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Abstract

Testing and estimating the rank of a matrix of estimated parameters is key in a
large variety of econometric modelling scenarios. This paper describes general meth-
ods to test for and estimate the rank of a matrix, and provides details on a variety of
modelling scenarios in the econometrics literature where such methods are required.
Four different methods to test the true rank of a general matrix are described, as well
as one method that can handle the case of a matrix subject to parameter constraints
associated with defineteness structures. The technical requirements for the implemen-
tation of the tests of rank of a general matrix differ and hence there are merits to all of
them that justify their use in applied work. Nonetheless, we review available evidence
of their small sample properties in the context of different modelling scenarios where
all, or some, are applicable.

Keywords: Multiple Time Series, Model Specification, Tests of Rank.
JEL classification: C12, C15 and C32.



5
ECB

Working Paper Series No 850
January 2008

Non-technical summary

Tests and estimators of the rank of a matrix are key in a large variety of statistical and

econometric multivariate modelling scenarios. The purpose of this paper is to describe some

general methods to test and estimate the rank of a matrix and review their use in econometric

modelling.

In most cases tests of rank are carried out on matrices of parameter estimates rather

that data matrices. Of course the particular context of such tests varies greatly but certain

common threads are discernible. Most models that rely on rank deficient parameter matrices

do so in order to reduce the channels of effects from one set of variables to another. In this

sense many instances of rank reduction can be related to factor structures where a small

number of observed or unobserved factors affect a larger set of variables.

There is a large variety of modelling scenarios where these tests of rank are useful for

specification purposes. The modelling scenarios range from linear and stationary models such

as standard VARs, factor analysis, dynamic factor models, instrumental variable estimation,

and dynamic principal component models, to nonlinear frameworks such as nonparamet-

ric factor models and also to nonstationary frameworks such as cointegrated systems. We

conclude that these methods are of increasing relevance given the focus of econometric and

statistical work on multivariate systems.

Four different methods to test the true rank of a general matrix are described, as well as

one method that can handle the case of a matrix subject to parameter constraints associated

with defineteness structures. Alternative methods for the estimation of the rank of a matrix

that do not use statistical tests but information criteria methods are also reviewed.

The technical requirements for the implementation of the tests of rank of a general ma-

trix differ and hence there are merits to all of them that justify their use in applied work.

Nonetheless, we review available evidence of their small sample properties in the context of

different modelling scenarios where all, or some, are applicable. Monte Carlo evidence sug-

gests that statistical tests of rank may have an advantage over standard information criteria

methods for a number of modelling scenarios. Additionally, Monte Carlo evidence reviewed

in this paper suggests that bootstrapped procedures of those tests of rank significantly im-

proved upon the performance of the corresponding asymptotic tests.
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1 Introduction

Tests and estimators of the rank of a matrix are key in a large variety of statistical and

econometric multivariate modelling scenarios. In most cases tests of rank are carried out on

matrices of parameter estimates rather that data matrices. Of course the particular context

of such tests varies greatly but certain common threads are discernible. Most models that

rely on rank deficient parameter matrices do so in order to reduce the channels of effects

from one set of variables to another. For example, reduced rank VAR models restrict the

coefficient matrices of a VAR model to have reduced rank so as to reduce the number of chan-

nels via which lags of variables can affect their present values. In this sense many instances

of rank reduction can be related to factor structures where a small number of observed or

unobserved factors affect a larger set of variables. The purpose of this paper is to describe

some general methods to test and estimate the rank of a matrix and review their use in

econometric modelling.

For a general m × n matrix A, the problem is to identify its unknown true rank which

will be denoted by ρ [A] = r∗, where 0 ≤ r∗ ≤ min(m,n), and ρ [.] denotes the rank of a

matrix. For a sample of size T , we define an estimate of A by Â. This paper reviews differ-

ent methods to test the true rank of a general matrix not subject to parameter constraints

associated with defineteness structures, and one method that can handle such parameter

constraints. The technical requirements for the implementation of the tests of rank of a

general matrix differ and hence there are merits to all of them that justify their use in ap-

plied work. Nonetheless, we review available evidence of their small sample properties in the

context of different modelling scenarios where all, or some, are applicable. The tests can be

used as building blocks for estimators of the rank of a matrix. We discuss estimators based

on tests of rank as well as estimators based on information criteria.

The structure of the paper is as follows. Section 2 reviews various methods to test the

null hypothesis H0 : {ρ [A] = r∗} against the alternative hypothesis H1 : {ρ [A] > r∗} in

the case of a general matrix. Section 3 concentrates on testing this same hypothesis when

A is a hermitian positive semidefinite matrix (with m = n). Section 4 reviews sequential

testing procedures for the null hypothesis H0 : {ρ [A] = r} against the alternative hypothe-

sis H1 : {ρ [A] > r} for r = 0, 1, . . . , min(m,n) that estimate the true rank, r∗ of A. This

section also reviews some plausible information criteria methods for this estimation problem.

Section 5 presents a large variety of modelling scenarios where the methods we discuss are

of immediate relevance. In this context, this section further reviews available evidence on
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the small sample properties of the tests of rank discussed in section 2. Finally, Section 6

concludes.

2 Rank of a General Matrix

This section reviews four different methods to test the rank of general matrix A. The first

method is a minimum discrepancy test proposed by Cragg and Donald (1997) and will be

denoted by MD. Implementation of this method relies on assuming that by an application

of some suitable central limit theorem
√

Tvec(Â−A)
d→ N(0, V ), where V is non-singular.

It is further assumed that a consistent estimate of V is available. The second test has

been proposed by Cragg and Donald (1996). It is based on the implementation of gaussian

elimination on matrix A and will hence be denoted as GE. This method also requires the

existence of an estimate of V but it is not necessary for it to be non-singular, however,

knowledge of its true rank is needed. The third method, proposed by Robin and Smith

(2000), is computed from the characteristic roots of a quadratic form built from A, and will

be denoted as CRT . Once more an estimate of V is needed but it can be rank deficient and

its rank unknown. The fourth test, proposed by Bartlett (1947) and denoted by BA in the

text, does not rely at all on the existence of an estimate of V .

Before starting the discussion of the tests it is worth making a comment on computational

aspects of calculating the rank of an observed matrix. In particular, we note that we abstract

from issues concerned with rank calculation due to rounding errors that arise from the

finite precision of computer based matrix computations. This is a large area that is both

nontrivial and interesting especially for large matrices. Issues related to such matrices have

recently come to the fore with the increased availability of large datasets in econometrics.

For discussions on rounding errors see Golub and Van Loan (1996, sec. 2.4) and Highham

(1996).

2.1 A Minimum Discrepancy Function Test

This section presents a minimum discrepancy function (MDF) method to test whether a

q × 1 parameter vector θ can be represented as a function of a p × 1 parameter vector μ

where p < q. That is, a test of the null hypothesis H0 : {θ = h(μ0)}, where μ0 is used to

denote the true value of μ. We further make the following assumption:

Assumption 1 a. There exists a consistent estimator of θ, denoted by θ̂, such that√
T
(
θ̂ − θ

)
d→ N(0,Ω), and where Ω is a non-singular matrix.

b. μ belongs to a specified compact parameter space Ξ ⊂ �p that contains μ0. The
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parameter space Ξ contains a neighborhood Ψ of μ0 in which h(μ) has continuous

second partial derivatives, and the q × p Jacobian matrix Δ = ∂h
∂μ′ at μ0 is of full

column rank p.

c. h(μ∗) = h(μ0) for μ∗ ∈ Ξ implies μ∗ = μ0.

The assumptions above are the usual regularity conditions for a minimum discrepancy type

test being chi-squared distributed. A minimum discrepancy function test statistic could thus

be formulated as:

MD = T min
μ

{(
θ̂ − h(μ)

)′
Ω−1

(
θ̂ − h(μ)

)}
(1)

and the following result follows:

Proposition 1 . Under Assumption 1 above and under the null H0, it holds that i) the

minimizer μ̂
a.s.−→ μ0, and ii) MD

p→ χ2
q−p, where χ2

q−p denotes the χ2 distribution with

degrees of freedom q − p.

