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Abstract

This paper proposes a procedure to investigate the nature and persistence of the forces governing
the yield curve and to use the extracted information for forecasting purposes. The latent factors
of a model of the Nelson-Siegel type are directly linked to the maturity of the yields through
the explicit description of the cross-sectional dynamics of the interest rates. The intertemporal
dynamics of the factors is then modeled as driven by long-run forces giving rise to enduring e�ects,
and by medium- and short-run forces producing transitory e�ects. These forces are reconstructed
in real time with a dynamic �lter whose embedded feedback control recursively corrects for model
uncertainty, including additive and parameter uncertainty and possible equation misspeci�cations
and approximations. This correction sensibly enhances the robustness of the estimates and the
accuracy of the out-of-sample forecasts, both at short and long forecast horizons.

JEL classi�cation: G1, E4, C5

Keywords: Yield curve; Model uncertainty; Frequency decomposition; Monetary policy
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Non technical summary

The anomalous behavior the yield curve displayed in many countries in the recent past has attracted

a great deal of attention on how to identify, and possibly predict, the factors driving the forward and

the spot rates as a function of their maturity. Central banks responding to economic developments

to maintain price and macroeconomic stability and investors taking positions in �nancial markets,

to act e�ectively need to know, timely, about the nature and the persistence of the shocks driving

the observed movements in the yields. In particular, given that the evolution of the forward rates,

and then of the yield curve, is driven by a large number of economic forces acting simultaneously

that may temporary overlap or o�set each other, to avoid a blurred picture the e�ect produced by

each type of shock should be tracked and forecasted individually.

For the purpose of this investigation, we propose to use a dynamic, parametric, yield curve

model de�ned both in maturity-time (to explain the cross-sectional dynamics of yields) and in

calendar-time (to explain the intertemporal dynamics yields). The cross-sectional dynamics of the

rates is described by a variation of the Nelson-Siegel model (1987), that employs two di�erent

exponential decays terms and three latent factors, which retain the interpretation of level, slope

and curvature of the yield curve common in the literature. At the same time, the latent factors can

be directly associated with the maturity of the yields. In particular, a factor, labeled the starting

value, aggregates the information contained in the short-end of the curve; another factor, labeled

the shape factor, aggregates the information contained in middle-range maturities, while the third

factor, labeled the �nal value, aggregates the information contained in the long-end of the yield

curve. By partitioning the maturity spectrum the latent factors makes it easier to investigate the

calendar-time dynamics of the yields.

The novelty of the approach proposed in this paper rests on the modeling of the calendar-

time dynamics of the yields. The calendar-time dynamics of each latent factor is modeled as the

response to three independent classes of forces: 1) long-run shocks giving rise to enduring e�ects

that may persist up to in�nity; 2) medium-run forces giving rise to transitory e�ects that wane

within business-cycle horizons; 3) short-run forces giving rise to transitory and short-lived e�ects.

The e�ects of these three types of forces are tracked by the frequency components composing the

time series of each latent factor. Speci�cally, the long-run forces drive the low-frequency component

of these time-functions, the business-cycle forces drive their medium-frequency component, and the

short-lived forces govern their high-frequency component. Therefore, the low-, medium- and high-

frequency component of the latent factors will re�ect the e�ect of the long-, medium- and short-run

forces driving the yields of short-, medium- and long-maturities.

The frequency components belong to three disjoint, pre-determined, frequency bandwidths so

that the e�ect of each type of force on the correspondent frequency component can be modeled

and investigated individually. The frequency components and the forces steering their dynamics are
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estimated with a �lter, i.e. an input-output state observer, that compares with the Kalman �lter

that is often used in the term structure literature, which through a feedback control ensures that

each frequency component evolves within its pre-speci�ed frequency bandwidth and that the sum

of the three frequency components accurately reconstructs and out-of-sample forecasts the latent

factor.

The advantages of using this state observer are: First, that it permits to investigate the behavior

of the yield curve in the frequency domain starting from a model designed in the time domain, which

makes the presentation and evaluation of the results straightforward. Second, that it permits to

decompose the series of interest into the selected frequency components in real time, and in a way

that ensures that the availability of new observations does not alter the pattern of the frequency

components extracted in the past. This is important because to investigate the determinants of

yield curve movements we need to monitor how the frequency components of the yields evolve with

time. Thus, we need to avoid that when mapped into the frequency domain, which is time invariant

by de�nition, the values that the frequency components take on at the beginning of the sample we

consider gets averaged with the values they take on at the end of the sample, thereby mixing the past

with the future. Third, the state observer permits to carry out the frequency decomposition also

of nonstationary time series, without Fourier-transforming the data, thereby avoiding the potential

information losses which may occur when the variables are de-trended. Fourth, it permits to extract

all the frequency components at the same time. Finally, this state observer has been designed to

take into account that the modeler may have limited information on the actual cause-and-e�ects

relationships ruling the dynamics of the yields and on the statistical properties of the shocks and the

employed state variables. We call this lack of knowledge model uncertainty, in line with the notion

of uncertainty originally put forth by Knight (1921). By correcting for model uncertainty, this

state observer produces robust estimates of the states and inputs of the models and a guaranteed

performance also when the models are used to out-of-sample forecast the yields.

This paper investigates the behavior of the U.S. yield curve from January 1984 to December

2007. Our results show that the long-term rates have been essentially governed by long-run, slowly

evolving forces, whereas the short-end of the yield curve has been largely driven by business cycles

forces. Moreover, the contrast of the frequency components and of the shocks extracted from the

variables modeling the rates shows that the long-run forces that have steered the underlying trend

of the long-term rates display a rather di�erent pattern than the long-run forces governing the trend

of the short-term rates, thereby questioning the functional dependence between the long-term rates

and the short-term rates. Finally, the adopted model speci�cation in conjunction with the use of the

state observer correcting for model uncertainty permits to obtain accurate out-of-sample forecast of

the yields. These are better than the commonly used random walk benchmark both for short and

long maturities, and at short and long forecast horizons, also during the 2004-2006 �conundrum�

years, when the behavior of the long-end of the yield curve was di�cult to understand.
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Introduction

The anomalous behavior the yield curve displayed in many countries in the recent past has attracted

a great deal of attention on how to identify, and possibly predict, the factors driving the forward and

the spot rates as a function of their maturity. Central banks responding to economic developments

to maintain price and macroeconomic stability and investors taking positions in �nancial markets,

to act e�ectively need to know, timely, about the nature and the persistence of the shocks driving

the observed movements in the yields. In particular, given that the evolution of the forward rates,

and then of the yield curve, is driven by a large number of economic forces acting simultaneously

that may temporary overlap or o�set each other, to avoid a blurred picture the e�ect produced by

each type of shock should be tracked and forecasted individually.

This paper proposes an approach to investigate systematically, and in real time, the nature of

the forces driving the calendar-time dynamics of the forward and the spot rates and shows how to

use the related information to enhance the accuracy of the out-of-sample forecasts of the yields, also

at long forecast horizons.

To explain the maturity-time dynamics of the interest rates we use a variation of the model

proposed by Nelson and Siegel (1987). This choice is motivated by the widespread popularity of

models of the Nelson-Siegel type among practitioners and central banks. Such popularity is due to

the fact that in addition to being parsimonious and easy to estimate, this type of model �ts the data

well and it may produce good out-of-sample forecasts, as shown by Diebold and Li (2006). Until

recently, however, the Nelson-Siegel speci�cation faced the criticism of not enforcing by construction

the absence of arbitrage opportunities, as emphasized by Bjork and Christensen (1999), because it

does not ensure that the intertemporal evolution of the yields is consistent with the shape that the

yield curve takes on at each point in calendar-time. Christensen, Diebold and Rudebusch (2007)

obviate such pitfall by adding to the dynamic Nelson-Siegel speci�cation a mathematical correction,

which ensures the ful�llment of the no-arbitrage constraints, but also increases the computational

complexity. The results obtained by Coroneo, Nyholm and Vidova-Koleva (2008), however, suggest

that the simplicity of the Nelson-Siegel model may be preserved, because its empirical performance

is not statistically di�erent from that of a three-factor no-arbitrage model, at least for U.S. data.

Aruoba (2006) that when a model is �exible enough to provide a satisfactory �t of the yields, it is

likely to satisfy the no-arbitrage restrictions to the extent that they are satis�ed by the data. This

paper rests on this assumption.

To o�er the possibility of selecting the model speci�cation which better �ts the data of inter-

est, this paper considers a class of cross-sectional dynamic parametric models which generalizes the

Nelson-Siegel formulation. Observing that the functions solving for di�erential or di�erence equa-

The �ndings of these authors corroborate the hypothesis put forth by Diebold, Rudebusch and

tions possess the �tting smoothness and �exibility requirements recommended by Vasicek and Fong
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(1982), giving rise at the same time to a parsimonious model, Nelson and Siegel suggest to use the

solution to a second-order di�erential equation with real and equal roots to model the forward rate

curve. Instead of starting from a pre-determined solution, in this paper the maturity-time dynamics

of the forward rates is explicitly modeled with a system of di�erential equations. When (optimally)

�tted to the data, the solution to these equations may, or may not, give rise to the Nelson-Siegel

solution. Therefore, if a three factor model is selected, the possibility that this solution includes

real and unequal roots or complex-conjugate pairs is not excluded ex-ante. Indeed, when considering

U.S. zero-coupon bond yields we obtain that a three-latent factor model with two unequal roots, and

therefore two di�erent exponential decay terms, �ts the data better than the standard Nelson-Siegel

yield curve formulation, especially over the last few years.

The system to model the cross-sectional dynamics of the forward rates (and thus of the yields)

is designed in way that its three latent factors, when combined, can still be interpreted as the level,

slope and curvature of the yield curve in the sense of Litterman and Scheinkam (1991), but they

may be given also an interpretation with a more straightforward economic meaning. Speci�cally,

one factor labeled the starting value aggregates the information contained in the short-end of the

curve; a second factor labeled the shape factor aggregates the information contained in middle-range

maturities, whereas the third factor, labeled the �nal value, aggregates the information contained

in the long-end of the yield curve. We exploit the property of the latent factors to be directly

associated with the maturity of the yields to gain insights on the nature and persistence of the

forces driving the observed intertemporal movements in the yields.

The model of the calendar-time dynamics of the latent factors is the main contribution of this

paper. At each point in calendar-time, we divide the frequency domain in which are de�ned the

forces steering the intertemporal movements of the latent factors into three disjoint, pre-determined,

frequency bandwidths. As a result, these forces are classi�ed into: 1) long-run shocks giving rise

to enduring e�ects that may persist up to in�nity; 2) medium-run forces giving rise to transitory

e�ects that wane within business-cycle horizons; 3) short-run forces giving rise to transitory and

short-lived e�ects. To track the e�ects of these otherwise unidenti�ed three classes of forces on the

rates, we decompose the calendar-time series of each latent factor into three frequency components

lying within the same three frequency bandwidths. Since the frequency bandwidths are disjoint,

the e�ect of each type of force on the correspondent frequency component can be modeled and

investigated individually.

