̂SARβ

2 (φ2 + φ2
1)β φ̂2

SARβ

3 (2φ1φ2 + φ3 + φ3
1)β φ̂3

SARβ

4 (φ2
2 + φ1φ3 + φ4

1 + 3φ2φ
2
1)β φ̂4

SARβ

Result 3: NLP less prone to misspecification than SAR (similar to
LP-AR).
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Example - Heterogeneous Transmission in PN
Suppose there are 4 sectors, a, b, c and d, with such IO
connections.

To sector From sector True effect SAR estimated effect

a b φ1β φ̂SARβ

a d φ1φ3β φ̂2
SARβ

a c φ1φ2β φ̂2
SARβ
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Monte Carlo Experiments

• Study the properties of NLP in finite samples

• For different specifications
• Backward vs forward
• Level of density

• Comparison with SAR
• Misspecification

• SAR DGP and estimation
• SAR : y = +φGy + xβ + Gxγ + ε

• NLP estimation
• NLP: y = α1 + φd+1G d+1y [IV = G d+2x] +

∑d+1
k=0 G k xγk + v

• NLPF : G ′d y = αd+1 + φd+1Gy [IV = G 2x] + Gxγ +
∑d

k=0 G ′k xγk + v

• NLPnoGx : y = α1 + φd+1G d+1y [IV = G d+2x] + G (d+1)xγ + v
• NLPF ,noGx : G ′d y = αd+1 + φd+1Gy [IV = G 2x] + Gxβ + v

• NLPnoGxnoiv : y = α1 + φd+1G d+1y + G (d+1)xγ + v
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Setting
• Randomly normally generated X and ε, Reps = 500.
• Simulated recursive networks.

• For each i , links from node i + j to i + 1 directed to i . for
j ≤ zi .

• zi = m.
• m governs the density
• G is row-normalized

• pivotal baseline simulation: N = 600 nodes, φ = 0.7, β = 0.3,
γ = 0.2, σ = 0.01, m = 4.
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Different NLP specifications

Differently from LP, higher density biases estimates if in between
lags are not included!

(g) purely circular (m=1) (h) denser (m=4)

Intuition: higher density create higher recursivity, thus omitting them
biases estimates. NLP precision
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SAR - order misspecification
DGP

y = φ1Gy + φ2G 2y + xβ + ε

φ1 = 0.3, φ2 = 0.1. estimate δyi/δxj |d(i , j) = d , with SAR or RF-NLP (RHS G d x)

(i) m=1 (j) m=4

NLP precision
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Were NLP implicitly already used in applied work?

Some recent papers on production networks used approaches
similar to RF-NLP.

• Carvalho et al. (2021) QJE ”Supply Chain Disruptions:
Evidence from the Great East Japan Earthquake”

• Huremovic et al. (2024) WP ”Production and Financial
Networks in Interplay: Crisis Evidence from Supplier-Customer
and Credit Registers”

• Others?

Less close approaches

• Barrot and Sauvagnat QJE (2016)

• Acemoglu et al. Mecroecon Annuals (2015)

Nice motivation to study NLP!
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Carvalho et al. (2021) specification

yipst = γi + γpst +
4∑

k=1

∑
τ 6=2011

βdown
k,τ Downstreamk

i ∗ yearτ

+
4∑

k=1

∑
τ 6=2011

βup
k,τUpstream

k
i ∗ yearτ

+
∑

τ 6=2011

δτXisp ∗ yearτ + εispt ,

(15)

y: log sales; i: firm, p: prefecture; s: industry; t: time.
Downstreamk

i and Upstreamk
i dummy variables that indicate

whether firm i is, respectively, a downstream or upstream distance
k to disaster-area firms.
Abstract from the time dimension for now, and get rid of firm and
ps FEs for simplicity.
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Carvalho et al. (2021) specification/2
Let G ∗ be the input output matrix g∗ij = qij ∗ pij and ti = 1 if the
firm is hit by the disaster.

y =
4∑

k=1

βdown
k Upstreamk +

4∑
k=1

βup
k Upstreamk + δx + ε,

=
4∑

k=1

βdown
k I (G ′∗kt > 0) +

4∑
k=1

βup
k I (G ∗kt > 0) + δx + ε,

Huremovic et al.
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Avenues for research

• Understand better properties

• Study the asymptotics

• Extend Monte Carlo experiments

• Application
• what if SAR and NLP estimates differ in popular settings?
• best applications to put in the paper

• US sectorial public data from Acemoglu et al. (2016)
• better EU data / research question?
• firm 2 firm data?

• Spatio-temporal extension sounds promising
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A trivial example

Suppose ut ∈ 0, 1 is randomly assigned, then:

Rsy (d , 1) = 1/N1

∑
i

yi+dui − 1/N0

∑
i

yi+d (1− ui ) (16)

N1 =
∑

i ui ; N = N0 + N1.
back
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Backward is not Forward in Networks
Suppose the DGP is SAR:

y = φGy + u = (I − φG )−1u

= u + φGu + φ2G 2u + φ3G 3u + · · ·
= u + φGu + φ2G 2u + φ3G 3y (17)

G ′3y = G ′3u + φG ′3Gu + φ2G ′3G 2u + φ3 G ′3G 3︸ ︷︷ ︸
6=I

y (18)

Take d = 3
Backward

y = φ3G
3y + v

= φ3G
3y + (u + φGu + φ2G 2u) (19)

Forward
G ′3y = φ3y + v

y = φ3G
′−3y + G ′−3v

back
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Precision decreases with distance (m=4)

Standard errors increase with the distance back
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NLP - distance and density (d,m)

... and much more with the density of the network. back
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NLPF - distance and density (d,m)

However, the forward-outcome NLP have the opposite feature,
thus they can be used for longer distances. back
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RF − NLP precision - under SAR misspecification

(k) m=1 (l) m=4

back
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Huremovic et al. (2024) specification

∆ln(s) = αDt︸︷︷︸
direct

+ αFDξ
FD︸ ︷︷ ︸

first−o,down

+ αHDξ
HD︸ ︷︷ ︸

high−o,down

+ αFUξ
FU︸ ︷︷ ︸

first−o,up

+αHUξ
HU︸ ︷︷ ︸

high−o,up

+ αCC ξ
CC︸ ︷︷ ︸

cust,cntrly

+ αSC ξ
SC︸ ︷︷ ︸

supplier ,cntrly

+Zγ + FE + ε

s: sales/purchases of a firm. It can be re-written as

y = αDt + αFDG
∗′t + αHD

∞∑
k=2

G ∗′t + αFHHt + αHU

∞∑
k=2

H ′t

+ αCC ξ
CC + αSC ξ

SC + Zγ + FE + ε

(20)

Where G = AG := {αi gij}, H = GAMTV := {[αi gij/µi (1 + ν + ti )](vj/vi )}, ξCC =
∑∞

k=0 G∗′,

ξSC =
∑∞

k=0 H′. g∗ij : row-norm intermediate IO matrix element; αi : input elasticities; µi : markups to marginal

cost; ti : treatment; vi : firm centrality γi : preference weight by customers. More complex connection with a
theoretical model.
back
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