Proof: See Chamberlain (1982, Propositions 6 and 8). �

It remains to show that this testing strategy can be applied to the problem of testing

the rank of a matrix. We define for this purpose θ = vec(A), and note that assuming

m < n, under H0 it is possible, after a certain reordering of the columns, to write the

last n − r∗ columns of A as a linear function of the first r∗ columns.1 This allows us to

write A = [A1 A1S], where A1 and S are matrices of dimension m × r∗ and r∗ × (n − r∗)

respectively. A test of rank of a matrix is then a test of the null hypothesis θ = h (μ), where

μ = (a1
′, s′)′ and:

h (μ) =

(
a1

(S′ ⊗ I) a1

)
Δh =

(
Imr 0mr,r(n−r)

(S′ ⊗ Im) (In−r ⊗ A1)

)
(2)

where s = vec(S) and a1 = vec(A1). The parameter constraints imposed by h(μ) as defined

in (2), to test for the rank of a matrix are in line with the functional constraints stated in

assumption 1 above. This issue has been addressed in Cragg and Donald (1997). The MD

statistic would have in this case a limiting chi-square distribution with (m − r∗) (n − r∗)

degrees of freedom. The implementation of this method relies of course on further assuming

that by an application of some suitable central limit theorem
√

Tvec(Â − A)
d→ N(0, V ),

and that a consistent estimate of V is available.

1The reordering can be accomplished by using the pivoting matrices R and C obtained from the r steps
of Gaussian elimination, see Golub and Van Loan (1996). To avoid excessive notation pivoting matrices will
be ignored in this section. For details on Gaussian elimination with complete pivoting see Cragg and Donald
(1996) or Golub and Van Loan (1996).
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2.2 Cragg and Donald (1996)

The procedure proposed by Cragg and Donald (1996) is based on the transformation of

the matrix A using Gaussian elimination with complete pivoting2. r∗ steps of Gaussian

elimination with full pivoting on matrix A amounts to the following operations:

Qr∗Rr∗Qr∗−1Rr∗−1 . . .Q1R1AC1 . . .Cr∗−1Cr∗ =

[
A11(r

∗) A12(r
∗)

0 A22(r
∗)

]

where Ri and Ci are pivoting matrices for step i and Qi are Gauss transformation matrices.

The pivoting matrices used to perform the first r∗ steps of Gaussian elimination are applied

to A to obtain the following relation

Rr∗Rr∗−1 . . .R1AC1...Cr∗−1Cr∗ = RAC = F =

[
F 11(r

∗) F 12(r
∗)

F 21(r
∗) F 22(r

∗)

]

where F is partitioned accordingly, i.e. F 11(r
∗) is of dimension r∗×r∗. Note that in this case

F 11(r
∗) has full rank, under the null hypothesis that ρ [A] = r∗. It then follows, (see Cragg

and Donald (1996)), that F 22(r
∗)−F 21(r

∗)F−1
11 (r∗)F 12(r

∗) = 0. The estimated counterpart

of the above relation, i.e. F̂ 22− F̂ 21F̂
−1

11 F̂ 12 = Λ̂22(r
∗), may be used as a test statistic of the

hypothesis that the rank of A is r∗. Under regularity conditions, including the requirement

that
√

Tvec(Â − A)
d→ N(0, V ) where V has full rank, the following result can be shown,

under H0. √
Tvec(Λ̂22(r

∗)) d→ N(0,ΓV Γ′)

where Γ = Φ2 ⊗ Φ1 and Φ1 =
[
−F 21F

−1
11 Im−r∗

]
R, Φ2 =

[
−F ′

12F
−1′
11 In−r∗

]
C ′ and

d→
denotes convergence in distribution. Then,

GE = Tvec Λ̂22(r
∗)′(Γ̂V̂ Γ̂

′
)
−1

vec Λ̂22(r
∗) d→ χ2

(m−r∗)(n−r∗)

where Γ̂ and V̂ are the sample estimates of Γ and V and χ2
l denotes the χ2 distribution with

l degrees of freedom. This test computes the inverse of the covariance matrix V . However,

in many modelling scenarios this matrix is singular. The use of a generalized inverse, V +,

may still be feasible in some instances.3 Extension to such cases is stated in the following

proposition.

2The foundations behind this strategy follow the work of Gill and Lewbel (1992). The asymptotic dis-
tribution of the test suggested by Gill and Lewbel (1992) was incorrect, nonetheless, it provided researchers
with an ingenious strategy to test for the rank.

3In this context it is important to note that Prob(V̂ = V ) → 1 as T → ∞ does not guarantee Prob(V̂
+

=
V +) → 1 as T → ∞. This is due to the fact that generalized inverses are not continuous. Andrews (1987)
has shown that the condition Prob(ρ[V̂ ] = ρ[V ]) → 1 as T → ∞ is a sufficient condition to avoid this issue.
To enforce this condition sometimes it is possible to follow the solution suggested in Lütkepohl and Burda
(1997), namely that if the rank of V is rv (known), then use as an estimator V̂ rv = ÊΛ̂rvÊ

′
, where Ê is a

matrix with the eigenvectors of V̂ , and Λ̂rv = diag(λ̂1, . . . , λ̂rv , 0, . . . , 0), where λ̂j for j = 1, . . . , rv are the
rv largest eigenvalues of V̂ .
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Proposition 2 Under the general conditions in Cragg and Donald (1996), if additionally

the rank of V is known and ρ
[
V̂

]
= ρ [V ], ∀T , then

GEg = Tvec Λ̂22(r
∗)′(Γ̂V̂ Γ̂

′
)
+
vec Λ̂22(r

∗) d→ χ2
�

where + denotes the Moore-Penrose inverse of a matrix, and the number of degrees of freedom

� is given by the minimum between the number of rows in Γ̂ and the rank of V̂ .

Proof: See Camba-Mendez and Kapetanios (2001) �

2.3 Robin and Smith (2000)

The testing procedure suggested by Robin and Smith (2000) focuses on the eigenvalues of

quadratic forms of A. The quadratic form ΥAΠA′ where Υ and Π are positive definite

matrices, is considered. It follows that ρ [A] = ρ [ΥAΠA′] = r∗, and therefore this quadratic

form has min(m,n) − r∗ zero eigenvalues. Additionally, the eigenvalues of the estimator of

the above quadratic form converge in probability to their population counterparts. Robin

and Smith (2000) consider the statistic

CRT = T
min(m,n)∑
i=r∗+1

λ̂i

where λ̂i are the eigenvalues of Υ̂ÂΠ̂Â
′
in descending order, Υ̂ and Π̂ are estimates of Υ and

Π respectively. Under the null hypothesis, the above statistic converges in distribution to a

weighted sum of independent χ2
1 random variables. The weights are given by the eigenvalues

of (D′
r∗ ⊗C ′

r∗)V (Dr∗ ⊗Cr∗), τi, i = 1, . . . , (m− r∗)(n− r∗). Dr∗ and Cr∗ are n× (n− r∗)

and m×(m−r∗) matrices containing the eigenvectors corresponding to the n−r∗ and m−r∗

smallest eigenvalues of ΠA′ΥA and ΥAΠA′ respectively. The sample counterparts of the

above matrices may be obtained straightforwardly to estimate the asymptotic distribution

of the test statistic. A few comments are in order for this test. Choices for Υ and Π are not

discussed in much detail by Robin and Smith (2000). This choice can depend crucially on

the application considered. An obvious choice that can be made irrespective of application

is to set both Υ and Π equal to the identity. Robin and Smith (2000) also consider another

choice for their Monte Carlo but they do not elaborate on their motivation. Finally, it is

worth noting that Robin and Smith (2000) claim that a big advantage of their test is that

neither full nor known rank for V is needed or, therefore, assumed.

