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Abstract

How exposed is the labour market to ever-advancing AI capabilities, to what extent

does this substitute human labour, and how will it affect inequality? We address these

questions in a simulation of 711 US occupations classified by the importance and level of

cognitive skills. We base our simulations on the notion that AI can only perform skills that

are within its capabilities and involve computer interaction. At low AI capabilities, 7% of

skills are exposed to AI uniformly across the wage spectrum. At moderate and high AI

capabilities, 17% and 36% of skills are exposed on average, and up to 45% in the highest

wage quartile. Examining complementary versus substitution, we model the impact on

side versus core occupational skills. For example, AI capable of bookkeeping helps doctors

with administrative work, freeing up time for medical examinations, but risks the jobs of

bookkeepers. We find that low AI capabilities complement all workers, as side skills are

simpler than core skills. However, as AI capabilities advance, core skills in lower-wage

jobs become exposed, threatening substitution and increased inequality. In contrast to the

intuitive notion that the rise of AI may harm white-collar workers, we find that those remain

safe longer as their core skills are hard to automate.
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1 Introduction

How will the advancement of generative AI complement and substitute different kinds of human

labour? Recent breakthroughs have enabled generative AI to mimic human cognitive abilities in

many fields, including in “white collar” professions such as law, medicine, or science. Ongoing

advances and integration of the technology into day-to-day applications and workflows raise

urgent policy questions.

Understanding how the potential evolution of AI will complement or substitute human skills

is essential for shaping policies to ensure equitable growth and employment stability. The liter-

ature has focused on the occupation-level impact of current AI models,1 experimental evidence

of productivity impacts (Noy & Zhang, 2023; Brynjolfsson et al., 2023; Peng et al., 2023), and

the potential for complementarity and substitution effects of AI technology at a particular state

of AI development (Pizzinelli et al., 2023; Acemoglu & Restrepo, 2019, 2018c,a). Except for

certain types of freelancers (see e.g. Webb 2020), the broader impact of AI capabilities on the

labour market yet remains to be demonstrated.

In this paper, we take a forward-looking approach: we ask the question of “what if” and

examine how an AI of a hypothetical level of capabilities was to expose different occupations.

To shed the first light on the future impact, we build a parsimonious bottom-up quantification

with a special focus on income distribution.

Our analysis proceeds in two steps. In the first step, we build on Eloundou et al. (2023);

Felten et al. (2021); Gmyrek et al. (2023); Pizzinelli et al. (2023); Acemoglu (2024) and model

the exposure to the technology as the capabilities of AI increase.2 In the second step, we

examine how these developments could complement or substitute human labour through the

lens of their impact on core and side skills.

In the first step, we argue that the near-term impact of AI is limited a) to computer-related

interactions and b) by the difficulty of the skills that AI can substitute for. In this, we only

quantify the impact on skills involving interaction with a computer. We, hence, do not take

into account the impact of AI on robotics that may substitute for physical work or even social

interactions.3

Our first departure from the literature is to employ an underused part of the O*NET

database that classifies skills by their difficulty. Intuitively, an AI of a certain capability level

can only perform tasks up to a corresponding skill level. As the capabilities of AI advance, an

increasing share of cognitive skills will hence be exposed to the technology.4

1See i.e.Webb (2020); Felten et al. (2021); Tolan et al. (2021); Gmyrek et al. (2023); Yang (2022)
2Similar to these approaches, we take a partial equilibrium perspective and do not take into account the

interplay between skills, relative wages, human capital formation and directed technological change (Acemoglu
& Restrepo, 2018c).

3This is in line with Acemoglu (2024), who argues that “AI is nowhere close to being able to perform most
manual or social tasks”, and we thus assume that it can only perform computer interactions.

4We take no position on how fast the evolution of the technology will materialise. Some have argued that AI
may soon have dramatic impacts on the labour market (ie Korinek & Juelfs (2022)). Others argue that future
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We nest this notion of AI capability and skill difficulty in a quantitative simulation of 711

US occupations from the O*NET database classified by the importance and the required level

of cognitive skills that involve computer interactions. The model predicts that an AI capable

of substituting for simple cognitive tasks – such as the minimal communication skills required

for a truck driver – will expose around 7% of all skills. At low levels of AI capability, this effect

holds uniformly across the entire wage spectrum, but for heterogeneous reasons. For low-income

workers, a substantial share of cognitive computer skills is exposed, but the overall share of time

spent on computer interaction is low. For high-income workers, only a small share of cognitive

computer skills is exposed because of the larger skill requirement. However, the share of time

spent using such skills is higher.5

As AI capabilities increase, we observe a profound difference in occupational exposure: up

to 45% in the upper quartile of the wage distribution are exposed, whereas the exposure of the

lowest quartile is around 26%.

What does this mean for the income distribution? We note that in line with the literature,

“exposure” has a neutral meaning in that some parts of a skill, task, or job could be performed

by an AI. This may lead to substitution but could also complement via increased productivity.6

To shed light on these issues, in the second departure from the literature and step of our

simulations, we examine the extent to which AI might complement or substitute human labour.

We focus on the differential impact on core versus side occupational skills, arguing that AI would

tend to complement occupations wherever the auxiliary (side) skills necessary for the profession

are within its capabilities. For example, if AI can organise meetings, billing, or bookkeeping for

lawyers, medical doctors, or scientists, this frees up time that can be spent on core activities

and thus increases productivity. However, a profession may be at risk if the core activity itself

can be performed by the AI.

This exercise suggests that AI may initially complement all professions, as side skills are

generally less difficult than core skills. For example, an AI only capable of performing simple

cognitive tasks has negligible exposure to core skills, whereas it, on average, exposes around

advancement of AI may materialise much slower than expected. For example, Acemoglu (2024) argues that
early evidence is from easy-to-learn tasks with clear outcomes (that AI can optimise for), whereas more profound
productivity impacts in more subtle contexts may materialise much slower. Perez-Cruz & Shin (2024) argue that
current LLMs are limited in their understanding of human interaction and higher-order beliefs.

5For these examples, “simple cognitive tasks” correspond to those requiring a skill level of 2.0 in the O*NET
database, for example, the minimum social perceptiveness skills required for pile drivers or the minimum speaking
skills required for industrial truck operators. “Medium cognitive tasks” correspond to those requiring a skill level
of 3.0, for example, problem-solving skills of medical appliance technicians or the operations monitoring skills
of registered nurses. “High cognitive tasks” correspond to those requiring a skill level of 4.0, for example, the
persuasion skills of psychiatrists or the active listening skills of air traffic controllers.

6Svanberg et al. (2024) further note that “exposure” does not mean automation: they survey workers with
“end-use” tasks to get a sense of the requirements for automation, and second, they model the cost of a model
capable of meeting the requirements. Focusing on the automatablity of vision, find that only 23% of occupations
that are “exposed” in the sense of Eloundou et al. (2023); Felten et al. (2021) could today be automated eco-
nomically. We note that our measure of exposure is more nuanced than the one in Eloundou et al. (2023); Felten
et al. (2021) as we restrict the impact to skills involving computer interaction and not only model whether a skill
in principle could be automated but also whether the capability level of the AI is sufficient for such automation.
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12% of side skills. However, already for moderate AI capabilities, there is divergence across

the wage spectrum, with the core cognitive skills of the low-wage workers becoming roughly as

exposed to AI as their side skills. In contrast, the upper quartile of the wage distribution still

sees negligible exposure of core skills (5%), whereas side skills are exposed substantially (27%).

If AI capabilities are high, around 25% of both side and core skills of the lowest quartile of

the wage distribution are exposed. In contrast, only 20% of the core but a staggering 62% of

the side skills of the highest quartile of the income distribution become exposed.

On balance, our modelling of the impact on side and core skills hence reverses the notion

that generative AI might decrease inequality in the labour market. Despite being a technology

that is exposing white-collar jobs more intensively, this effect is focused on the side skills of their

professions, while the core skills are not in reach.7 In contrast, a capable AI will also expose

the core skills of lower-income workers, thus threatening substitution and widening inequality.

