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Abstract 

Many factors inhibiting and facilitating economic growth have been 
suggested. Will international income data tell which matter when all are 
treated symmetrically a priori? We find that growth determinants 
emerging from agnostic Bayesian model averaging and classical model 
selection procedures are sensitive to income differences across datasets. 
For example, many of the 1975-1996 growth determinants according to 
World Bank income data turn out to be irrelevant when using Penn 
World Table data instead (the WB adjusts for purchasing power using a 
slightly different methodology). And each revision of the 1960-1996 
PWT income data brings substantial changes regarding growth 
determinants. We show that research based on stronger priors about 
potential growth determinants is more robust to imperfect international 
income data. 

Keywords: growth regressions, robust growth determinants 
JEL Codes: E01, O47 
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Nontechnical summary 

 

Why does income grow faster in some countries than others? Most of the empirical 

work addressing this question focuses on few explanatory variables to deal with the 

statistical challenges raised by the limited number of countries. (see, for example, 

Kormendi and Meguire, 1985; Grier and Tullock, 1989; Barro, 1991; for reviews of 

the literature see Barro and Sala-i-Martin, 2003; Durlauf, Johnson, and Temple, 

2005). Selected variables are motivated by their importance for theory or policy. But 

as researchers disagree on the explanatory variables that are most important a priori, 

there is usually only partial overlap among the variables considered in different 

empirical works.  

It is therefore natural to try and see which of the explanatory variables suggested in 

the literature emerge as growth determinants when all are treated symmetrically a 

priori. The idea is to find out in which direction the data guides an agnostic. The 

starting point of the literature on the sensitivity of cross-country growth empirics is Levine 

and Renelt (1992). Following Sala-i-Martin (1997), this is also the task tackled by 

Fernandez, Ley, and Steel (2001a), Sala-i-Martin, Doppelhofer, and Miller (2004), 

and Hendry and Krolzig (2004). 

As many potential explanatory variables have been suggested, these agnostic 

empirical approaches inevitably need to start out with a long list of variables. We 

show that, as a result, the growth determinants emerging from these approaches turn 

out to be sensitive to seemingly minor variations in international income estimates 

across datasets. This is because strong conclusions are drawn from small differences 

in the R2 of different growth regressions. Small changes in the relative fit of different 

models—due to Penn World Table income data revisions or methodological 

differences between the PWT and the World Bank income data for example—can 

therefore lead to substantial changes regarding growth determinants. 

We find that each revision of the 1960-1996 income data in the PWT leads to 

substantive changes regarding growth determinants with agnostic empirical analysis. 

A case in point is the latest revision (PWT 6.2). Using Sala-i-Martin, Doppelhofer, 

and Miller’s (2004) Bayesian Averaging of Classical Estimates approach, PWT 6.2 

and the previous version (PWT 6.1) disagree on 13 of 23 growth determinants for the 

1960-1996 period that emerge with one of the two datasets. Other agnostic approaches 
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we consider yield similar results. The explanatory variables an agnostic should pay 

attention to according to some versions of the 1960-1996 income data but not others 

are related to the debates on trade openness, religion, geography, demography, health, 

and a long etc. A small scale Monte Carlo confirms that agnostic empirical 

approaches are sensitive to data revisions that are small by PWT standards. 

Agnostic empirical analysis also results in only limited coincidence regarding 

growth determinants when we use international income estimates obtained with 

alternative methodologies. For instance, the latest PWT and World Bank international 

income data yield disagreement on 8 of 15 growth determinants for the 1975-1996 

period with the Bayesian Averaging of Classical Estimates approach. 

Our findings suggest that the available income data may be too imperfect for 

agnostic empirical analysis. At the same time, we find that the sensitivity of growth 

determinants to income differences across data revisions and datasets falls 

considerably when priors regarding potential growth determinants become stronger. 

That is, the data appears good enough to differentiate among a limited number of 

hypotheses. Empirical models of the typical size in the literature, for example, tend to 

point to the same growth determinants using different versions of the PWT or the 

World Bank income data. Researchers who want to continue giving equal a priori 

weight to all potential growth determinants in the literature, should consider shrinkage 

priors, explicitly incorporating priors about measurement error in the income data, or 

implementing Zellner’s (2002) adjustment for data quality. 
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1.   Introduction 

Why does income grow faster in some countries than in others? Most of the empirical 

work addressing this question focuses on a few explanatory variables to deal with the 

statistical challenges raised by the limited number of countries (see, for example, 

Kormendi and Meguire, 1985; Grier and Tullock, 1989; Barro, 1991; for reviews of the 

literature see Barro and Sala-i-Martin, 2003; Durlauf, Johnson, and Temple, 2005). 

Selected variables are motivated by their importance for theory or policy. But as 

researchers disagree on what is most important, there is usually only partial overlap among 

the variables considered in different empirical works.  

It is therefore natural to try and see which of the explanatory variables suggested in the 

literature emerge as growth determinants when all are treated symmetrically a priori. The 

idea is to find out in which direction the data guides an agnostic. Following Sala-i-Martin 

(1997), this is the task tackled by Fernandez, Ley, and Steel (2001a), Sala-i-Martin, 

Doppelhofer, and Miller (2004), and Hendry and Krolzig (2004).1 As many potential 

explanatory variables have been suggested, these agnostic empirical approaches inevitably 

need to start out with a long list of variables. We show that, as a result, the growth 

determinants emerging from these approaches turn out to be sensitive to seemingly minor 

variations in international income estimates across datasets. This is because strong 

conclusions are drawn from small differences in the R2 across growth regressions. Small 

changes in relative model fit—due to Penn World Table income data revisions or 

methodological differences between the PWT and the World Bank income data for 

example—can therefore lead to substantial changes regarding growth determinants.  

Given the difficulties faced when estimating international incomes, differences across 

datasets are not surprising. A major challenge is the limited coverage and quality of the 

                                                 
1 The starting point of the literature on the sensitivity of cross-country growth empirics is Levine 
and Renelt (1992). 
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underlying price benchmark and national income data.2 The Penn World Table income 

data—the dataset used in most cross-country empirical work—have therefore undergone 

periodic revisions to eliminate errors, incorporate improved national income data, or 

account for new price benchmarks.3 For example, the 1960-1996 income data in the PWT 

6.1 corrects the now-retired PWT 6.0 estimates for the same period.4 Relative to previous 

revisions, changes seem minor.5 Still, the two datasets yield rather different growth 

determinants using agnostic empirical approaches. Consider, for example, the Bayesian 

averaging of classical estimates (BACE) approach of Sala-i-Martin, Doppelhofer, and 

Miller (2004). SDM use this approach to obtain the 1960-1996 growth determinants with 

PWT 6.0 data. When we update their results with the corrected income data in PWT 6.1 it 

turns out that the two versions of the PWT disagree on 13 of 25 determinants of 1960-1996 

growth that emerge using one of them. A further update using the latest PWT 6.2 data for 

1960-1996 yields disagreement on 13 of 23 variables. A Monte Carlo study confirms that 

agnostic empirical approaches are sensitive to small income data revisions by PWT 

standards. 

Disaccord concerning the 1960-1996 growth determinants across PWT income data 

revisions affects factors that have featured prominently in the literature. For instance, one 

BACE finding with PWT 6.0 income data that has been used for policy analysis is the 

negative effect of malaria prevalence in the 1960s on 1960-1996 growth (e.g. Sachs, 2005). 

But with PWT 6.1 or PWT 6.2 data for the same period, malaria prevalence in the 1960s 

becomes an insignificant growth factor. Another important policy issue is whether greater 

trade openness raises the rate of economic growth (e.g. Sachs and Warner, 1995; Rodrik 

and Rodriguez, 2001). But, according to the BACE criterion used by SDM, the number of 

years an economy has been open is a positive growth determinant with PWT 6.0 income 

data but not with PWT 6.1 or PWT 6.2 data. Prominent potential growth determinants that 

are significant for 1960-1996 growth according to both PWT 6.0 and PWT 6.1 income data 
                                                 
2 Many income estimates are therefore obtained by extrapolation and margins of error for income 
levels and growth rates are often estimated to be large (e.g. Summers and Heston, 1991; Heston, 
1994). 
3 PWT revisions are sometimes accompanied by a change in the base year for prices, which alone 
can change relative income estimates (e.g. Dowrick and Quiggin, 1997) 
4 See the PWT website page http://pwt.econ.upenn.edu/whatsnew.htm and our Web Appendix B 
for details. 
5 For example, the correlation between 1960-1996 income per capita growth rates in the two 
databases is 0.98. This is high compared to the 0.88 correlation of PWT 6.0 income per capita 
growth for 1960-1985 with the corresponding data from PWT 5.6. 



9
ECB

Working Paper Series No 852
January 2008

but irrelevant when using PWT 6.2 data are life expectancy, the abundance of mining 

resources, the relative price of investment goods, and location in the tropics (for earlier 

results on these growth determinants and their policy implications see, for example, Barro, 

1991; DeLong and Summers, 1991; Jones, 1994; Sachs and Warner, 1995; Congressional 

Budget Office, 2003). Fertility, on the other hand, is an interesting example going in the 

opposite direction. While insignificant when using PWT 6.0 income data, high fertility 

reduces 1960-1996 growth according to PWT 6.1 and 6.2 (for earlier results on the link 

between fertility and growth see, for instance, Barro, 1991, 1998; Barro and Lee, 1994). As 

the PWT income data will almost certainly undergo further revisions, it is important to be 

aware that past revisions have led to substantial changes in growth determinants. 