2.4 Bartlett (1947)

Applicability of this test to the problem of testing the rank of matrix Â relies on whether

it is possible to define two random vectors yt and xt, such that A = E{ytx
′
t}. That being
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the case, it is possible to make use of a well known result in canonical correlation analysis;

namely, that given two random stationary vector series yt and xt of dimensions m and n

respectively, the rank of the covariance matrix between those two random vectors is equal to

the number of nonzero canonical correlations, see Anderson (2003) for further details. Define

the matrices Y = (y1, . . . ,yT )′ and X = (x1, . . . ,xT )′, compute the QR decomposition of

the matrices Y and X, i.e. Y = Q1R1 and X = Q2R2. The canonical correlations

between the vectors yt and xt, are the singular values of Q′
1Q2. We denote the canonical

correlations as ρi, i = 1, . . . , min(m, n). Bartlett (1947) provided a likelihood ratio criterion

for testing the null hypothesis that the last rmin(m,n) − r∗ canonical correlations are zero, i.e.,

H0 : ρr∗+1 = · · · = ρmin(m,n) = 0. Under the null hypothesis and assuming stationarity

BA =
[
m + n + 1

2
− T

]
ln
min(m,n)∏
i=r∗+1

(
1 − ρ̂2

i

)
d→ χ2

(m−r∗)(n−r∗)

Fujikoshi (1974) proved that this test procedure is based on the likelihood ratio method.

Bartlett’s test was developed under independence and normality assumptions, but his result

remains valid asymptotically following arguments by Kohn (1979) on the likelihood ratio

tests for dependent observations.

Lawley (1959) provided a Bartlett (scale) correction to the LR statistic, the moments of

which equal those of the nominal asymptotic chi-square distribution, apart from errors of

order T−2. We refer to this corrected test as the BC test. Under H0,r∗ , and assuming for

simplicity that m < n,

BC = [(T − r∗) − 1

2
(m + n + 1) +

r∗∑
i=1

λ̂−2
i ]

m∑
i=r∗+1

ln(1 + λ̂2
i )

has a limiting chi-square distribution with (m − r∗)(n − r∗) degrees of freedom, and where

λ̂i = ρ̂i/(1 − ρ̂2
i )

1
2 ; see Glynn and Muirhead (1978).

Before concluding this section, it is instructive to briefly investigate the theoretical power

properties of the MD, GE and CRT procedures.4 As all these tests are consistent, the use

of local alternatives is of relevance. Since the procedures are based on different properties

of rank deficient matrices, we need to provide a common framework. The null hypothesis in

our framework is given by

H0 : A = Ψ, ρ [Ψ] = r∗

and the alternative by

H1 : A = Ψ + B, ρ [Ψ + B] > r∗

4We not do explore the BA test here as it is useful in more specific circumstances that the rest of the tests,
since it is only applicable if it is possible to define two random vectors yt and xt, such that A = E{ytx

′
t}.
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Then, the local alternatives may be expressed as

H1T : A = Ψ +
B√
T

, ρ

[
Ψ +

B√
T

]
> r∗ ∀ finite T

Proposition 4 in the appendix provides local power results for this local alternative hy-

pothesis. The local power of the three tests depends on the true parameters of the model

considered and therefore it is not possible to provide a general conclusion concerning their

relative asymptotic performance. In general, the power of the test rises as the elements of B

deviate further from zero. Also, again intuitively, the influence of each element of B depends

inversely on the relative variance of each element of Â.

3 Rank of a Hermitian Positive Semidefinite Matrix

In what follows we assume that in the following partition of A the r∗ × r∗ submatrix A11 is

of full rank. (
A11 A12

A21 A22

)

If A11 is not initially of full rank r∗, a valid reordering of the columns and rows of A would

guarantee this without affecting the overall rank of the matrix. As stated above, Cragg and

Donald (1996) proposed the application of r∗ steps of Gaussian elimination with complete

pivoting on A to achieve the required result. This manipulation guarantees that A11 in the

finally reordered matrix is of full rank r∗. In the case of the hermitian positive semidefinite

matrix we need to preserve the symmetry of A and hence symmetric pivoting should be

implemented.5 Without lack of generality we avoid the issue of pivoting in this section for

ease of notation.

Given the linear dependance of the last n − r∗ columns on the first r∗ columns it must

hold that Λ = A22 − A21A
−1
11 A12 = 0. This implies that a test of rank H0 : ρ [A] = r∗

is equivalent to a test of the null hypothesis H0 : Λ = 0. Camba-Mendez and Kapetanios

(2005a) show that Λ = 0 if and only if Λi,i = 0, i = 1, . . . , n− r∗ where Λi,i denotes the i-th

diagonal element of Λ. This simplifies the test because it is thus only necessary to concen-

trate on testing the null hypothesis H0 : θ = 0 where θ = (Λ1,1, . . . , Λn−r∗,n−r∗)
′. Under the

null hypothesis we show in the appendix that
√

T vec(Λ̂)
d→ NC(0, W ) where W is defined

in the appendix. Hence

√
T θ̂ =

√
T Lvec(Λ̂)

d→ N(0, LWL′)

5An algorithm to compute the factorization PAP ′ = GḠ
′, where P is an n × n pivoting matrix and G

is an n× r∗ lower triangular matrix is available in the LINPACK, see Dongarra, Bunch, Moler, and Stewart
(1979), and subroutine CCHDC for details.
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where L is a n− r × (n− r∗)2 selector matrix that picks the diagonal elements of Λ̂. Then,

using the results of Kudo (1963) we can construct the test statistic for the null hypothesis

H0 : θ = 0 against the alternative H1 : θi ≥ 0, i = 1, . . . n − r∗ where at least one inequality

is strict. This is stated as follows:

Proposition 3 Under the null hypothesis, H0 : ρ [A] = r∗ the test statistic, CK = T θ̂
′
Ψ−1θ̂,

where Ψ = LWL′, is distributed as a weighted mixture of χ2
q, q = 1, . . . , n − r∗, i.e.

Pr
(
χ̄2 ≥ χ̄2

0

)
=

n−r∗∑
q=0

wqPr
(
χ2

q ≥ χ̄2
0

)

where χ2
0 = 0, and wq are nonnegative weights.

Proof: See Camba-Mendez and Kapetanios (2005a) �

Following results in Kudo (1963) these weights are given by:

wi =
∑
Qi

P{(ΩQ′
i
)−1}P{ΩQi:Q′

i
} (3)

where the summation runs over all subsets Qi of K = {1, . . . , q} of size i, and Q′
i is the

complement of Qi where ΩQi
is the variance matrix of θj, j ∈ Qi, and ΩQi:Q′

i
is the same

under the condition θj = 0, j /∈ Qi, and P{Ω} is the probability that the variables distributed

in a multivariate normal distribution with mean zero and covariance matrix Ω are all positive;

finally, P{Ω∅:K} = 1 and P{(ΩK′)−1} = P{(Ω∅)−1} = 1. The probabilities in (3) can be

easily computed by means of the algorithm proposed in Sun (1988). Note that a simple

expression for ΩQi:Q′
i

is given by ΩQi
− ΩQi,Q′

i
Ω−1

Q′
i
Ω′

Qi,Q′
i

where ΩQi,Q′
i

is the covariance

matrix of θj, j ∈ Qi and θk, k ∈ Q′
i (see e.g. Anderson (2003, pp. 33-35)). It is worth noting

that the multivariate one sided test has been generalized by Kudo and Choi (1975) to cases

where Ψ is singular. A generalization of the test of rank presented here hence also follows.

4 Methods to identify the true rank

In the previous sections we have discussed tests for the null hypothesis that the rank of a

matrix is equal to a particular value. This section discusses the related problem of estimating

consistently the rank of a matrix. We consider two classes of estimators. The first class

considers estimators that are based on a sequence of tests of rank. The second class is based

on information criteria.

4.1 Sequential Testing Methods

Starting with the null hypothesis of r = 1, a sequence of tests is performed. If the null

hypothesis is rejected, r is augmented by one and the test is repeated. When the null cannot
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be rejected, r is adopted as the estimate of the rank of A. However, the rank estimate pro-

vided by this approach will not converge in probability to the true value of the rank of the

matrix r∗. The reason is that even if the null hypothesis tested is true, the testing procedure

will reject it with probability α, where α is the chosen significance level. The rank estimate

will converge to its true value, r∗, as T goes to infinity, if α is made to depend on T and

goes to zero as T goes to infinity but not faster than a given rate. We denote this α by

αT , where the subscript T now denotes dependence of the significance level on the sample

size. Hosoya (1989) shows that if αT goes to zero as the sample size T goes to infinity and

also limT→∞ ln αT /T = 0, then the rank estimate provided by the sequential testing proce-

dure will converge in probability to r∗, see also Cragg and Donald (1997) and Potcher (1983).

Although we have couched the problem in the form of a test, we also review methods

that rely on information criteria to determine the rank of a matrix.