We proceed as follows. We explicitly model the evolution of each frequency component of

each latent factor as the output of a strictly-causal, linear, dynamic system whose parameters are

optimally identi�ed. The exogenous causes, or inputs, controlling the dynamics of these systems

are the same forces lying within the three pre-speci�ed frequency bandwidths. Thus, the long-run

forces drive the low-frequency component of the latent factors, the business-cycle forces drive their

medium-frequency component, and the short-lived forces govern their high-frequency component.
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The inputs steering the dynamics of the frequency components are recursively estimated with a

dynamic �lter, which acts as a band-pass �lter. At the same time, the �lter estimates the states

of the dynamic systems. We use a �lter that compares with the Kalman �lter, although it has

less stringent requirements on the statistical properties of the input process, which may or may

not be stationary, and on the knowledge that the modeler is expected to have on the statistical

properties of these and the state processes. Actually, it is undertaken that the modeler has limited

information on the properties of the shocks and the states, in line with the notion of uncertainty

originally put forth by Knight (1921). This implies that it is also undertaken that the model used

to describe the dynamics of the yields is a simpli�cation, and possibly a misspeci�cation, of the true

data generating process. We call this lack of knowledge, which encompasses additive and parameter

uncertainty, model uncertainty. The �lter, namely the input-output state observer, which is a linear,

time-invariant, dynamic system, in recursively estimating the states and the inputs, corrects also

for the degradation in the model performance due to model uncertainty. This is achieved by exoge-

nously setting the eigenvalues (or, equivalently, by placing the poles) characterizing its dynamics.

Since the eigenvalues of the gain matrix of the �lter have a frequency-domain interpretation, by

placing its poles we are able to control also the spectral decomposition. In addition to being fairly

straightforward, this technique explicitly permits to integrate the information the state observer

extracts from the data with other sources of information as the experience of the modeler.

This approach to perform the frequency decomposition of the latent factors has a number of

advantages. To start with, 1) it allows to investigate the behavior of the frequency components in

the frequency domain although it works in the time domain. Importantly, it allows to �lter the data

in real time, which means that the decomposition of a time function at time t is performed without

requiring the knowledge of the values that the time function will take on at time t+1 > t and without

altering the outcomes of the decomposition already performed at time t− 1 < t. This is important

because to investigate the determinants of yield curve movements we need to monitor how the

frequency components of the yields evolve with time. Thus, we need to avoid that when mapped

into the frequency domain, which is time-invariant by de�nition, the values that the frequency

components take on at the beginning of the sample considered gets averaged with the values they

take on at the end of the sample, thereby mixing the past with the future. Moreover, 2) the

state observer permits to decompose also nonstationary time series, thereby avoiding the potential

information losses which may occur when the variables are de-trended, and it does imply the Fourier-

transformation of the data, thereby making the interpretation of the results straightforward. In

addition, 3) it permits to extract all the selected frequency components at the same time. Finally,

4) through its feedback reaction, the state observer ensures that the frequency components of each

latent factor keep orthogonal to each other, that each frequency component evolves within its pre-

speci�ed frequency bandwidth, and that the sum of the three frequency components accurately

reconstructs, and out-of-sample forecast, each latent factor. The out-of-sample forecasts of the
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latent factors computed by the state observers when plugged into the yield curve model give rise to

the out-of-sample forecasts of the yields.

By explicitly modeling the cause-and-e�ect relationship between the yield curve and the shocks

driving its dynamics the proposed approach generalizes the approach adopted by Estrella and

Mishkin (1997) and Evans and Marshall (2007) who investigate in the time domain the link between

a few selected shocks and the pattern followed in response by a few selected yields through the es-

timation of the implied impulse response functions, and the approach of Sargent (1968), Pippenger

(1974), Brick and Thompson (1978), Assenmacher-Wesche and Gerlach (2008) who perform the

spectral decomposition of selected interest rates series to investigate the present periodicities and

how rates of di�erent maturities, and on di�erent assets, are related to each other and to monetary

policy.

In this paper we investigate U.S. zero-coupon bond yields from January 1984 to December

2007. Our results show that the long-term rates have been essentially governed by long-run, slowly

evolving forces, whereas the short-end of the yield curve has been largely driven by business cycles

forces. Indeed, the long-end of the yield curve displays little volatile medium and high-frequency

components, thereby appearing less sensitive to short-lived forces, and more anchored. Moreover,

the contrast of the frequency components and of the shocks extracted from the variables modeling

the rates shows that the long-run forces that have steered the underlying trend of the long-term rates

display a rather di�erent pattern than the long-run forces governing the trend of the short-term

rates, which supports the literature questioning the functional dependence between the long-term

rates and the short-term rates put forth by the Expectations Hypothesis.

Finally, the adopted model speci�cation produces fairly accurate out-of-sample forecast of the

yields, also thanks to the fact that the state observer corrects for model uncertainty when estimat-

ing the dynamic systems employed, thereby avoiding that the accumulation of computational and

modeling inaccuracies undermines the model performance. The out-of-sample forecasts obtained are

better than the commonly used random walk benchmark both for short and long maturities, and at

short (1 to 6 month) and long (12 to 24 month) forecast horizons, also during the June 2004 to June

2006 �conundrum� years, when the behavior of the long-end of the yield curve was di�cult to un-

derstand, and the outbreak of the 2007 �nancial turmoil. Whereas the random walk benchmark has

been traditionally di�cult to beat in the term-structure literature, even by explicitly arbitrage-free

models as shown by Du�ee (2002), using di�erent models and di�erent methodological approaches

Diebold and Li (2006) and Chua, Foster, Ramaswamy and Stine (2007) have also obtained forecasts

more accurate than the random walk.

The paper is organized as follows. After illustrating the notation and the data employed, Section

4 introduces the class of dynamic parametric yield curve models and presents the results obtained

from the selected cross-sectional model. Section 5 introduces the class of calendar-time dynamic

models and presents the frequency decompositions obtained when applying the model to the esti-
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mated latent factors and the out-of-sample forecasts of the yields. Section 6 draws the conclusions.

1 Notation

For any given point in calendar-time t∈ N, the spot rate y(m, t) on a zero-coupon bond providing

a unit redemption payment at time t + m, is de�ned as

P (m, t) = e−y(m,t)m

where P (m, t) is the price of the bond. We refer to spot rates as a function of their maturity-time

as the (spot) yield curve or the term structure of interest rates. By construction, the spot rates

average instantaneous forward rates over the term of maturity of the zero-coupon bonds to exclude

arbitrage opportunities,

y(m, t) =
1
m

∫ m

0
fw(u, t)du. (1)

where the instantaneous forward rate fw(m, t) is the marginal rate of return from the reinvestment

of a zero-coupon bond in a (m + 1)−maturity zero-coupon bond.

2 The Data

We consider month-end U.S. zero-coupon bond yields of maturities from 6 months to 120 months,

regularly spaced at 6-month maturity intervals (20 maturities m = m1, . . . ,m20, with m1 = 6
and m20 = 120 months) covering the period from 31 January 1984 to 31 December 2007 (denoted

t = 1, . . . , 288 monthly observations). The yields are extracted from the market prices of U.S.

Treasury coupon bonds by applying the smoothing splines method of Fisher, Nychka and Zervos

(1995) and are collected daily by the Bank for International Settlements.

Table 1 shows that over the period examined, the average U.S. yield curve is upward sloped,

short-maturity yields are more volatile than the long-maturity ones and that, whereas yields at all

maturities are potentially non-stationary, their autocorrelation is more persistent for long-maturity

yields. Noticeably, with the increasing of the maturity, the yield distributions progressively depart

from the Gaussian distribution because the skewness of the yield distributions progressively departs

from zero, thereby becoming increasingly asymmetric, and the kurtosis progressively departs from

three, so that the distribution display increasingly thick tails. These are not properties speci�c to

the data we consider; also Ang and Piazzesi (2003) remark that the data they use, i.e. the Fama

CRSP zero-coupon bond yields, fail to meet Gaussian distribution assumptions over the period they

examine.
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3 The Class of Cross-Sectional Dynamic Parametric Models

We consider a class of cross-sectional dynamic models with a state-space representation designed in

continuous (maturity-) time in order to avoid discontinuities in the estimate and forecast of the term

structure (but the model can be easily formulated also in discrete time). The models are linear and

time-invariant, and are formulated in a canonical form that guarantees simplicity and computation

tractability. They are de�ned by the following properties:

1. For any point in calendar-time t, the m−maturity instantaneous forward rate fw(m, t) is

modeled as the output of a linear, time-invariant, canonical, nth- order dynamic system and

a reconstruction error e(m, t),

ẋ(m, t) = Ax(m, t) (2)

fw(m, t) = Cx(m, t) + e(m, t) (3)

in which state equation (2) consists of n �rst-order ordinary di�erential equations where

x(m, t) =
[

. . . xi(m, t) . . .
]′

is a n− dimensional vector of state variables, ẋ(m, t) ≡
dx(m, t)/dm is a n− dimensional vector of state derivatives with respect to maturity-time,

and A is a (n× n)− dimensional, real, time-invariant, matrix. A is completely de�ned by

its n eigenvalues. Given the property of the nominal forward rates to be only positive and to

possibly display more than one local maximum (or minimum), and to ensure the stability of

the system, the eigenvalues of A are negative or null real-valued, or they occur in complex-

conjugate pairs with negative or null real parts. Given the property of the nominal forward

rates to stabilize asymptotically, one eigenvalue of A is always null. The non-null eigenvalues

are identi�ed optimally when �tting the model to the data. According to the output equation

(3), the m−maturity instantaneous forward rate fw(m, t) is determined by the product be-

tween the (1× n)− dimensional, real, time-invariant, matrix C and the state vector x(m, t).
Given that the modeler is assumed to have limited information on the process generating the

forward rates, in order to take into account the related possible model approximations and

misspeci�cations, a reconstruction error e(m, t) is added to the reconstruction of each forward

rate fw(m, t). No constraint is imposed on the statistical properties of e(m, t).

2. Given that the model state variables xi(m, t) are not directly accessible to measurement, they

need to be estimated. To ensure that the knowledge of the forward rates fw(m, t) of eq.

(3) su�ces to uniquely estimate x(m, t), we select a canonical representation for the model

ensuring that the (n× n)− dimensional matrix O (m, t) =
∫ m
0 eA

′
uC

′
CeAudu is nonsingular.

3. By plugging the unique solution x(m, t) = eAm x(0, t) of eq. (2) into eq. (3) we obtain the
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instantaneous forward rate curve

fw(m, t) = C eAm x(0, t) + e(m, t). (4)

4. By plugging eq. (4) into eq. (1) we obtain the (spot) yield curve or term structure of interest

rates

y(m, t) =
1
m

CA−1 eAm x (0, t) + ε(m, t) (5)

where ε(m, t) are the reconstruction error associated to the spot rate y(m, t). The errors e(m, t)
and ε(m, t) are linked by the same relation that links the forward to the spot rates.

5. When the eigenvalues of the matrix A are single, real and unequal, the forward rate curve of

eq. (4) can also be written in the explicit form

fw(m, t) =
n∑

i=1

βi(m, t) eλim + e(m, t) (6)

and the yield curve of eq. (5) can be rewritten as

y(m, t) =
n∑

i=1

βi(m, t)
(
eλim − 1

λim

)
+ ε(m, t) (7)

where λi are the eigenvalues of A and the coe�cients βi linearly combining the exponential

functions depend on the initial states in a form determined by the structures of the matrices

A and C.

Note that eqs. (4) and (5) generate a family of forward rate curves fw (A,C;m, t) and yield curves

y (A,C;m, t) that are fully parametrized by the pair {A,C} . This means that when the initial

states x(0, t) are known, the triplet {A,C,x(0, t)} fully characterizes all the maturity spectrum of

the forward and the spot rates. Therefore, the pair {A,C} may be interpreted as re�ecting time-

invariant characteristics of the economy. Instead, the initial states may be interpreted as aggregating

all the information that, at each point in calendar-time t, market participants use to price the bonds

included in the time-t term structure. If at a subsequent point in time t+1, no matter how close to

time t, other information becomes available, the values taken on by the initial states change thereby

giving rise to another term structure.