Incomplete or erroneous price benchmark and national income data are not the only 

reasons why international income statistics are imperfect. As is well known, there is no 

best method for obtaining internationally comparable real income data. Different methods 

have advantages and disadvantages (e.g. Neary, 2004). For example, the PWT data adjusts 

for cross-country price differences using the Geary-Khamis method. The main advantage is 

that results for each country are additive across different levels of aggregation. This fits the 

PWT approach as aggregate income is obtained by summing over expenditures categories. 

The main disadvantage of the GK method is that country comparisons are based on a 

reference price vector (so-called international prices) which ends up being more 

characteristic for rich than poor countries (e.g. Kravis, Heston, and Summers, 1982; Neary, 

2004; Dowrick, 2005). The World Bank’s international income data uses the Elteto-Koves-

Szulc method. This method does not rely on a single set of international prices but is 

instead based on bilateral income comparisons.6 

Despite the difference in underlying methodological choices, the PWT and World Bank 

international income data are closely related.7 For example, the correlation between 1975-

1996 growth rates according to PWT 6.2 and the World Development Indicators is 96% 

and the correlation between 1975 income per capita levels is 97% (the WDI international 

income data starts in 1975). Still, all-inclusive agnostic empirical analysis often yields 

substantial disagreement on the determinants of 1975-1996 growth between the two 

                                                 
6 The EKS method is also used by the Statistical Agency of the European Union and the OECD. 
The PWT and World Bank data also differ in the way they estimate incomes in non-benchmark 
countries and the extent to which they try to ensure consistency across price benchmarks. 
7 This is not surprising as they use the same national income and price benchmark data. 
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datasets. For instance, the PWT 6.2 and WDI income data yield disagreement on 8 of 15 

variables when using SDM’s Bayesian criterion; and the model selection approach of 

Hendry and Krolzig (2004) disagrees on 7 out of 10 variables.8 It is important to be aware 

that the methodological choices underlying international income estimates have such 

strong effects on the conclusions of agnostic empirical analysis. 

 A potential strength of cross-country growth regressions focusing on few explanatory 

variables is that conclusions may be more robust across data revisions and alternative 

datasets. This is because, with fewer correlated variables, the conditioning of the ordinary 

least-squares regression problem can be expected to improve (see Belsley, Kuh, and 

Welsch, 1980, for example). To see whether this is the case for our application, we 

compare results of ordinary least-squares regressions across PWT income data revisions 

and also between PWT and WDI income data. Our results show that stronger priors about 

potential growth determinants translate into results that are less sensitive to data revisions 

and discrepancies across datasets. For example, when we consider cross-country 

regressions with 7 explanatory variables, a model size often found in the literature, we find 

that PWT and WDI results coincide on average on 4 of 5 variables that are statistically 

significant according to one of the datasets. Stronger priors about potential growth 

determinants also reduce the sensitivity of Bayesian model averaging and classical model 

selection procedures to imperfections in the income data. For instance, when we implement 

SDM’s BACE approach starting with lists of only 18 candidate explanatory variables 

(instead of the 67 candidate variables SDM start out with), we find that PWT 6.1 and PWT 

6.2 income data agree on average on 2 of 3 determinants of 1960-1996. 

 The agnostic empirical approaches considered here do not account for possible 

feedback from economic growth to the suggested explanatory variables (this could be done 

in principle, see Tsangarides, 2005, for example;9 alternatively, the analysis could be 

restricted to potential growth determinants that can be considered exogenous). As a result, 

robust growth correlates might be a better name for what the literature refers to as growth 

determinants (or, sometimes, robust growth determinants). In any case, our objective here 

                                                 
8 Comparing the results of Fernandez, Ley, and Steel’s (2001a) approach across datasets requires 
some additional definitions as variables are not classified according to whether or not they are 
(robust) growth determinants. 
9 Tsangarides (2005) derives approximate formulas. An exact analysis could in principle follow 
Kleibergen and van Dijk (1998) and Kleibergen and Paap (2002). In practice, finding valid 
instruments is difficult, especially with multiple endogenous right-hand-side variables. 
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is to examine whether different income datasets point researchers looking for robust 

correlations in the same direction when many explanatory variables are treated 

symmetrically a priori. Whether these correlations reflect causal effects is an important but 

separate issue. 

The remainder of the paper is structured as follows. Section 2 presents the three 

agnostic empirical approaches we consider and examines their sensitivity to income data 

using a small-scale Monte Carlo study. In Section 3, we use the agnostic approaches to 

obtain the 1960-1996 growth determinants according to the latest income estimates from 

the PWT 6.2. Our findings are compared with results using the 1960-1996 income data in 

PWT 6.1 and PWT 6.0. We also compare the 1975-1996 growth determinants according to 

the PWT 6.2 and WDI income data. Section 4 examines the effect of reducing the number 

of candidate explanatory variables on the sensitivity of results. Section 5 concludes. 

Appendix A describes our Monte Carlo study, and Appendix B points to three possible 

avenues for reducing the sensitivity of Bayesian model averaging to imperfections in the 

income data. More details on the data and our findings can be found in a Web Appendix.10 

2.   Agnostic Approaches to Growth Determinants 

Consider the problem of identifying the determinants of economic growth across countries. 

If the number of countries (C) were large relative to the number of explanatory variables 

(K), we could find the statistically significant explanatory variables by regressing the 

growth rate of countries on all candidate variables. With C close to K, this approach tends 

to yield estimates that are too noisy to be of interest (the approach is infeasible when C<K). 

This has led to the use of two alternative approaches, Bayesian model averaging and 

general-to-specific model selection. We briefly discuss these approaches and illustrate their 

sensitivity using PWT data revisions. 

A.   Bayesian Approaches 

Bayesian model averaging (BMA). Bayesian methods frame the problem of identifying 

the determinants of economic growth in terms of uncertainty about the true set of 

explanatory variables (model uncertainty). The Bayesian approach to model uncertainty is 

                                                 
10 See http://www.antoniociccone.eu. 



12
ECB
Working Paper Series No 852
January 2008

to first attach prior probabilities to alternative sets of explanatory variables and then update 

these probabilities using data.

 To develop the Bayesian approach to growth determinants more formally it is useful to 

collect all candidate explanatory variables in a vector cx , 1,...,c C . The 2K subsets of cx  

are denoted by jcx , 1,..., 2Kj , and called models. The cross-country growth regressions 

considered are of the form 

(1)  c jc j jcy a x b e  

where cy  is the growth rate of per capita GDP in country c; a is the constant term; jb  is 

the effect of the explanatory variables in model j on growth; and jce  is a Gaussian error 

term. The ingredients of BMA are: priors for models ( jp ); priors for all parameters (a, jb  

and the variance of the error term); and the likelihood function of the data for each model j. 

A key intermediate statistic is the likelihood of model j integrated with respect to the 

parameters using their prior distributions (the marginal likelihood of model j, ( )y jl M ). 

Bayesian approaches use Bayes’ theorem to translate the density of the data conditional on 

the model (the marginal likelihood) into a posterior probability of the model conditional on 

the observed data, 

(2)  
all models

( )
( | )

( )
y j j

j
y h hh

l M p
p M y

l M p
. 

Detailed discussions of BMA can be found in Leamer (1978) and Hoeting et al. (1999) for 

example. 

Agnostic BMA (BACE and BMA with benchmark priors). The idea of the agnostic 

Bayesian approaches to growth determinants of Fernandez, Ley, and Steel (2001b) and 

Sala-i-Martin, Doppelhofer, and Miller (2004) is to limit the subjectivity of Bayesian 

analysis. This is done by treating all candidate explanatory variables symmetrically a priori 

and by using coefficient priors that have a negligible effect on the posterior distribution of 

model coefficients (loose priors). FLS assume equal prior probabilities for all models, 

irrespective of model size and composition. SDM assume equal priors for models of the 

same size but favor models of a predetermined size (7 in their preferred specification). 

SDM specify non-informative priors (improper priors) for model coefficients that make 
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posterior distributions equal to classical sampling distributions of ordinary least-squares 

coefficients.11 This is why they refer to their approach as Bayesian averaging of classical 

estimates (BACE). FLS use priors proposed in Fernandez, Ley and Steel (2001a) 

(benchmark priors) that are designed to have a negligible effect on the posterior 

distribution of model coefficients. 

 SDM’s choices of priors for model coefficients yield the following (approximate) 

marginal likelihood of the data 

(3)  2 2( )
jk C

y j jl M C SSE , 

where jk  is the number of candidate explanatory variables included in model j  and jSSE  

is the sum of squared ordinary least-squares residuals associated with the model. Hence, 

posterior probabilities of models are increasing in model fit and decreasing in the number 

of candidate variables included in the model. The marginal likelihood of the data in FLS 

(in their equation (8)) is 

(4)  

1
2 21( ) ( ) '( )

1 1 1

jk C

y j j
g gl M SSE y y y y

g g g
, 

where 21/ max ,g C K , y  is a vector collecting growth rates for all countries, and y  is 

the average growth rate in the sample multiplied by a vector of ones. 

