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Abstract

Bayesian inference in a time series model provides exact, out-of-sample predictive
distributions that fully and coherently incorporate parameter uncertainty. This study
compares and evaluates Bayesian predictive distributions from alternative models, using
as an illustration five alternative models of asset returns applied to daily S&P 500 returns
from 1976 through 2005. The comparison exercise uses predictive likelihoods and is
inherently Bayesian. The evaluation exercise uses the probability integral transform and
is inherently frequentist. The illustration shows that the two approaches can be
complementary, each identifying strengths and weaknesses in models that are not evident
using the other.

Keywords: forecasting; GARCH; inverse probability transform; Markov mixture;
predictive likelihood; S&P 500 returns; stochastic volatility.

JEL Classifications: C11, C53.
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Non-technical summary

Probability distributions for magnitudes that are unknown at a time a decision must be made, but
will become known afterward, are required for the formal solutions of most decision problems in
economics. Increasing awareness of this context, combined with advances in modeling and
computing, is leading to a sustained emphasis on these distributions in econometric research.

For important decisions there are typically competing models and methods that produce predictive
distributions. The question of how these predictive distributions should be compared and evaluated
then becomes relevant.

This study compares and evaluates the quality of predictive distributions over multiple horizons for
asset returns using five different models. We use the daily returns of the Standard and Poors 500
index over the period 1972-2005, a series that is widely employed in academic work and is also
one of the most important indexes in the finance industry. The models compared are two from the
ARCH family, a stochastic volatility model, the Markov normal mixture model, and an extension
of the last model that we have described in detail elsewhere (Geweke and Amisano (2007)).

The basis of comparison used in this study is the predictive likelihood function, i.e. the model’s
probability density for the return at the relevant horizon before it is observed, evaluated at the
actual value of the return after it is observed. This function reflects the logical positivism of the
Bayesian approach: a model is as good as its predictions.

Each model produces a predictive distribution for each return ex ante, and therefore a predictive
likelihood ex post. Comparison of these predictive likelihoods across models decomposes posterior
odds one observation at a time. One of the objectives of this study is to illustrate how this
decomposition provides insight into conventional Bayesian model comparison. The basis of
evaluation used in this study is the probability integral transform (PIT), which is the inverse of the
sequence of ex ante predictive cumulative distribution function (c.d.f.) evaluated at the sequence of
actual returns ex post. If returns are in fact generated from this c.d.f. sequence then the ex ante
distribution of the PIT is i.i.d. uniform. As a practical matter this condition will not be met
precisely even in ideal circumstances: while observed values might come from the model under
consideration, uncertainty about parameter values implies that the predictive distributions will not
be exactly the same as in the data generating process. Nevertheless the PIT provides a well-

recognized and useful paradigm against which any sequence of predictive distributions can be
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evaluated. A second objective of this study is to illustrate how the PIT also provides insight into
the deficiencies of models.

Model comparison using predictive likelihoods and model evaluation using the PIT are quite
distinct methodologically. The predictive likelihood function is inherently Bayesian, while the PIT
is inherently frequentist. Taken together the two methods provide insight into the strengths and
weaknesses of alternative prediction models.

This study details these comparisons and evaluations using daily S&P 500 returns, and shows how
the HMNM model predictive likelihood is comparable to that of the t-GARCH model (and
superior to its competitors). At the same time the HMNM model is well calibrated to observed
returns as indicated by the PIT.

The final objective of this study is to compare the quality of the predictive distributions of the five
models for daily S&P 500 returns, and to identify deficiencies in these models that might be
addressed by future research. Briefly, we find that the predictive distributions of the HMNM and
t-GARCH models prove superior to those of the other three models considered.

In particular, the predictive likelihood analysis narrowly favors Bayesian t-GARCH over HMNM,
but for MLE t-GARCH the predictive likelihoods are nearly identical. By contrast the PIT analysis
narrowly favours HMNM predictive distributions over t-GARCH. However the latter analysis also
shows that the normalized PIT for the HMNM model is not ideal. In particular, PIT's for
successive one-day predictions are not independent, and the performance of HMNM in this
dimension is no better than those of the other four models.

A new predictive density can always be formed as a weighted average of predictive densities from
different models, the best known example being Bayesian model averaging. The analysis in our
paper indicates that for most combinations of models and substantial sub-periods of the sample
considered Bayesian model averaging is for all practical purposes equivalent to model selection,
with one model receiving a weight very close to 1. This is often the outcome for Bayesian model
averaging when the sample is large, as it is here. The notable exception arises when the models
averaged include both t-GARCH and HMNM: in that case these two models can have substantial
weight in Bayesian model averaging, depending on the days included in the sample. Geweke and
Amisano (2008) shows that a weighted average of the HMNM and t-GARCH models compares
quite favorably with both models, using predictive likelihood. That paper also shows that, in

general, optimization of the predictive likelihood leads to non-trivial weights on several models,
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weights that are quite different from those that result from conventional Bayesian model
averaging. Ultimately, analysis of this kind provides the elements from which better models may
be constructed, as illustrated in the introduction by our experience in developing the HMNM
model. The predictive density evaluations presented here, as well as in Geweke and Amisano

(2008), show that there is scope for substantial further improvement.
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1 Introduction and motivation

Probability distributions for magnitudes that are unknown at a time a decision must
be made, but will become known afterward, are required for the formal solutions of
most decision problems in economics — in the private and public sectors as well as
academic contexts. Increasing awareness of this context, combined with advances in
modeling and computing, is leading to a sustained emphasis on these distributions
in econometric research (Diebold et al. (1998); Christoffersen (1998)); Corradi and
Swanson (2006) provides a survey. For important decisions there are typically com-
peting models and methods that produce predictive distributions. The question of
how these predictive distributions should be compared and evaluated then becomes
relevant.