3.1 Selection and Estimation of the Cross-Sectional Dynamic Model

Using di�erent model assumptions and methodological approaches, Nelson and Siegel (1987), Litter-

man and Scheinkman (1991), de Jong (2000), Du�ee (2002), Lamoureux and Witte (2002), among

others, show that three variables may satisfactorily explain most of the movements in U.S. Treasury

13
ECB

Working Paper Series No 917
July 2008



yields (and prices). Against this background, to reconstruct the spot rates over the twenty-four years

we consider we initially select a cross-sectional dynamic model of the 3rd− order and we appraise

its �tting performance against an overall �tting accuracy target de�ned by a root mean squared

error smaller than 5.0 basis points. We �nd that this model largely meets our accuracy objective

by reconstructing the 5, 760 spot rates we consider with root mean squared error of less than 3.5
basis points. Thus, we do not investigate the performance of more complex models.

In particular, we explain the evolution of the forward rates with the following linear, continuous-

time, time-invariant, dynamic system employing three state variables, ẋ0 (m, t)
ẋ1 (m, t)
ẋ2 (m, t)


︸ ︷︷ ︸

=

 0 0 0
a −a 0
0 b −b


︸ ︷︷ ︸

 x0(m, t)
x1(m, t)
x2(m, t)


︸ ︷︷ ︸

ẋ(m, t) A x(m, t)

(8)

fw(m, t) = x2(m, t) + e(m, t). (9)

Output equation (9) states that for any point in calendar-time t, the forward rate of maturity m is

given by the sum of the state x2 (m, t) and the reconstruction error e(m, t). In turn, x2 (m, t) depends
on x0(m, t) and x1(m, t) and on the eigenvalues of the state transition matrix A of state equation

(8). The matrix A is lower-triangular and contains two time-invariant parameters a and b, which

are the system eigenvalues along with the �rst null element in its principal diagonal. Therefore, a

and b are also the inverse of the time constants that characterize the impulse response of the system:

τ1 = 1/a and τ2 = 1/b. The values of a and b will be optimally identi�ed.

By eq. (6), the solution to the system of eqs. (8) and (9) is the forward rate curve

fw(m, t) = f(m)β(0, t) + e(m, t) (10)

where the instantaneous forward rates fw(m, t) of maturities m ∈ < observed at calendar-time t

are de�ned by the vector of initial states β(0, t) ≡
[

β1(0, t) β2(0, t) β3(0, t)
]′

, with β1(0, t) ≡
x0(0, t), β2(0, t) ≡ x2(0, t) − x0(0, t) and β3(0, t) ≡ x1(0, t) − x0(0, t); the vector of factor loadings
f(m) =

[
1 fa(m) fb(m)

]
with 1 = e−∞m, fa(m) = e−b m and fb(m) = b

b−a (e−a m − e−b m);
and the vector e(m, t) of reconstruction errors.

By eq. (5), eq. (10) gives rise to the yield curve,

y(m, t) = g(m)β(0, t) + ε(m, t) (11)

where the instantaneous spot rates y(m, t) of maturities m ∈ < observed at calendar-time t are

de�ned by the same vector of initial states of eq. (10), the vector of factor loadings g(m) =
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[
1 ya(m) yb(m)

]
with 1 = e−∞m, ya(m) = 1−e−b m

b m and yb(m) = b
b−a

(
1−e−a m

a m − 1−e−b m

b m

)
,

and the vector ε(m, t) of spot rate reconstruction errors.

Note that the forward rate curve and the yield curve of eqs. (10) and (11) are fully characterized

by the pair (a, b) and the initial states x0(0, t), x1(0, t) and x2(0, t).

3.1.1 The Starting Value, the Final Value and the Shape Factor Interpretation

The initial states x0(0, t), x1(0, t) and x2(0, t) of the cross-sectional dynamic model of eqs. (8) and

(9), henceforth denoted the latent factors, are directly associated with the maturity of the forward

rates and the yields. In particular:

� x0(0, t), which is maturity-time invariant by construction, corresponds to the asymptotic �nal

value which both the forward rate curve and the yield curve take on at their longest maturity

m = ∞. Hence: f(∞, t) = y(∞, t) = x0(∞, t) = x0(0, t). As a result, the calendar-time series

x0(0, t) aggregate the information contained in the long-end of the yield curve.

� x2(0, t) de�nes the starting value which both the forward rate curve and the yield curve take

on at their shortest maturity m = 0, that is: f(0, t) = y(0, t) = x2(0, t). Then, the calendar-
time series x2(0, t) aggregate the information contained in the short-end of the yield curve.

As m →∞, the state variable x2(m, t) tends asymptotically towards x0(m, t) with a dynamic

law characterized by the time constant τ2 = 1/b. Hence, x2(∞, t) = x0(∞, t).

� Finally, x1(0, t) links the starting value to the �nal value of the forward rate curve and the

yield curve. In particular, by bridging the two ends of the yield curve, the calendar-time

series x1(0, t) aggregate the information contained in the middle-range maturities of the yield

curve. Note that thanks to its bridging role, the initial state x1(0, t) de�nes the shape of

both forward rate curve and the yield curve. For example, if x1(0, t) is smaller than both

x0(0, t) and x2(0, t) the yield curve exhibits an inverted hump, whereas if its level is included

between the initial and the �nal values, x2(0, t) < x1(0, t) < x0(0, t), the yield curve is

positively and monotonically sloped. As m → ∞, also the state variable x1(m, t) tends

asymptotically towards x0(∞, t) according to an exponential law speci�ed by the function

e−a m. Thus, x0(∞, t) = x2(∞, t) = x1(∞, t).

3.1.2 The Level, Slope and Curvature Interpretation

The three latent factors x0(0, t), x1(0, t) and x2(0, t) can also be seen as the level, slope and curvature
of the yield curve by applying the interpretation proposed by Diebold and Li (2006) and Diebold,

Rudebush, Aruoba, (2006). Consider the transformations of the latent factors into the factors β and

the factor loadings f(m) and g(m) introduced in eqs. (10) and (11). To compare with the literature,

disregard their maturity-time dimension. In this case:
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� The loading on β1(t) is the constant function 1 which rules the long-term component of both

the forward rate curve and the yield curve given that it does not decay to zero in the limit.

Given that β1(t) equals the asymptotic �nal value of the forward rate curve and the yield

curve, the factor β1(t) is the long-term factor of the curves governing their level.

� The loadings on β2(t) rule the short-term component of the forward rate curve and the yield

curve because fa(m) and ya(m) take on value 1 when m = 0 and steadily decay thereafter

reaching zero when m = ∞. Being de�ned by the di�erence between the starting value and

the asymptotic �nal value of the forward rate curve and the yield curve, the factor β2(t) is

the short-term factor of the curves governing their slope.

� Finally, the loading on β3(t) governs the medium-term component of the forward rate curve

and the yield curve because fb(m) and yb(m) are zero-valued when m = 0 and when m = ∞,

so they cannot rule their short- or long-term component. Being de�ned by the di�erence

between the shape factor of the forward rate curve and the yield curve and their (constant)

level, the factor β3(t) is the medium-term factor of the curves governing their curvature.

3.1.3 The Link with the Nelson-Siegel model

If the two parameters a and b, which are the non-zero eigenvalues of the cross-sectional dynamic

model of eqs. (8) and (9) explaining the evolution of the forward rates in maturity-time, tend in

the limit to take on the same value, the two factor loadings, or basis functions, fa(m) and fb(m)
introduced in eq. (10) become

faNS(m) = lim
b→a

e−bm = e−am

and

fbNS(m) = lim
b→a

b

b− a
(e−am − e−bm) = ame−am.

Together with the constant function 1, the functions faNS(m) and fbNS(m) span the space of

forward rate curve

fw(m, t) = β1(t) + β2(t) e
−a m + β3(t) am e−a m

proposed by Nelson and Siegel (1987).

Therefore, the Nelson-Siegel forward rate curve belongs to the class of cross-sectional dynamic

parametric models presented in this paper. Several central banks estimate the term structure of

their domestic interest rates using the Nelson-Siegel model (for a comprehensive overview see BIS

(2005)). Clearly, if the forward rates and the spot rates are generated with a Nelson-Siegel model,

when the three-factor model of eqs. (8) and (9) is optimally �tted to the data, it gives rise to the

Nelson-Siegel speci�cation of the forward and spot rate curves with the parameters taking on the

same value, a = b.
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3.2 Estimation of the Cross-Sectional Model

To identify the parameters a and b and estimate the latent factors x0(0, t), x1(0, t), and x2(0, t) of the
cross-sectional dynamic model of eqs. (8) and (9), we iteratively minimize, employing the numerical

algorithm based on the conjugate-gradient method contained in the software suite EicasLab, the

quadratic loss functional

min
a,b

Fspe =
20∑

mi=1

288∑
t=1

[ε(m, t)]2 (12)

where ε(m, t) are the spot rate reconstruction errors of eq. (11). We begin with an initial guess for

the pair (a, b) and at the end of each iteration the Householder transformations yields the ordinary

least squares estimates of the initial state values, which when plugged into eq. (11), provide the

estimate of the yields.

We �nd that Fspe is minimized by the unequal eigenvalues, a = 0.070 and b = 0.039 which

correspond to the time constants, τ1 = 14.257 months and τ2 = 25.874 months. When Fspe is at

its minimum, the global root mean squared error, RMSE =
√

Fspe/ (288 ∗ 20) = 3.46 basis points,

which largely meets our ex-ante �tting accuracy target of a RMSE < 5.0 basis points.

The model performs satisfactorily. It is �exible and, on average, it is able to reconstruct ac-

curately with a contained systematic bias the maturity spectrum of the yields considered. The

mean and the mean average error (MAE = 1
288

∑288
t=1 |ε(m, t)|) of the �tting errors have low values

for all maturities, and the yield curve average MAE edges below 2.5 basis points, as shown in the

�rst and �fth columns of Table 2. The model has also a reliable reconstruction ability as indicated

by the small values of the standard deviation, the minimum and maximum of the �tting errors

reported in the second, third and fourth columns of Table 2, and the contained RMSE reported

in the sixth column. In particular, the model performs well in reconstructing the relatively more

volatile middle-range maturities of 12 to 60 months, as, on average, their �tting errors give rise to

a RMSE of less than 2.9 basis points. The average RMSE for all of the twenty maturities is 3.33
basis points.

However, the �tting errors at all maturities exhibit a high, positive, �rst-order autocorrelation

of about 0.77, which decreases to zero, on average, after 17 to 18 monthly displacements to sta-

bilize within the range [0.05÷−0.28] thereafter. The global �tting error computed for the entire

sample of 5, 760 yields displays a �rst-order autocorrelation of 0.81, which decreases to zero after

18 displacements and stabilizes at about −0.08 thereafter. Despite such autocorrelation, the �tting

performance of the model leaves no room for any further reconstruction improvement. This becomes

evident when we measure the explanatory power of the model with the norm `2. Speci�cally, the

5, 760 yields in our sample measure ‖y‖ =
√∑20

mi=0

∑288
t=1 [y(mi, t)]

2 = 491.268, their reconstructed

counterparts measure ‖ŷ‖ = 491.261 and the �tting errors measure ‖ε̂‖ = 2.652. Note that:

1. the model reconstructs the yields optimally, because

√
‖ε̂‖2+‖ŷ‖2
‖y‖ = 99.999%. By the Pythagorean

17
ECB

Working Paper Series No 917
July 2008



theorem, the �tting errors ε̂(m, t) are orthogonal to the reconstructed yields ŷ(m, t) when

‖y‖ =
√
‖ε̂‖2 + ‖ŷ‖2.