BMA allows computation of a posterior inclusion probability for each of the K 

candidate explanatory variables. The posterior inclusion probability for a given candidate 

explanatory variable is obtained by summing posterior probabilities of all models including 

the variable. Other outputs of BMA are posterior means conditional on inclusion and 

unconditional posterior means of all coefficients. Posterior means conditional on inclusion 

are computed by averaging the coefficients of each variable over all models that include it, 

using weights equal to the posterior probabilities of the models. Unconditional means are 

computed similarly, but averaging over all models, taking the coefficient value of zero 

when the variable is not included. 

Potential effects of data imperfections. Agnostic Bayesian approaches to growth 

determinants put much weight on the sum of squared errors when assigning posterior 

                                                 
11 Such priors are not a proper distribution but emerge as a limit of a certain sequence of 
increasingly loose priors (Leamer, 1978). 
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inclusion probabilities to candidate explanatory variables. This can be seen immediately 

from the SDM marginal likelihood in (3) where the sum of squared errors (SSE) is raised 

to the power C/2, which in SDM’s case equals 44 as they have data on 88 countries. It is 

also true for (4), as the benchmark priors of FLS assume a very small value for g. As a 

result, posterior inclusion probabilities are sensitive to small changes in the sum of squared 

errors. 

   To get an initial sense of the magnitude of this effect, suppose that we want to 

determine the posterior inclusion probabilities of the 67 candidate explanatory variables 

considered by SDM (the data are available for 88 countries). To simplify, let us limit 

attention to models of a predetermined size. In this case, substituting (3) into (2) and 

summing across all models containing a given variable, yields that the posterior inclusion 

probability of a candidate explanatory variable v relative to w is 

(6)  
2

all models including variable   

2
all models including variable   

Posterior probability variable 
Posterior probability variable 

C

jj v
C

jj w

SSEv
w

SSE
. 

Now suppose that a data revision leads to a fall in the sum of squared errors generated by 

candidate variable v of 1.5% in all models. With data on 88 countries, this implies that the 

posterior inclusion probability of this variable almost doubles relative to other variables. 

How strongly do actual data revisions affect posterior inclusion probabilities? To 

illustrate the effect we assume a predetermined model size of 1 and determine the posterior 

inclusion probability of the 67 variables in the SDM dataset with both PWT 6.1 and PWT 

6.2 income data for the 1960-1996 period. In the top-left panel of Figure 1 we plot the R2 

of all 67 models including just the constant term and each of the variables (sorted by 

decreasing R2) using PWT 6.1 data. In the top-right panel we display the corresponding 

posterior probabilities (computed as in SDM) for the first 16 variables. The comparison of 

these two panels illustrates how small differences in R2 translate into large differences in 

inclusion probabilities. The best variable (which turns out to be the number of years 

countries have been open to international trade) has an R2 of 0.33 and gets a posterior 

inclusion probability of 0.84. The sixth variable has an R2 of 0.25 and an inclusion 

probability of around 0.006 (beyond the sixth variable inclusion probabilities are 

negligible). The bottom-left and bottom-right panels display the R2 and inclusion 

probability for variables in the same order as in the top-left panel but using PWT 6.2 data. 
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It can be seen that changing the dataset perturbs the inclusion probabilities drastically 

when compared to changes in R2. For example, number of years open, which was best with 

PWT 6.1, is almost irrelevant with PWT 6.2 (the inclusion probability of 0.03). The 

relevance of the second variable, the dummy for East Asian countries, jumps from 0.06 to 

0.97. 

 When the predetermined model size is greater than 1, the posterior inclusion 

probability of a variable will be the sum of posterior inclusion probabilities across models 

containing the variable. What if data revisions were to lead to changes in the sum of 

squared errors that are unsystematic across models containing this variable? Will such data 

imperfections average out and therefore have small effects on posterior inclusion 

probabilities of variables? It turns out that they may not average out in theory and practice. 

To see this, note that when C is large, then 2
all models including variable   

C

jj v SSE  is 

dominated by the sum of squared errors of the best fitting model (the model with the 

lowest SSE). In this case, we can therefore approximate the relative posterior inclusion 

probabilities in (6) by an expression that only involves the best fitting models for each 

variable 

 

2

2

max : all models including variable  
Posterior probability variable 
Posterior probability variable 

max : all models including variable  

C

j

C

j

SSE j v
v
w

SSE j w
. 

Small unsystematic changes in the sum of squared errors across models can therefore have 

large effects on posterior inclusion probabilities of variables. 

To illustrate the effect of the best fitting models on posterior inclusion probabilities for 

actual data revisions, we return to the example where we try to determine the posterior 

inclusion probabilities of the 67 candidate explanatory variables for economic growth 

considered by SDM with both PWT 6.1 and PWT 6.2 data. But now we take the 

predetermined model size to be 3. In this case, each variable is part of 66*65/2= 2145 

models, which means that the posterior inclusion probability of a variable is the sum of 

posterior inclusion probabilities across 2145 models. A quick way to see whether this sum 

is sensitive to the sum of squared errors produced by the best fitting model is to examine 

rank correlations. We therefore rank variables according to their posterior inclusion 
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probabilities (from highest to lowest probability) and also according to the median sum of 

squared errors across models that include the variable (from lowest to highest sum of 

squared errors). The simple correlation coefficient between these ranks is 71%. We then 

repeat the exercise but rank variables according to the sum of squared errors at the 5th 

percentile across models that include the variable (instead of the median). Now the 

correlation is 86%. When we rank variables according to the lowest sum of squared errors 

across models including the variable, the correlation is almost perfect (96%). 

A useful alternative perspective on the sensitivity of posterior inclusion probabilities to 

the sum of squared errors of the best-fitting model can be obtained in two steps. We first 

determine the sum of squared errors of models including a given candidate explanatory 

variable at the 1st, 5th, 25th, and 50th percentiles of the distribution. Then we regress the 

log posterior inclusion probability of all variables on the log sum of squared errors at these 

percentiles as well as the log sum of squared errors of the best-fitting model. Pooling the 

results obtained using the PWT 6.1 and PWT 6.2 income datasets (which results in 2*67 

observations) yields 

min 1
  (0.95)  (1.14)

5 25 50
 (1.61)  (1.68)  (1.07)

ˆln DatasetDummies 26.87 ln 12.645ln

1.53ln 0.67 ln 0.13ln

X X X
Pct

X X X
Pct Pct Pct

p SSE SSE

SSE SSE SSE
 

where ˆln Xp  is the predicted log posterior inclusion probability of candidate variable X 

(the regression 2R  is 99%); min
XSSE  denotes the minimum sum of squared errors across all 

2145 models that include X; and X
zPctSSE  denotes the sum of squared errors at the zth 

percentile (numbers in parentheses are standard errors). Note that only the minimum sum 

of squared errors and the sum of squared errors at the 1st percentile are (highly) 

statistically significant. Hence, the sum of squared errors of the best fitting model has a 

statistically significant effect on posterior inclusion probabilities, even when the sum of 

squared errors at the 1st, 5th, 25th, and 50th percentiles are controlled for. Moreover, the 

effect is large. A 1% fall in the minimum sum of squared errors is associated with an 

increase in the posterior inclusion probabilities of almost 27%. Small changes in the sum 

of squared errors of a few models can therefore have large effects on posterior inclusion 

probabilities. 

A small-scale Monte Carlo study. To examine the sensitivity of agnostic Bayesian 

procedures as applied in the literature, we perform a small-scale Monte Carlo study. We 
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first generate 30 artificial datasets by randomly perturbating PWT 6.1 1960-1996 

annualized growth rates. The distribution from which we draw the perturbations is 

calibrated using the difference between PWT 6.1 and 6.0 income growth rates (we use 

these two versions to be conservative, as changes between PWT 6.1 and PWT 6.2 growth 

rates are somewhat larger). The variance of the perturbations is calibrated to be decreasing 

in income per capita of countries. To make the exercise as close as possible to a minor 

income data revision by PWT standards, we draw from the calibrated distribution until we 

have generated 30 growth perturbations whose correlation with PWT 6.1 growth is 

between 0.975 and 0.979 (the interval in centered on 0.977, the correlation between PWT 

6.1 and 6.0 growth rates). For comparison, the correlation between PWT 6.1 and PWT 6.2 

growth rates is 0.937. The construction of the perturbed growth rates is explained in more 

detail in Appendix A.  