This study compares and evaluates the quality of predictive distributions over
multiple horizons for asset returns using five different models. We use the daily
returns of the Standard and Poors 500 index over the period 1972-2005, a series that
is widely employed in academic work and is also one of the most important indexes
in the finance industry. The models compared are two from the ARCH family, a
stochastic volatility model, the Markov normal mixture model, and an extension of
the last model that we have described in detail elsewhere (Geweke and Amisano
(2007)).

The basis of comparison used in this study is the predictive likelihood function
— the model’s probability density for the return at the relevant horizon before it is
observed, evaluated at the actual value of the return after it is observed. This function
lies at the heart of the Bayesian calculus for posterior model probabilities, reflecting
the logical positivism of the Bayesian approach: a model is as good as its predictions.
Each model produces a predictive distribution for each return ex ante, and therefore
a predictive likelihood ex post. Comparison of these predictive likelihoods across
models decomposes posterior odds one observation at a time. One of the objectives
of this study is to illustrate how this decomposition provides insight into conventional
Bayesian model comparison. The study does this in Sections 3 and 4.

The basis of evaluation used in this study is the probability integral transform
(PIT), which is the inverse of the sequence of ex ante predictive cumulative distrib-
ution function (c.d.f.) evaluated at the sequence of actual returns ez post. If returns
are in fact generated from this c.d.f. sequence then the ex ante distribution of the
PIT is i.i.d. uniform. As a practical matter this condition will not be met precisely
even in ideal circumstances: while observed values might come from the model under
consideration, uncertainty about parameter values implies that the predictive distri-
butions will not be exactly the same as in the data generating process. Nevertheless
the PIT provides a well-recognized and useful paradigm against which any sequence
of predictive distributions can be evaluated. A second objective of this study is to
illustrate how the PIT also provides insight into the deficiencies of models. The study
does this in Sections 5 and 6.
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Model comparison using predictive likelihoods and model evaluation using the PIT
are quite distinct methodologically. The predictive likelihood function is inherently
Bayesian: it is a component of the likelihood function, integrated over the posterior
distribution of the unobservables (parameters and latent variables) at the time the
prediction is made. The product of predictive likelihood functions over all observa-
tions in the sample is the marginal likelihood of the model over the same observations.
By contrast the PIT is inherently frequentist, comparing a function of the data with
the ex ante distribution that function would have if the data were generated by a
process coinciding with the model used by the analyst. Both methods can be applied
to predictive distributions arising from Bayesian inference, which we do in this study.

Taken together the two methods provide insight into the strengths and weaknesses
of alternative prediction models. The choice of models used here reflects our own
experience in developing the hierarchical Markov normal mixture (HMNM) model.
When we began the research leading to that model, roughly the year 2000, we were
aware that using predictive likelihoods t-GARCH models compared favorably with
most alternative models for daily financial returns. This finding is driven strongly
by days with extreme returns that are much more reasonable in --GARCH than in
competitors like the GARCH and stochastic volatility (SV) models. Yet evaluations
of t-GARCH using PIT are poor because it tends to ascribe too much probability to
extreme returns relative to what is observed. At the time we began our research we
were also aware that normal mixture models were well calibrated relative to competing
prediction models but suffered in comparisons of predictive likelihoods. This led us to
extend the conventional Markov normal mixture (MNM) model using the hierarchical
structure summarized in the next section and described in detail in Geweke and
Amisano (2007). Going beyond that paper, this study details these comparisons
and evaluations using daily S&P 500 returns, and shows how the HMNM model
predictive likelihood is comparable to that of the t-GARCH model (and superior to
its competitors). At the same time the HMNM model is well calibrated to observed
returns as indicated by the PIT. The findings reported here suggest that there is
still scope for improvement in predicting daily S&P 500 returns, a conclusion that is
echoed using an alternative approach in Geweke and Amisano (2008).

The final, and overriding, objective of this study is to compare the quality of the
predictive distributions of the five models for daily S&P 500 returns, and to identify
deficiencies in these models that might be addressed by future research. Briefly, we
find that the predictive distributions of the HMNM and ¢-GARCH models prove
superior to those of the other three models considered. This is not an unqualified
conclusion; Sections 4 and 6 provide more detail, summarized in the final section.

Amisano and Giacomini (2007) use frequentist tests based on weighted log pre-
dictive distributions to compare alternative models. Their method can be applied
either to Bayesian or frequentist predictive distributions, but they do not use the
PIT approach. Other studies have employed both the predictive likelihood and the
PIT to compare and evaluate predictive densities, some with large samples of daily
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returns like the one used in this study. Hong et al. (2004) is perhaps closest in these
dimensions; see also Bauwens et al. (2004). However none of these studies incor-
porate parameter uncertainty in their predictive distributions. As discussed in the
next section, the coherent combination of intrinsic and parameter uncertainty is the
hallmark of Bayesian predictive distributions.