The balance of this paper is as follows: we relate our approach to the literature in Section

Section 2. Next, Section 3 presents the methodology describing the evolutionary impact of ever-

improving AI on occupations. It also serves as an AI exposure dependent on AI’s capabilities.

Thereafter, we split the AI exposure based on core and side skills Section 4 that are then used

to identify complementarity and substitutional effects for individual occupations. Section 5

presents additional robustness analysis, while Section 6 concludes.

2 Literature review

Historically, technological advancements have been met with both optimism and concern re-

garding their implications for the labour market (Bessen, 2016). The advent of AI and machine

learning technologies, in general, has intensified these debates, with researchers seeking to un-

derstand how these new tools can reshape the labour market and how the impact can differ

from previous technological advancements in robotisation or computerisation (Autor, 2015).

Several recent studies have directly addressed the potential of the latest advancements in

AI to significantly impact the current structure of the labour market. Brynjolfsson et al. (2018)

argue that most occupations in the US include at least some tasks that are suitable for machine

learning applications, and Eloundou et al. (2023) suggests that 80% of the workforce could be

affected by Generative Predictive Transformers (GPTs). While these estimates are staggering,

Arntz et al. (2016) argue that the actual vulnerability of jobs to automation is lower when

considering the nuanced skills within occupations. Nonetheless, the proliferation of the latest

LLMs seems to be non-negligent; Eloundou et al. (2023) further find 19% of US workers in the

US may see at least half of their skills impacted and Hatzius et al. (2023) finds 25% of current

work skills in US automatable.

7Of course, once the capability of the AI becomes extremely high such that all skills are within reach, this
effect abates, and all cognitive workers are in danger of replacement.
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Current AI capabilities in some instances fall short of profound reasoning skills (Perez-Cruz

& Shin, 2024). However, an important issue regards how the future evolution of AI capabilities

can enhance labour productivity or crowd out workers. Recent experiments with the latest

generation of AI show that it can have a positive effect in specific occupations while reducing

differences among workers with varying experience levels. Noy & Zhang (2023) demonstrated

that the use of ChatGPT significantly increases average productivity measured by time spent

on tasks and reduces differences between high- and low-skilled workers. Brynjolfsson et al.

(2023) studied the introduction of genAI assistant to the customer support agents and found a

significantly higher number of completed tasks that were more pronounced for novice and low-

skilled workers. Peng et al. (2023) suggests coders with access to genAI are capable of completing

coding-oriented tasks up to 55% faster. AI tools can also serve as the tool to discover potential

improvements in business systems (Cockburn et al., 2018; Cheng et al., 2022).

However, an increase in labour productivity means that less human capital is needed to

maintain the same output, which could lead to layoffs or wage reductions (Acemoglu & Restrepo,

2020). In this context, Frey & Osborne (2017) predicted that up to 47% of US employment is

at high risk of computerisation. Arntz et al. (2016) however uses a different methodology and

estimates an impact of only 9%.Gmyrek et al. (2023) find that genAI could automate 5.1% of

total employment in high-income countries, whereas low-income countries are not so susceptible.

The potential for augmentation is similarly distributed across countries relative to their income

levels, although the potential to augment is much larger (around four to five times). Noy

& Zhang (2023) claim that ChatGPT mostly substitutes for worker effort rather than purely

complementing worker skills. Yang (2022) also shows that AI can positively affect productivity

and employment but adversely affects the employment of less knowledgeable workers. Some

studies additionally debate the effects relative to gender (Eloundou et al., 2023; Webb, 2020;

Gmyrek et al., 2023).

Historical experience with innovation shows that in the long-term, the displacement can be

offset by an increase in the range of goods and services offered, see (Autor, 2015; Acemoglu

& Restrepo, 2019). For example, Bessen (2016) shows US labour demand has increased faster

in computerised occupations since 1980, although the computerisation led to substitution for

other occupations, shifting employment and requiring new skills. Acemoglu et al. (2022) find

increasing demand in AI-exposed occupations in the US since 2015. Automatisation in Japan

and the US generated cost savings, allowing larger output in economy (Adachi et al., 2024;

Dekle, 2020; Acemoglu & Restrepo, 2020) that outweighed the displacement effects of human

labour. Yang (2022) finds that AI technology is positively associated with productivity and

employment in Taiwan’s electronics industry for the 2002–2018 period. Acemoglu & Restrepo

(2019), Acemoglu & Restrepo (2018a) and Acemoglu & Restrepo (2018c) then focus directly on

the dynamics of displacement and reinstatement of labour due to automation. Based on data

from the US since World War II, Acemoglu & Restrepo (2019) claim that displacement effects

occur intuitively, but they are counterbalanced by the creation of new tasks in which labour has

a comparative advantage. These then change the task content of production in favour of labour
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because of a reinstatement effect followed by a rise in the labour share and labour demand.

Acemoglu & Restrepo (2019) point out that the success of reinstatement is not automatic. It

rather depends on additional variables such as the supply of new skills, demographics, or labour

market institutions.8

Although previous innovations in automatisation and computerisation, on average, brought

economic growth, they still reshaped the labour market and introduced new challenges in re-

gional labour market structures that affected labour distribution across the skill distribution

of markets. Autor (2019) documents these effects using US data showing that automation (to-

gether with international trade) led to the elimination of the bulk of non-college occupations,

further leading to disproportionate polarisation of urban labour markets. Acemoglu & Restrepo

(2022) document that between 50% and 70% of changes in the US wage structure over the last

four decades are accounted for by workers specialised in routine tasks in industries experiencing

rapid automation. Acemoglu & Restrepo (2020) show industrial robot adoption in the United

States was negatively correlated with employment and wages. These examples pinpoint the

importance of understanding the potential effects of technological advancements to navigate a

smooth transition towards a new structure of the labour market.

The question remains how much the new wave of automation with AI is comparable to previ-

ous technological advancements. Previously, automation exposed predominantly manual labour

through the invention of machines and robots. The transition process to robot-driven produc-

tion, therefore, affected at its first stage rather lower-skilled labour (Acemoglu & Restrepo,

2018b). Evolving AI challenges, however, cognitive tasks and skills and creates a potential

to affect different occupations by either complementing or substituting them. Earlier work

by Autor & Dorn (2013) suggests that low-wage occupations faced higher substitution due to

computerisation. In contrast, high-wage occupations were complemented by technology. Webb

(2020) then focuses on the newer innovation in AI and states it is directed at high-skilled tasks,

effectively affecting the higher-wage quantiles. A similar conclusion is reached by Eloundou et al.

(2023) and Pizzinelli et al. (2023). Webb (2020) argues that the impact of AI is different from

the effects of software innovation, which exposed mid-wage occupations (in line with Michaels

et al. (2014)). Pizzinelli et al. (2023) emphasise high complementarity in the upper tail of the

earnings distribution by AI, leading to a productivity boost instead of job displacements. The

effects of AI also differ geographically. Pizzinelli et al. (2023); Gmyrek et al. (2023); Albanesi

et al. (2023) show that more developed countries are more exposed to AI as their labour markets

are more oriented to cognitive tasks. However, as AI significantly progresses, research also needs

to account for the evolution of technology to fully understand its potential effects. Examining

the impact of developing AI through the lens of wage distribution seems to be advantageous to

formulate targeted policy responses (Furman & Seamans, 2019). As the advancements in AI

technology progress, their interaction might change rapidly.