A few statistics on our 30 randomly generated growth series corroborate that 

perturbations relative to PWT 6.1 growth are in fact conservative relative to the difference 

between growth rates in PWT 6.1 and PWT 6.2. The average mean squared difference 

between the 30 growth series and the PWT 6.1 data is 0.0041, the same as the mean 

squared difference of growth rates between PWT 6.0 and PWT 6.1, but smaller than the 

mean squared difference between PWT 6.1 and 6.2 (0.0059). The mean squared 

differences of individual artificial datasets with PWT 6.1 growth rates range from 0.0038 

to 0.0044. Hence, the mean square difference of each of the 30 growth series with PWT 6.1 

is smaller than the mean squared difference between PWT 6.2 and PWT 6.1. The average 

maximum absolute perturbation of an individual country across the 30 artificial datasets is 

0.013 (1.3 percentage points of annualized growth). The maximum individual perturbation 

across all 30 artificial datasets is 0.018, which is smaller than the maximum absolute 

difference in growth rates of the PWT 6.0-6.1 revision or the PWT 6.1-6.2 revision.  

We then apply SDM’s BACE procedure to the 66 variables of the SDM dataset, plus the 

1960 income level from PWT 6.1, with the dependent variable taken to be 1960-1996 

income growth according to the PWT 6.1 dataset and each of the 30 growth perturbations. 

This gives 31 sets of BACE results. The variation between them is quite substantial. 

Comparing pairwise actual PWT 6.1 results with each of the perturbated datasets, we find 

that the average ratio of the greater to smaller posterior inclusion probability is 1.88 on 

average across all variables. SDM’s robustness criterion is that the posterior inclusion 
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probability of a variable exceeds the prior inclusion probability. Only four variables satisfy 

this criterion in all perturbed datasets, out of 35 variables which satisfy it in at least one of 

the dataset. As there are a total of 67 candidate explanatory variables, this implies that 

more than half of the candidates turn out to be robust at least once and 11% of the variables 

robust at least once are always robust. In other words, close to half of the candidate 

variables (31=35-4) emerge as growth determinants for some growth perturbation but not 

for another. When we repeat the same exercise applying the BMA with benchmark priors 

of FLS, we find similar results. For example, when comparing pairwise actual PWT 6.1 

results with each of the perturbated datasets, the average ratio of the greater to smaller 

inclusion probability is 1.77. 

Our findings above are consistent with what has been noted by other researchers. 

Results of Ley and Steel (2007) show that the single best model often dominates the BMA 

results for growth regressions. They also perform a Monte Carlo experiment where they 

generate artificial samples by randomly dropping 15% of observations, and find posterior 

inclusion probabilities of some variables fluctuating between zero and almost certainty. In 

other contexts, Pesaran and Zaffaroni (2006) and Garrat et al. (2007) also find that the 

Bayesian average of models often turns out to be dominated by the best model, and that 

model weights react very strongly to small changes in the data.12 

B.  General-to-Specific Approach 

Hendry and Krolzig (2004) identify determinants of economic growth using a general-to-

specific strategy, as implemented in their PcGets model-selection computer package (see 

Hendry and Krolzig, 2001; Campos, Ericsson and Hendry, 2005; Hendry and Krolzig, 

2005). The algorithm tells relevant from irrelevant variables by performing a series of 

econometric tests. It tests significance of individual variables and their groups, as well as 

the correct specification of the resulting models. By following all possible reduction paths, 

the algorithm ensures that results do not depend on which insignificant variable is removed 

first. The output of the PcGets algorithm is the final, specific model, which includes only 

the variables that have a statistically significant effect on the dependent variable. The 

                                                 
12 In Appendix B, we point to three possible ways of reducing the sensitivity of Bayesian model 
averaging to data imperfections: (i) shrinkage priors; (ii) the incorporation of priors about 
measurement error; (iii) Zellner’s (2002) adjustment for data quality. 
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coefficients are estimated with ordinary least-squares, and standard t-ratios and R2 are 

reported. 

 The general-to-specific strategy ends up picking a best model based on sequences of t-

tests and F-tests. Because these tests are functions of the SSE, the best model will most 

likely be different across income data revisions as well as alternative income datasets. It is 

however difficult to assess theoretically whether such differences may be large. To get a 

sense of the sensitivity of the general-to-specific strategy, we therefore return to our small 

Monte-Carlo setup and apply the PcGets algorithm to the SDM dataset paired with the 30 

growth perturbations. In this case, 28 candidate explanatory variables are selected at least 

once and none is selected always. To put it differently, approximately 40% of the candidate 

explanatory variables end up being part of the best model for some growth perturbation but 

not another. 

3. Income Data and Growth Determinants 

We start by analyzing the determinants of economic growth for the 1960-1996 period 

using the latest Penn World Table income data (PWT 6.2). To assess the sensitivity of 

agnostic all-inclusive empirical analysis to income data revisions, we then compare PWT 

6.2 results with those of earlier PWT income data for 1960-1996 (PWT 6.0 and 6.1). As 

potential determinants we use the dataset of 67 variables, compiled by Sala-i-Martin, 

Doppelhofer, and Miller (2004) (see Web Appendix Tables A1a-b). 

 We also examine how much growth determinants depend on the different 

methodological choices underlying the PWT and the World Development Indicators 

income data. This analysis is for the 1975-1996 period, as the WDI purchasing power 

parity income estimates are only available since 1975. As potential determinants we use 

the same 67 variables, with values updated wherever necessary (see Web Appendix Table 

A1c). 

A. Determinants of 1960-1996 Growth: The Effect of PWT Revisions 

BACE and BMA with benchmark priors of FLS. In Table 1, we list all 67 candidate 

explanatory variables from the SDM dataset and their BACE posterior inclusion 

probabilities according to PWT 6.2, PWT 6.1 and PWT 6.0 income data. Following SDM, 

(robust) growth determinants are defined as variables with a posterior inclusion probability 
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higher than the prior inclusion probability (which, with the prior model size of 7 and 67 

candidate variables, equals 7/67=0.104). These posterior inclusion probabilities are shown 

in boldface. Unconditional mean effects of the main variables are listed in Table 2. 

The original SDM BACE exercise was performed with PWT 6.0 income data on a 

sample of 88 countries. When we implement BACE with PWT 6.1 and PWT 6.2 data, we 

use the SDM data for all variables except 1960-1996 per capita growth rates and (log) 

1960 incomes, which are taken from PWT 6.1 and PWT 6.2 respectively. The PWT 6.1 

income data are available for 84 of the countries in the SDM sample and the PWT 6.2 data 

for 79 countries.13 Ultimately, we want to use the history of PWT revisions to learn about 

how much the set of growth determinants using the latest income data might change with 

future revisions. We therefore compute BACE results on the largest possible samples for 

which all the necessary data are available, as it is impossible to know which income 

estimates will be dropped because of their unreliability in the future.14 

Implementing BACE with PWT 6.2 1960-1996 income data yields 14 growth 

determinants. To get an idea of the effects of data revisions, note that there are 23 growth 

determinants for 1960-1996 according to PWT 6.2 or PWT 6.1. And the two versions of 

the PWT disagree on 13 of these variables. This disagreement is not driven by small 

changes in posterior inclusion probabilities (around the robustness threshold). For 

example, the investment price variable (which has played an important role in the growth 

literature, see, for example, De Long and Summers, 1991; Jones, 1994) is the variable with 

the third highest posterior inclusion probability (97%) according to PWT 6.1 income data, 

but practically irrelevant in PWT 6.2 (the posterior inclusion probability is 2%). The 

inclusion probability of the variable capturing location in the tropics (fraction tropical area) 

drops from above 70% to 5%. A similar drop is experienced by population density in 1960 

and the population density of coastal areas in the 1960s. Air distance to big cities is another 

geographic country characteristic whose relevance for growth diminishes with the PWT 

6.2 dataset. Life expectancy in 1960, the fraction of GDP produced in the mining sector, 

and political rights experience smaller, but still important decreases in their posterior 

inclusion probabilities (from around 25% to below 3%; for earlier results on the role of life 

expectancy and political rights for economic growth see Limongi and Przeworski, 1993; 
                                                 
13 See Web Appendices A and B for details on the samples. 
14 BACE results are sensitive to PWT income data revisions even when one considers the largest 
common sample, see the next footnote. 
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Barro, 1991, 1996). Nominal government expenditures, on the other hand, obtain a 

posterior inclusion probability of 26% according to PWT 6.2 but are irrelevant according 

to PWT 6.1. Other variables with high posterior inclusion probabilities (above 83%) with 

PWT 6.2 data but low posterior inclusion probabilities (below 18%) according to PWT 6.1 

are location in Africa, the fraction of the population that adheres to Confucianism, and 

fertility. 

There is even greater disagreement regarding the determinants of 1960-1996 growth 

when we compare the results with PWT 6.2 income data to those using PWT 6.0. 

Examples of variables that go from irrelevance in PWT 6.0 to robustness in PWT 6.2 are 

fertility and primary export dependence (for earlier results see Sachs and Warner, 1995). 

Examples going the other way are the variables measuring the degree of ethnolinguistic 

fractionalization of the population, which was borderline with PWT 6.0 (for more on this 

variable, see Easterly and Levine, 1997; Alesina et al., 2003; Alesina and La Ferrara, 

2005), and malaria prevalence. When we look across all 3 revisions of the PWT income 

data, we find that they disagree on 20 of 28 variables that are classified as growth 

determinants according to one of the versions. 