2 Data and Bayesian predictive distributions

This study compares and evaluates the predictive performance of five alternative
predictive distributions of asset returns using daily percent log returns of the Standard
& Poors (S&P) 500 index. The daily index p, for 1972-2005 was collected from
three different electronic sources: the Wharton WRDS data base;' Thompson/Data
Stream;* and Yahoo Finance.? For days on which all three sources did not agree
we consulted the periodical publication Security Price Index Record of Standard &
Poor’s Statistical Service. From the price series {p;} assembled in this way the daily
percent log returns y, = 100log (p;/p;—1) were constructed. The total number of
returns in the sample is 8574.

Each of the five alternative predictive distributions arises from a model A for
the time series of S&P 500 asset returns yr = (y1,...,yr). Each model A for a
time series yr = (y1,. .., yr) specifies a density p (yr | 8.4, A) for the observables yr
conditional on a vector of unobservables 8 4 € © 4 that may include latent variables as
well as parameters. It also specifies a prior density p (04 | A), and through the usual
Bayesian calculus the posterior distribution of 84 from a sample of ¢ observations is

POyl A) xp(Oa] A)p(y:]0a,A). (1)

The superscript o in (1) denotes the ex post, observed, value of y,; that is, ex post
y: =y is known and fixed whereas ez ante it is random. The posterior distribution
represented by (1) is usually accessed using a posterior simulator that produces an

ergodic sequence {054";)} (m=1,...,M).

Conditional on the data y{ ; and the model A the predictive density for y; is

p (v | yi1, A) =/ (e |y 1,04, A)p(04]yy 1, A)dba. (2)
O4

This distribution can be accessed by the simulating one value yﬁm) from each of

the distributions represented by the density p (yt | yo 4, O(A’?_l, A) (m=1,...,M).

This simulation is usually straightforward and less demanding than the simulation of

"http://wrds.wharton.upenn.edu
2http:/ /www.datastream.com/default.htm
3http://finance.yahoo.com/
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0(;’? from (1). The predictive density (2) integrates uncertainty about the vector of
parameters 8, and intrinsic uncertainty about the future value 7;, both conditional
on the history of returns y;y ; and the assumptions of the model A.

This integration is a hallmark of Bayesian predictive distributions. The use of sim-

ulation methods to produce {054”3)} and then {yt(m)} makes these predictive distrib-

utions applicable in real time. A key advantage of Bayesian predictive distributions is
the combination of the two sources of uncertainty in a logically coherent framework.
To consider two alternatives suppose, first, that one were to use the predictive density

p (?Jt | yg—pa,(:il)a A) (3)

~(t—1
where the estimate 054 ), a function of yy ,, replaces the unknown 6,4. This does
not account for parameter uncertainty at all. In a second alternative one could work

with (t=1) (t=1) (t=1)
~(t—1 (-1 ~(t—1
/ p (yt ’ ygfla OA 7A> p <0A ‘ A) dBA (4)
©4

(-1
where p <0£‘ ) | A) is an asymptotic approximation of the sampling distribution of

the estimator 53_1). This alternative conditions on the actual history yy in the first
component of the integration, while treating the history as a random variable in the
second component. The resulting distribution for ; thus has no clear interpretation.
For further discussion of these issues, see Geweke and Whiteman (2006), Section
2.4.2.

The first model A considered in this study is the generalized autoregressive condi-
tional heteroscedasticity model with parameters p = ¢ = 1 in which the distribution
of the innovations is Gaussian (“GARCH”). The second model is the same as the
first, except that the distribution of the innovations is Student-t (“t-GARCH”). The
third model is the stochastic volatility model of Jacquier et al. (1994) (“SV”).

The fourth model is a Markov normal mixture model (“MNM”), which dates at
least to Lindgren (1978) and has since been applied in statistics and econometrics
(Tyssedal and Tjgstheim (1988); Chib (1996); Ryden et al. (1998); Weigend and Shi
(2001)). In the MNM model a latent state variable s; takes on discrete values s; =
1,...,m and obeys a first-order discrete Markov process P (s; = j | s;—1 = i) = pij-
Then

ol (0= 3) ~ N (1, %).. (5)
The model is used here with m = 4 components, which is the choice made by Weigend
and Shi (2001) using S&P 500 return data.

The final model is a generalization of the MNM model proposed in Geweke and
Amisano (2007). This generalization replaces the normal conditional normal dis-
tribution (5) with a conventional finite mixture of normal distributions. The la-
tent variable s; becomes the first component sy; of a bivariate latent state vector
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st = (Su1, Si2); thus P(syy =j | si-110 =1) =pij (j =1,...,mq). For the second com-
ponent P (syp =j | sy =1i) =1 (j =1,...,mg). Then

Yt | (Sﬂ =1,5 :j> ~ N (Mij70-z‘2j) .

This generalization is termed the hierarchical normal mixture model (“HMNM”) in
Geweke and Amisano (2007). The model is used here with m; = my = 5, the choice
being made based on predictive likelihoods as explained in the next section. The
HMNM model can also be regarded as a first-order Markov normal mixture with
m? states and with substantial structure imposed on the Markov transition matrix.
Yet a third interpretation is that of an artificial neural network with two hidden
layers. Geweke and Amisano (2007) provides further detail about the model, prior
distributions, and the posterior simulation algorithm.

These five models are illustrative examples. Bayesian predictive distributions arise
naturally in any complete model for time series that specifies a conditional distribu-
tion of the form p(y; | yi—1,04, A) and a prior distribution of the form p (04, A).