8In similar vein, Aldasoro et al. (2024) show in a general equilibrium model that the output effects of AI may
primarily arise via the indirect impact on demand and associated changes in relative prices rather than via the
direct initial productivity boost from AI adoption.
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Our quantification relates to other measures of the occupation-level exposure of AI. Felten

et al. (2021) develop an AI-occupational exposure (AIOE) measure that gauges how important

certain AI-exposed tasks are for a given occupation.9 Pizzinelli et al. (2023) augment this

measure (AIOE measures exposure to AI, but not whether AI complements or substitutes

human labour) by a variable that measures the risk of replacement. The latter variable is

constructed at the occupational level by looking into selected parts of the “work context,”

defined in O*NET as physical and social factors that influence the nature of work. Webb

(2020), on the other hand, matches occupational task descriptions with the text of patents to

match the potential impact and a similar approach was done by Yang (2022). Tolan et al.

(2021) mixes combinations of tasks and abilities with AI evaluation tasks from AI benchmarks.

Brynjolfsson et al. (2018) chose a different approach. They define exposure by matching an

established rubric with tasks and direct work activities from the O*NET database. They used

a survey to establish the exposure. Eloundou et al. (2023) followed a similar approach but focus

on a significant reduction in time to completion. They also tested an alternative approach using

ChatGPT (this was also replicated by Eisfeldt et al. (2023)).

3 Measuring AI exposure: data and methodology

Predicting the impact of AI on the labour market is challenging, as the integration of the

technology into real-life applications is still in its infancy, and only some synthetic benchmarks

on the potential quality and efficiency improvements on certain aspects of work are available

(see i.e. Tolan et al. (2021); Peng et al. (2023); Noy & Zhang (2023)). Particularly, the rapidly

evolving capabilities of AI are a major source of uncertainty. In the face of these uncertainties,

we construct a parsimonious bottom-up model centred on an “AI capability” parameter, which

allows us to simulate the effects of evolving AI. The model is built on the skill and occupation

level and later aggregated to the industry or wage-quantile level.

In this section, we show how we construct the AI Share Automatability (AISA) Index that

depends on the sophistication of the AI (defined as “AI capability” above). This index rests on

two main assumptions:

1. In the short to medium term, automation will affect occupational activities with computer

interaction as opposed to social interactions or physical labour.

2. The skills required for performing the occupations are heterogeneous in their difficulty

9In more detail, Felten et al. (2021) combine three data sources to estimate a measure of AI occupational
exposure (AIOE). First, based on information provided by the Electronic Frontier Foundation, they identify 10
applications in which AI had made “meaningful scientific progress” as of the date of writing. These applications
include real-time video games, recognition and creation of speech and images, and translation. Second, these 10
applications are linked to 52 occupational abilities in the O*NET data based on a crowdsourced survey, resulting
in an AI exposure measure for each of the 52 abilities (i.e., to what extent a certain ability will, in total, be
exposed to the 10 applications). Lastly, AIOE is calculated as the weighted sum of the ability-level exposures,
using the O*NET measures of “importance” and “prevalence” for each ability as weights.
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level. For a skill to be impacted in a certain occupation, its difficulty level needs to be

within the capabilities of the AI.

We utilise data from O*NET version 27.2 and the 2022 Occupational Employment and Wage

Statistics (OEWS) Survey from the US Bureau of Labor Statistics. These datasets detail around

800 different occupations (of which we can use 711 after joining across the skills tables and

employment statistics) across 22 industries, providing average income, employment numbers,

and ratings for up to 35 cognitive skills for each occupation in terms of required skill level (1-

6) and importance (1-5). Furthermore, the data includes detailed task descriptions10 for each

occupation (on average, we have 24 task descriptions for each of the 711 occupations).

In the description of our model, we will use subscripts to denote the different levels of

aggregation: the lowest level s for the skill, o for the occupation and the highest aggregation

levels i for the industry or w for the wage quantile. The skill level Lo,s is distinct for a given

occupation o and skill s. For instance, the occupation of Biophysicists requires a level of 4.75

in the skill mathematics, while the importance of this skill Io,s is 3.88.

3.1 Only computer interaction is automatable with AI

In this paper, we only examine the impact of AI on automating tasks that require skills involving

computer interaction. Jobs performed on computers are, in the short and medium run, much

more likely to incorporate AI applications compared to those involving physical labour. We

acknowledge that also physical labour may, in the future, be prone to automation through

improved machines and robotics. However, modelling the impact of such developments is out of

the scope of the analysis at hand. Similarly, we expect social interaction to require higher degrees

of social acceptance before widespread automation materialises. Certainly, cost-effectiveness and

improved social skills of the AI will speed up the process, yet, as for physical labour, we expect

longer timescales.

We construct a measure of the share of the time spent on computer interactions based on

about 19,000 detailed task descriptions available in the O*NET database. Based on the de-

scriptions of each occupation, we instructed GPT-4 to estimate the time spent with i) computer

interaction, ii) social interaction, and iii) physical labour. The exact prompt is shown in the

Box A1, and one example of task description is provided to the ChatGPT-4 in Table A1. Note

that computer interaction represents working on a computer that commonly does not include

communication via e-meetings or other similar social interaction.

In general, ChatGPT-4 proves very high comparability with conventional human-based pro-

cedures for categorisation purposes. Eloundou et al. (2023) uses both approaches (human- and

GPT4-based) to directly identify occupational AI exposure, finding a very high correlation be-

10https://www.onetcenter.org/dictionary/21.0/text/task_statements.html (release number 21.0)
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tween human assessments and GPT4-based self-assessments.11 Gmyrek et al. (2023) follows

their approach employing ChatGPT in exploring genAI effects on the labour market worldwide.

We also cross-validate the results obtained with ChatGPT-4 by comparing the fraction of

time spent on computer interaction to the AIOE indicator by Felten et al. (2021) in the Section 5.

Figure 1 shows the resulting average times spent in each of these interaction types per

industry (weighted by employment per occupation): Let Ti,o denote the share of time that

occupation o spends in industry i on computer interaction. The average for the industry i

weighted by the employment numbers Ni,o is calculated as:

Ti =

∑
o∈O Ti,o ·Ni,o∑

o∈O Ni,o

The distribution in Figure 1 shows that the typical office professions such as “Business

and financial operations” or “Architecture and engineering” display a very large proportion in

computer interactions, “Sales” and “Personal care” a large proportion of social interaction and

“Production”, “Construction” and “Transportation and farming” a large fraction of physical

labour.

Figure 1: Time spent on technological, physical, and social interaction across
industries

Note: This figure presents the fraction of time spent on i) computer interaction, ii) social interaction, and iii) physical
labour (see main text for the details of the data construction) in US industries. The baseline simulations of this paper
assume that only computer interaction Ti is exposed to AI.

11Eisfeldt et al. (2023) further builds on their findings.
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3.2 Occupational skills need to be within the AI’s capabilities to be automat-

able

We next measure the impact of the AI’s logical capability on the exposure of various skills across

occupations.12

The O*NET data rates the skill level and importance of around 33 cognitive skills13 such

as “reading comprehension” or “mathematics” necessary for all occupations available. Figure 2

describes their statistical properties in our dataset. The level variable “indicates the degree, or

point along a continuum, to which a particular descriptor is required or needed to perform the

occupation”14 on a scale from 0 (min) to 6 (max).

The right-hand side of Figure 2 displays a histogram of (difficulty) “Level variable.” This

level can be interpreted as the difficulty level of the skill required to perform the occupation:

“While the same skill can be important for a variety of occupations, the amount or level of

the skill needed in those occupations can differ dramatically. For example, the skill “speaking”

is important for both lawyers and paralegals. However, lawyers (who frequently argue cases

before judges and juries) are required to have a higher level of speaking skill, while paralegals

only need an average level of this skill.”15

Table A2 in the Appendix presents the occupations most closely matching select skill levels

for four cognitive skills. For example, “Troubleshooting” skills are required with a low level

for “Social and Community Service Managers” whereas “Aircraft Mechanics and Service Tech-

nicians” require much higher levels to fulfil the high standards in their occupation. “Writers

and Authors” do not require high skills in “Mathematics” while “Mathematicians” use it as the

source of their living.