Table 1 also reports statistics on differences in BACE posterior inclusion probabilities 

across PWT revisions. The statistic reported is the ratio of the larger to the smaller 

inclusion probability (MAX/MIN) between datasets. The two bottom rows of the table 

contain the average MAX/MIN value across all variables and across variables selected 

using one of the two datasets. Across variables that are robust according to one of the 

datasets compared, the average MAX/MIN value for the PWT 6.2-PWT 6.1 comparison is 

7.97. The average MAX/MIN value across all 67 candidate variables is 4.33. Hence, on 

average, the larger posterior inclusion probability exceeds the smaller posterior inclusion 

probability by a factor greater than four when we compare PWT 6.2 and PWT 6.1. For the 

PWT 6.2-PWT 6.0 comparison, the average MAX/MIN value is 3.18 across variables that 

are robust according to one of the datasets and 2.26 across all variables.15 

BMA with benchmark priors of FLS also yields results that are sensitive to PWT 

revisions. For example, when we compare PWT 6.1 and PWT 6.2 results, the average 

MAX/MIN posterior inclusion probability across all 67 candidate variables is 3.97, quite 
                                                 
15 When we calculate the same statistics for the largest common samples of PWT versions 6.0, 6.1, 
and 6.2 (79 countries), we get an average MAX/MIN PIP value of 2.48 for the PWT 6.2-PWT 6.0 
comparison and an average MAX/MIN PIP value of 1.82 for the PWT 6.2-PWT 6.1 comparison. 
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similar to what we obtained with BACE. The comparison between PWT 6.0 and PWT 6.2 

results yields a MAX/MIN value across all 67 candidate variables of 3.3 (BACE yielded 

5.52). Detailed results can be found in Web Appendix Table C1.16 

General-to-specific approach. In Table 3, we summarize the results using the general-to-

specific approach. Several of the variables of the final, specific empirical model using 

PWT 6.2 income data are also among the growth determinants emerging from the two 

Bayesian approaches. It can also be seen that the general-to-specific approach is rather 

sensitive to data revisions, as PWT 6.2 and PWT 6.1 comparison yields disagreement on 8 

of 11 1960-1996 growth factors. The three versions of the PWT agree on only 1 growth 

determinant (primary schooling). 

B. Determinants of 1975-1996 Growth: PWT versus WDI 

The correlation between 1975-1996 growth rates for the 112 countries in both the PWT 6.2 

and the World Development Indicators dataset is 96.2% (WDI purchasing power parity 

incomes estimates are only available from 1975). Limiting the analysis to the 87 countries 

in the SDM sample for which there are WDI income data, the correlation between growth 

rates is 95.4% and the correlation between 1975 income per capita levels is 96.2%. Still, as 

reported in Table 4, the Bayesian criterion of SDM yields disagreement on 8 of 15 

variables that are classified as growth determinants using one of the two datasets.17 For 

example, political freedom emerges as a positive growth determinant (unconditional mean 

effects of the main variables are reported in Table 5) with WDI but not PWT 6.2 income 

data. The same is true for three different indicators of openness (trade openness, years 

open, and exchange rate distortions). Averaging the MAX/MIN posterior inclusion 

probability ratios across variables that are robust using one of the datasets yields 2.34. 

                                                 
16 An important difference between BACE as implemented by SDM and BMA of FLS is the prior 
model size. FLS set it to the number of explanatory variables over 2 (33.5 as we are using a set of 
67 potential explanatory variables), while SDM chose 7. The larger prior model size of FLS turns 
out to reduce the sensitivity of results to data revisions. When we implement BMA of FLS with a 
prior model size of 7, the average MAX/MIN value across all 67 candidate variables is 10.84 
comparing PWT 6.1 and PWT 6.2; comparing PWT 6.0 and PWT 6.2, the average MAX/MIN 
inclusion probability is 7.93. See Web Appendix Table C3. 
17 To examine the determinants of 1975-1996 growth rates we updated the SDM dataset, replacing 
the variables which were measured in the 1960s with the analogous values for the 1970s. See the 
details in Web Appendix Table A1c. 
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Using the PWT 6.1 income data, the discrepancy with the WDI is even more striking. 

Averaging the MAX/MIN posterior inclusion probability ratios across variables that are 

robust using one of the datasets yields 4.81. Disagreement extends to 12 of 20 variables 

that are classified as growth determinants using one of the two datasets. Results are similar 

when we use FLS-BMA. In this case, the MAX/MIN posterior inclusion probability ratios 

average to 1.62 when comparing WDI and PWT 6.2, and 2.55 when comparing WDI and 

PWT 6.1, see Web Appendix Table C5.18 

 Application of the general-to-specific approach to the PWT 6.2 and WDI international 

income data yields disagreement on 7 of 10 explanatory variables that are in the final, 

specific model using one of the two datasets. For example, the East Asian country dummy 

enters the final model according to the WDI income data (positively) but not the PWT 6.2 

data. On the other hand, the PWT 6.2 income data indicates that religion may matter for 

growth, while the WDI final model does not contain a single indicator of religion. 

4. Implications of More Informative Priors 

One reason why most of the existing empirical work focuses on cross-country regressions 

with few explanatory variables is that such models can be expected to be more robust to 

data imperfections. With fewer correlated variables, the conditioning of the ordinary least-

squares problem can be expected to improve (on data matrix conditioning and the 

sensitivity of OLS estimator to small changes in data, see Belsley, Kuh, and Welsch, 1980, 

for example). This point can be illustrated using the PWT 6.2 revision of the PWT 6.0 

growth data for 1960-1996. When we run a least-squares regression of 1960-1996 

economic growth using PWT 6.2 data on all 67 explanatory variables of SDM, we find 14 

variables with an absolute t-statistic greater than 2 (which corresponds to statistical 

significance at the 95% level approximately).19 When we repeat the analysis with 1960-

1996 growth data from PWT 6.0, only 1 variable is significant and it is not among the 

significant variables using PWT 6.2. Hence, researchers using PWT 6.0 income data would 

have had to totally revise their conclusions about growth determinants with the arrival of 

PWT 6.2. Now consider cutting the number of explanatory variables to 18. To avoid 

                                                 
18 As before, FLS-BMA with prior model size 7 yields somewhat larger disagreement, see Web 
Appendix Table C6. 
19 This threshold t-value is arbitrary of course. Other conventional values yield similar results. 
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findings being driven by a particular list of explanatory variables, rather than there being 

relatively few of them, we randomly extract 500 lists of 18 variables and compare average 

statistics across lists.20 In this case, we find that 54% of the variables that are statistically 

significant at the 95% confidence level using one of the datasets are significant and enter 

with the same sign in both. If we reduce the number of explanatory variables to 10, the 

overlap increases to almost 2/3 (for the PWT 6.2-WDI comparison, overlap is 82% in this 

case). Clearly, stronger priors about potential growth determinants lead to results that are 

less fragile with respect to PWT income data revisions. 

Will stronger priors about candidate explanatory variables also reduce the sensitivity of 

Bayesian empirical analysis to income differences across datasets? The two top panels of 

Table 6A summarize the results starting with 500 randomly selected lists of 18 and 10 

candidate variables respectively. For comparison, we also give results for the full list of 67 

candidate variables. When starting with 67 candidates, SDM’s Bayesian averaging of 

classical estimates yields that PWT 6.0 and PWT 6.2 disagree on 59% of the 1960-1996 

growth determinants (top panel). The average MAX/MIN ratio of posterior inclusion 

probabilities across variables (3.18) also indicates substantial disaccord. When we start 

with lists of 18 variables, disagreement between the two versions of the PWT falls. Now 

they disagree on 42% of variables on average across the 500 lists, and the average 

MAX/MIN ratio of posterior inclusion probabilities is 1.84 when we average across lists. 

Disagreement falls to 35% and the average MAX/MIN ratio to 1.37 when we start with 

lists of 10 variables. The average MAX/MIN ratio of posterior inclusion probabilities 

obtained with FLS’s Bayesian model averaging also falls as candidate lists become shorter 

(middle panel). Moreover, the results in Table 6A show that the general-to-specific model 

selection approach also becomes less sensitive to PWT income revisions when fewer 

variables are considered a priori (bottom panel). Findings are similar for the PWT 6.2-WDI 

comparison in Table 6B. Hence, just as in the case of ordinary least-squares analysis, 

reducing the number of potential growth determinants yields results that are less sensitive 

to income differences across datasets. 

                                                 
20 Extracting more than 500 lists did not change our findings. 
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5. Conclusions 

It is easy to see, and should not be surprising, that the available international income data 

are imperfect. One only needs to examine how 1960-1996 growth rates have been 

changing with each revision of the Penn World Table. But what does this imply for 

empirical work on the determinants of economic growth? We find that each revision of the 

1960-1996 income data in the PWT leads to substantive changes regarding growth 

determinants with agnostic empirical analysis. A case in point is the latest revision (PWT 

6.2). Using Sala-i-Martin, Doppelhofer, and Miller’s (2004) Bayesian averaging of 

classical estimates approach, PWT 6.2 and the previous version (PWT 6.1) disagree on 13 

of 23 growth determinants for the 1960-1996 period that emerge with one of the two 

datasets. Other agnostic approaches we consider yield similar results. The explanatory 

variables to which an agnostic should pay attention according to some versions of the 

1960-1996 income data, but not others, are related to the debates on trade openness, 

religion, geography, demography, health, etc. A Monte Carlo study confirms that agnostic 

empirical approaches are sensitive to small income data revisions by PWT standards. 