3 Model comparison with predictive likelihood func-
tions

The one-step-ahead predictive likelihood, which can be evaluated only at time ¢ or
later, is the real number

PLs(t)=p(y] | y;_1,A) —/@ Py | vy 1,04, A)p(04]y) 1, A)dOs.  (6)
A

In most time series models evaluation of p (yf |y? 1,04, A) is straightforward, leading
to the approximation of (6),

M
MY (v 1 vie 0570 4). (7)
m=1

using an ergodic sequence {B(Aﬁ)} from a posterior simulator.
For the data set y7. the marginal likelihood of the model A is

T
p(ys 1 A) =]]r vy 4)
t=1
implying the additive decomposition
T
logp(y7 | A) = log PLa(t). (8)
=1
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Given two competing models A; and A,, the log Bayes factor may be decomposed

los [p (v# | Aﬁ] _ i log [PLAI <t>] o)
p(y7 | A2)] = 7 [PLa, (1)

where PLy, (t) /PLa, (t) is the predictive Bayes factor in favor of A; over Ay for

observation t. Predictive Bayes factors may be approximated using the output of a

posterior simulator by means of (7). These approximations are usually quite accurate;

the cost is that the posterior simulator must executed for each time period t.

The decomposition (8) shows the intimate relationship between the evaluation
of the predictive performance of a model by means of the predictive likelihood, on
the one hand, and the evidence in favor of a model in the conventional Bayesian
comparison of models by means of Bayes factors, on the other. The corresponding
decomposition (9) shows how individual observations contribute to the evidence in
favor of one model versus a second. See Geweke (2001) or Geweke (2005), Section
2.6.2, for further details and elaboration.

A generalization of (8) is

T
logp (y9 | ¥4, A) = ) log PL, (t) (10)
t=S+1

for S < T, and the corresponding generalization of (9) is

log [p (v | YféaAl)} _ XT: log {M} _ (11)

In (10) and (11) the cumulation of evidence begins at time ¢ = S + 1 rather than
at time ¢ = 1. If one were to regard p (0.4 | y%, A) as the prior distribution for 6,4 —
that is, y% were interpreted as a training sample — then (10) would have the same
interpretation as (8) and (11) would have the same interpretation as (9). The analysis
in the next section uses (10) and (11) with S = 1250 (about five years of data) and
T = 8574, so that there are 7324 terms in the sums in these two expressions. The
same sample is used for the analysis in Section 6. For small values of ¢t PLy (t) is
sensitive to the prior distribution, whereas for ¢ > 1250 the results reported here are
for all practical purposes invariant with respect to substantial changes in the prior
distribution. This result is unsurprising if one interprets y% as a training sample:
the information in these 1250 observations dominates the information in the original
prior distribution.

The decomposition (11) shows how individual observations contribute to the ev-
idence in favor of one model versus a second. For example, it may show that a few
observations are pivotal in evidence y?. strongly favoring one model over another.
Comparison of the predictive Bayes factors PL 4, (t) /PLa, (t) with characteristics of
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Figure 1: S%P 500 percent log return observations for which predictive likelihood
was evaluated. The symbols identify nine specific observations.

the sample y? for s = ¢ and observations s leading up to ¢ can provide insight into
why the evidence favors one model over the other. The comparison can be carried
out using predictions over horizons greater than one period, but the decomposition
for multiple-period horizons is exactly the same as that for single-period horizons as
explained in Geweke (2001) and Geweke (2005), Section 2.6.2.

The generalization (10) of the marginal likelihood (8) amounts to the evaluation
of the predictive densities p (y; | y§_,) (t =S5 +1,...,T) using a log scoring rule; see
Gneiting and Raftery (2007), Section 7. Non-Bayesian predictive densities, like (3)
and (4), may also be evaluated using a log scoring rule. In the case of (3), for example,
the score

d o A1)
> logp (yt | yi1: 6.4 ,A)
t=5+1

is directly comparable with (10). It is therefore possible to compare Bayesian and
non-Bayesian methods directly by means of their difference in log scores

T
p (yg | ygflaA)
Z log ) : (12)
t=5+1 p (yt | ¥7-1,04 ,A)

4 Comparison of five models of S&P 500 returns

Figure 1 shows the familiar S&P 500 percent log return series for the period beginning
with December 15, 1976, corresponding to S + 1 = 1251 and ending with December
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16, 2005, corresponding to 7' = 8574. (Since the data set goes through the end of
2005, and because the analysis in Section 6 utilizes prediction horizons of up to 10
trading days, this exercise ends short of the last trading day of 2005.) Symbols in this
figure identify particular dates for reference in the analysis of the predictive likelihood
functions and Bayes factors that follows.

Corresponding to (11), the cumulative log predictive Bayes factor through period
r, in favor of model A; over model A, is

Figure 2 shows these cumulative log predictive Bayes factors for r = S+ 1,...,T.
For each prediction model posterior inference was carried out by Markov chain Monte
Carlo in each of 7324 samples, applying (7) to approximate p (yf | y? 1,04, A). In
each panel the comparison model Ay is GARCH, and the other model is the one
indicated. All of these results are out-of-sample: that is, PL, (t) reflects inference
for the parameter vector 8 4 using the sample consisting of observations 1,...,¢t —1.

The right endpoint of the plotted points in each panel of Figure 2 provides (13)
with » = T. For SV versus GARCH the value is 144.36, for t-GARCH 208.44, for
MNM 151.65, and for HMNM 199.31. The evidence strongly favors the t-GARCH
and HMNM models, with SV, EGARCH and GARCH rounding out the rankings.
More than one-third the log predictive likelihood in favor of the other four models
over GARCH is due to returns on just two days: the record log return of -22.9% on
October 19, 1987, and the log return of -6.3% on October 13, 1989. The returns of
-3.7% on November 15, 1991, -7.1% on October 27, 1997, and -7.0% on August 31,
1998 also lead to predictive likelihoods for those days that strongly favor the other
four models over GARCH.