4.2 Information Criteria Methods

Information Criteria methods to test for the rank of a matrix can be defined. These method

suggest to choose the rank r that minimizes a criterion function that takes the form:

IC(r) = TL + f(T )F (r)

where L denotes the log of the pseudo maximum likelihood estimator of A subject to its

rank being restricted to r, F (r) denotes the number of freely estimated parameters. Al-

ternative specifications have been proposed for f(T ). Akaike (1976) adopted the formu-

lation f(T ) = 2, and their criteria is usually denoted as AIC. Schwarz (1978) proposed

f(T ) = ln(T ) and the standard notation for this criterion is BIC. Hannan and Quinn (1979)

used f(T ) = 2 ∗ ln(ln(T )), and the notation used is HQ. Note that these criteria penalizes

models with large number of parameters, and by extension large rank, and favor parsimo-

nious representations.

Akaike (1974) and Akaike (1976) showed that the number of linearly independent com-

ponents of the projections of the previously defined yt onto the linear space spanned by the

components of xt is identical to the number of nonzero canonical correlations between yt

and xt. When both yt and xt are Gaussian, canonical correlation analysis between yt and

xt is equivalent to maximum likelihood estimation of the linear model: yt = Ψxt + εt, see

Anderson (2003). The number of free parameters for this model is: F (r) = {[m(m + 1)]/2}+

{[n(n + 1)]/2} + r(m + n − r) where m denotes the dimension of the vector yt and n de-



15
ECB

Working Paper Series No 850
January 2008

notes the dimension of xt. The first two terms are the number of free parameters of the

covariance matrices of yt and xt respectively, and the last term gives the number of free

parameters in matrix Ψ. The value of pseudo likelihood is defined as L = ln
∏r

i=1(1 − ρ̂2
i ).

where ρ̂i are the estimated canonical correlation coefficients previously defined. Note that,

as discussed in Anderson (2003, pp. 505), when ρi = 0 then ρ̂2
i = Op(T

−1), implying that

ln(1 − ρ̂2
i ) = Op(T

−1) where Op(.) denotes order in probability. This suggests that there is

a positive probability that AIC will be minimised for some r > r∗ since the probability that

T
∑r

i=r∗+1 ln(1 − ρ̂2
i ) < 2(F (r∗) − F (r)) is greater than zero. Therefore, the estimated rank

will not converge in probability to r∗ when AIC is used. The penalty used by BIC is much

more severe than that used by AIC. In fact, it is easy to see that the rank estimate obtained

by BIC will converge in probability to r∗. Nevertheless, BIC is likely to underestimate the

rank in small samples.

Information criteria rank selection methods can also be formulated with the elements of

the MDF test of rank. Cragg and Donald (1997) showed that information criterion methods

defined with TL = MD and F (r) = r(m + n − r) provided also a consistent method to

search for the rank of a matrix.

5 Applications of tests of rank

5.1 Identification and Specification of IV Models

5.1.1 Theoretical Considerations

Cragg and Donald (1993) studied the problem of identifiability and specification in instru-

mental variable models. For Ordinary Least Square Estimators to yield consistent estimates,

the error terms must be orthogonal to the regressors. This condition is violated in the con-

text of simultaneous equation models. These models can be written in their structural form

as,

Byt = Γx1t + εt (4)

where yt is a m-vector of endogenous variables, x1t is a k1-vector of predetermined variables,

εt is a m-vector random process of zero mean and covariance matrix Ω and B and Γ are

matrices of parameters of dimension m×m and m× k1 respectively. Saying that x1t is pre-

determined means that E (x1tε
′
t) = 0. In the context of this section we further assume that

the matrix of second moments of predetermined variables, e.g. E (x1tx
′
1t), is nonsingular.

Alternatively, the model could be written in reduced form as:

yt = Πx1t + ut
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where Π = B−1Γ and ut is a zero mean m-vector random process of zero mean and, assuming

that B is invertible, covariance matrix B−1ΩB−1′. Estimation of the m equations in (4) by

means of Least Square is not feasible due to the non orthogonality of some of the regressors.

There is no orthogonality problem though in estimating the system in its reduced form.

The only problem with this strategy is that it may not always be possible to recover the

structural parameter matrices B and Γ from the relationship BΠ = Γ. This is referred

to as the problem of identification and is well documented in the literature. Conditions for

identification usually translate into zero restrictions for some of the elements of B and Γ.

Write the first equation in (4) as:

y1t = −b′
12y2t + γ ′

1x1t + ε1t (5)

where we have partitioned B and Γ in line with y1t and y2t as follows,

B =

[
b11 b′

12

b21 B22

]
Γ =

[
γ ′

1

Γ2

]

where it is further assumed that b11 = 1. If we assume that there are no zero restrictions on

the γ1 there is an identification problem. In this setting, it is necessary to find a vector of

instrumental variables, x2t, uncorrelated with y1t but correlated with y2t. The dimension of

x2t should be at least m̄ ≥ m − 1. This condition on the number of instruments is usually

referred to as the order condition. We could then write equation (5) as:

y1t = −b′
12y2t + γ ′

1x1t + δ′
1x2t + ε1t (6)

where the central specification hypothesis is that the m̄×1 parameter vector δ1 is equal to a

vector of zeroes. We could define the vector xt = (x′
1t, x

′
2t)

′, and estimate the reduced form:

yt = Kxt + ut

If the rank condition stated below is satisfied, then the structural parameters can be recovered

from BK = Γ∗, where

Γ∗ =

[
γ ′

1 δ′
1

Γ2 Δ2

]

In particular, for equation (6) these are given by,

k′
11 = γ ′

1 − b′
12K21

k′
12 = δ′

1 − b′
12K22

where, as before, K =

[
k′

11 k′
12

K21 K22

]
has been partitioned in four blocks, comformable with

y1t and y2t for the rows and conformable with x1t and x2t for the columns. It follows that
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the condition δ1 = 0 implies that k′
12 = −b′

12K22 and hence the rank of [k12 K ′
22]

′
must

be strictly less than the number of endogenous variables, m. Further, identification of the

parameters, or in other words, recovery of b12 from k′
12 = −b′

12K22, requires the rows of

K22 to be linearly independent. These two conditions together imply that testing for the

identifiability and specification of the instrumental variable model is equivalent to testing

for the rank of [k12 K ′
22]

′
being equal to m − 1. This is the rank condition. If m̄ > m − 1

the instrumental variable model would of course be over-identified.6

5.1.2 Small Sample Properties

There is only limited published work with information on the small sample properties of

statistical tests of rank in the context of the identification and specification of IV models.

The only known exception to the authors is Cragg and Donald (1993), who provided an

analysis for the MD method. In particular they explored the small sample properties of two

alternative MD tests: a) a test of the null H0 : ρ [k12 K ′
22] = m− 1 and b) a test of the null

H0 : ρ [K22] = m− 1. For very small samples the sizes of the tests were too large, especially

for the first alternative studied. This study further provided asymptotic expansions for the

MD test in the context of a model like that in equation (6). This improved the size properties

considerably particularly so for the second alternative. The second alternative was also the

more powerful when using experimentally determined critical values.

5.2 Demand Systems

5.2.1 Theoretical Considerations

Tests of rank have been used in the context of the estimation of the Engel curve relationship,

i.e. the relationship between budget shares and total expenditure (income). Engel curves are

relevant to model the impact of policy measures on consumer responses, and in addition the

welfare impact of such measures. Also the Engel curve serves as a tool to study the impact

of fiscal policy measures on the relative demand of goods. The Engel curve is as follows:

wi = BG(xi) + εi for i = 1, . . . , N (7)

where wi is a k × 1 vector of the budget shares of individual i, B is an k × m matrix of

parameters, where G(xi) is a m × 1 vector where the functional form of G(.) may be un-

known, and xi is total expenditure of individual i, and εi is a k×1 zero mean random vector

6Hamilton (1994, Prop. 9.1) shows that this formulation of the rank condition is equivalent to its more
commonly formulated form, namely that the rows of M are linearly independent, where:

M =
[

E (x1tx
′
1t) E (x1tx

′
2t)

E (y1tx
′
1t) E (y1tx

′
2t)

]
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independent of xi. Note that the sum of the elements of the vector of budget shares sums to

1, i.e. ε′
iι = 0 where ι is a k × 1 vector of ones; this obviously implies certain restrictions on

E{εiε
′
i}.7 Tests of rank in this setting are relevant to find m, the number of unknown factors.