2. the model explains as much as ‖ŷ‖ / ‖y‖ = 99.998% of the actual yields. Hence, what remains

unexplained is far too small to justify the employment of another state variable without

over�tting the data, which would translate into parameter instability, and thus in a too large

sensitivity of the parameters of the model to small computational numerical errors.

3.2.1 The Estimated Latent Factors

All the three latent factors x0(0, t), x1(0, t), and x2(0, t) display very high persistence and are

potentially nonstationary.

As indicated in Table 3, they all exhibit a very high �rst-order autocorrelation and for all

of them the autocorrelation function declines as the length of the displacements increases, but

slowly, especially x0(0, t) modeling the long-end of the forward rate curve and the yield curve. The

Phillips-Perron test con�rms that all the three initial states may have a unit root. As expected,

x1(0, t) modeling mid-range maturities is the most volatile of the three factors whereas the �nal

value x0(0, t) is the least volatile. Finally, the mean values of the three initial states reproduce the

average upward-sloping U.S. yield curve of the period under consideration, with the starting value

x2(0, t) displaying the lowest mean level and the �nal value x0(0, t) the highest.
In what follows we examine the behavior of the three latent factors in conjunction with the

behavior of the slope, curvature and the level factors introduced in section 3.1.2.

The top panels of Figure 1, show the short-term factors together with two empirical counterparts.

The 99.1% correlation between the starting value and the federal funds rate against which it is

contrasted, supports our interpretation of x2(0, t) as modeling the short-end of the forward rate

and yield curves. The equally very high 99.8% correlation which β2(t) exhibits with the slope-

transformation of the yield curve de�ned as [y(6, t)− y(120, t)] supports our interpretation of β2(t)
as a slope factor.

The panels in the center of Figure 1, show the medium-term factors. The shape factor x1(0, t)
displays a 97.8% correlation with a medium-maturity transformation of the yield curve [y(24, t) +
y(36, t)+y(60, t)]/3 thereby supporting our hypothesis that it aggregates the information contained

in the middle-range maturities of the yield curve. Also the latent factor β3(t) supports our inter-
pretation of governing the curvature of the yield curve given that it exhibits a 98.5% correlation

with the curvature-transformation de�ned as [2 ∗ y(24, t)− y(6, t)− y(120, t)].
Finally, the panels at the bottom of Figure 1 plot the long-term factors. The �nal value x0(0, t)

displays a 97.0% correlation with y(120, t), which is the longest-maturity yield we consider, thereby

supporting our hypothesis that x0(0, t) aggregates the information contained in the long-end of the

yield curve. Also β1(t) supports our interpretation as level factor given that it exhibits a 84.8%
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correlation with the level-transformation of the yield curve de�ned as [y(6, t)+y(24, t)+y(120, t)]/3.

4 The Class of Intertemporal Dynamic Parametric Models

The movements observed in the intertemporal evolution of the yields are driven by a broad set of

exogenous forces, or shocks. In order to gain insights, in real time, on the nature of such forces,

this paper proposes to aggregate and classify them in function of the persistence of their e�ect on

the rates into: 1) long-run forces giving rise to enduring e�ects that may persist up to in�nity; 2)

medium-run forces giving rise to transitory e�ects waning within business-cycle horizons; 3) short-

run forces giving rise to transitory and short-lived e�ects. At each point t in calendar-time, the

whole frequency domain in which the forces moving the rates are de�ned, is then divided into three

disjoint, pre-determined, frequency bandwidths.

To track the e�ects of these three types of forces on the evolution of the forward rates and

the yields, we decompose the calendar-time series of each latent factor used in the cross-sectional

dynamic model into three frequency components lying in the same three frequency bandwidths.

Since the frequency bandwidths are disjoint, the e�ect of each type of force on the correspondent

frequency component can be then modeled and investigated individually. The intertemporal time

model has been designed in discrete time because macroeconomic developments, which are behind

interest rate calendar-time dynamics, are measured at possibly large discrete time intervals.

In what follows, �rst we provide an overview on how we relate the forces acting in the time

domain to the frequency decomposition of the latent factors, then we illustrate the models and the

dynamic �lter that we employ to extract, explain and predict the frequency components. Finally,

we describe how we identify the models of the frequency components and how we perform the

out-of-sample forecasts.

4.1 From the Time Domain to the Frequency Domain

Consider the time series of the latent factors, which in what follows we generally denote z(t) for

simplicity. Their signal, or discrete-time function z(t) is de�ned in the frequency range [0÷ fmax] ,
where fmax = 1

2T and T is the discrete-time sampling step. Following the procedure proposed by

Donati (1971), we partition the frequency range into a set of �nite frequency resolution intervals: a

low-frequency domain [0÷ flf ], a medium-frequency domain [flf ÷ fmf ], a high-frequency domain

[fmf ÷ fhf ] and a residual-frequency domain [fhf ÷ fmax]. Then, we associate to each of these four

�nite frequency domains four �nite time resolution intervals Tlf , Tmf , Thf and Tmax, respectively,

selected in such a way that the product of the frequency and the time intervals is strictly greater

than one: Tlf · flf � 1, Tmf · (fmf − flf ) � 1, Thf · (fhf − fmf ) � 1 and Tmax · (fmax − fhf ) � 1.

The signal power is then simultaneously decomposed with �nite resolutions both in the frequency

domain and in the time domain (see Appendix I for details).
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As a result, the function z(t) is partitioned into a low-frequency component zlf (t), a medium-

frequency component zmf (t), a high-frequency component zhf (t), and a residual frequency component

we(t),

z(t) = zlf (t) + zmf (t) + zhf (t) + we(t). (13)

With a reasonable approximation, the �locally averaged� power of the four frequency components

on the right-hand side of eq. (13) corresponds to the partitions into the four frequency domains

[0÷flf ], [flf ÷fmf ], [fmf ÷fhf ] and [fhf ÷ffmax] of the �locally averaged� power of the signal z(t).
The �local averaging� is carried out over the time resolution intervals Tlf , Tmf , Thf and Tmax.

Thanks to the properties above, when time resolution intervals larger than Tlf , Tmf , Thf and

Tmax are considered, the four frequency components partitioning z(t) are orthogonal to each other.

The orthogonality property is especially relevant for the purpose of this study because it permits

to treat each frequency component of z(t) independently both when processing the data and when

assessing the results. The residual frequency component, we(t), being essentially noise, will not be

examined.

4.2 The Dynamic Models of the Frequency Components

To explain and predict the evolution of the frequency components zlf (t), zmf (t) and zhf (t) in which

we decompose z(t), we select three linear, time-invariant, dynamic systems employing the minimum

number of variables and parameters guaranteeing an acceptable level of model performance in

out-of-sample forecasting the spot rates. The models are expressed in a canonical state space

representation ensuring also computation simplicity and tractability. They explain the cause-and

e�ect relationship between a single exogenous cause, e.g. the long-, or the medium- or the short-run

forces, and the correspondent response of a single variable, e.g. the class of low-, or the medium- or

the high-frequency component of the time function z(t). The exogenous causes, which are the model

inputs, are estimated within the three pre-speci�ed low-, medium and high-frequency bandwidths

[0÷flf ], [flf ÷fmf ] and [fmf ÷fhf ]. The model parameters are optimally identi�ed within the same

three frequency domains. As a result, the model outputs, that is the frequency components of z(t),
evolve within the same domains.

Denote Mj the linear, time-invariant, discrete-time, strictly causal, system of the 2nd− order

modeling the generic frequency component zj (t) of z(t),[
qj,1 (t + 1)
qj,2 (t + 1)

]
︸ ︷︷ ︸ =

[
1− sj −rj

1 1

]
︸ ︷︷ ︸

[
qj,1 (t)
qj,2 (t)

]
︸ ︷︷ ︸ +

[
1
0

]
︸ ︷︷ ︸ uj (t)︸ ︷︷ ︸

qj(t + 1) Pj qj(t) BMj uj (t)

(14)
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zj (t + 1) = qj,2 (t + 1) j = lf, mf, hf (15)

where qj is the two-dimensional vector of the system state variables, uj is the system single unknown

input with unknown statistical properties, and (sj , rj) are the system parameters. The latter, are

in one-to-one correspondence with the eigenvalues of the matrix Pj and will be optimally identi�ed

within the frequency bandwidth of interest by minimizing the out-of-sample prediction errors of the

spot rates, as illustrated in section 4.4.

The model described by eqs. (14) and (15) is strictly causal because the e�ects follow in time

the causes that produced it: at time t + 1, the e�ect − i.e. the system output zj (t + 1) − depends

solely on the external causes − i.e. the single input uj(k) for k = t, t− 1, t− 2, . . . , 0 − that acted

upon the system Mj before time t + 1.

Finally, the response of model Mj can be decomposed into the response determined solely by

its initial states qj(0), as if uj (t) were identically zero for all t (i.e. the zero-input response or free

response), and the response determined exclusively by its input uj (t) as if the initial states qj(0)
were zero (i.e. the zero-state response or forced response).

4.3 The Dynamic Filter

The scope of the calendar-time dynamic models Mj is to identify the forces moving the yields and use

this information for forecasting purposes. These forces, namely the input functions ulf (t), umf (t)
and uhf (t) of eq. (14), are unknown to the modeler and need to be estimated. Also the six state

variables qlf (t), qmf (t) and qhf (t) of the systems Mlf , Mmf and Mhf are not directly accessible

to measurement and need therefore to be estimated. To reconstruct both the inputs uj(t) and the

state variables qj(t) for j=lf,mf, hf, we use a dynamic �lter, namely an input-output state observer,

which extracts the required information from the time series z(t).
Following the method introduced by Luenberger (1964, 1966, 1971), we obtain the estimates of

qj(t) as the output of the input-output state observer, which is another dynamic system with the

same form as the original system Mj . Thus, it also consists of a linear, time-invariant, strictly causal,

discrete-time model, but it has the function z(t) as input. Luenberger show it is possible to design

state observers having the property that the estimation error, de�ned by the di�erence between the

state of the actual system and the state of the observer, can be made go to zero as fast as one may

desire (see, e.g., B. Friedland (1986)). The observer acts through a feedback control system. This

means that it recursively computes the inputs ulf (t), umf (t) and uhf (t), which are imposed to lie

within their pre-de�ned frequency domains [0÷ flf ], [flf ÷ fmf ] and [fmf ÷ fhf ], ensuring that the
outputs of the systems Mj , for each point in calendar-time t, when added up do not signi�cantly

di�ers from the the actual value of z(t), i.e. zlf (t) + zmf (t) + zhf (t) ∼= z(t). Therefore the observer
controls the dynamics of the systems Mj towards the achievement of a guaranteed performance

de�ned in terms of a targeted level of accuracy in out-of-sample forecasting the yields. In doing so,
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it also �lters out the possible measurement errors contained in z(t) and corrects for the deterioration
in the performance of the models Mj caused by model approximations and misspeci�cations (see

Appendix II for details).