Figure 3 provides further comparison of the predictive performance of the t-
GARCH and HMNM models as measured by predictive likelihoods. The sequence
of cumulative log predictive Bayes factors, panel (a), is not dominated by any single
date. Until May 23, 1984, predictive Bayes factors on average favor --GARCH. From
then until November 27, 1987, they favor HMNM on average. From July 20, 1993,
through the end of 2005 predictive Bayes factors again favor t--GARCH on average.
Log predictive Bayes factors for all ten dates marked by symbols in Figure 1 can be
read from panels (c) and (d) of Figure 3.

Panel (b) shows all the log predictive likelihoods for the two models. Combinations
above the 45° line favor the HMNM model and those below it favor --GARCH. The
symbols specifically designate all combinations for which the t-GARCH log predictive
likelihood was less than -8 or the log predictive Bayes factor in favor of HMNM was
less than -1.5. (That is how the dates indicated in Figure 1 were selected.) The
record return of October 19, 1987, has by far the lowest log predictive likelihood in
the --GARCH model, whereas October 13, 1989, has the lowest predictive likelihood
in the HMNM model. Panel (d) of Figure 3 shows that there is no simple relationship
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Figure 2: Cumulative predictive log predictive Bayes factors in favor of each of four
models over GARCH. Symbols identify dates as indicated in Figure 1.

between returns that are large in magnitude and log predictive Bayes factors, and
comparison of panels (b) and (d) shows that there is no simple relationship between
these returns and log predictive likelihoods. Panels (b) through (d) show that for
most days the predictive Bayes factor in favor of one model or the other is small.

Panel (c) shows a weak but systematic relationship between absolute returns and
log predictive Bayes factors: the HMNM model tends to be favored by log Bayes
factors when returns are less than 0.5% in magnitude, whereas t-GARCH tends to be
favored when return magnitude is between 0.5% and 1%. As return magnitude rises
above 1% the range of log predictive Bayes factors tends to increase, with no system-
atic tendency for one model or the other to be favored. The important exception to
this pattern is October 19, 1987.

The exploratory analysis illustrated in Figure 3 can be used to compare the rel-
ative predictive performance of the two models (as captured by log predictive Bayes
factors) and any function of returns over the preceding days. In all five models more
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Figure 3: Some comparisons of the t-GARCH and HMNM models using the log

predictive Bayes factor in favor of HMNM. Symbols identify dates as indicated in
Figure 1.

volatile recent returns lead to greater dispersion in predictive distributions, but the
mechanisms are distinct — especially in the HMNM model as opposed to models in the
ARCH family. This characteristic of the models suggests that the magnitude of the
return relative to recent magnitudes might be systematically related to log predictive
Bayes factors. Figure 4 pursues this analysis, capturing return relative to recent mag-
nitudes as the ratio of |y?| to the standard deviation in {y°} (s =t —80,...,t —1).
Call this ratio q.

For the ten dates initially identified in Figure 3(b), the correlation between ¢ and
the corresponding log predictive Bayes factors exceeds 0.9: the near-linear relationship
is evident in panel (a) of Figure 4. Panel (b) plots log predictive Bayes factors against
q for all days on which ¢ is less than 4. (The rescaling of the vertical axis in panel
(b) excludes no days.) The pattern in Figure 4(b) is similar to that in Figure 3(c).

As measured by log predictive Bayes factors, the predictive performance of the
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Figure 4: Comparison of the ratio of absolute return to the standard deviation of
returns in the past 80 days, with the predictive Bayes factor for HMNM over t-
GARCH . Symbols identify dates as indicated in Figure 1.

HMNM model dominates that of the --GARCH model when returns are very large
in magnitude relative to recent volatility — that is, for returns whose absolute value
exceeds five standard deviations of returns over the past 80 days. Equivalently, ex-
treme returns that occur roughly once or twice per decade are assigned substantially
more probability in the HMNM model than in the --GARCH model. Overall, the log
predictive likelihoods of the two models are nearly identical. Elsewhere (Geweke and
Amisano (2008)) we have shown that this implies that neither model corresponds
to a true data generating process D, and there must exist models with higher log
predictive likelihoods. Figure 4 suggests that in such models the predictive density
function might resemble more the HMNM predictive density for returns that are small
or quite large relative to recent volatility, and for the remainder might resemble more
the t-GARCH model.

For the GARCH and t-GARCH models we prepared an alternative set of predictive

densities for each of the 7324 days, using (3) and the maximum likelihood estimates
~(t—1
0(;; ). We then compared the Bayesian and MLE predictive densities using the

difference in log scores (12). For the GARCH model the outcome is 18.09 and for the
t-GARCH model it is 9.76: both comparisons favor the Bayesian predictive densities
over the MLE predictive densities.

This outcome is not surprising. Bayesian predictive densities account for parame-
ter uncertainty, whereas the MLE predictive density (3) does not. Figure 5 provides
the daily decomposition of (12). One would expect the advantage of Bayesian pre-
dictive densities to be more pronounced in smaller samples, corresponding to earlier
data in Figure 5. The daily decomposition for t--GARCH is at least roughly consistent
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with this understanding.