The rank of the demand system has important implications for demand theory, see Lew-

bel (1991) for a detailed review. Under the setting in (7) a rank of 1 implies that the

demands are homothetic, i.e. budget shares are independent of the level of income. If the

rank is two the demands are generalized linear. The PIGLOG specification, see Muellbauer

(1975), is an example of rank two demand system in which budget shares are linear in the log

of total expenditure. The clear advantage of the PIGLOG demand system is that they can

be aggregated across individuals of different income. It is clear that the rank or structure

of demand system has direct implications for the structure of aggregate demand equations.

The PIGLOG would imply that the resulting aggregate demand equation is equivalent to

the representative agent model.

Lewbel (1991) suggested the following strategy to estimate m nonparametrically. Let Q(xi)

be a k × 1 (or larger than k) vector of functions having finite mean, and denote A =

E{wiQ(xi)
′}. Given that xi is independent of εi, it holds that A = E{BG(xi)Q(xi)

′}, and

so it follows that rank of A is equal to m, unless some component of G is orthogonal to all

the elements of Q, which should be a very remote coincidence.8

Empirical Studies on the estimation of Engel curves on household data have been con-

ducted among others by Atkinson, Gomulka, and Stern (1990), Banks, Blundell, and Lewbel

(1997), Blundell, Duncan, and Pendakur (1998), Blundell and Duncan (1998), Hausman,

Newey, Ichimura, and Powell (1991) and Hausman, Newey, and Powell (1995). Blundell,

Duncan, and Pendakur (1998) estimated a semiparametric Engel curve in which household

composition is modelled using an extended partially linear framework. Previous work, relied

on trimming the sample of households to have an homogenous group. Banks, Blundell, and

Lewbel (1997) provided a demand system model which was able to provide a detailed welfare

7Gorman (1981) suggested the following alternative specification for demand systems

wi = B(P )G(xi) + εi for i = 1, . . . , N

where additionally P is a vector of prices. Under this specification, the rank must be smaller than three for
demands to be aggregable. See Lewbel (1991) and references therein for further studies of exactly aggregable
demands.

8Note that the Barlett test could be implemented as A is nothing but the covariance matrix between wi

and Q(xi). A consistent estimator of A is given by Â = T−1
∑N

i=1 wiQ(xi)′, so that
√

N(Â−A) d→ N(0,V ),
and where a consistent estimator for V can be easily obtained, and hence the other tests of rank presented
in section 2 can also be applied.
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analysis of shifts in relative prices.

5.2.2 Small Sample Properties

The small sample properties of some sequential testing procedures based on the MD, GE and

CRT methods have been explored in Cragg and Donald (1996) and Robin and Smith (2000).

Cragg and Donald (1996) compared the small sample properties of the MD and GE tests

in the context of controlled simulations of an estimated Engel curve like that in (7) where

G(xi) = {1, xi, x
2
i , x

3
i , x

4
i }.9 Their results showed that the GE test tended to have a larger

size particularly in exercises where the non-zero eigenvalues of B were all large. When some

of the non-zero eigenvalues were small the size of the GE test was closer to the nominal size.

The power properties were equally related to the size of the smallest non-zero eigenvalue.

In a similar exercise, Robin and Smith (2000) showed that the statistical properties of the

CRT method were dependent on the weighting matrices used. They further showed for the

simulation exercise presented that the size properties of the CRT appear superior to those

of the GE test, and importantly, the size properties of the CRT test displayed significant

improvements when increasing the sample size from 250 to 2000, while the GE test showed

relatively little improvement.

5.3 Reduced Rank VAR Models

5.3.1 Theoretical Considerations

Consider a conventional VAR of the form:

yt =
p∑

k=1

Ckyt−k + εt (8)

each of the Ck is an m × m matrix, and εt is an iid process. It is often the case that such

VARs include a large number of insignificant coefficients; one can impose zero restrictions

in a relatively ad hoc way so as to make the model more parsimonious. Velu, Reinsel, and

Wichern (1986) proposed a reduced rank VAR model which provides a parsimonious method

to model multivariate time series. This model has the following structure:

yt = F

[ p∑
k=1

Gkyt−k

]
+ εt (9)

9To control for the rank of B in the demand system, when they imposed a rank r in the simulation
exercise, they performed r steps in the Gaussian elimination of the estimated matrix B, and imposed the
restriction that the resulting right-hand side and lower part submatrix of dimension (5 − r) × (5 − r) was a
matrix of zeros. Undoing the Gaussian elimination of this resulting matrix provided an estimate of the rank
r that was then used in simulating model (7).
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Here each of the Gk is an r × m matrix (r < m) and F is an m × r matrix, where r

is the rank of the system.10 Velu, Reinsel, and Wichern (1986) suggested a method for

estimating the parameters F and
[

G1 G2 ... Gk

]
in (9) conditional on a given r. Denote

xt = (y′
t−1, y

′
t−2, y

′
t−k)

′ and Ωε = Ωyy − ΩyxΩ
−1
xxΩxy where Ωε is the covariance of the

residuals of the OLS unrestricted regression of (8) and Ωxy is the covariance matrix between

x and y. Additionally denote Π = Ω−1
ε and set vj to be the eigenvector corresponding to

the j-th largest eigenvalue of Π
1
2ΩyxΩ

−1
xxΩxyΠ

1
2 , λ2

j . If Υr =
[

v1 v2 ... vr

]
then

F = Π
1
2Υr, [G1 G2 . . . Gk] = Υ′

rΠ
1
2ΩyxΩ

−1
xx

are the solutions which minimize tr
{
Π

1
2 εtε

′
tΠ

1
2

}
. To determine r is equivalent to determine

the rank of any of the Ck’s which are assumed to have common rank. Consider the RRVAR

model (9) re-expressed as

yt = Axt + εt, (10)

t = 1, ..., T , where the (m, mp) matrix A ≡ αβ′.11

Reduced rank regression models like that in (10) have been used by Bekker, Dobbelstein,

and Wansbeek (1996) to estimate Arbitrage Pricing models. Camba-Mendez, Kapetanios,

Smith, and Weale (2003) presented a Monte Carlo exercise comparing the forecasting perfor-

mance of reduced rank and unrestricted VAR models in which the former appear superior.

They further estimated reduced rank VAR models for leading indicators of UK economic ac-

tivity. Their results show that these more parsimonious multivariate representations display

an improvement in forecasting performance over that of unrestricted VAR models.

5.3.2 Small Sample Properties

Camba-Mendez, Kapetanios, Smith, and Weale (2003) conducted a Monte Carlo exercise

with a VAR model like that in (8) with p = 1 and m = 5, and where the rank of C is

10 An alternative, and more general, representation for a reduced rank VAR model is the following:

yt =
p∑

k=1

F kGkyt−k + εt

where each of the Gk is an rj × m matrix (rj ≤ m) for j = 1, . . . , p and each F k is an m × rj matrix. It
is further assumed that the rj ’s are non-increasing. The yt are simply output variables. This model was
suggested by Ahn and Reinsel (1988) and was named nested reduced rank autoregressive model. This model
has been extended by Ahn and Reinsel (1990) to incorporate error correction forms. Reinsel and Ahn (1992)
provided the asymptotic distribution for testing for the number of unit roots in a vector autoregressive model
with unit roots and the additional reduced rank structure of the nested reduced rank model.

11Note that Bartlett’s (1947) test can then be easily computed from the ordered squared sample canonical
correlations between {yt} and {xt}. Note that under suitable regularity conditions, T 1/2vec(Â − A) d→
N(0,Σ−1

XX ⊗Σεε), where ΣXX ≡ E{xtx
′
t} is assumed positive definite. Given this distribution, computation

of the GE and CRT tests follows.
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controlled by three sets of eigenvalues. In that exercise they compared the performance

of the GE versus the performance of the BA test. Their results showed that the GE test

significantly overrejects for many sample sizes, particularly if the relative magnitude of the

eigenvalues is large. Furthermore, the size properties of the GE test did not improve very

rapidly as the sample size increased. This finding was similar to those reported in Cragg and

Donald (1996) and Robin and Smith (2000) in the context of a different modelling scenario,

namely a demand system. The size properties of the BA test, on the other hand, appeared

satisfactory at moderate to large sample sizes and were substantially better than those of

the GE.