We select this �ltering approach because of its numerous advantages: 1) it allows to investigate

the behavior of the frequency components in the frequency domain although it works in the time

domain. This is relevant because the data we consider need not be Fourier-transformable and

this approach does not require the Fourier transformations of the signals for their behavior to be

examined in the frequency domain. Moreover, 2) this approach does not require any pre-�ltering,

or transformation, of the data because it foregoes the stationarity requirement. Importantly, 3) it

permits to �lter the data in real time. This means that the decomposition of a time function at

time t is performed without requiring the knowledge of the values that the function will take on

at time t + 1 > t and without altering the outcomes of the decomposition already performed at

time t− 1 < t. This is an important property for this study because to investigate the determinants

of yield movements we need to monitor in a consistent fashion how the frequency components of

the function z(t) evolve with time. In particular, we want to avoid that when mapped into the

frequency domain the values that the frequency components take on at the beginning of the sample

gets averaged with the values they take on at the end of the sample, thereby mixing the past with

the future. Finally, 4) this approach permits to extract all the frequency components of z(t) jointly
and in way that minimizes the information loss when switching from a frequency bandwidth to the

other. In fact, given that the sum of the three frequency components reconstructs the actual pattern

of z(t), the oscillations whose period is neither signi�cantly lower nor signi�cantly higher than the

selected frequency cuts end up with lying in one of two neighboring frequency domains.

We design the interactions between the models Mj and the observer within a unique model,

encompassing the three models Mj . In what follows, we will refer to this overall model as the model

of the dynamic �lter. Given that the observer has the same form as the original process, overall, the

dynamic �lter has a dimension as big as the double of the order of the systems Mj . This means that

the dynamic �lter employs four state variables
[

qj,1 qj,2 qj,3 qj,4

]
= qj to model and estimate

the generic frequency component zj (t) of z(t). Since each model Mj is of the 2nd order and we use

three frequency components to reconstruct the time function z(t), the state observer is of the 12th

order, that is it works with 12 state variables,

q(t + 1) = Hq(t) + Bz (t) (16)

y(t + 1) = Gq(t + 1) (17)

As shown by state eq. (16), at calendar-time t the state observer receives as input the time func-

tion z(t) and through the 12−dimensional vector of state variables q(t), the real, time-invariant,

(12× 12) - dimensional matrix H, and the (12× 1) - dimensional matrix B it computes the values
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taken on by the state vector q(t + 1). As shown by output eq. (17) through the real, time-invariant,

(7× 12) - dimensional matrix G the state vector q(t + 1) is turned into the output vector y(t + 1)
for y ≡

[
ulf umf uhf zlf zmf zhf ẑ

]
. Thus, the output of the dynamic �lter includes the

one-step ahead forecast carried out at time t of the three inputs, the three frequency components

and the time function z.

At time t + 1, the forecast ẑ(t + 1) is contrasted with the actual z(t + 1) and the input-output

state observer reacts to their di�erence by computing the inputs ulf (t+2), umf (t+2) and uhf (t+2)
which maintain the systems Mlf , Mmf and Mhf on track in the subsequent period. As explained

in more detail in Appendix II, the parameters of the gain matrix H governing the dynamics of the

�lter are selected to make the one-step-ahead, out-of-sample predictions, as accurate as possible.

4.4 The Out-of-Sample Forecasting Algorithm

The forecasts of the yields are obtained by plugging the out-of-sample predictions of the latent

factors xi(0, t), i = 1, . . . , n into the yield curve of eq. (5). In turn, the predictions of the initial

states are obtained from the dynamic �lter illustrated in the preceding section.

In keeping with the notation introduced in the last three sections, starting from the generic

discrete-time series z(t) known up to time t, the dynamic �lter of eqs. (16) and (17) yields the out-

of-sample forecast ẑ(t + 1). In particular, ẑ(t + 1) = Dq(t + 1) where D is the sub-matrix formed

by seventh row of matrix G of eq. (17) (see Appendix II for details).

Note that at time t, when forecasting ẑ(t + 1), the inputs ulf (t + 1), umf (t + 1) and uhf (t + 1)
determining the actual value z(t+1) are still unknown. Therefore, ẑ(t+1) stems from the zero-input

response of the systems Mlf , Mmf and Mhf . As a result, the out-of-sample forecast error denoted

fe(t, 1) = z(t+1)− ẑ(t+1), is due to the e�ect of both the possible model approximations included

in the zero-input responses of the dynamic systems and the e�ect of the missing inputs.

In the subsequent period, once they are disclosed, we compute the e�ect of the (t + 1)-inputs
on the systems. We call this latter e�ect innovation. If the dynamic �lter works properly, the

innovations are the main, and possibly the only, reason of the out-of-sample forecast errors.

To produce out-of-sample forecasts of z for longer horizons, we proceed recursively and use the

dynamic �lter outputs, i.e. its one-step-ahead predictions, as its next-step inputs. For example,

ẑ(t + 1) is used as the dynamic �lter input of time t + 1 for it to produce the forecast ẑ(t + 2), and
so on. The out-of-sample forecasts performed at time t for the horizon τ ∈ [1, h] are then obtained

from equation ẑ(t + τ) = [H + BD]τ−1q(t + 1) where H and B are the matrices of eq. (16).

4.5 The Identi�cation Algorithm

The cause-and-e�ect relationship between the long-, medium- and short-run forces acting on the

yields and the pattern followed in response by the frequency components of each latent factor xi(0, t),
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i = 1, . . . , n is modeled with the three strictly-causal dynamic systems Mj for j = lf,mf, hf,

introduced in section 4.2. In this section, we illustrate how to estimate the parameters (sj , rj) of
the systems Mj .

The procedure we adopt is not standard for three reasons: 1) because the system inputs uj are

unknown; 2) because we want to identify the parameters that minimize the out-of-sample forecast

errors fe(t, τ) so that the identi�cation of (sj , rj) is not performed in sample, but on the out-

of-sample forecasts of a sub-set of data; 3) because at the same time we want also to optimally

estimate the initial conditions q(0) of the dynamic �lter, which are also unknown. Although the

dynamic �lter ensures that the temporary disturbances generated by an inaccurate knowledge of

the initial conditions are progressively attenuated to zero, by assigning as accurate initial conditions

as possible, the attenuation occurs faster. The related e�ciency gains can be appreciated especially

for the system Mlf modeling the slowly evolving low-frequency component zlf . In fact, the error

eq(0) = q∗(0) − q(0), where q∗(0) are the unknown, accurate, initial conditions and q(0) is an

arbitrary guess of their values, evolves according to the law eq(t) = Hteq(0) set by state equation

(11) of the dynamic �lter. Given that all of the eigenvalues of H eq. (16) are real, positive, scalars

smaller than one by construction, the error eq(0) tends asymptotically to zero as calendar-time t

goes to in�nity. However, the closer to one are the eigenvalues of the sub-matrix of H ruling the

dynamics of each frequency component, the larger is the number of steps that the dynamic �lter

needs to correct for eqlf (0).
We partition the data set. The data running from t1 to t2 are used both to identify (sj , rj)

and q(0), and the data running from t2 to the end of the sample are used to evaluate forecast

accuracy. We proceed as follows. Starting from some guessed initial conditions q(0), we reconstruct
the states q(t) employing the dynamic �lter and, at each point in calendar-time t, we compute the

out-of-sample forecasts ẑ(t + τ) for τ ∈ [1, h] . Then, we identify the parameters (sj , rj) and the

initial conditions q(0) by minimizing the quadratic loss functional Ft

min
sj ,rj ,q(0)

Ft =
t2−1∑
t=t1

h∑
τ=1

[fe(t, τ)w(τ)]2 (18)

where w(τ) is a negative exponential function that assigns to the forecast errors a weight decreasing

with the lengthening of the prediction horizon τ .

In this study, we minimize the functional Ft employing the numerical algorithm based on the

conjugate-gradient method contained in the software suite EicasLab, whose embedded tests check

for the local uniqueness of the minimum.
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4.6 The Estimation of the Intertemporal Dynamic Model

In this section, we report the results from the estimation of the intertemporal dynamic model in-

troduced in section 4. We begin by presenting the three disjoint low-, medium- and high-frequency

bandwidths selected for the purpose of this study to decompose the time series of the latent fac-

tors x0(0, t), x1(0, t) and x2(0, t). In section 4.6.2, we describe the dynamic systems modeling the

frequency components and in section 4.6.3 we examine their properties and those of their driving

forces. In section 4.4 we conclude by presenting the out-of-sample forecasts of the yields.

4.6.1 The Selected Frequency Bandwidths and the Poles of the Filter

Before performing the spectral decomposition of the latent factors, we exogenously assign a value

to the eigenvalues, or poles, of the gain matrix H governing the dynamics of the input-output state

observer. The poles have a time and a frequency domain interpretation:

� Frequency domain interpretation. Given the sampling period T, which in our case corresponds

to 1 month, the pole p is related to the angular frequency ω, measured in rad/month, by the

equation p = e−ωT . If the frequency is measured in cycles/month, it will be denoted f. The

values of the frequency, either measured in rad/month or in cycles/month, determined by the

poles, set the upper bound of the pass-band frequency of the �lter. Recall that the oscillation

period, de�ned as 1
f = 2π

ω , is the inverse of the frequency.

� Time domain interpretation. The inverse of the angular frequency ω is the time constant,

denoted τ , which characterizes the impulse response of the state observer.

Now we proceed with the description of the selected frequency bandwidths.

The long-run shocks, which give rise to enduring e�ects that may persist up to in�nity, are

extracted from the time series of each latent factor by means of a low pass-band �lters of the

4th− order embedded in the input-output state observer. We set its four poles are all equal to

0.985. This means that the frequency bandwidth within which the dynamic system Mlf responds

to the long-run shocks ulf by producing as output the low-frequency components zlf is [0÷ 0.015]
rad/month. The poles �x the limit below which the system Mlf does not respond to the action of

the exogenous shocks placed upon it. In particular, the oscillations with a period longer than 415.5
months pass, whereas the oscillations with a period signi�cantly lower than that − that are therefore

more frequent − do not pass but get �ltered by the state observer associated to the system Mmf .

The oscillations with a period in between are attenuated by (1/
√

2 ∗ 1/
√

2 ∗ 1/
√

2 ∗ 1/
√

2) = 0.25.
This also means that we de�ne long-run shocks those shocks whose e�ects broadly take at least

5.5 years to decay signi�cantly. Hence, the �lter smooths the original time series by averaging its

instantaneous values over time resolution intervals larger than 66.2 ∗ 2 ∗ π = 415.5 months.
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The medium-run shocks, whose e�ects wane within what in the context of this study we denote

business-cycle horizons, are extracted from the residual time series obtained by removing the low-

frequency component from the original ones with another low pass-band �lters of the 4th− order

embedded in the input-output state observer whose four poles are all equal to 0.6. This means

that the dynamic system Mmf works within the frequency range of [0.015÷ 0.51] rad/month. The

medium-frequency component of each initial state is then characterized by a period of at least

12.29 months, but signi�cantly lower than 415.5 months. Equivalently, the e�ect of the medium-

run shocks broadly take at least 1.96 months, but less than 5.5 years, to decay signi�cantly. This

also means that each medium-frequency component is extracted by smoothing over time resolution

intervals larger than 1.96 ∗ 2 ∗ π = 12.29 months.

The short-run shocks, whose e�ects abate very quickly, are extracted from the time series ob-

tained after removing the low- and medium-frequency components from the original ones, with a

third low passband �lter of the 4th− order whose four poles are all equal to 0.2. This means that

the dynamic system Mhf works within the frequency bandwidth of [0.51 ÷ 1.6] rad/month. The

high-frequency component of each initial state is then characterized by a period of at least 3.90
months, but signi�cantly lower than a year. Equivalently, the e�ects of the short-lived shocks

broadly take at least 0.6 months, but less than 1.96 months, to decay signi�cantly. This also means

that each high-frequency component is extracted by smoothing over time resolution intervals larger

than 0.6 ∗ 2 ∗ π = 3.90 months.