The decomposition for GARCH is dominated by the inferior performance of the
MLE predictive density, relative to the Bayesian predictive density, on October 19,
1987. The GARCH MLE log predictive likelihood for that date was -84.7, whereas
the GARCH Bayesian log predictive density was -69.2; for t-GARCH the figures are -
20.4 and -17.3, respectively, whereas the HMNM model log predictive density is -11.2.
The superior performance of Bayesian GARCH relative to MLE GARCH on this date
can be traced to uncertainty about the mean parameter ;. The maximum likelihood
estimate and posterior mean of y are quite close and the posterior distribution of u
is nearly symmetric about the MLE. However the predictive likelihood is a strongly
convex function of i because the observed value is so far in the left tail of the predictive
density. Jensen’s inequality accounts for the predictive likelihood being higher in the
Bayesian predictive likelihood than in the MLE predictive likelihood. This effect is
muted in the t-~-GARCH model because the observed value is not nearly as far in the
left tail and the predictive likelihood is not as strongly a convex function of .

5 Model evaluation with probability integral trans-
forms

Predictive likelihoods are local measures of the predictive performance of models: that
is, they depend only on the predictive probability density evaluated at the realized
return. Moreover predictive densities measure only the relative performance of models
— indeed, as discussed in Section 3 they are components of Bayes factors that are
critical in Bayesian model comparison and model averaging.
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The probability integral transform (PIT) provides an alternative assessment of the
predictive performance of a model that is based on non-local assignment of predictive
probability and is therefore complementary to the assessment based on predictive like-
lihoods discussed in the previous two sections. Unlike predictive likelihoods, however,
the comparison is non-Bayesian.

Suppose that a model A assigns one-step-ahead predictive densities p (y; | yi—1, A).
Denote the corresponding sequence of cumulative distribution functions

F(c|lyi1,A) =Py <clyi1,4).

The PIT corresponding to the model A and the sequence {y;} is p1 (t;yr,4) =
F(y; | yi-1,A). If A = D, the true data generating process for {y; }, then {p; (t;yr,A4)}
is i.i.d. with distribution uniform on (0, 1). This result dates at least to Rosenblatt
(1952), and was brought to the attention of the econometrics community by Diebold
et al. (1998). Following Smith (1985) and Berkowitz (2001), if A = D then

St yr,A) =7 py (G yr,A)]

and for analytical purposes it is often more convenient to work with {f; (¢;yr,A)}
than with {p (¢; yr,A)}. For h-step ahead predictive distributions, let F}, (¢ | y;_n, A) =
P(y: <c|yin,A) and p, (t;y7,4) = F (y¢ | yi—n, A). If A= D then the distribu-
tion of py, (t; yr,A) is uniform on (0, 1), but py, (¢; yr,A) and py, (s; yr,A) are indepen-
dent if and only if |t — s| > h.

These characteristics of {p;, (t; yr,D)} would only be approximately true of {p; (t;yr,A4)}
even if p(yr | D) = p(yr | 04, A) for some value of 8 4, because 6 4 is unobservable.
(The approximation would improve as 7" increased and p (yr | A) incorporated an in-
creasingly tight posterior distribution for 8 4.) More important, we know that A # D.
The departure of the sequence {py, (t; yr,A)} from these ideal characteristics provides
an informal evaluation of A against an absolute standard.

In many models, including all five in this study, analytical evaluation of

Py <clyiy,04,4)

itd

~ N (0,1),

is possible, and this is all that is required for a posterior simulation approximation of
F(yp | yi_1,A), because

M
MY P (yt <yl |yi. 05", A) = (ty7,4)
m=1
so long as {0547”)} is an ergodic sequence whose invariant distribution is the poste-

rior. For A > 1 analytical evaluation of P (yt <clyy ., 04, A) is very awkward or
impossible in all of these models, and that is true of econometric prediction models
generally. Instead we employ a simulation approximation using the recursion

y b (0 LY Uy A) (s ==+ 1) (14)
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Since the posterior MCMC sample is large, only one such recursion need be carried
out for each B(Am) in the posterior sample, and

M
MY o) <@/t(m)) = o (tyg,A). (15)

m=1

6 Evaluation of five models of S&P 500 returns

For the S&P 500 return series y. we evaluated py, (¢; y5,A) for each of the five models
A described in section 2, for h = 1,...,10, and for t = 1,...,T. The computations
are based on the 7324 Markov chain Monte Carlo posterior samples in each of the
five models, one for each sample, using (7) followed by followed by (14) and (15). We
then computed the corresponding transformation to the standard normal distribution,
fu (65, A) = @7 [pr (8 y5,4)].

To describe the departure from the PIT paradigm for each model, we determined
the values of

[T'/h]
(T/h)_l Z I(ajfl,aj) [ph ((S - 1) h+ kvy%vA)] (.] =1,...,nsh=1,..., 10) (16)

s=1

with n =10, a; = j/10 (j =0,...,n) and k = 1; that is, we determined the fraction
of py, (t;¥%,A) in each decile using non-overlapping prediction horizons h. Figure 6
presents the values of (16) for a different model A in each row of panels, and for h = 1,
5 and 10 in each of the three columns of panels. Values for the deciles j =1,...,10
are shown in each panel. The paradigm value 0.10 is indicated by the solid horizontal
line, and the dotted horizontal lines provide a conventional 95% confidence interval for
these values under the condition that {ps (sh + 1;y7,4)} (s =1,...,[T/h]) is ii.d.
Bernoulli (p = 0.1). Plotted values above 0.1 indicate deciles in which more than 10%
of the realized returns occurred; equivalently, the model underpredicts probability in
this range of the predictive density. Values below 0.1 correspond to overprediction in
the relevant range.