Further to evaluating the performance of these asymptotic tests of rank, Camba-Mendez,

Kapetanios, Smith, and Weale (2003) also assessed the performance of their corresponding

bootstrapped versions. They found that the bootstrap version of the GE test had clearly

superior size properties that were not sensitive to the magnitude of the eigenvalues. The

bootstrapped version of the BA test also offered an improvement and displayed good size

properties similar to those of the bootstrapped version of the GE test. The power of the

bootstrapped version of the BA test appeared to be slightly better than the bootstrapped

version of the GE test.

5.4 State Space models

5.4.1 Theoretical Considerations

We focus on the state space representation in the innovation form, i.e.:

yt = Cst + et

st+1 = Ast + Bet (11)

where A, B and C are r×r, r×m and m×r parameter matrices respectively, st is a r-vector

of unobservable state variables, and et is an m-vector of random variables with mean zero

and positive definite covariance matrix Ω.12 This system can be characterized by a system

transfer function G(z) =
∑∞

i=1 Giz
−1, where Gi are the impulse response matrices. The

order of the system, is defined as the order of the minimal state-space realization, i.e. the

minimal dimension of the state vector that replicates the transfer function. Corresponding

to the transfer function G(z) above, the infinite dimensional Hankel matrix is defined as:

H = OC =

⎡
⎢⎢⎢⎢⎣

G1 G2 G3 · · ·
G2 G3 · · · · · ·
G3 · · · · · · · · ·
...

...
...

. . .

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

CB CAB CA2B · · ·
CAB CA2B · · · · · ·
CA2B · · · · · · · · ·

...
...

...
. . .

⎤
⎥⎥⎥⎥⎦ (12)

12For further details on the innovation form representation see Brockwell and Davis (1991, Sec. 12.4)
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where the so called observability matrix is defined as O =
[
C ′, A′C ′, (A2)′C ′, · · ·

]′
and the

so called controllability matrix as C =
[
B, AB, (A2)B, · · ·

]
. Kronecker’s theorem can be

used to show that the order of the system is equal to the rank of the Hankel matrix (see

Kailath (1980)).

Searching for the rank of the Hankel matrix, however, is not conducted directly on an

estimate of (12) but rather on some pseudo-Hankel matrices. For example, an alternative

characterization of this system is in terms of a Hankel matrix of the covariances of the output

vector, yt.

Ha = OC =

⎡
⎢⎢⎢⎢⎣

Δ1 Δ2 Δ3 · · ·
Δ2 Δ3 · · · · · ·
Δ3 · · · · · · · · ·
...

...
...

. . .

⎤
⎥⎥⎥⎥⎦

where Δi is the autocorrelation matrix of yt for lag i. Where O is the observability matrix

defined above, and C =
[
C, AC, (A2)C, · · ·

]
, and C = B+APC ′ where P is the covariance

matrix of the state vector defined as E{sts
′
t}. It follows that the rank of Ha is equivalent to

the rank of H , see Faurre (1976). Obviously one cannot use the infinite dimensional matrix

above, and when working with finite data will have to resort to a finite truncation of the

Hankel matrix. Note that this Hankel Covariance matrix can be defined as the covariance

matrix between the vectors yt
+ and yt

−, and defined as follows:

Ha = E
(
yt

+yt
−

′)
= E

⎛
⎜⎝ yt+1

...
yt+k

⎞
⎟⎠(

y
′
t ... y

′
t−p+1

)
=

⎡
⎢⎢⎢⎣

Δ1 Δ2 ... Δp

Δ2 Δ3 ... Δp+1

... ... ... ...
Δk Δk+1 ... Δk+p−1

⎤
⎥⎥⎥⎦ (13)

The truncation parameters k and p must be fixed, and setting them implies a trade off be-

tween generality in model specification and modeling Δi at very distant lags; see Aoki and

Havenner (1991) for further details.13

This type of state space model has been used to model exchange rates, Dorfman (1997),

economic interdependence between countries, Aoki (1987), build a small macroeconometric

model for the Dutch Economy, Otter and Dal (1987) and forecasting commodity prices, Fos-

ter, Havenner, and Walburger (1995). Dorfman and Havenner (1992) developed a Bayesian

13The representation of the Hankel matrix stated in equation (13) suggests that the Bartlett test could be
used to test for the rank of this matrix, and by extension also the information criteria procedures and the
Bias Correction Bartlett test are valid. The Cragg and Donald (1996) procedure is also feasible. Under the
assumption of stationarity of yt it can be shown, Brockwell and Davis (1991, Ch. 7), that

√
Tvec(Ĥ

a−H) is
asymptotically distributed as N(0,V H). While the matrix V H is of reduced rank, the rank of a consistent
estimate may only be of reduced rank asymptotically. As stated in section 2 this is problematic for the
Cragg and Donald (1996) procedure. An estimator of V H with equal rank to V H can be constructed as in
Camba-Mendez and Kapetanios (2001).
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approach to state space multivariate modelling. More recently, Kapetanios (2004) and

Camba-Mendez and Kapetanios (2005b) have used this type of model to compute mea-

sures of underlying inflation extracted from a vector series that contained all available sub-

components of consumer price indices. These core inflation measures were proved better

than other traditional measures to track inflation developments over the medium to long

term.

5.4.2 Small Sample Properties

Camba-Mendez and Kapetanios (2004) conducted a Monte Carlo exercise with a state space

model like that in (11) to assess the performance of the GE and BA statistical tests of rank.

The Monte Carlo exercise dealt with several values for the truncation parameters k and p,

and different degrees of persistence of the shocks in the system.14

Their results showed that the performance of the tests worsens with respect to the size of

the Hankel matrix, for experiments with smaller moduli of the eigenvalues of matrix A, and

when the sample size is small. The size of the GE test were not good when the dimension

of the Hankel matrix was large. The BA method was less sensitive to all dimensions in the

study, and more robust than the other methods when the dimension of the Hankel matrix

was large.

In line with the findings of Camba-Mendez, Kapetanios, Smith, and Weale (2003), results

in Camba-Mendez and Kapetanios (2004) also showed that bootstrapped procedures of those

tests of rank significantly improved upon the performance of the corresponding asymptotic

tests. Furthermore, these procedures were also shown to have in general a better perfor-

mance than standard information criteria methods. The performance of information criteria

methods did not deteriorate much when increasing the dimension of the Hankel matrix, how-

ever, they appeared more sensitive than statistical tests to sample size. This was particularly

the case for the Schwarz (1978) criteria which underestimated the rank for samples of size

T = 200.

14Matrix A in (11) is the key matrix to explain the dynamics of yt; the degree of persistence of shocks
will depend on the eigenvalues of A. To control for this in the experiment Camba-Mendez and Kapetanios
(2004) used A = EΛE′, where Λ is a 3 × 3 quasi upper triangular matrix; the last element of the diagonal
corresponds to the modulus assigned to that experiment, and the 2× 2 block matrix in the left upper corner
was computed so that the modulus of the complex pair of eigenvalues of this 2×2 block was also equal to the
modulus assigned to the eigenvalues of that experiment; with the remaining values fixed to a value of one. E
was an orthonormal matrix generated from a standard normal matrix using Gram-Schmidt orthogonalization.
3 different moduli making three alternative experiments were used: i) with moduli given by (0.8,0.8,0.8); ii)
(0.4,0.4,0.4) and iii) (0.8,0.8,0.2), which allowed to check for the robustness of the procedures when one of
the eigenvalues was small.
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5.5 Cointegration

5.5.1 Theoretical Considerations

Phillips (1986) showed that a necessary condition for cointegration is that the spectral den-

sity matrix of the innovation sequence of an I(1) multivariate process has deficient rank at

frequency zero. The equivalence of time-domain and frequency-domain analysis of time se-

ries is well documented in the statistical and econometric literature. Nevertheless, the use

of spectral densities is by far less widespread than the use of covariances in the econometric

analysis of time series.15 Phillips and Ouliaris (1988) suggested two procedures for detecting

the presence of cointegration. The drawback of their method was that they were tests of

the null of ‘no cointegration’, namely a test of the hypothesis that the r smallest eigenvalues

are greater than zero. Tests of the rank of that matrix at frequency zero are tests of the

null of ‘cointegration’, i.e. tests of the null that the r smallest eigenvalues are equal to zero.