The residual time series, which is obtained by removing the low- , medium- and high-frequency

components from the original time series, lies in the residual frequency range [1.6÷3.14] rad/month.

We neglect such residual frequency component because it is too noisy for the purpose of this study.

4.6.2 The Dynamic Models of the Frequency Components

To explain the evolution of the frequency components of the latent x0(0, t), x1(0, t) and x2(0, t)
plotted in Figure 1, and to carry out their out-of-sample forecasts, we model each frequency compo-

nent as the output of the 2nd− order dynamic systems Mi,j for i = 0, 1, 2 and j=lf,mf, hf de�ned by

eqs. (14) and (15). Each dynamic system Mi,j is subject to a single shock uij and it is fully de�ned

by the parameters (si,j , ri,j) .

Since we have three latent factors and each of them is decomposed into three frequency com-

ponents, the overall model of their frequency components has (3 × 3 × 2) = 18 parameters. Of

these, three parameters are a priori imposed to be zero, namely ri,lf = 0, to ensure that the e�ect

produced by the long-run forces on the low-frequency components may persist up to in�nity. The

values of the other 15 parameters are optimally identi�ed from the time series of each latent factor

over the period from 31 January 1990 (equal to t1) to 31 December 2003 (equal to t2). Recall that

the parameter estimates are carried out on the out-of-sample forecasts produced by the dynamic �l-

ter. The reason why we skip the �rst predictions (our sample starts on 31 January 1984) is that the
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errors in the initial values, which we assign arbitrarily, of the state variables employed by 4th− order

low pass-band �lters have a signi�cant transient e�ect on forecast accuracy. By skipping the �rst

72 outputs of the �lters, possible errors in the initial state values qi,mf (0) and qi,hf (0) attributed
to the high- and medium-frequency low pass-band �lters do not a�ect the out-of-sample forecasts

anymore.

We optimally estimate the initial conditions qi,lf (0) of the four state variables used to model the

low-frequency components xi,lf (0, t) along with the model parameters. The simplest approach to

the problem may seem the following. First, decompose the original time series of the latent factors

into their frequency components. Second, by considering a single frequency component at the time,

identify the parameters (si,j , ri,z) i = 1, 2, 3, j=lf,mf, hf and z=mf, hf, of the respective dynamic

system Mi,j , then reconstruct the unknown input uij and estimate the dynamic system's state

variables qi,j . Instead, we decompose the time series and carry out the state and input estimations in

a single step by employing in parallel, for each considered time series, the set of three low pass-band

�lters. These, given the frequency bandwidths stated in Table 4 and the parameters (si,j , ri,j) of the
dynamic systems Mi,j , simultaneously decompose the time series into their frequency components.

For each frequency component, they reconstruct the unknown input uij and they estimate the state

variables qi,j of the respective dynamic system Mi,j .

As explained in section 4.5, we carry out the identi�cation of the parameters (si,j , ri,z) by

minimizing the out-of-sample forecast errors of the yields. The minimization of the out-of-sample

forecast errors is carried out by introducing the cost functional,

min
si,j ,ri,z

Ft =
t2−1∑
t=t1

h∑
τ=1

[fe(t, τ)w(τ)]2 i = 0, 1, 2 j = lf, mf, hf z = mf, hf

where fe(t, τ) is the out-of-sample forecast error for the prediction carried out at calendar-time t of

the value taken on by the variable of interest at time t + τ ; w(τ) = e−
τ
T is the weight associated to

the out-of-sample forecast errors fe(t, τ); we set T = 300 months in order to attach to the forecast

errors a weight only slightly decreasing with the forecast horizon; we consider a 24-month forecast

horizon τ ∈ [1, 24] months so that h = 24. The estimated values of the parameters are reported in

Table 5.

4.6.3 Analysis of the Frequency Components and their Driving Forces

In this section we examine the low-, medium- and high-frequency components in which we decompose

the calendar-time functions of the latent factors, and the long-run shocks driving their dynamics.

Given that the initial outputs of the dynamic �lter are a�ected by the errors made when guessing

the initial conditions of the state variables modeling the medium- and the high-frequency compo-

nents, as discussed in section 4.5, here we skip those initial estimates and we examine the calendar-
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time period from 31 October 1985 to 31 December 2007. The frequency components of the three

latent factors are plotted in Figure 2.

The low-frequency components (LF henceforth) of all the three latent factors exhibit a downward

trend (see panels (a), (b) and (c) of Figure 2). Over the 267 months we examine in this section, the

LFs all decreased by about 5 percentage points: the LF of the starting value x2,lf (0, t) aggregating
the information contained in the shortest-end of the forward rate curve and the yield curve decreased

by 4.98 percentage points, the LF of shape factor x1,lf (0, t) aggregating the information contained

in middle-range maturities rates declined by 4.48 percentage points and the LF of the �nal value

x0,lf (0, t) aggregating the information contained in the longest-end of the curves declined by 5.00
percentage points.

Although the fact that they exhibit a similar pattern might induce to believe that the LF of the

three latent factors have responded to closely related long-run forces, the analysis of the long-run

shocks ui,lf (t) for i = 0, 1, 2 suggests otherwise. Whereas the long-run forces driving the LF of

the starting value appear closely related to the economic cycle �uctuations the Federal Reserve has

reacted to in setting the federal funds rate target (see panel (a) of Figure 3), the long-run forces

driving the LF of the mid-maturity rates exhibit much less volatility, especially from the end of the

1980s onwards (see panel (b) of Figure 3). Finally, the long-run forces driving �nal value seem to

respond little to business-cycle developments given that they display a fairly di�erent pattern than

the long-run shocks moving x2,lf (t) : not only are they much less volatile, but they follow a much

slower dynamics characterized by a single long trough and a single peak in the twenty-two years we

consider.

The medium-frequency components (MF henceforth) of the latent factors display dissimilar

behaviors suggesting that yields of di�erent maturities are di�erently a�ected by the economic

forces exerting their e�ects at business cycle frequencies (see panels (d), (e) and (f) of Figure 2).

To start with, the MF di�er in variability. The MF of the starting value is the most volatile, with

a standard deviation of 1.87 percentage points, followed by the MF of the shape factor, whose

standard deviation is 0.64 percentage points, and by the little volatile MF of the �nal value, which

displays a standard deviations of only 0.36 percentage points. The MF of the long-term rates is also

very little correlated, by −3.38%, with the MF of the short-term rates, whereas the latter is more

correlated, by 36.95%, with the MF of mid-maturity rates.

Finally, the high-frequency component (HF henceforth) of the shape factor is the most volatile,

with a standard deviation of 1.03 percentage points, con�rming that short-lived economic forces

a�ect mostly middle-range rates, while the HF of the �nal value is the least volatile, with a standard

deviation of 0.33 percentage points. The short-end of the yield curve appears a�ected by short-run

shocks more heavily than the long-end, but less than middle-range maturities, displaying a standard

deviation of 0.64 percentage points.

Given that this paper takes a yield-only approach, we leave a deeper investigation of these
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�ndings and of their economic implications to future fruitful research.

4.6.4 The Forecasts of the Yields

At each at time t included in the interval from 31 December 2003 up to 31 December 2007, we fore-

cast out-of-sample the three latent factors, then we substitute the forecasted x̂2(0, t, τ), x̂1(0, t, τ),
x̂0(0, t, τ) for τ = 1, . . . , 24 months into the yield curve y(m, t) of eq. (11) and obtain the predicted

values ŷ(m, t, τ) of the yields. At the end of each forecast exercise, before carrying out the next

prediction, we update the estimate of the state variables qi,lf (t), qi,mf (t) and qi,hf (t) of the systems

Mi,lf , Mi,mf and Mi,hf for i = 0, 1, 2, whereas their parameters remain unchanged. The obtained

results are presented in Table 6.

To evaluate the performance of our model in forecasting out-of-sample we use as benchmark

the random walk model (RW), which foresees that the m-maturity yield at time t is the forecast of

the m-maturity yield at time t + τ , with τ = 1, . . . , 24 months. Moreover, the forecast accuracy is

measured with the root mean squared forecast error. Although we forecast all of the twenty yield

maturities included in our data set, Table 6 reports the statistics for the out-of-sample forecasts

of yields with maturities 6 months, and 1, 3, 5, 10 years at forecasting horizons of 1, 6, 12 and 24
months.

The yield curve model we developed used in conjunction with the state observer to estimate the

state of the dynamic models, outperforms the random walk in forecasting out-of-sample the yields

of all maturities and at all the forecasting horizons, as shown in the last three columns Table 6,

with a margin that increases with the lengthening of the forecast horizon. Within the same forecast

horizon, the yield curve model predicts better than the random walk in particular the short- and

the long-term yields.

The one-month ahead prediction errors have small mean values and low levels of the �rst-order

autocorrelation (and are also stationary), as shown in the top panel of Table 6. These results

con�rms that the input-output state observer works properly and that the innovations are the

primary and possibly the only, unavoidable, reason of the out-of-sample forecast errors.

These results indicate that the performance of the yield curve model used in conjunction with

the dynamic �lter to forecast the yields is satisfactory. The robustness of the methodology is

corroborated also by the fact that we predict out-of-sample the yields during years, especially 2004

and 2005, in which the behavior of the long-end of the yield curve was di�cult to understand and

forecast, leading the then-Fed Chairman Alan Greenspan to speak of a �conundrum�. The �ndings

of this study indicate that although anomalous, the behavior of the long-term rates during such

period has remained in the realm of a model, whose performance is corrected for model uncertainty.
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5 Conclusion

This paper proposes a class of dynamic, parametric, models for the term structure of interest rates in

which the calendar-time dynamics of the forward rates, and thus of the spot rates, is described both

in the time domain and in the frequency domain, which permits to gain a better understanding

on the determinants of the movements observed in the yields. To estimate the selected model,

to perform the required frequency decompositions and to forecast the yields out of sample we

introduce a recursive procedure controlling for the possible misspeci�cations, approximations and

data measurement errors that may undermine the empirical performance of the model. As a result,

we obtain out-of-sample forecasts that are more accurate than the random walk benchmark also at

short forecast horizons, and that remain fairly accurate also at long forecast horizons.
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Appendix I

Consider the discrete-time function z(t) whose pattern we want to investigate in the frequency domain. The

function z(t) is a �nite power sampled time function satisfying the condition lim
N→∞

1
2N

∑N
t=−N [z(t)]2 = Pz <

∞ where Pz is the mean power of the signal z(t). If the data sampling unit considered is one month, as
in this paper, the upper limit of the frequency domain is fmax = 0.5 cycles/month = π rad/month. Given
that the mean power Pz is �nite, the function z(t) is not Fourier transformable. In this case, if z(t) follows
an ergodic stationary process, Pz is distributed in the frequency domain with a power spectrum Φ(f), such
that: Pz =

∫ fmax

0
Φ(f) df . If z(t) follows a nonstationary processes, as many economic time series, the

signal power is likely to be time-varying. In this case, as shown by Donati (1971), it is possible to de�ne
a class of time-varying power spectral functions ϕ(fi, t), where fi, with i ∈ (1, Nf), denotes the frequency
values belonging to a �nite set of Nf elements, with the following properties:

� pz(t) =
∑Nf

i=1 ϕ(fi, t) is a � locally time averaged � instantaneous power obtained by a suitable smoothing

of the signal instantaneous power [z(t)]2 , such that: Pz = lim
N→∞

1
2N

∑N
t=−N pz(t);

� Φ̄(fi) = lim
N→∞

1
2N

∑N
t=−N ϕ(fi, t), is a � locally frequency averaged � power spectral value such that

Pz =
∑Nf

i=1 Φ̄(fi). If the signal z(t) is the realization of an ergodic stationary stochastic process, the
power spectrum Φ̄(fi) corresponds to a � locally frequency averaging� of the stochastic process power
spectrum Φ(f).