Within each occupation, skills are also classified by the “importance”. This variable, “in-

dicates the degree of importance a particular descriptor is to the occupation”. The left-hand

panel in Figure 2 displays a histogram of the Importance variable.16 The possible ratings range

from 1 (“Not Important”) to 5 (“Extremely Important”).

12Note that O*NET provides several tables with data classified by level or difficulty, such as abilities and work
activities tables. We test the results for those alternative tables in Section 5.

13The number of skills varies at each occupation between 24 and 35 with an average of 32.4 and a median of
33 skills.

14See O*NET website: https://www.onetonline.org/help/online/scales. Website accessed in June 2024.
15See O*NET website: https://www.onetonline.org/help/online/scales. Website accessed in June 2024.
16See O*NET website: https://www.onetonline.org/help/online/scales. Website accessed in June 2024.
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Figure 2: Distributions of the skill’s importance and level variables

(A) Distribution of the importance Ii,o,s (B) Distribution of the levels Li,o,s

Note: The figure shows the distribution of the importance and level variables in the skills dataset from O*NET.
Importance: N=23,111; Mean =2.691; SD=0.765; Min=1.04; Max=5. Level: N=23,111; Mean =2.510; SD=1.101;
Min=0.060; Max=6.

In our simulations, we assume that cognitive skills that involve computer interactions are

exposed once their level comes within the AI’s capabilities.17

In the main analysis, we do not attempt to directly quantify current AI capabilities (however,

we compare our results to the estimates available in the literature (subsection 3.3) and add

multiple back-of-the-envelope calculations in Section 5). Rather, we introduce this as a model

variable (κAI), based on which we can construct different scenarios with lower or higher AI

capabilities. Although we can not foresee the speed of AI technology advancement and adoption,

we are safe to assume that this parameter will grow in the future.

On a per-skill level, we construct the binary variable Ai,o,s(κAI) to indicate if the skill s of

the occupation o in industry i is with the AI’s capabilities (κAI) and thus prone to automation.

Ai,o,s(κAI) =

0 if Li,o,s > κAI ,

1 if Li,o,s ≤ κAI .

The overall share of skills that can be automated for a given occupation (o) as a function

of the AI capability Ai,o(κAI) is equal to the weighted average of the impact of each of the

occupation’s skills, weighted by its importance (Ii,o,s) for the given occupation:

Ai,o(κAI) =

∑
s∈S Ai,o,s(κAI) · Ii,o,s∑

s∈S Ii,o,s

17Certainly, this is a simplification and does not take into account inherent differences in skill levels (for
instance, an AI might excel at maths much sooner than on negotiation) nor the difference in time and effort to
automate different skills with an AI. We also do not account for costs to the implementation that can significantly
affect the decision to automate the processes, as argued in (Svanberg et al., 2024).
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The same share on the industry level is again calculated as an average of the shares of the

individual occupations (Ai,o) weighted by the employment numbers (Ni,o) for each occupation:

Ai(κAI) =

∑
o∈O Ai,o(κAI) ·Ni,o∑

o∈O Ni,o

Figure 3 illustrates the share of skills within AI capabilities across industries for three low

(2.0), medium (3.0) and high (4.0) AI capabilities. We see that even moderate levels of AI

surpass more than 50% of the required skills necessary for many labour-intensive occupations,

most strikingly, “Buildings and grounds cleaning and maintenance”, where even low AI capabil-

ities already surpass 40% of the required skills. On the opposite end, traditionally office-prone

industries such as “Engineering”, “Management”, or “Legal” show a comparatively low share

of around 20% of affected skill at medium AI levels and even at high AI capability levels does

not surpass 80%.

Figure 3: Share of automatable cognitive skills given AI capabilities Ai(κAI)

Note: The figure shows the share of skills Ai(κAI) within reach of the low (2.0), medium (3.0) and high (4.0) AI
capability κAI in individual industries i.

3.3 AISA Index - combining computer interaction and automatability of

skills

The combination of the time spent with computer interaction Ti,o and the occupational skills

within AI capabilities Ai,o(κAI) constitutes the AI share of automation (AISA) index:

AISAi,o(κAI) = Ti,o ·Ai,o(κAI)
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Again, we aggregate the AISA index to the industry level, weighted by the employment

numbers.18

AISAi(κAI) =

∑
o∈O AISAi,o(κAI) ·Ni,o∑

o∈O Ni,o

Figure 4 presents AISAi(κAI = 3.0) (red) within individual industries as the combination of

the fraction of time spent in computer interaction Ti (yellow) and the fraction of skills within the

AI’s capabilities Ai(κAI = 3.0) (blue). We see that industries like Production or Farming are

“technology-limited” (i.e., despite simpler skills, much work does not involve direct computer

interaction, thus reducing automation potential). Conversely, industries like Legal services or

engineering are “skill-level-limited”; despite high computer interaction, the complexity of skills

often surpasses the AI’s capabilities. At a moderate AI capability of 3.0, we observe a moderate

AI impact of 10-25%19 across the industries, with slightly greater effects in skill-level-limited

industries. A noteworthy exception is the office and administrative support industry, with

an almost 40% AI exposure attributable to both high computer usage and relatively low skill

difficulties.

Moreover, traditionally well-paid office jobs such as Engineering or Legal have high shares

of computer interaction and thus would lend themselves to easy employment of AI, assuming

that the AI has the required skill levels and quality. On the other hand, there are traditionally

low-paid (physical) labour-intensive jobs such as “food serving” or “cleaning”, requiring less

cognitive skills, but are difficult to leverage AI in their tasks because of their working modalities,

which are mostly not in direct contact with a computer.

18We implicitly assume (statistic) independence between the time spent on computer interaction and individual
skills. We acknowledge that this is a simplification, as some of the skills, such as “writing”, are more likely
performed through computer interactions than others (e.g. “negotiation”). Considering the large amount of
uncertainty, we opted for this simple model. However, as more data on real-world AI usage becomes available,
weighing the individual skills separately would likely be a point of refinement.

19The average AISAavg(κAI = 3.0) weighted by employment numbers is 18.4%, computer interaction Tavg

43.3% and skills below AI capability Aavg(κAI = 3.0)=56.1%.
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Figure 4: AISA Index at AI capability 3.0 at the industry level

Note: The figure presents AI share automation index AISAi(κAI = 3) as a red bar, computer interaction Ti as a blue
bar, and share of skills automatable by AI Ai(κAI = 3) as a yellow bar across individual industries i. AISAi,o(κAI = 3)
is calculated by multiplying Ti,o and Ai,o(κAI = 3) on occupational level.

Figure 5 shows the dependency of the AISA index (red bars) on the AI capability for the

three AI levels (low, medium, and high). Per construction, the AISA can not surpass the

fraction of time spent in computer interaction Ti (yellow lines), even at the highest AI capa-

bilities. Industries with a high portion of computer interaction, such as Legal or Architecture,

converge slowly towards their maximum, whereas occupations with low computer interaction

(e.g. Production or Transport) have already almost reached their maximum at medium AI

capabilities.20

20The overall average AISAavg(κAI = 2) = 7.3%, AISAavg(κAI = 3) = 18.4%, and AISAavg(κAI = 4) =
43.3%. The employment numbers were used as weights (see below).
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Figure 5: AISAi(κAI) at low (2.0), medium (3.0) and high (4.0) AI capability

Note: The figure represents the AISAi(κAI) index for three different AI capabilities (2.0, 3.0, 4.0) at the industry level.
The AISA index is dependent on the AI capability (κAI) up to a maximum level given by the computer interaction Ti

(yellow lines).