The performance of the GARCH model is markedly inferior to the other four,
and the performance of SV is not quite as good as the t--GARCH, MNM and HMNM
models. The tendency of the latter three models to over- or under-predict different
deciles is roughly the same for all three horizons studied in Figure 6. At horizon h = 1
they assign too little probability in the interquarile range and too much in the lower
and upper quartiles. At h = 5 and A = 10 they assign too much probability below the
median (with an exception for the lowest decile in some cases) and too little above
the median of their predictive distributions. These characteristics are also evident in
the GARCH model, where the performance is markedly poorer especially for h = 10.

ECB

Working Paper Series No 969
November 2008




x 01l
&
E o
ml]ﬁ
on o
@ oo T w P N e
_\_F:_?Ji______\__r‘: T T—
om omf ~ T T T T T T T T T T
1 z 3 + 5 B ¥ B a 1o I 2 a A L] B r a 2 o
501! oy
==
— e - w
UL (L]
T 3 4 &t £ F B B o T F 3 4 & & F 8 8 @
on oz
Em _____ — e — — — Dl‘\“ _,.,-o-'_"'-f\\
E e = e
om omf ~ T T T T T T T T T
L) & B 7 B B 0D F] i a 5 B 7 8B 8 0
=01 L |
Enl e FF\\-._#_ o1 o
2 | e ]
DL nm

1 2 a 4 5 B T B L] 1o

1 2 a A 5 ] T a 2 L]

i)

il

L]

an

LAH

L]

A /
N

1 2 3 4 5 B T B Ll 1o

Figure 6: Each panel shows the frequency of observations occuring in each decile of
the predictive distribution (16), as a function of the prediction horizon h indicated on
the horizontal axis. Solid lines indicate results using Bayesian inference, dotted lines
results using maximum likelihood in the GARCH and t-GARCH models. Dashed
lines provide a centered 95% confdence interval under the PIT paradigm.

| Table 1: Formal PIT goodness of fit tests

| Deciles | Left tail
Horizon— 1 5 10 1 5! 10
Model |

GARCH 0 .0088 | .0018 || 1.0 x 10~* .042 6.2 x 107*

SV 5.4 x 1078 | .0019 | .052 || 8.2 x 10~° .032 .026

t-GARCH 2.6 x 107° | .066 >1 .29 .028 14

MNM 79x1077 | .11 .58 .063 5.2 x 107° 19

HMNM .0014 13 18 15 .0035 .34
GARCH(ML) 0 .39 73 15.9%x107° [ 1.3x107%]1.6x107°

t-GARCH(ML) || 3.7 x 107° | .076 | .65 076 031 17
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Table 1 provides two sets of chi-square goodness of fit test results for the PIT.
The entries in the table correspond to p-values for the tests. The results for horizon
h =1 are conventional. The results for horizons h = 5 and h = 10 are based on h
separate tests, using (16) for £ = 1,..., h. These tests are not independent across k
because the horizons overlap; the entries in Table 1 are Bonferroni p-values for the h
separate tests in each case.

The first set of tests, under the “Deciles” heading, corresponds to the results shown
in Figure 6. The results reinforce the conclusion that the PIT fit of the GARCH and
SV models is inferior to those of the other three models. At horizon h = 1, only
the HMNM model comes close to passing a PIT goodness of fit test at conventional
significance levels. At longer horizons power is substantially less.

Evaluation of the predictive distributions over particular regions may be of concern
in specific applications, particularly for negative returns; see the discussion in Diks
et al. (2008). Our second set of tests explores PIT goodness of fit in the lower tail of
the predictive distribution, based on (16) with n =5, a; = j/200 (j =0,...,n), and
h =1, 5 and 10. As in the first set of tests, conventional p-values are given for h = 1
and Bonferroni test p-values are given for h = 5 and A = 10. The power of these
tests is, of course, much lower than the decile tests. The GARCH and SV models fail
at horizon h = 1, MNM fails at h = 5, and GARCH again at h = 10; HMNM has
some difficulty at horizon h = 5. There is little in these results to suggest that the
evaluation of left-tail performance is very different from overall performance using
PIT.

Figures 7 and 8 provide some additional evidence on the relationship of the predic-
tive distributions to the PIT paradigm. Each panel plots a different transformation
of py, (t;y%,A) as a function of the prediction horizon h shown on the horizontal axis.

Panel (a) displays the interdecile range for each model: for each model A and
each horizon h, it is the difference between the maximum and minimum values of
(16) taken over j = 1,...,10. For each combination of A and h, larger values of
the interdecile range constitute greater evidence against the PIT paradigm. The
MNM and HMNM interdecile ranges display greater consistency with PIT than do
the ranges for the other three models.

The remaining panels of Figures 7 and 8 pertain to fj, (; y3,4) = @~ [py, (t; y5,4)].