The elements ϕ(fi, t) of the time-varying power spectrum class are related to the criteria selected to perform
the local averaging in the time and frequency domains. While di�erent averaging criteria may be adopted,
they should meet the following general rules:

1. A weighted averaging approach must be applied, with the weighting function de�ned in such a way
that the averaged value may be attributed (even roughly) to a �nite interval, whose amplitude is
denoted T when referring to the time interval, and ∆f when referring to the frequency interval . The
intervals of amplitudes T and ∆f de�ne the �nite resolution of the performed averages. As a result,
in the time domain, two values ϕ(fi, t1) and ϕ(fi, t2) cannot di�er signi�cantly if the time instant
di�erence ‖t2 − t1‖ is not signi�cantly larger than T. Similarly, in the frequency domain, two values
ϕ(f1, t) and ϕ(f2, t) cannot be signi�cantly di�erent if ‖f2 − f1‖ is not signi�cantly larger than ∆f.

2. The time-varying power spectral decomposition is possible only if adopting �nite resolutions T and
∆f such that T ·∆f � 1.

3. If we adopt the greatest time resolution T = 1month, which is equal to the sampling unit, the required
frequency resolution is ∆f = fmax. Therefore no spectral decomposition is possible.

4. If we adopt the greatest frequency resolution, which in this paper is ∆f = 1/288 cycles/month since
our data extend to 288 monthly observations, then the required time resolution coincides with all
the time interval (running from 1984:01 to 2007:12) and no time-varying power spectrum may be
considered, but only the power spectrum of the power averaged over all the available time series data.

Having clari�ed the above conditions, for the purpose of the study presented here we decide to opt for a
good resolution in the time domain and to accept a low resolution in the frequency domain. As a result,
we decompose the time series z(t) in only four spectral components: a low-, a medium-, a high-frequency
component and a residual decomposition error lying within a residual very high-frequency domain, which we
do not investigate.
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Appendix II

In this appendix we explain how, starting from the actual time function z(t), we reconstruct the inputs uj(t)
and estimate the state variables qj,1(t), qj,2(t) of the dynamic systems Mj , j = lf,mf, hf, introduced in
sections 4.2 and 4.3. From the theory of dynamic systems with a state space representation we know (see,
e.g., Chen (1999)) that given the system outputs zj(t), j = lf,mf, hf, of systems expressed in the canonical
form of eqs. (14) and (15) it is possible to estimate the values taken by all the states qj(t) and to reconstruct
all the inputs uj(t), j = lf,mf, hf by means of another dynamic system, namely a state observer. As
explained in section 4.3, we consider an input-output state observer consisting of a linear, discrete-time,
strictly causal, time-invariant, system of the 12th order.

Its state equation has the following representation:

qlf,1(t + 1)
qlf,2(t + 1)
qlf,3(t + 1)
qlf,4(t + 1)
qmf,1(t + 1)
qmf,2(t + 1)
qmf,3(t + 1)
qmf,4(t + 1)
qhf,1(t + 1)
qhf,2(t + 1)
qhf,3(t + 1)
qhf,4(t + 1)


︸ ︷︷ ︸

=
[

H1 H2 H3

]︸ ︷︷ ︸



qlf,1(t)
qlf,2(t)
qlf,3(t)
qlf,4(t)
qmf,1(t)
qmf,2(t)
qmf,3(t)
qmf,4(t)
qhf,1(t)
qhf,2(t)
qhf,3(t)
qhf,4(t)


︸ ︷︷ ︸

+



0
0

dlf

clf

0
0

dmf

cmf

0
0

dhf

chf


︸ ︷︷ ︸

z(t)

(12× 1) (12× 12) (12× 1) (12× 1)
q(t + 1) = H q(t) + B z(t)

(19)

with

H1
(12×4)

=



1− alf −blf hlf klf

1 1 0 0
0 −dlf 1− rlf −slf

0 −clf 1 1− clf

0 0 0 0
0 0 0 0
0 −dmf 0 0
0 −cmf 0 0
0 0 0 0
0 0 0 0
0 −dhf 0 0
0 −chf 0 0



H2
(12×4)

=



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1− amf −bmf hmf kmf

1 1 0 0
0 −dmf 1− rmf −smf

0 −cmf 1 1− cmf

0 0 0 0
0 0 0 0
0 −dhf 0 0
0 −chf 0 0


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and

H3
(12×4)

=



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1− ahf −bhf hhf khf

1 1 0 0
0 −dhf 1− rhf −shf

0 −chf 1 1− chf


with rj = aj − hj and sj = bj + dj − hj for j = lf,mf, hf.

Its output equation has the following representation:



ulf (t + 1)
umf (t + 1)
uhf (t + 1)
zlf (t + 1)
zmf (t + 1)
zhf (t + 1)
ẑ(t + 1)


︸ ︷︷ ︸

=



0 0 hlf klf 0 0 0 0 0 0 0 0
0 0 0 0 0 0 hmf kmf 0 0 0 0
0 0 0 0 0 0 0 0 0 0 hhf khf

0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 1 0 0 0 1 0 0


︸ ︷︷ ︸



qlf,1(t + 1)
qlf,2(t + 1)
qlf,3(t + 1)
qlf,4(t + 1)
qmf,1(t + 1)
qmf,2(t + 1)
qmf,3(t + 1)
qmf,4(t + 1)
qhf,1(t + 1)
qhf,2(t + 1)
qhf,3(t + 1)
qhf,4(t + 1)


︸ ︷︷ ︸

(7× 1) (7× 12) (12× 1)
y(t + 1) = G q(t + 1)

(20)
Note that the matrix H is lower-triangular, so that the eigenvalues governing the dynamics of the input-

output state observer are in its principal diagonal. Speci�cally, the sub-matrices H1, H2, H3 contain three
(4× 4) blocks of elements in their principal diagonals − corresponding to columns and rows from 1 to 4
of matrix H1, to columns and rows from 5 to 8 of matrix H2 and to columns and rows from 9 to 12 of
matrix H3 − which partition the eigenvalues of the input-output state observer and which are in one-to-one
correspondence, respectively, with the parameters cj , dj , hj , kj for j = lf,mf, hf . We use 4 eigenvalues to
extract and to model the evolution of each of the three frequency components in which we partition the time
function z(t). A schematic representation of the dynamic system of the state observer de�ned by eqs. (19)
and (20) is provided by the �ow-chart of Figure 4. Recall that the state observer includes the models Mj

of eqs. (14) and (15) and that it receives as input the actual time function z(t), which may be a�ected by
measurement errors, and produces as output the vector y(t + 1) of one-step ahead predictions of the three
pairs (uj , zj) for j=lf,mf, hf, and the predicted value ẑ(t + 1) taken on by the time function z at time t + 1.
To do so, the dynamic �lter reacts, through a close loop, to the outputs zj(t) produced by the systems Mj by
means of the inputs uj(t) in a way that ensures that each modeled frequency component zj evolves within its
frequency bandwidth and that the sum of three frequency components tracks the actual time function z(t)
minimizing the residual we of the spectral decomposition, as illustrated in section 4. Figure 4 shows these
three closed loops: the �rst is composed by the system Mlf which receives a feedback by the 4th− order low
pass-band �lter CClf embedded in the state observer; the second is composed by the system Mmf which is
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subject to the feedback control stemming from the 4th− order low pass-band �lter CCmf and, �nally, the
third is composed by the system Mhf which is subject the feedback provided by the 4th− order low pass-band
�lter CClhf . Through these closed loop reactions, the state observer also corrects for model uncertainty, that
is for the deterioration in the model performance caused by model approximations and misspeci�cations and
data measurement errors, thereby ensuring the achievement of a targeted level of accuracy in out-of-sample
forecasting the yields.

We go through the loops depicted in Figure 4 more in detail:

1. First, the estimate of the low-frequency component zlf (t) produced by the dynamic system Mlf is
contrasted with the actual value of z(t). The state observer, by means of the feedback control system
CClf reacts to the di�erence z(t) − zlf (t) = elf (t) and computes the input ulf (t) which then steers
the dynamics of system Mlf . We exogenously impose the value 0.985 to the four eigenvalues of the
input-output state observer that are used to extract the low-frequency component. This is equivalent
to impose that ulf (t) lies within a bandwidth of angular frequency of 0.015 rad/month. In this way
we guarantee that zlf (t) evolves within the low-frequency domain [0÷ flf ].Note that by exogenously
placing the eigenvalues, or pole, of the state observer not only do we set its dynamics, but we determine
the parameters cj , dj , hj and Kj contained in its matrix H. In such way we specify the closed-loop
dynamics of the �lter. For details on how to solve the pole-placement problem see, e.g., C.-T. Chen,
(1999).

2. Next, the residual elf (t) is contrasted with the medium-frequency component zmf (t) produced by the
dynamic system Mmf . Through the input umf (t), the feedback control system CCmf guarantees that
zmf (t) evolving within the selected medium-frequency domain tracks elf (t). This is achieved by setting
the four corresponding eigenvalues of the input-output state observer equal to 0.6, which is equivalent
to impose that umf (t) lies within a bandwidth of angular frequency [0.015÷ 0.51] rad/month.

3. The residual elf (t)−zmf (t) = emf (t) belongs to a higher frequency domain, which we contrast with the
high-frequency component zhf (t). To compute the input uhf (t) that guarantees that the system output
zhf (t) tracks emf (t) within the pre-speci�ed high-frequency bandwidth, we use the feedback control
system CCmhf and we assign the value 0.2 to the four related eigenvalues of the input-output state
observer. As a result, the power spectrum uhf (f) belongs to the angular frequency range [0.5÷ 1.6]
rad/month.

4. The residual emf (t) − zhf (t) = we(t), which we do not investigate, receives the power of the time
function z(t) that lies within the angular frequency domain [1.6÷ 3.14] rad/month.
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Table 1: Summary Statistics: the Yields

Maturity

(months ) Mean  Std. Dev. Skewness Kurtosis Lag (1) Lag (12) Lag (30)

6 5.29 2.29 0.19 3.00 0.98 0.66 0.19

12 5.45 2.30 0.23 3.05 0.98 0.66 0.20

18 5.60 2.30 0.31 3.12 0.98 0.66 0.23

24 5.74 2.28 0.39 3.19 0.98 0.66 0.25

30 5.86 2.26 0.47 3.25 0.97 0.66 0.26

36 5.97 2.24 0.53 3.31 0.97 0.66 0.28

42 6.08 2.23 0.60 3.36 0.97 0.66 0.29

48 6.17 2.21 0.65 3.41 0.97 0.65 0.30

54 6.25 2.20 0.69 3.45 0.97 0.65 0.31

60 6.31 2.18 0.72 3.47 0.97 0.65 0.32

66 6.38 2.17 0.76 3.48 0.97 0.65 0.33

72 6.44 2.17 0.80 3.50 0.97 0.65 0.33

78 6.49 2.16 0.82 3.52 0.97 0.65 0.34

84 6.54 2.14 0.83 3.52 0.97 0.65 0.34

90 6.58 2.11 0.83 3.50 0.97 0.65 0.35

96 6.62 2.10 0.83 3.48 0.97 0.65 0.36

102 6.65 2.09 0.83 3.47 0.97 0.65 0.36

108 6.69 2.08 0.84 3.47 0.97 0.65 0.37

114 6.72 2.07 0.85 3.46 0.97 0.65 0.37

120 6.76 2.05 0.85 3.44 0.97 0.65 0.37

Central moments Autocorrelations

This table reports the mean, standard deviation, skewness and kurtosis of the month-end U.S. annual zero coupon
bond yields of maturities from 6 to 120 months, for the period 31 January 1984 to 31 December 2007. The last three
columns show the autocorrelation of the yields at displacements of 1, 12 and 30 months.
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Table 2: Summary Statistics: the Yield Fitting Errors