Agnostic empirical analysis also results in only limited coincidence regarding growth 

determinants when we use international income estimates obtained with alternative 

methodologies. For instance, the latest PWT and World Bank international income data 

yield disagreement on 8 of 15 growth determinants for the 1975-1996 period with the 

Bayesian averaging of classical estimates approach. 

Our findings suggest that the available income data may be too imperfect for agnostic 

empirical analysis. At the same time, we find that the sensitivity of growth determinants to 

income differences across data revisions and datasets falls considerably when priors about 

potential growth determinants become stronger. That is, the data appears good enough to 

differentiate among a limited number of hypotheses. Empirical models of the typical size 

in the literature, for example, tend to point to the same growth determinants using different 

versions of the PWT or the World Bank income data. Researchers who want to continue 

giving equal a priori weight to all potential growth determinants in the literature should 

consider shrinkage priors, explicitly incorporating priors about measurement error in the 

income data, or implementing Zellner’s (2002) adjustment for data quality. 
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Appendix

Appendix A: Design of Monte Carlo Study 

We generate 30 perturbated 1960-96 growth series starting from PWT 6.1 GDP per capita 

growth. The perturbations are drawn from distributions that are calibrated to the difference 

between the PWT 6.0 and PWT 6.1 income data (which is smaller than the difference 

between PWT 6.1 and PWT 6.2 income data). The variance of these perturbations is taken 

to be decreasing in income per capita of a country. This reflects the observed 

heteroscedasticity of the measurement error; the income of richer countries is more exactly 

measured than that of poorer countries. In particular, we take the variance of the 

perturbations to be the fitted value from a regression of the squared differences between 

PWT 6.1 and 6.0 growth rates on a constant and PWT 6.1 log income per capita in 1960 

(see Table A1 below for the results). Fitted values of the 17 richest (in 1960) countries are 

negative, so we replace them by 0, i.e. we do not perturb their growth rates. We draw from 

this distribution until we have generated 30 growth perturbations whose correlation with 

PWT 6.1 growth is between 0.975 and 0.979 (the interval in centered on 0.977, the 

correlation between PWT 6.1 and 6.0 growth rates). Summary statistics about perturbed 

data are reported in Table A2 below. 

 

Appendix Table A1. Ordinary least-squares regression of squares of revisions of income 
data (growth and levels) on the level of income in 1960

Constant 0.000160 
 (0.000048) 
  

6.1
1960log PWTy  -0.000019 

 (0.000006) 
  
R2 0.10 
Number of observations 84 

 
Notes: Standard errors are in parenthesis. 
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Appendix Table A2. Perturbed growth rate series compared to PWT 6.1 1960-1996 
growth rates

  

Correlation with  
PWT 6.1 1960-1996 

growth rates 

R2 of regression on 
constant and PWT 6.1 

1960-1996 growth rates 
Min 0.975 0.950 
Average 0.977 0.954 
Max 0.979 0.959 

 
 
Appendix B: Could Bayesian Model Averaging be Made More Robust? 

Our results in Section 2 suggest that the effect of small changes in the sum of squared 

errors on Bayesian posterior odds ratios is implausibly strong when there are doubts 

regarding data quality. We now take the Bayesian model averaging specification of 

Fernandez, Ley and Steel (2001a) as the baseline and discuss some departures that make 

odds ratios less extreme functions of sum of squared errors. 

Priors on model coefficients. The agnostic Bayesian approaches we have discussed 

assume very loose priors for model coefficients. In the benchmark prior of FLS for 

example, the prior variance is proportional to g-1 and g is taken to be very small. In the 

expression in (4), the term in the second bracket is a weighted average of the sum of 

squared errors of a least-squares regression using the explanatory variables in model j 

( jSSE ) and the sum of squared errors when setting all model coefficients equal to their 

prior means (as prior means are zero, this term is equal to ( ) '( )y y y y ). In this 

framework, making a prior for coefficients more informative by reducing its prior variance 

results in a larger value of the parameter g in (4). This implies that a greater weight is put 

on ( ) '( )y y y y , which does not vary across models. (The Bayesian updating completely 

ignores least-squares coefficients in the limit where prior variances are zero.) A given 

change in jSSE  therefore leads to a smaller change in the posterior probability. Such more 

informative priors, called shrinkage priors, are an established way to improve reliability of 

estimation with short samples (see, for example, Doan, Litterman, and Sims, 1984; Hoerl 

and Kennard, 1970). 
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Explicit modeling of the measurement error in the growth data. Another possibility is 

to specify an informative prior on the variance of jce  in (1), which can be thought of as 

capturing measurement error in the growth data. Assuming a known variance 2 implies 

that the odds ratio for models j and k (assuming they are equally likely a priori) is 

12 11
2 2exp

1

j sk k

j sj g

s

SSE SSEl M g
l M g

. 

(In their baseline setup, FLS assume a non-informative prior for 2.) Hence, the greater the 

variance, the smaller the percentage change in odds ratios in response to a change in the 

difference in fit between models ( j sSSE SSE ). A similar effect can be obtained when the 

variance is not known but an appropriate informative prior distribution is specified for it. 

Using quality adjusted likelihood. Zellner (2002) proposes to account for low quality 

sample information by using a quality adjusted likelihood, which is obtained as the 

original likelihood raised to a power a, 0 1a  (for further references on this approach 

see Zellner). The usual case of a fully reliable sample corresponds to a=1. Lower values of 

a make the density more spread out, which captures that low quality data carries less 

information. Introducing Zellner’s quality adjustment in the FLS setup, we obtain a 

marginal likelihood of the form, 

1
2 2

( ) ( ) '( )

jk Ca

y j j
g a gl M SSE y y y y

g a g a g a
. 

Accounting for low-quality data makes odds ratios react less to changes in the sum of 

squared errors because it results in the second bracket being taken to a lower power in 

absolute terms and reduces the weight on model fit. 
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Tables and Figures 
 
Table 1. Determinants of 1960-1996 income growth with the BACE approach: Posterior 
inclusion probabilities using income data from Penn World Table versions 6.2, 6.1, and 6.0 
  PWT6.2 PWT6.1 PWT6.0 PWT6.2/6.1 PWT6.2/6.0 

   Posterior inclusion probabilities MAX/MIN MAX/MIN 
GDP in 1960 (log) 1.00 1.00 0.69 1.00 1.46 
Primary Schooling in 1960 1.00 0.99 0.79 1.01 1.25 
African Dummy 0.86 0.18 0.16 4.74 1.17 
Fraction Confucius 0.83 0.13 0.21 6.25 1.56 
Fraction Muslim 0.40 0.18 0.11 2.16 1.60 
East Asian Dummy 0.33 0.78 0.82 2.32 1.06 
Fraction Buddhist 0.28 0.11 0.12 2.57 1.06 
Population Density Coastal in 1960s 0.11 0.79 0.43 7.46 1.84 
Fertility in 1960s  0.91 0.12 0.03 7.75 3.84 
Latin American Dummy 0.35 0.07 0.15 4.92 2.08 
Primary Exports 1970 0.27 0.20 0.05 1.35 3.86 
Fraction of Tropical Area 0.05 0.71 0.56 13.59 1.26 
Life Expectancy in 1960 0.03 0.25 0.22 7.92 1.16 
Investment Price 0.02 0.97 0.78 47.55 1.25 
Fraction GDP in Mining 0.02 0.24 0.13 14.23 1.88 
Nominal Government GDP Share 1960s 0.26 0.02 0.04 15.59 2.15 
Openness Measure 1965-74 0.15 0.06 0.07 2.38 1.17 
Timing of Independence 0.12 0.06 0.02 1.79 3.42 
Hydrocarbon Deposits in 1993 0.10 0.11 0.03 1.11 4.07 
Years Open 1950-94 0.08 0.05 0.11 1.58 2.06 
Spanish Colony 0.07 0.02 0.13 3.30 6.33 
Air Distance to Big Cities 0.04 0.45 0.04 10.33 11.89 
Ethnolinguistic Fractionalization 0.04 0.03 0.11 1.24 3.68 
Fraction Population in Tropics 0.03 0.15 0.06 4.39 2.56 
Gov. Consumption Share 1960s 0.03 0.05 0.11 1.80 2.28 
Malaria Prevalence in 1960s 0.02 0.02 0.25 1.02 10.67 
Political Rights 0.02 0.26 0.06 12.78 3.97 
Population Density 1960 0.02 0.73 0.09 40.90 8.42 
Fraction Protestants 0.07 0.02 0.05 3.87 2.60 
Fraction Speaking Foreign Language 0.06 0.04 0.08 1.60 1.96 
Fraction Catholic 0.06 0.02 0.03 3.12 1.62 
European Dummy 0.06 0.03 0.03 1.74 1.18 
Average Inflation 1960-90 0.05 0.02 0.02 2.45 1.08 
Government Share of GDP in 1960s 0.05 0.04 0.06 1.12 1.52 
Fraction Population Over 65 0.05 0.05 0.02 1.08 2.18 
Square of Inflation 1960-90 0.04 0.02 0.02 2.54 1.14 
Size of Economy 0.03 0.02 0.02 1.46 1.14 
Tropical Climate Zone 0.03 0.03 0.02 1.13 1.87 
Defence Spending Share 0.03 0.02 0.02 1.65 1.03 
Fraction Population Less than 15 0.03 0.03 0.04 1.27 1.63 
Landlocked Country Dummy 0.03 0.08 0.02 2.66 4.32 
Revolutions and Coups 0.03 0.03 0.03 1.14 1.09 
Population Growth Rate 1960-90 0.03 0.03 0.02 1.00 1.61 
Higher Education 1960 0.03 0.02 0.06 1.85 4.11 
Absolute Latitude 0.03 0.03 0.03 1.08 1.06 
Fraction Orthodox 0.03 0.01 0.01 1.91 1.07 
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Fraction Hindus 0.03 0.02 0.04 1.31 2.22 
Interior Density 0.03 0.02 0.01 1.51 1.25 
War Participation 1960-90 0.02 0.01 0.01 1.61 1.02 
Socialist Dummy 0.02 0.03 0.02 1.24 1.61 
Colony Dummy 0.02 0.08 0.03 3.79 2.61 
Public Investment Share 0.02 0.04 0.05 2.24 1.16 
Oil Producing Country Dummy 0.02 0.02 0.02 1.22 1.17 
Capitalism 0.02 0.01 0.02 1.31 1.27 
Land Area 0.02 0.02 0.02 1.15 1.08 
Real Exchange Rate Distortions 0.02 0.04 0.08 2.34 1.97 
British Colony Dummy 0.02 0.03 0.03 1.40 1.08 
Population in 1960 0.02 0.02 0.02 1.15 1.57 
Public Education Spending Share 
in GDP in 1960s  0.02 0.02 0.02 1.08 1.32 
Fraction of Land Area 
Near Navigable Water 0.02 0.05 0.02 2.81 2.52 
Religion Measure 0.02 0.03 0.02 1.94 1.68 
Fraction Spent in War 1960-90 0.02 0.01 0.01 1.29 1.14 
Civil Liberties 0.02 0.02 0.03 1.30 1.39 
Terms of Trade Growth in 1960s 0.02 0.02 0.02 1.29 1.06 
English Speaking Population 0.02 0.02 0.02 1.02 1.24 
Terms of Trade Ranking 0.02 0.02 0.02 1.08 1.06 
Outward Orientation 0.01 0.03 0.03 2.34 1.12 
      