Our simulations raise the question regarding the current level of AI capabilities, which can

be gauged from comparisons of the results of our hypothetical calculations with the survey-

based ones in the literature. The red dotted line in Figure 6 displays AISAavg(κAI), defined as

the overall average (weighted across occupational employment as weights) as a function of AI

capability (κAI):

AISAavg(κAI) =

∑
o∈O AISAi,o(κAI) ·Ni,o∑

o∈O Ni,o

For such comparisons, we note that our approach is conservative in that we assume that

only computer interaction is automatable. AISAavg(κAI) (red dotted line) increases gradually

and tops out at 43.3%, which is the average level of computer interaction across all industries

that bounds AISA.

We compare AISAavg(κAI) to four datapoints found in the literature. Hatzius et al. (2023)

and Eloundou et al. (2023) suggest that on average 25%21 and 30%22 of occupations will be

exposed respectively. A level of κAI of 3.2 and 3.6, respectively, would match these numbers in

the aggregate.

21The value represents AI exposure based on an evaluation of 13 work activities of O*NET.
22This value represents the mean AI exposure based on a human assessment of the professions in which AI can

reduce the time spent on tasks by at least 50% only with the use of the OpenAI’s ChatGPT (alone, or in their
“beta” case when it is integrated in a company’s systems).
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An earlier literature had suggested a larger automatisation potential that exceeds the maxi-

mum ofAISAavg(κAI) in our simulations. Frey & Osborne (2017) estimate a maximum exposure

of 47%23, while Webb (2020) estimates an exposure of 54.5%24.

Some of these higher estimates may rely on the assumption that also types of work other

than computer interaction are automatable with AI. For better comparability, Figure 6 also

reports an alternative simulation for AISAavg(κAI) that is discussed in the robustness Section 5.

This alternative measure assumes that in addition to computer interaction, also a share of social

interactions, such as communication with clients via e-meetings or taking orders in a restaurant,

can be automated with AI: T 25%Social
i,o is calculated assuming that 25% of social interaction can

be automated (if the skill difficulties are in reach of the AI’s capabilities).

AISA
T 25%Social
i,o

avg (κAI) is depicted by the red dashed line in Figure 6 and tops out at 51.8%.

Using this line as a benchmark, an AI capability level of 2.9 and 3.1, respectively, would match

the averages mentioned in Eloundou et al. (2023) and Hatzius et al. (2023). In contrast, re-

producing the figure of Frey & Osborne (2017) would require a very high AI capability of 4.1

(while there is no level of AI capabilities that allows us to reproduce the predictions of Webb

(2020)).

23Note that this figure is discussed in the literature. Arntz et al. (2016) revise these estimates using a modified
methodology and find that only 9% of jobs in the US are at high risk of automation.

24The value represents the exposure to AI. Webb (2020) also models the exposure to software (50.69%) and
robots (48.61%).
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Figure 6: AISA as a function o f κAI and comparison to other estimates

Note:
The figure presents the level of AISAavg(κAI) as a function of AI capability κAI . The average AISA is constructed as
the weighted mean across industries, using employment numbers of each occupation as weights. AISAavg(κAI) is
represented by the red dotted line. The figure also depicts an alternative measure from the robustness exercise in
subsection 5.1, assuming that AI can automate not only computer interaction but also 25% of social interactions

(T 25%Social
i,o ). AISA

T25%Social
i,o

avg (κAI) is depicted by the red dashed line. The figure also adds four lines corresponding to

average AI exposure levels found in the literature (Eloundou et al. (2023) (black dashed vertical line), Hatzius et al.
(2023) (brown dotted vertical line), Frey & Osborne (2017) (black dot-dash horizontal line), and Webb (2020) (brown
triangular horizontal line).

Figure 7 maps the AISA index across the wage spectrum. To construct the wage spectrum,

we used weighted quantiles to take differences in the numbers of employees per occupation No

into account. Assignment to a wage quantile was done by first indexing (j) all occupations in

ascending order of their wage Wo,j and calculating the cumulative sum of employees leading up

to the index of the particular occupation j = jo, divided by the total number of employees in

the dataset:25

po =

∑j=jo
j=1 No,j∑
j∈J No,j

Based on that relative position, an occupation is assigned to wage quantile w from a total

of W quantiles if its relative position is in between equally spaced boundaries:

w − 1

W
< po ≤

w

W

The weighted average of AISAw(κAI) within a specific quantile w is calculated (analogously

25Imagine, lining up all employees based on their wage, then po would denote the relative position as a fraction
of the entire length of the line of the last representative of a given occupation o in that line.
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to the Industry) with an average of the per occupation AISAw,o(κAI) weighted by the number

of employees in that occupation Nw,o:

Figure 7 demonstrates that the impact on occupations is uniform and relatively small across

the wage spectrum at low levels of AI capability (below 10% at the AI capability of 2.0).

However, as AI capabilities increase, particularly from AI capability 3.5 onwards, the effects

begin to diverge significantly.

At the highest levels of AI capability, the additional impact is predominantly on the highest-

paid occupations, as lower-paid positions have already reached their maximum potential advan-

tage from AI integration. We note that the shape of the exposure across the wage spectrum

for higher AI capabilities (i.e. around 4) mimics that fond for the survey-based estimates of

Eloundou et al. (2023).26

AISAw(κAI) =

∑
o∈O AISAw,o(κAI) ·Nw,o∑

o∈O Nw,o

Figure 7: AISA Index for various AI capabilities across wage quantiles

Note: The figure depicts AISA index AISAw(κAI) for increasing AI capability κAI across wage quantiles w. In this
case, AISAw(κAI) was calculated on deciles.

4 Complementing and substituting AI: the role of Core and

Side skills

Next, we classify an occupation’s skills into core and side ones and compute measures of AI

exposures separately for these two groups.

26Eloundou et al. (2023) finds a similar shape where higher wage quantiles are much more exposed to AI. Their
shape resembles the one depicted in Figure 7 most closely for AISAw(κAI = 4.0).
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4.1 Exposure of core and side cognitive skills

To model the effect of complementarity and substitution in our model, we split the cognitive

skills by their importance for each individual occupation into two categories: the top third,

approximately 11 skills we designate as “core skills”, and the remainder, referred to as “side

skills”. We find support for the division from other tables available in the O*NET database

that show a clear relationship between higher importance and core/side tasks27 Figure A1).

Figure 8 illustrates this division for 10 randomly selected occupations.

Figure 8: Core vs. Side skills differentiation for individual occupations

Note: The figure shows the distribution of core (orange) and side (blue) skills for a random selection of occupations at
the most granular level. The top third (11 out of 33 for the median number of skills per occupation) important skills are
designated core skills, leaving the bottom 2/3 of skills as side skills.

As before, the AISA index is calculated as the average of the individual occupations within

a wage quantile w, but this time split between core and side tasks:

27Note that the construction of core and side tasks in O*NET database follows a very similar methodology we
apply. The division is constructed based on the relevance and importance rating of the tasks where the criteria
for core tasks are (a) relevance 67% and (b) a mean importance rating of 3.0.
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AISAcore
w (κAI) =

∑
o∈O AISAcore

w,o (κAI)·Nw,o∑
o∈O Nw,o

AISAside
w (κAI) =

∑
o∈O AISAside

w,o (κAI)·Nw,o∑
o∈O Nw,o

Figure 9 shows AI impact for core skills (Figure 9A) and side skills (Figure 9B) sepa-

rately across the wage spectrum. Comparing the two approaches, the AI impact of side skills

is pronounced at much lower AI capabilities compared to core skills. This suggests that AI

advancements affect side tasks more immediately across all wage quantiles. For lower-wage

occupations, side skills saturate at around 20-30% total exposure, whereas core skills start with

lower impact and increase more gradually, reaching a comparable level at the later-stage AI

capabilities.

Importantly, occupations in higher wage brackets are influenced twice as much as those

in the mid-wage range for high AI capabilities. This disparity becomes most apparent when

examining the effect on core skills. At a moderate AI capability of 3.0, the core skills (Figure 9A)

in the fourth quartile interval remain largely unaffected; however, as the AI reaches a highly

advanced level of 5.0, the impact on these skills escalates dramatically, soaring to 60%. These

observations underscore a pivotal trend: as AI progresses, its capacity to undertake complex,

high-value skills increases, disproportionately affecting higher-paid occupations.