Maturity Mean Std. Dev. Max Min MAE RMSE

(months ) (basis points ) (basis points ) (basis points ) (basis points ) (basis points ) (basis points ) Lag (1) Lag (12) Lag (30)

6 -0.184 4.258 0.124 -0.158 3.363 4.262 0.784 0.272 -0.168

12 -0.091 2.503 0.116 -0.107 1.755 2.505 0.721 0.127 -0.108

18 0.262 3.684 0.100 -0.122 2.899 3.693 0.742 0.162 -0.102

24 0.107 3.379 0.082 -0.097 2.709 3.380 0.754 0.226 -0.122

30 -0.090 2.893 0.081 -0.090 2.287 2.894 0.798 0.342 -0.221

36 0.092 2.435 0.082 -0.100 1.796 2.437 0.755 0.204 -0.178

42 0.593 1.991 0.079 -0.059 1.503 2.077 0.685 0.043 -0.103

48 0.684 2.371 0.092 -0.057 1.796 2.468 0.766 0.186 -0.161

54 0.072 2.896 0.117 -0.110 2.093 2.897 0.765 -0.041 -0.041

60 -0.675 3.445 0.107 -0.141 2.631 3.510 0.793 -0.081 0.006

66 -0.653 3.667 0.157 -0.100 2.886 3.725 0.802 0.339 -0.170

72 -0.250 5.036 0.310 -0.089 3.243 5.042 0.893 0.207 -0.128

78 -0.035 5.086 0.267 -0.086 3.076 5.087 0.889 0.048 -0.062

84 -0.182 3.531 0.226 -0.092 2.467 3.535 0.779 -0.022 -0.112

90 -0.470 2.933 0.061 -0.158 2.158 2.970 0.757 0.061 -0.247

96 -0.591 2.689 0.070 -0.130 1.926 2.753 0.798 0.231 -0.140

102 -0.528 2.324 0.051 -0.100 1.800 2.383 0.766 0.320 0.039

108 -0.248 2.439 0.096 -0.082 1.861 2.451 0.729 0.249 -0.073

114 0.474 3.129 0.103 -0.094 2.454 3.164 0.733 0.204 -0.163

120 1.714 5.079 0.145 -0.166 4.212 5.361 0.772 0.127 -0.044

Average 0.000 3.288 0.123 -0.107 2.446 3.330 0.774 0.160 -0.115

Autocorrelations

This table reports the mean, the standard deviation, the maximum and the minimum of the �tting errors ε(m, t)=
ỹ(m, t) − y(m, t) where y(m, t) are the model-based yields obtained from eq. (11) and ỹ(m, t) are the actual zero-
coupon bond yields for the period 31 January 1984 to 31 December 2007. The table reports also the mean average

errors, MEA = 1
288

∑288
t=1 |ε(m, t)| , and the root mean squared �tting errors RMSE =

√
1

288

∑288
t=1 [ε(m, t)]2. The

last three columns show the autocorrelation of the �tting errors at displacements of 1, 12 and 30 months. The row
at the bottom of the table reports the arithmetic average of the columns.

Table 3: Summary Statistics: the Latent Factors

Initial Mean Std. Dev. Max Min Unit Root Prob

State (percent ) (percent ) (percent ) (percent ) Test Lag (1) Lag (12) Lag (30)

X2 (0,t) 5.122 2.268 11.272 0.777 -2.330 0.416 0.985 0.642 0.160

X1 (0,t) 5.948 2.802 14.677 -0.444 -3.554 0.036 0.948 0.566 0.228

X0 (0,t) 7.285 2.011 13.981 4.127 -3.226 0.081 0.973 0.637 0.388

Autocorrelations

This table reports the mean, standard deviation, maximum and minimum of the three latent factors for calendar-time
t going from 31 January 1984 to 31 December 2007. The Phillips-Perron test (using the Bartlett kernel) and the
associated one-sided p-values indicate that the null hypothesis of unit root cannot be rejected at the 1 percent level for
all three latent factors, and at the 5 percent level for x2(0, t) and x0(0, t). This is consistent with the autocorrelation
values shown in the last three columns of the table.
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Table 4: The Frequency Bandwidths

Frequency Low Passband Filter Frequency Bandwidth Time Resolution Interval

Component Eigenvalues (rad/month ) (months )

  Low-frequency 0.985 [0 - 0.015] T > 415.5

  Medium-frequency 0.6 [0.015 - 0.51] T >12.29

  High-frequency 0.2 [0.51 - 1.6] T > 3.90

This table reports the eigenvalues assigned to the gain matrix of the dynamic �lters to perform the frequency
decomposition, the associated �nite frequency resolution intervals partitioning the frequency domain, and the related
four �nite time resolution intervals. Note that when measured in rad/month the time series complete frequency range
is [0÷ fmax] = 3.14, whereas it equals [0÷ fmax] = 0.5 when measured in cycles/month.

Table 5: The Parameters sj and rj of the Dynamic Models Mj

Initial System M j

State for j= s r

lf 7.55E-03 0.00E+00

X0(0,t ) mf 1.46E-01 2.51E-02

hf 2.00E-01 4.33E-02

lf 8.38E-03 0.00E+00

X1(0,t ) mf 1.46E-01 3.29E-02

hf 5.52E-01 1.97E-01

lf 5.00E-04 0.00E+00

X2(0,t ) mf 0.00E+00 4.29E-03

hf 3.10E-01 7.01E-02

Parameter

This table reports the estimated values of the time-invariant parameters sj and rj of the systems Mj for j = lf, mf, hf.

38
ECB
Working Paper Series No 917
July 2008



Table 6: Summary Statistics: the Yield Forecast Errors

1-month Forecast Horizon

Maturity Mean Std. Dev. RMSE RW RMSE RMSE

(basis points ) (basis points ) Lag (1) Lag (6) Lag (12) (basis points ) (basis points ) ratio

6 months -7.52 17.33 0.20 0.00 -0.02 18.89 21.92 0.86

1 year -3.97 20.52 0.11 0.02 -0.04 20.90 24.48 0.85

3 years -4.40 25.54 -0.04 -0.02 -0.09 25.92 26.79 0.97

5 years -4.42 23.97 -0.03 -0.03 -0.13 24.37 28.13 0.87

10 years 7.87 19.96 0.08 -0.02 -0.18 21.46 28.87 0.74

Autocorrelations

6-month Forecast Horizon

Maturity Mean Std. Dev. RMSE RW RMSE RMSE

(basis points ) (basis points ) Lag (1) Lag (6) Lag (12) (basis points ) (basis points ) ratio

6 months -18.07 35.31 0.49 0.07 0.02 39.66 84.95 0.47

1 year -19.84 43.11 0.50 0.07 -0.02 47.46 85.12 0.56

3 years -22.04 49.44 0.57 0.08 -0.07 54.13 85.00 0.64

5 years -15.02 42.06 0.60 0.01 -0.11 44.66 84.43 0.53

10 years 11.09 28.90 0.59 -0.32 -0.20 30.96 83.24 0.37

Autocorrelations

1-year Forecast Horizon

Maturity Mean Std. Dev. RMSE RW RMSE RMSE

(basis points ) (basis points ) Lag (1) Lag (6) Lag (12) (basis points ) (basis points ) ratio

6 months -19.67 41.67 0.53 0.14 0.03 46.08 147.64 0.31

1 year -23.81 50.07 0.47 0.12 -0.03 55.44 143.26 0.39

3 years -26.26 54.12 0.51 0.13 -0.15 60.16 137.85 0.44

5 years -15.43 42.61 0.57 0.09 -0.20 45.32 132.33 0.34

10 years 17.88 23.99 0.63 -0.18 -0.19 29.92 126.93 0.24

Autocorrelations

2-year Forecast Horizon

Maturity Mean Std. Dev. RMSE RW RMSE RMSE

(basis points ) (basis points ) Lag (1) Lag (6) Lag (12) (basis points ) (basis points ) ratio

6 months -3.17 44.15 0.57 0.12 0.00 44.27 233.67 0.19

1 year -1.05 49.26 0.53 0.11 0.01 49.27 223.22 0.22

3 years -3.48 49.47 0.47 0.05 0.00 49.59 209.54 0.24

5 years -3.41 39.85 0.38 -0.17 0.00 39.99 195.26 0.20

10 years 9.86 27.25 0.61 -0.30 0.01 28.98 181.76 0.16

Autocorrelations

The table reports the mean, the standard deviation, the autocorrelation at displacements of 1, 6 and 12 months and
the root mean squared error (RMSE) of the errors de�ned by the di�erence between the actual yields at time t and
their levels as forecasted out of sample 1, 6, 12 and 24 months before t using yield curve model of eq. (11). The RW
RMSE column reports the root mean squared error for the forecasts obtained when using the random walk model to
predict the yields, while the last column shows the ratio between the values in the RMSE column and the values in
the RW RMSE column.
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Figure 1: The Latent Factors and Empirical Counterparts
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In this �gure, the left-hand side column, from top to bottom, shows: 1) the starting value x2(0, t) with the U.S. federal
funds rate target (thick line); 2) the shape factor x1(0, t) with the middle-range maturity transformation of the yield
curve [y(24, t) + y(36, t) + y(60, t)]/3, (thick line); the �nal value x0(0, t) with the 10-year maturity yield (thick line).
The column on right-hand side, from top to bottom, shows: 4) the slope factor β2(t) with the slope-transformation
of the yields [y(6, t) − y(120, t)], (thick line); 5) the curvature factor β3(t) with the curvature-transformation of the
yields [2 ∗ y(24, t)− y(120, t)− y(6, t)], (thick line); and 6) the level factor β1(t) with the level-transformation of the
yields [y(6, t) + y(24, t) + y(120, t)]/3, (thick line). The calendar-time considered t goes from 31 January 1984 to 31
December 2007.

40
ECB
Working Paper Series No 917
July 2008



Figure 2: The Frequency Decompositions of the Latent Factors x0(0, t), x1(0, t) and x2(0, t)
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This �gure shows the frequency decompositions of the latent factors over 31 October 1985 to 31 December 2007. The
�rst column, shows the starting value x2(0, t) together with its low-frequency component (LF) (thick line) in panel
(a), its medium-frequency component (MF) in panel (d), and its high-frequency component (HF) in panel (g). The
second column presents the shape factor x1(0, t) and its LF (thick line) in panel (b), its MF in panel (e), and its HF
in panel (h). The last column plots the �nal value x0(0, t) and its LF (thick line) in panel (c), its MF in panel (f),
and its HF in panel (i).
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Figure 3: The Long-Run Shocks Driving the Dynamics of the Latent Factors
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This �gure contrasts the target for the U.S. federal funds rate (thin line, scale on the right-hand side) with the
long-run forces (thick lines) driving the calendar-time evolution of the starting value x2(0, t) in panel (a), of the
shape factor x1(0, t) in panel (b), and of the �nal value x0(0, t) in panel (c) over the period from 31 October 1985 to
31 December 2007.

Figure 4: Frequency Decomposition of the Time Function z(t)
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This �gure provides a schematic representation of the input-output state observer recursions to perform the frequency
decomposition of the generic time function z(t).
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