Brillinger (1981, pp. 262) or Brockwell and Davis (1991, pp. 447) show how to construct an

estimate of the spectral density matrix at any frequency together with its distribution. This

allows the implementation of the CK test of rank described in section 3.

5.5.2 Small Sample properties

The class of finite order VECM models is not the most appropriate class to assess nonpara-

metric procedures. Therefore, linear and nonlinear cointegrating systems will be considered.

The data generation process for the vector simulated series yt is defined as follows:

Δyt = F (Δyt−1)Πyt−1 + εt (14)

where we allow for three alternative specifications for F (.):

F (Δyt−1) = I (15)

F (Δyt−1) = 1 − e−(
∑m

i=1
Δyi,t−1)2 (16)

F (Δyt−1) = 1{|
m∑

i=1

Δyi,t−1| > 2} (17)

These specifications lead to a linear model if (15), a STAR-type model if (16), and a SETAR-

type model if (17). The last two models lead to nonlinear VECM models where the speed of

convergence to equilibrium depends on Δyt−1. As their name indicate the STAR-type model

is inspired by univariate smooth transition autoregressive (STAR) models, while the SETAR-

type by self-exciting threshold autoregressive (SETAR) models. Note that these nonlinear

15The methods to test for cointegration most usually encountered in applied economic work are those of
Johansen (1988), Stock and Watson (1988), Gregoir and Laroque (1994) and Snell (1999). Their tests are
reviewed in many econometric textbooks. In this section we will focus instead on the strategy proposed by
Camba-Mendez and Kapetanios (2005a), reviewed above.
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models still imply the existence of a Wold decomposition for the differenced data, since they

are covariance stationary (see, e.g., Granger and Teräsvirta (1993) and Tong (1990)), and

therefore our suggested procedure is appropriate.

We concentrate on a multivariate model with 3 variables. We control the rank of the

coefficient matrix, Π in the error correction representation by specifying the vector of its

eigenvalues. Two different vectors are considered: (−0.6, 0, 0), i.e. one cointegrating vector,

and (−0.6,−0.6, 0), i.e. two cointegrating vectors. Note that all the eigenvalues are negative

given the requirement that the eigenvalues of I + Π are less than or equal to one. We

then construct a standard normal random matrix of eigenvectors, E which are almost surely

linearly independent. These are transformed into an orthonormal basis, Ẽ, using the Gram-

Schmidt process. The coefficient matrix is then given by ẼΛẼ
′
where Λ is a diagonal matrix

containing the eigenvalues of the required coefficient matrix. Two alternative types of random

disturbances are used for simulating εt. First, random normal disturbances with identity

covariance matrix. Second, iid MA(1) processes with correlation coefficient 0.9. Using these

random numbers a sample from a process following the error correction representation in (14)

is obtained.

The sample sizes considered are 200 and 600. For each simulated sample, 200 initial

observations have been discarded to minimise the effect of starting values. For each Monte

Carlo experiment 10000 replications have been carried out. Bias and Mean Square Error

(MSE) statistics for these simulation exercises are shown in table 1. For illustration purposes,

this table also reports simulation results for Johansen (1988) maximum eigenvalue test (JM)

and also his trace test (JT). Generally speaking the performance of the CK method described

in section 2 is satisfactory for most cases under study. The only exceptions are exercises run

with samples of size 200, rank 2 and a SETAR-type model. The test appears always best in

terms of Bias and MSE for exercises of rank equal to 1, sample size equal to 600 and MA(1)

errors. But for minor exceptions, the Johansen’s procedures are always best for exercises

conducted with normally distributed shocks.

5.6 Other potential applications

5.6.1 Dynamic Factor Models

Denote a zero mean, wide sense stationary m-vector process by {yt}∞t=1, and assume that

there exists a representation such as:

yt = Pzt + εt (18)

where P is a m× r matrix of parameters, εt is an m-vector of iid zero mean processes with

covariance matrix Σε, and zt is a r-vector stationary process, with r < m, i.e. there is a



26
ECB
Working Paper Series No 850
January 2008

reduction in dimensionality, which follows an ARMA(p,q) process

Φ(L)zt = Θ(L)ut

where Φ(L) and Θ(L) are matrix polynomials in the lag operator L with all the roots of the

determinant polynomials |Φ(L)| and |Θ(L)| outside the unit circle, and ut is an iid random

process with zero mean and positive definite covariance matrix Σu. A further identification

restriction imposed in this model is that the r factors are independent, and that all Φi and Θi

matrices are diagonal.16 Matrix P is usually refer to as the factor loadings. For identification

purposes it is assumed that P ′P = I. Denote Γy(k) = E{yty
′
t−k}, and Γz(k) = E{ztz

′
t−k}.

Under the representation in equation (18), it follows Γy(k) = PΓz(k)P ′ for k ≥ 1. The rank

of Γy(k) for k ≥ 1 is equal to r, the number of the common driving forces.17

Early applications of dynamic factor models to macroeconomic research include Sargent

and Sims (1977) and Geweke (1977). Sargent and Sims (1977) proposed a dynamic factor

model that was consistent with the idea of co-movement in macroeconomic series. They

assumed that there was an underlying force behind the fluctuations of macroeconomic se-

ries. Rather than working under the assumption of a unique underlying force, Geweke and

Singleton (1981) used a dynamic factor model with two latent variables (factors) to explain

the business cycle. They identified those two factors with unanticipated aggregate demand

shocks and innovations to anticipated aggregate demand shocks. In line with Sargent and

Sim’s work, Stock and Watson (1989) used a dynamic factor model to extract a latent vari-

able that could be identified as the state of the economy. Their assumption was that the

fluctuations of certain macroeconomic variables have an underlying common factor, and this

common factor could be identified as the ‘state of the economy’. The use of dynamic fac-

tor models in forecasting macroeconomic series is not new. Engle and Watson (1981) used

a traditional dynamic factor model to forecast sectorial wage rates in Los Angeles. They

compared the forecasting performance of that dynamic factor model with a regression model

without latent variables, and found that the dynamic factor model was better. Recent work

by Camba-Mendez, Kapetanios, Smith, and Weale (2001) and Stock and Watson (2000)

address the problem of forecasting a single time series with many possible predictors. They

showed that the predictors could be summarized by a small number of dynamic factors and

16An alternative equivalent representation with solid Φi and Θi matrices is also explained in Pena and
Box (1987).

17Having established the number of common driving forces, it is still necessary to identify the type of
VARMA process followed by the vector of driving forces. To do so, it is possible to use a transformation
of the vector series yt. Note that the columns of P are the eigenvectors Γy(k) associated with the nonzero
eigenvalues. If we denote by P + the Moore-Penroe generalized inverse of P , then it follows that P +yt =
zt − P +εt, i.e. equal to the vector of common driving forces plus an added noise. This transformation can
be used to identify the VARMA structure underlying the common driving forces.
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that forecasts based on these factors outperformed various benchmark models.18

5.6.2 Dynamic Principal Components

The problem behind Dynamic Principal Components is that of approximating an m-vector

stationary process yt, that without loss of generality it is assumed to have zero mean, by

a filter series of itself, but having a filter which has reduced rank. A dynamic principal

component model takes the form:

yt = C(L)ζt + εt (19)

where C(L) is a polynomial lag and forward operator, i.e. a double sided filter, with Ci

matrices of parameters of order m × k; ζt is a k × 1 vector of principal components, and

where εt is a m × 1 error process. The dynamic principal components are a filter version of

yt given by ζt = B(L)yt where B(L) is a polynomial lag and forward operator, i.e. a double

sided filter, with Bi matrices of parameters of order k × m. The polynomial operators Bi

and Ci which minimize:

E{(yt − C(L)ζt)
τ (yt − C(L)ζt)}

and where τ serves to denote transpose conjugate, are given by:

Bu = (2π)−1
∫ 2π

0
Υk(α)τeiuαdα

and

Cu = (2π)−1
∫ 2π

0
Υk(α)eiuαdα

where Υk(α) are the k eigenvectors of the spectral density matrix of yt at frequency α as-

sociated with the k largest eigenvalues, see Brillinger (1981) for further details. Tests of the

rank of the spectral density matrix at frequency α could then be used to help in identifying k.