Figure 9: Core and Side skill exposure across the wage quantiles

(A) AISAcore
w Index (B) AISAside

w Index

Note: The figure illustrates the impacts of AISAcore
w (κAI) (orange, Figure 9A) and AISAside

w (κAI) (blue, Figure 9B)
with increasing AI capability (κAI) across the wage quantiles w. In this case, we used deciles for w.

4.2 Core and side skills as a proxy for complementarity and substitution

A consistent pattern emerges upon revisiting the impact of AI across core and side skills.

Notably, there is a strong correlation between the skills’ Importance and Level, thus side skills
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are already affected at lower AI capabilities than the core skills. This opens a window where

the AI is competent in mastering the side skills but not yet the core skills. If we consider the

AI’s proficiency in executing core skills as an indicator of potential labour substitution:

Rw(κAI) = AISAcore
w (κAI)

Further, we interpret situations where AI surpasses side skills but not core skills as periods

of AI complementarity for a given occupation.

Cw(κAI) = AISAside
w (κAI)−AISAcore

w (κAI)

In this framework, the difference between AI’s impact on core and side skills emerges as a

measure of potential productivity gains for employees. This perspective allows for a nuanced

understanding of AI’s role in the workplace: not merely as a substitution for human labour but

as a tool for augmenting human efficiency and capability.

Figure 10 illustrates the interplay between complementarity and substitution of labour at

a high AI capability of 4.0. The effects of both side and core skills are presented in one figure

showing the areas where AI complements and substitutes occupations. As observed, a significant

portion of higher-paying jobs (approximately 40% - after abstracting the effect of substitution)

benefits from AI, indicating a substantial productivity increase. This complementarity effect

is particularly evident in occupations requiring advanced side skills, where AI enhances human

capabilities. Conversely, AI demonstrates a notable ability to handle core skills in lower-wage

occupations. These jobs, often reliant on manual tasks, would need to be adapted to enable

humans to manage new complex and creative tasks. Despite this, AI’s impact on side skills

in lower-wage occupations is limited to around 30%, as these roles heavily depend on manual

labour.
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Figure 10: Complementary and substitution percentage across the wage spectrum
for an AI capability of 4.0

Note: The figure illustrates the amount of complementarity Cw(κAI) and substitution Rw(κAI) at a higher AI
capability of 4.0 (κAI = 4.0) across the wage spectrum w. In this case, the variables are calculated on deciles. The
substitution (orange area) equals AISAcore

w (κAI) and complementarity (purple area) equals the difference between
AISAside

w (κAI) and AISAcore
w (κAI). Orange line depicts AISAcore

w (κAI) and blue line AISAside
w (κAI). The yellow line

indicates the computer interaction limit, i.e. the maximum interaction of occupations with AI: AISAw(κAI=6).

Switching the viewpoint to the continuing progress of the AI capabilities, Figure 11 (left-hand

side) repeats Figure 10, highlighting Cw(κAI = 4.0) as the difference between AISAside
w (κAI)

and AISAcore
w for the four wage quartiles. Figure 11 (right-hand side) displays the dependence

of the complementarity Cw(κAI) on the AI capabilities κAI for those wage quantiles. For each of

the wage brackets, we observe distinct peaks of complementarity, starting once the AI becomes

first capable of the side skills and levelling off once the AI is capable of performing the core

skills.

The progression of the peaks is very interesting: For instance, the lowest wage quartile

shows only a modest peak with only a peak of 15% occupations experiencing a productivity

boost, which is achieved relatively “early” at lower AI capability (around 2.5). Interestingly,

this peak of AI impact escalates in value and occurs at higher AI capabilities in the higher

wage quantiles with the maximum complementarity effect for the highest quartile of about 50%

at an AI capability as high as 3.7, after which it drops off sharply. This pattern suggests an

impending period of significant efficiency gains, particularly in professional occupations, which

is likely to introduce considerable disruption, especially in the high-wage labour market. The

implications of this trend are profound, indicating a turbulent era where high-wage industries

may experience both heightened productivity and a considerable reshaping of job roles due to

advancing AI capabilities.

In contrast to Cazzaniga et al. (2024), we hence find that increased AI capabilities may

have a rather rising effect on income inequality at the middle to high AI capabilities, as the
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complementarity effect will be the highest for high-wage occupations. Of course, extremely

advanced AI capabilities could potentially recalibrate the labour market, especially in industries

characterised by high wages and complex skills. Such high AI capabilities are associated with the

automation of high-skill, high-wage jobs as their core tasks become exposed to the technology.

Figure 11: AI complementarity as AI capabilities increase

Note: The left panel presents the complementarity Cw(κAI) and substitution Rw(κAI) identification process for AI
capability κAI = 4.0 from Figure 10. In addition, we include arrows that display the magnitude of the complementarity
effect Cw(κAI = 4.0) for each of the four wage quartiles w. The right panel illustrates how the complementarity effect
Cw(κAI) evolves as the AI capabilities κAI change. Note that complementarity effect Cw(κAI) represents the difference
between AISAside

w (κAI) and AISAcore
w (κAI). The magnitudes of the complementarity effect are depicted as arrows in

the left panel, and they also appear in the right panel when κAI = 4.0.

5 Robustness Analysis

Next, we test the robustness of our results by introducing several adjustments to our framework.

First, we present several alternatives to the time spent on computer interaction Ti,o, either

allowing for social interactions to be partly automatable or using a different measure from

another source. Second, we use abilities and work activities instead of skills in the O*NET

database to construct AISA. Lastly, we modify the definitions of core and side skills.

5.1 Robustness with regards to the computer interaction variable

We start with robustness analysis with respect to the computer interaction variable, Ti,o. In

the baseline simulations, the latter is measured rather conservatively, even when it comes to

the near-term effect of AI: also, some social interactions, such as communication with clients

via e-meetings or taking orders in a restaurant, might be automatable with generative AI. As

a first robustness test, we hence construct a new measure T 25%Social
i,o that is equal to the time

spent on computer interactions plus 25% of the time spent on social interactions:

T 25%Social
i,o = Ti,o + 0.25 · Si,o
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Here, Si,o is the time spent on social interaction, as constructed above in Subsection 3.1 and

displayed in Figure 1.

Figure 12 compares the baseline results for our complementarity measure Cw(κAI) from

Figure 11 (right panel) with the approach that considers also 25% of the time spent on social

interaction automatable T 25%Social
i,o . The baseline results are depicted with solid lines, and the

results using T 25%Social
i,o with dashed lines. Under this alternative specification, the ”hump”

shape of the impact of AI is more pronounced, as the difference between AISAside
w (κAI) and

AISAcore
w (κAI) peaks at a higher level across all four wage quartiles. Additionally, this difference

is more pronounced for the first and the second quartiles than for above-average wages.

Figure 12: Accounting for automation of social interactions with T 25%Social
i,o

Note: The figure compares complementarity effects Cw(κAI) of the baseline model with the alternative specification that

considers both computer interaction Ti,o and 25% of social interactions Si,o to be automatable with AI (T 25%Social
i,o ).

Each panel shows the evolution of Cw(κAI) for an individual wage quartile against the higher AI capabilities κAI . The
solid lines represent the baseline model and are identical to the results presented in Figure 11 right panel. The dashed
lines represent Cw(κAI) when T 25%Social

i,o is used instead of Ti,o.

To further test the robustness of our findings, we replace the computer interaction variable

with the AIOE index from Felten et al. (2021). The AIOE index measures occupational exposure

to AI based on a survey conducted in the USA using the O*NET database, making it directly

applicable in our model. Although AIOE is a normalised index focusing on the variability

of AI exposure among different occupations rather than the absolute level, it is useful for

understanding the relative positions of occupations in terms of AI exposure. Notably, the

correlation between computer interaction and AIOE is 0.863 (see Figure A2).