Average for variables robust at least once   7.97 3.18 
Average for all variables   4.33 2.26 

 
Notes: Variables come from the Sala-i-Martin, Doppelhofer, and Miller (2004) dataset (see 
Tables A1a-b in the Web Appendix). Posterior inclusion probabilities higher than the prior 
inclusion probabilities (here: 7/67) are in boldface. 
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Table 2. Determinants of 1960-1996 income growth with the BACE approach: 
Standardized unconditional posterior mean effects on 1960-1996 growth using income data 
from Penn World Table versions 6.2, 6.1, and 6.0 

  PWT6.2 PWT6.1 PWT6.0 
   Unconditional mean effects   

GDP in 1960 (log) -1.28 -1.38 -0.53 
Primary Schooling in 1960 0.91 1.01 0.62 
African Dummy -0.56 -0.10 -0.10 
Fraction Confucius 0.35 0.05 0.09 
Fraction Muslim 0.16 0.08 0.04 
East Asian Dummy 0.13 0.38 0.57 
Fraction Buddhist 0.08 0.03 0.04 
Population Density Coastal in 1960s 0.02 0.39 0.19 
Fertility in 1960s  -0.68 -0.07 -0.01 
Latin American Dummy -0.14 -0.03 -0.08 
Primary Exports 1970 -0.10 -0.10 -0.02 
Fraction of Tropical Area -0.01 -0.50 -0.39 
Life Expectancy in 1960 0.01 0.19 0.21 
Investment Price 0.00 -0.45 -0.35 
Fraction GDP in Mining 0.00 0.09 0.04 
Nominal Government GDP Share 1960s -0.07 0.00 -0.01 
Openness Measure 1965-74 0.03 0.02 0.02 
Timing of Independence -0.04 -0.02 0.00 
Hydrocarbon Deposits in 1993 0.02 0.03 0.00 
Years Open 1950-94 0.02 0.02 0.04 
Spanish Colony -0.02 0.00 -0.05 
Air Distance to Big Cities -0.01 -0.18 -0.01 
Ethnolinguistic Fractionalization 0.01 0.00 -0.04 
Fraction Population in Tropics -0.01 -0.08 -0.02 
Gov. Consumption Share 1960s 0.00 -0.01 -0.03 
Malaria Prevalence in 1960s 0.00 0.00 -0.17 
Political Rights 0.00 -0.11 -0.02 
Population Density 1960 0.00 0.31 0.02 
Fraction Protestants -0.02 0.00 -0.02 
Fraction Speaking Foreign Language 0.01 0.01 0.02 
Fraction Catholic -0.02 0.00 -0.01 
European Dummy 0.01 0.01 0.00 
Average Inflation 1960-90 -0.01 0.00 0.00 
Government Share of GDP in 1960s -0.01 -0.01 -0.02 
Fraction Population Over 65 0.01 0.02 0.00 

 
Notes: Coefficients of standardized variables are obtained as the coefficients of the original 
variables multiplied by their in-sample standard deviation times 100. Therefore, they show 
the effect of a one standard deviation change in the variable in terms of percentage points 
of average annual growth rate over 1960-1996. For example, according to the first entry, 
countries with a one standard deviation higher initial income had, on average and 
controlling for other variables, 1.282% lower annual growth rates over 1960-1996. For 
brevity, only the coefficients of the first 35 variables in Table 1 are reported. 
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Table 3. Determinants of 1960-1996 income growth with the PcGets approach: Final 
models selected by PcGets using income data from Penn World Table versions 6.2, 6.1, 
and 6.0 

RESULTS WITH PWT 6.0 INCOME DATA 
   

  Coefficient t-Statistics
Fraction Buddhist 0.505 3.77
Fraction Confucius 0.615 4.63
Investment Price -0.536 -4.03
Primary Schooling in 1960 0.745 5.51

  

RESULTS WITH PWT 6.1 INCOME DATA 
   

  Coefficient t-Statistic
Fraction Buddhist 0.439 3.31
Investment Price -0.600 -4.50
Primary Schooling in 1960 1.013 5.58
Primary Exports 1970 -0.722 -4.87
GDP in 1960 (log) -0.893 -4.67
   
   

RESULTS WITH PWT 6.2 INCOME DATA 
   

  Coefficient t-Statistic
Fraction Confucius 0.579 5.98
Fertility in 1960s  -0.805 -5.00
Defence Spending Share -0.276 -2.71
Hydrocarbon Deposits in 
1993 0.293 3.15
Fraction Muslim 0.679 6.18
Timing of Independence -0.430 -3.94
Primary Schooling in 1960 1.383 10.29
Primary Exports 1970 -0.455 -3.41
GDP in 1960 (log) -1.726 -10.07

 
Notes: These are specific models obtained using conservative strategy with PcGets version 
1.02. The settings used allow to replicate the results of Hendry and Krolzig (2004). 
Coefficients are standardized as in Table 2. 
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Table 4. Determinants of 1975-1996 income growth with the BACE approach. Posterior 
inclusion probabilities (PIP) with PWT and WDI income data  

  PWT6.2 WDI PWT6.1 WDI PWT6.2/WDI PWT6.1/WDI
  PIP common sample  PIP common sample MAX/MIN MAX/MIN 