Under the PIT paradigm values of
In(t+shiyp,A) (s=1,2,..) (17)

are realizations of a standard i.i.d. normal process, implying that there are many
functions of f, (t + sh; y%,A) with well-established distributions. Panels (b) through
(e) pertain to the first four moments of f;, (¢;¥%,A4), and therefore provide indications
of the discrepancy between the predictive and observed distributions. Panel (f) per-
tains to the first-order autocorrelation coefficient of (17) and therefore provides an
indication of the departure from independence in successive quantiles implied by PIT.
Unlike the interdecile range, both large and small values of the statistics constitute
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Figure 7: Each panel plots a transformation of py, (Y1, A) as a function of the predic-
tion horizon h shown on the horizontal axis. Solid lines indicate results using Bayesian
inference; dotted lines indicate results using maximum likelihood in the GARCH and
t-GARCH models. The dashed lines provide the.01, .05, .50, .95 and .99 quantiles of
the transformation under the PIT paradigm.

evidence that the PIT paradigm is not appropriate.

The evaluations of the t--GARCH, MNM and HMNM model fits in columns (b)
and (c) of these figures are all similar. Means are slightly and insignificantly higher
than zero at all horizons. Variances are greater than one, with significant departures
for t-GARCH and marginal significant departures for MNM. The distribution for ¢-
GARCH is significantly and negatively skewed (column (d)) whereas for MNM and
HMNM it is insignificantly positively skewed. The evaluation of all three models
using the kurtosis (column (e)) of the normalized PIT is satisfactory. By contrast
the GARCH and stochastic volatility models all have severe departures from the
paradigm skewness and kurtosis of the normalized PIT.

The PIT evaluations of the ML and Bayesian predictive distributions do not pro-
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Figure 8: Each panel plots a transformation of pj, (Y1, A) as a function of the predic-
tion horizon h shown on the horizontal axis. Solid lines indicate results using Bayesian
inference; dotted lines indicate results using maximum likelihood in the GARCH and
t-GARCH models. The dashed lines provide the.01, .05, .50, .95 and .99 quantiles of
the transformation under the PIT paradigm.

vide any striking comparisons, either in the GARCH or --GARCH model. Posterior
distributions are concentrated about the maximum likelihood estimates and conse-
quently deciles of predictive distributions are much the same in the Bayesian and ML
predictive distributions. The extreme convexity of predictive likelihoods in the far
tails, responsible for the dominance of Bayesian predictive densities in the analysis
in Section 4, is not a factor here.

For one-step-ahead predictive distributions (h = 1) the first order autocorrelation
coefficient for the series (17) is about 0.06 in all five models, well outside the range
of values plausible under PIT. For larger values of h the autocorrelation coefficient
is smaller, with a notable tendency to be negative, in most cases, for horizons 3 or
greater. Moreover, the pattern of evaluations across horizons is roughly the same in
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all cases. These results suggest that there is a persistence in day-to-day returns that
is not adequately captured by any of the five models.

7 Summary and conclusions

This study compares and evaluates Bayesian predictive distributions from alternative
models, using as an illustration five alternative models of asset returns applied to a
time series of 7324 daily S&P 500 returns. The comparison exercise uses predictive
likelihoods and is inherently Bayesian. The evaluation exercise uses the probability
integral transform (PIT) and is inherently frequentist. The illustration shows that
the two approaches can be complementary, each identifying strengths and weaknesses
in models that are not evident using the other.

Both the predictive likelihood and PIT analyses lead to the conclusion that the
GARCH Bayesian predictive distributions are inferior to the other four, and the same
is true of GARCH predictive distributions constructed from maximum likelihood es-
timates. Each analysis also leads to the conclusion that the Bayesian stochastic
volatility (SV) and Markov normal mixture (MNM) predictive distributions are dom-
inated by the t-GARCH and hierarchical Markov normal mixture (HMNM) predictive
distributions. These comparisons are readily apparent in Figures 2, 6, 7 and 8, and
in Table 1.

The predictive likelihood analysis narrowly favors Bayesian --GARCH over HMNM,
but for MLE t-GARCH the predictive likelihoods are nearly identical; see Figures 2
and 5. By contrast the PIT analysis narrowly favors HMNM predictive distributions
over t-GARCH. This is evident in Table 1 and Figures 6, 7 and 8. However the lat-
ter analysis also shows that the normalized PIT for the HMNM model is not ideal.
In particular, PIT’s for successive one-day predictions are not independent, and the
performance of HMNM in this dimension is no better than those of the other four
models.

A new predictive density can always be formed as a weighted average of predictive
densities from different models, the best known example being Bayesian model aver-
aging (Geweke (2005), Section 2.6). The analysis in Section 4 indicates that for most
combinations of models and substantial subperiods of the sample considered Bayesian
model averaging is for all practical purposes equivalent to model selection, with on
model receiving a weight very close to 1. This is often the outcome for Bayesian
model averaging when the sample is large, as it is here. The notable exception arises
when the models averaged include both --GARCH and HMNM: in that case these
two models can have substantial weight in Bayesian model averaging, depending on
the days included in the sample. Geweke and Amisano (2008) shows that a weighted
average of the HMNM and ¢-GARCH models compares quite favorably with both
models, using predictive likelihood. That paper also shows that, in general, opti-
mization of the predictive likelihood leads to non-trivial weights on several models,
weights that are quite different from those that result from conventional Bayesian
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model averaging.

Ultimately, analysis of this kind provides the elements from which better models
may be constructed, as illustrated in the introduction by our experience in develop-
ing the HMNM model. The predictive density evaluations presented here, as well
as in Geweke and Amisano (2008), show that there is scope for substantial further
improvement. Awaiting such new research, real-world demands for predictive distri-
butions will continue. In this context analyses of predictive distributions of the kind
conducted here provide indications of model limitations with which actual decisions
based on these models must always be tempered.
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