To understand the absolute magnitude of the impact using AIOE, we rescaled the AIOE

index to a zero-to-one interval using min-max normalisation28. We then re-ran our baseline

28Figure A2 presents the scatterplot with the original, unscaled AIOE. In this case, AIOE falls into the negative
value range, which would make the results uninterpretable.
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estimations with this rescaled AIOE instead of Ti,o. The results are shown in Figure 13, which

displays (o(κAI) for each quartile of the occupational wage distribution.

A visual inspection reveals that the impacts are generally larger when using the rescaled

AIOE. Notably, the size of the complementarity effect increases in the higher wage quartiles,

similar to when using the computer interaction variable Ti,o. While the first and second quartiles

remain at a maximum level of 30%, the third quartile increases to 40%, and the fourth quartile

to 60%. Therefore, in line with our baseline model, AIOE also indicates that higher-wage

occupations benefit more from higher AI levels.

Figure 13: Using AIOE index instead of computer interaction

Note: The figure compares complementarity effects Cw(κAI) of the baseline model with the alternative specification that
considers AIOE index from (Felten et al., 2021) instead of Ti,o. AIOE was rescaled on the occupational level to zero-one
interval with min-max normalisation. Each panel shows the evolution of Cw(κAI) for individual wage quartiles against
the progressing AI capabilities κAI . The solid lines represent the baseline model and are identical to the results presented
in Figure 11 right panel. The dashed lines represent Cw(κAI) when AIOE index is used instead of Ti,o.

Next, we compare the alternative versions of AISA to our baseline model. Figure 14 presents

their scatter plots and simple regression lines. When we apply T 25%Social
i,o instead of computer

interaction Ti,o, AISA is, on average, 5.41pp higher and remains stable relative to the baseline

results. Using AIOE instead of computer interaction, AISA is, on average, 11pp higher29 than

the baseline model, with more pronounced magnitudes at higher values of the baseline model.

29Note that the absolute values of AISA with applied AIOE should not be, however, interpreted in absolute
terms. The indicator only measures the variation among occupations and does not reveal the absolute impact.
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Figure 14: AISA in comparison to alternative models (computer interaction
oriented)

Note: The figure presents scatter plots of AISA (as used in Figure 7) from the baseline model (x-axis) and AISA
calculated with the alternative setups of the baseline model used for the robustness analysis (y-axis). We consider two

different setups: i) T 25%Social
i,o instead of computer interaction Ti,o, and ii) the rescaled AIOE index from (Felten et al.,

2021) instead of computer interaction Ti,o. Panels also display summaries of simple OLS regression lines.

5.2 Using abilities or work activities instead of skills

The second building block of our model relies on the O*NET skills dataset, which is characterised

by importance Io,s and difficulty level Lo,s. Although skills offer the best interpretability for

our baseline results, alternative tables with the same structure, such as those for (i) abilities

and (ii) work activities, are available in the O*NET.

Abilities are defined as enduring attributes of the individual that influence performance.

O*NET sorts the abilities into four categories: i) cognitive, ii) physical, iii) psychomotor, and iv)

sensory abilities. For the purposes of the robustness check, and in line with the scope of our focus

on the automatability of cognitive computer interactions, we only focus on the first category.

Cognitive abilities are defined as “abilities that influence the acquisition and application of

knowledge in problem-solving”.30 There are 21 unique cognitive abilities such as “Deductive

Reasoning” or “Written Comprehension”. The difficulty level Labilities
o,s and importance Iabilitieso,s

for those are defined based on the same scale as the skills table in O*NET with the level ranging

from 0 to 6 and importance ranging from 1 to 5.

We use the level Labilities
o,s and importance Iabilitieso,s variables to calculate an alternative indica-

tor to shares of automatable cognitive skills for different AI capabilities Ao(κAI). A
abilities
o (κAI)

is calculated as follows:

30see https://www.onetonline.org/find/descriptor/browse/1.A The website was accessed in June 2024.
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Aabilities
o (κAI) =

∑
s∈S Aabilities

o,s (κAI) · Iabilitieso,s∑
s∈S Iabilitieso,s

; Aabilities
o,s (κAI) =

0 if Labilities
o,s > κAI ,

1 if Labilities
o,s ≤ κAI

Aabilities
o (κAI) enables us to calculate a new AISA index and complementarity measure

Co(κAI) that reflects cognitive abilities instead of skills.31

Figure 15 compares Co(κAI) using cognitive abilities tables instead of skills with the baseline

results. Cognitive abilities (dashed lines) yield outcomes similar to the baseline model (solid

lines), with peak complementarity for each quartile closely matching the baseline values and

maintaining the same position relative to AI capability κAI . The average complementarity

effect across all quartiles is, however, lower by 2.0pp (11.2%, compared to 13.2% in the baseline

model).

Figure 15: Cognitive abilities instead of skills

Note: The figure compares complementarity effects Cw(κAI) of the baseline model with the alternative approach that
uses the cognitive abilities table instead of the skills table from O*NET. Each panel shows the evolution of Cw(κAI) for
individual wage quartiles against higher progressing AI capabilities κAI . The solid lines represent the baseline model and
are identical to the results presented in the right panel of Figure 11. The dashed lines represent Cabilities

w (κAI) when
Aabilities

o (κAI) is used instead of Askills
o (κAI).

O*NET defines the work activities as “general types of job behaviors occurring in multiple

jobs.”32 The O*NET website categorises these activities into four groups: i) information input,

ii) interacting with others, iii) mental processes, and iv) work output. These categories encom-

pass a variety of tasks, from “Coordinating the Work and Activities of Others” and “Developing

31Note that we keep our baseline approach to identify core and side variables: the top 33% of cognitive
abilities/work activities are identified as ”core” in each occupation.

32see https://www.onetonline.org/find/descriptor/browse/4.A The website was accessed in June 2024.

27

https://www.onetonline.org/find/descriptor/browse/4.A


Objectives and Strategies” to “Identifying Objects, Actions, and Events” and “Interpreting the

Meaning of Information for Others”. Although there is significant variation among these work

activities, we exclude “work output” only due to its focus on physical activities, which are not

relevant to AI interactions in our scope. We end up with 41 different work activities. The

difficulty level Lwork act.
o,s and importance Iwork act.

o,s of these activities are defined similarly to the

O*NET skills table, but the difficulty level is set with a range of 0 to 7. We rescaled this to

a 0 to 6 range to retain compatibility of the results with our baseline model. The importance

variable Iwork act.
o,s maintains the same range as in the skills table, i.e. from 1 to 5.

We calculate Awork act.
o (κAI) in the same fashion as shown previously, i.e. by utilising the

level Lwork act.
o,s and importance Iwork act.

o,s variables from the work activities tables from O*NET:

Awork act.
o (κAI) =

∑
s∈S Awork act.

o,s (κAI) · Iwork act.
o,s∑

s∈S Iwork act.
o,s

; Awork act.
o,s (κAI) =

0 if Lwork act.
o,s > κAI ,

1 if Lwork act.
o,s ≤ κAI

Figure 16 compares Co(κAI) of the baseline results with the alternative case that uses re-

stricted work activities dataset. The work activities show more variation compared to the results

from cognitive abilities, with peak levels averaging 3.3pp lower and occurring around 0.25 κAI

later. Despite these deviations, our findings remain robust to changes in the tables used from

the O*NET.

Figure 16: Work activities instead of skills

Note: The figure compares complementarity effects Cw(κAI) of the baseline model with the alternative approach that
uses work activities table instead of skills. Each panel shows the evolution of Cw(κAI) for individual wage quartiles
against the progressing AI capabilities κAI . The solid lines represent the baseline model and are identical to the results
presented in Figure 11 right panel. The dashed lines represent Cwork act.

w (κAI) when Awork act.
o (κAI) is used instead of

Askills
o (κAI).
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The comparisons of AISA between the baseline model and the alternatives that use either

cognitive abilities or work activities instead of skills reveal no substantial differences between

the approaches, as shown in Figure 17. Cognitive abilities are only 3.53 percentage points lower

on average, and the coefficient of determination R2 reaches 0.98. The comparison with the work

activities provides very similar results.