East Asian Dummy 0.98 0.99 0.52 0.99 1.01 1.91 
GDP in 1975 (log) 0.88 1.00 0.50 1.00 1.13 2.01 
Life Expectancy in 1975 0.86 0.97 0.41 0.99 1.12 2.41 
Fraction of Tropical Area 0.73 0.68 0.20 0.72 1.07 3.61 
Fraction GDP in Mining 0.27 0.15 0.48 0.21 1.82 2.29 
Absolute Latitude 0.21 0.31 0.21 0.27 1.48 1.26 
Investment Price 0.97 0.21 0.27 0.05 4.66 5.39 
Real Exchange Rate Distortions 0.08 0.32 0.33 0.35 4.12 1.04 
Fraction Confucius 0.12 0.06 0.41 0.05 2.07 8.42 
Political Rights 0.09 0.24 0.02 0.19 2.55 7.75 
Openness Measure 1965-74 0.09 0.17 0.10 0.25 1.82 2.59 
Years Open 1950-94 0.07 0.30 0.08 0.24 4.44 2.98 
Government Share of GDP in 1970s 0.03 0.02 0.29 0.17 1.42 1.65 
Gov. Consumption Share 1970s 0.02 0.15 0.09 0.19 6.79 2.21 
British Colony Dummy 0.08 0.11 0.10 0.07 1.34 1.41 
Fraction Population in Tropics 0.06 0.03 0.20 0.04 1.76 5.47 
African Dummy 0.06 0.02 0.54 0.03 2.53 17.58 
Fraction Buddhist 0.05 0.02 0.29 0.02 2.30 14.85 
Fraction Speaking Foreign Language 0.04 0.11 0.02 0.09 2.62 4.16 
Latin American Dummy 0.03 0.02 0.15 0.02 1.41 6.39 
Nominal Government GDP Share 1970s 0.02 0.02 0.30 0.05 1.28 5.91 
Defence Spending Share 0.02 0.04 0.23 0.05 2.24 4.62 
Primary Schooling in 1975 0.08 0.03 0.02 0.03 2.88 1.51 
Public Investment Share 0.07 0.02 0.05 0.02 2.98 2.07 
Population Density Coastal in 1960s 0.07 0.08 0.06 0.07 1.16 1.09 
Population Density 1975 0.07 0.07 0.06 0.06 1.12 1.02 
Malaria Prevalence in 1960s 0.05 0.09 0.02 0.10 1.93 4.74 
Terms of Trade Ranking 0.05 0.06 0.09 0.05 1.25 1.76 
Ethnolinguistic Fractionalization 0.04 0.05 0.10 0.04 1.16 2.36 
Revolutions and Coups 0.04 0.02 0.03 0.03 1.60 1.13 
Higher Education 1975 0.04 0.03 0.03 0.03 1.04 1.18 
Population in 1975 0.03 0.04 0.04 0.05 1.15 1.07 
Fraction Muslim 0.03 0.05 0.09 0.04 1.44 2.31 
Fraction Hindus 0.03 0.03 0.05 0.03 1.15 1.62 
Fraction Orthodox 0.03 0.02 0.03 0.02 1.40 1.43 
Capitalism 0.03 0.02 0.02 0.02 1.14 1.35 
Civil Liberties 0.02 0.03 0.02 0.03 1.07 1.34 
Land Area 0.02 0.02 0.02 0.02 1.02 1.33 
Religion Measure 0.02 0.02 0.02 0.02 1.19 1.29 
Average Inflation 1960-90 0.02 0.01 0.03 0.02 1.41 2.13 
Fraction Population Less than 15 0.02 0.02 0.08 0.02 1.19 4.61 
Fraction Spent in War 1960-90 0.02 0.01 0.02 0.01 1.47 1.35 
Timing of Independence 0.02 0.02 0.02 0.03 1.10 1.17 
Fraction Protestants 0.02 0.03 0.05 0.03 1.57 1.91 
Square of Inflation 1960-90 0.02 0.01 0.02 0.01 1.27 1.75 
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Size of Economy 0.02 0.02 0.03 0.02 1.05 1.46 
European Dummy 0.02 0.02 0.04 0.02 1.16 2.03 
Interior Density 0.02 0.01 0.02 0.01 1.23 1.08 
Fraction Population Over 65 0.02 0.02 0.05 0.02 1.18 2.36 
Spanish Colony 0.02 0.02 0.10 0.02 1.03 5.39 
Primary Exports 1970 0.02 0.02 0.02 0.02 1.07 1.51 
Fraction of Land Area 
Near Navigable Water 0.02 0.02 0.02 0.02 1.01 1.04 
Fertility in 1960s  0.02 0.02 0.03 0.02 1.01 2.12 
Fraction Catholic 0.02 0.02 0.04 0.02 1.04 2.60 
Colony Dummy 0.02 0.02 0.02 0.02 1.10 1.27 
Air Distance to Big Cities 0.02 0.02 0.03 0.02 1.10 1.47 
Hydrocarbon Deposits in 1993 0.02 0.01 0.02 0.01 1.10 1.57 
Population Growth Rate 1960-90 0.02 0.02 0.03 0.02 1.09 1.60 
Oil Producing Country Dummy 0.02 0.02 0.02 0.02 1.04 1.16 
Terms of Trade Growth in 1960s 0.02 0.01 0.02 0.02 1.05 1.14 
Outward Orientation 0.01 0.03 0.02 0.03 2.11 1.65 
Public Education Spending Share 
in GDP in 1970s  0.01 0.02 0.02 0.02 1.29 1.24 
Tropical Climate Zone 0.01 0.03 0.02 0.04 2.30 2.06 
Landlocked Country Dummy 0.01 0.01 0.02 0.02 1.00 1.25 
English Speaking Population 0.01 0.02 0.02 0.02 1.12 1.43 
War Participation 1960-90 0.01 0.01 0.02 0.01 1.05 1.16 
Socialist Dummy 0.01 0.02 0.03 0.02 1.15 1.95 

      
Average for variables robust at least once     2.32 4.81 
Average for all variables     1.64 2.78 

 
Notes: The variables are based on Sala-i-Martin, Doppelhofer, and Miller (2004), but 
wherever applicable, variables were updated from the 1960s to the 1970s. See the Web 
Appendix for the list of the updated variables and data sources. 
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Table 5. Determinants of 1975-1996 income growth with the BACE approach. 
Standardized unconditional posterior mean effects on 1960-1996 growth with PWT and 
WDI data 

  PWT6.2 WDI PWT6.1 WDI 
    (PWT6.2 sample)   (PWT6.1 sample)

East Asian Dummy 0.86 0.80 0.38 0.81 
GDP in 1975 (log) -1.11 -1.57 -0.66 -1.63 
Life Expectancy in 1975 1.14 1.33 0.54 1.41 
Fraction of Tropical Area -0.50 -0.56 -0.13 -0.62 
Fraction GDP in Mining 0.10 0.05 0.25 0.07 
Absolute Latitude 0.14 0.26 0.14 0.21 
Investment Price -0.51 -0.07 -0.12 -0.01 
Real Exchange Rate Distortions -0.03 -0.14 -0.18 -0.15 
Fraction Confucius 0.04 0.02 0.21 0.01 
Political Rights -0.04 -0.14 0.01 -0.10 
Openness Measure 1965-74 0.03 0.06 0.04 0.10 
Years Open 1950-94 0.02 0.16 0.04 0.12 
Government Share of GDP in 1970s -0.01 0.00 -0.13 -0.06 
Gov. Consumption Share 1970s 0.00 -0.05 -0.04 -0.07 
British Colony Dummy 0.02 0.03 0.04 0.02 
Fraction Population in Tropics -0.03 -0.01 -0.14 -0.01 
African Dummy -0.03 -0.01 -0.52 -0.01 
Fraction Buddhist 0.02 0.00 0.15 0.00 
Fraction Speaking Foreign Language 0.01 0.03 0.00 0.03 
Latin American Dummy -0.01 0.00 -0.08 0.00 
Nominal Government GDP Share 1970s 0.00 0.00 -0.14 -0.01 
Defence Spending Share 0.00 0.01 0.11 0.01 
Primary Schooling in 1975 -0.03 -0.01 0.00 -0.01 
Public Investment Share -0.02 0.00 -0.01 0.00 
Population Density Coastal in 1960s 0.02 0.03 0.02 0.02 
Population Density 1975 0.02 0.02 0.02 0.02 
Malaria Prevalence in 1960s -0.02 -0.04 0.00 -0.05 
Terms of Trade Ranking -0.01 -0.02 -0.04 -0.01 
Ethnolinguistic Fractionalization -0.01 -0.02 -0.05 -0.01 
Revolutions and Coups -0.01 0.00 -0.01 0.00 
Higher Education 1975 -0.01 -0.01 -0.01 -0.01 
Population in 1975 0.01 0.01 0.01 0.01 
Fraction Muslim 0.01 0.01 0.04 0.01 
Fraction Hindus 0.01 0.00 0.01 0.00 
Fraction Orthodox 0.00 0.00 -0.01 0.00 

 
Notes: Coefficients of standardized variables are obtained as the coefficients of the original 
variables multiplied by their in-sample standard deviation times 100. Therefore, they show 
the effect of a one standard deviation change in the variable in terms of percentage points 
of average annual growth rate over 1960-1996. For brevity, only the coefficients of the first 
35 variables of Table 3 are reported. 
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Table 6A. Differences between PWT6.2 and PWT6.0, with different numbers of candidate 
variables 
 

Number of Candidates Share PIP 
lists per list always avg(MAX/MIN)

BACE    
1 67 0.41 3.18 

500 18 0.58 1.84 
500 10 0.65 1.37 

FLS    
1 67 - 3.30 

500 18 - 2.13 
500 10 - 1.62 

PcGets    
1 67 0.18 -

500 18 0.53 -
500 10 0.60 -

 
Table 6B. Differences between PWT6.2 and WDI, with different numbers of candidate 
variables 
 

Number of Candidates Share PIP 
lists per list always avg(MAX/MIN)

BACE    
1 67 0.47 1.64 

500 18 0.79 1.32 
500 10 0.84 1.16 

FLS    
1 67 - 1.62 

500 18 - 1.34 
500 10 - 1.24 

PcGets   
1 67 0.30 - 

500 18 0.68 - 
500 10 0.79 - 

 
Notes: Share always denotes the share of variables selected with at least one of the datasets 
that are selected with both datasets. PIP avg(max/min) denotes the ratio of the higher to the 
smaller posterior inclusion probability obtained for each variable with one of the datasets, 
averaged over variables, and (where applicable) over 500 lists of variables. 
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