Figure 17: AISA in comparison to alternative models (skills-oriented)

Note: The figure presents scatter plots of AISA (as used in Figure 7) from the baseline model (x-axis) and AISA
calculated with the alternative setups of the baseline model used for the robustness analysis (y-axis). We consider two
different setups: i) cognitive abilities table instead of skills table, and ii) work activities table instead of skills table.
Panels also display summaries of simple OLS regression lines.

5.3 Using different definitions of core and side skills

As a last robustness exercise, we investigate the robustness of the results with regard to changing

the definition for core and side skills. The baseline approach defines core skills as the top 33.3%

of the most important skills for an occupation.33 We construct two alternative models to inspect

the impact of different ratios used to identify the core skills on complementarity Co(κAI).

The first model defines core skills as the top 50% based on importance, thus including a

broader set of skills. The second model narrows the core skills to the top 20%. Figure 18 com-

pares the baseline results with these alternative approaches on the evolution of complementarity

Co(κAI). When 50% of skills are considered core (dotted lines), Co(κAI) peaks at a slightly lower

AI capability (on average by 0.5) and is more pronounced, with a maximum difference of up

to 5 percentage points. Conversely, when only 20% of the most important skills are considered

core (dashed lines), the dynamics reverse: Co(κAI) improves more gradually, and the maximum

complementarity is slightly reduced compared to the baseline model.

33This approach mimics O*NET methodology to define core tasks (see subsection 3.2)
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Figure 18: Different core skills identification process

Note: The figure compares complementarity effects Cw(κAI) of the baseline model with the two alternative specifications
of core skills. The baseline model considers core skills to be the top 33.3% of the most important skills for an occupation.
The first alternative model defines core skills as the top 50% most important skills (broader definition of core skills) and
is presented with dotted lines. The second alternative model defines core skills as the top 20% most important skills (a
more narrow definition of core skills) and is presented with dashed lines. The solid lines represent the baseline model and
are identical to the results presented in Figure 11 right panel. Each panel shows the evolution of Cw(κAI) for an
individual wage quartile against the progressing AI capabilities κAI .

6 Conclusion

In this paper, we have explored the impact of AI’s evolving capabilities on the labour market,

focusing on the exposure of 711 US occupational categories and the potential of AI to comple-

ment or substitute human labour. We model how the share of an occupation’s skills exposed

to AI depends on the difficulty of these skills and the AI’s cognitive capability. Our analysis

distinguishes between the impacts on core and side skills and investigates differential exposures

across wage quartiles.

We first investigate the overall exposure of industries across occupations and the wage dis-

tribution. We find that AI may initially affect occupations uniformly across the wage spectrum,

impacting approximately 7% of skills at lower AI capability levels. However, as capabilities

improve, up to 45% of skills in the highest wage quartile are susceptible to automation by AI,

compared to only 26% in the lowest quartile.

Nevertheless, looking into the impact on core and side skills, we find that AI may still lead

to increasing inequality as it will tend to substitute low-wage work more easily than high-wage

work. We find that low AI capabilities complement all workers, as side skills are simpler than

core skills. However, as AI capabilities advance, core skills in lower-wage jobs become exposed,

threatening substitution and increased inequality. In contrast to the intuitive notion that the
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rise of AI may harm white-collar workers, we find that those remain safe as their core skills are

hard to automate.

The simulations in this paper provide a detailed view of who will be impacted by AI and

in what ways, offering valuable insights for economic policy formulation. As AI continues to

reshape the labour market, several considerations need careful evaluation. Enhancing skill de-

velopment and training is crucial for workers at risk of AI-driven displacement, which can be

focused on adapting workforce capabilities in the affected skill areas and occupations. Trans-

parency in AI deployment and involving workers in implementation decisions are essential to en-

sure that AI complements rather than replaces human labour. Additionally, establishing safety

nets and transition programmes can support those adversely affected by AI. On a broader scale,

strengthening international cooperation on AI labour policies allows for a unified approach to

managing AI’s impact globally. These considerations are vital for policymakers to balance the

benefits and challenges of AI in the workforce.
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A Appendix

Table A1: Tasks descriptions for the occupation Fundraising Managers

No. Task Description

1 Assign, supervise, and review the activities of fundraising staff.

2 Compile or develop materials to submit to granting or other funding organisations.

3 Conduct research to identify the goals, net worth, charitable donation history, or other

data related to potential donors, potential investors, or general donor markets.

4 Contact corporate representatives, government officials, or community leaders to in-

crease awareness of organisational causes, activities, or needs.

5 Design and edit promotional publications, such as brochures.

6 Develop fundraising activity plans that maximise participation or contributions and

minimise costs.

7 Develop strategies to encourage new or increased contributions.

8 Direct activities of external agencies, establishments, or departments that develop and

implement fundraising strategies and programs.

9 Establish and maintain effective working relationships with clients, government offi-

cials, and media representatives and use these relationships to develop new fundraising

opportunities.

10 Establish goals for soliciting funds, develop policies for collection and safeguarding of

contributions, and coordinate disbursement of funds.

11 Evaluate advertising and promotion programs for compatibility with fundraising ef-

forts.

12 Formulate policies and procedures related to fundraising programs.

13 Manage fundraising budgets.

14 Plan and direct special events for fundraising, such as silent auctions, dances, golf

events, or walks.

15 Produce films and other video products, regulate their distribution, and operate film

library.

16 Write interesting and effective press releases, prepare information for media kits, and

develop and maintain company internet or intranet Web pages.
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Table A2: Examples for Skill Levels: Corresponding Occupations

AI capability

/Skills
Troubleshooting Critical Thinking Active Listening Mathematics

1.5
Social and Community

Service Managers

Cleaners of Vehicles

and Equipment

Pressers, Textile,

Garment, and

Related Materials

Writers and Authors

2.0
General and Operations

Managers
- -

Human Resources

Specialists

2.5

Computer and

Information Systems

Managers

Court Reporters and

Simultaneous

Captioners

Terrazzo Workers and

Finishers

Managers, All Other

3.0
Industrial Production

Managers

Farm Labor

Contractors
Cooks, Fast Food

Advertising and

Promotions Managers

3.5 Industrial Engineers

Property, Real

Estate, and

Community

Association Managers

Architectural and

Engineering

Managers

Financial Managers

4.0

Electro-Mechanical and

Mechatronics

Technologists

Advertising and

Promotions Managers
Chief Executives

Cost Estimators

4.5
Aircraft Mechanics and

Service Technicians
Anesthesiologists

Labor Relations

Specialists

Operations Research

Analysts

5.0 -

Judges, Magistrate

Judges, and

Magistrates

Judges, Magistrate

Judges, and

Magistrates

Mathematicians
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Figure A1: Importance of Core and Side Tasks according to O*NET database

Note: The figure supports our proposition that the skills can be split into core and side skills based on their importance
as core tasks are more important than the side tasks on occupational average.

Box A1: Prompt to define fractions of time spent in occupations

“Below is a list of task descriptions for the profession of {occupation}: {tasks}: With this description compile a

JSON file with an estimate of how much of the worktime is spent on:

1. Working on computer

2. Talking to people

3. Physical activities

Note: The prompt was looped across all occupations in the dataset. {occupation} and {tasks} represent two

variables varying in the prompt.
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Figure A2: Comparison between computer interaction and AIOE on individual
O*NET occupations

Note: Figure presents the relationship between computer interaction variable and AIOE developed by Felten et al.
(2021). The correlation between these variables is notably high at 86.3%.
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