In a recent paper Forni and Reichlin (1998) suggested the use of a generalized dynamic

factor model to describe the dynamics of sectoral industrial output and productivity for the

US economy from 1958 to 1986. Their model was similar to that in (19), but without the

18Standard factor models, i.e. a model like that in (18), but where zt is a non serially correlated random
vector with mean 0, covariance matrix Σz and independent from εt, have also been used in the Econometrics
literature. This standard factor model has been used among other things for testing the Arbitrage Pricing
Theory. In testing for the number of factors, and in the context of testing the Arbitrage Pricing Theory,
Cragg and Donald (1997) suggested to use a k-vector of macro variables xt, where k ≥ r. One could then
estimate the equation,

yt = γ + Axt + εt

where yt is an m-vector of asset returns. The rank of A gives the number of factors.
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idiosyncratic error component. By aggregating across a large number of sectors the idiosyn-

cratic component vanishes. Under this setting the number of common shocks driving those

series is equal to the rank of their spectral density matrix. The foundations for this result

are to be found in the literature on dynamic principal components, see Brillinger (1981).

This issue is further explored in Forni, Hallin, Lippi, and Reichlin (1999).

6 Conclusion

This review has concentrated on statistical methods that relate to the determination of the

rank of a matrix. We describe several general tests of rank of a matrix. Further, we examine

how these can be used to estimate the rank of a matrix. Alternative methods for this esti-

mation that do not use tests but information criteria have also been reviewed. In addition,

a large variety of modelling scenarios where these tests of rank are useful for specification

purposes have been presented. The modelling scenarios range from linear and stationary

models such as standard VARs, factor analysis, dynamic factor models, instrumental vari-

able estimation, and dynamic principal component models, to nonlinear frameworks such

as nonparametric factor models and also to nonstationary frameworks such as cointegrated

systems. We conclude that these methods are of increasing relevance given the focus of

econometric and statistical work on multivariate systems. We expect that this focus will

only increase in the near future in line with the size of datasets under investigation.
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A Appendix

A.1 Local Power Results

We have the following proposition concerning the local power of the MD, GE and CRT

procedures under the hypothesis H1T

Proposition 4 Under H1T ,

MD
d→ χ2

(m−r∗)(n−r∗)

(
vec(B)′

(
V −1 − V −1Δh

(
Δ′

hV
−1Δh

)−1
Δ′

hV
−1

)
vec(B)

)

GE
d→ χ2′

(m−r∗)(n−r∗)

(
vec(B)′Γ′(ΓV Γ′)−1

Γvec(B)
)

CRT
d→

(m−r∗)(n−r∗)∑
i=1

τiχ
2′
1

([
Θ((D′

r∗ ⊗ C ′
r∗)V (Dr∗ ⊗ Cr∗))

−1/2
(D′

r∗ ⊗ C ′
r∗)vec(B)]

2
i

)

where χ2
l(δ) denotes a non-central χ2 variate with l degrees of freedom and non-centrality

parameter δ, and where for a vector α the notation [α]2i denotes the square of the i-th element

of α and Θ is an orthogonal matrix containing the eigenvectors of (D′
r∗⊗C ′

r∗)V (Dr∗⊗Cr∗).

Proof:

Proof for the MD test is given in Cragg and Donald (1997, Th. 2). Proof for GE follows

easily from the fact that under H1T ,
√

Tvec(Â − Ψ)
d→ N(vec(B),V ). Proof for the CRT

test requires the following Lemma

Lemma 1 For a m × 1 vector random variable y ∼ N(α,Ω), and a symmetric matrix Q

the quadratic form y′Qy is distributed as a weighted sum of χ2′
1 random variables where the

weights are the eigenvalues of Ω1/2QΩ1/2 and the noncentrality parameters are given by the

squares of the elements of the mean vector in (20) below.

Proof of Lemma 1. y′Qy = ỹ′Ω1/2QΩ1/2ỹ where ỹ ∼ N(Ω−1/2α, I). By symmetry, we

may write Ω1/2QΩ1/2 = D′ΛD where Λ is a diagonal matrix containing the eigenvalues of

Ω1/2QΩ1/2 and D is an orthogonal matrix containg the eigenvectors of Ω1/2QΩ1/2. Then

ỹ′Ω1/2QΩ1/2ỹ = ˜̃y
′
Λ˜̃y where

˜̃y ∼ N(DΩ−1/2α, I) (20)

and the conclusion of the Lemma easily follows.

Given Lemma 1 the conclusion of Proposition 4 for the CRT test easily follows from

Theorem 3.2 in Robin and Smith (2000).
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A.2 Distribution of Λ for a hermitian positive semidefinite matrix.

As vec(Λ) is not analytic, it cannot be expanded as a Taylor series. We define instead for a

hermitian complex matrix A, a 2n× 2n real symmetric matrix AR which is an arrangement

of the real and imaginary parts of the elements of A. Details on AR are given in Brillinger

(1981, pp. 71). By Brillinger (1981, Lemma 3.7.1(i),(ii),(iv)), if Λ = Σ22 −Σ21Σ
−1
11 Σ12 then

ΛR = ΣR
22 − ΣR

21Σ
R
11

−1
ΣR

12. Note that (Re vec(Σ)′, Im vec(Σ)′)′ d→ N(0,Vr). Let dij be

the vector of distinct elements of ΣR
ij. Define J1, J2, Jh

j , Jh
ij and Di, i, j = 1, 2, as s ≡(

vec(ΣR
11)

′, vec(ΣR
21)

′, vec(ΣR
12)

′, vec(ΣR
22)

′
)′

= J1 (Re vec(Σ)′, Im vec(Σ)′)′, J2vec(ΛR) =

(Re vec(Λ)′, Im vec(Λ)′)′, Jh
j djj = vech(ΣR

jj), Jh
ijdij = vec(ΣR

ij) and vec(ΣR
ii) = Divech(ΣR

ii).

Then

R ≡ ∂vec(ΛR)

∂s
=

[
∂vec(ΛR)

∂vec(ΣR
11)

′ ,
∂vec(ΛR)

∂vec(ΣR
21)

′ ,
∂vec(ΛR)

∂vec(ΣR
12)

′ ,
∂vec(ΛR)

∂vec(ΣR
22)

′

]

Since vec(ΣR
21Σ

R
11

−1
ΣR

12) =
(
ΣR

12

′ ⊗ ΣR
21

)
vec

(
ΣR

11

−1
)
, ΣR

11 and ΣR
22 are symmetric and ΣR

21 =

ΣR
12

′
, from Brillinger (1981, Lemma 3.7.1(v)), we have

∂vec(ΛR)

∂vec(ΣR
11)

′ =
(
ΣR

12

′ ⊗ ΣR
21

)
D1D

+
1

(
ΣR

11

−1 ⊗ ΣR
11

−1
)
D1J

h
1J

h
1

+
D+

1 (21)

∂vec(ΛR)

∂vec(ΣR
21)

′ = −
(
I4(n−r)2 + K2(n−r),2(n−r)

) (
ΣR

21Σ
R
11

−1 ⊗ I2(n−r)

)
Jh

21J
h
21

+
(22)

∂vec(ΛR)

∂vec(ΣR
12)

′ =
∂vec(ΛR)

∂vec(ΣR
21)

′K2r,2(n−r),
∂vec(ΛR)

∂vec(ΣR
22)

′ = D2J
h
2J

h
2

+
D+

2 (23)

where for a matrix A, A+ = (A′A)−1A′, Km,n is a commutation matrix (see Lütkepohl

(1996, Sec. 9.2)). (21), (22) and (23) follow from Lütkepohl (1996, 10.6(2) and 9.5.3(1)(ii)),

Lütkepohl (1996, 10.5.1(7)) and Lütkepohl (1996, 10.4.1(1)(iii) and 9.5.3(1)(ii)) respec-

tively19. Then,
√

2M + 1
(
Re vec(Λ̂)′, Im vec(Λ̂)′

)′ d→ N(0, W r) where W r = JV rJ ′ and

J = J2RJ1. Finally,
√

2M + 1vec(Λ̂)
d→ NC(0, W ). An alternative to the above is the use

of numerical derivatives, or the use of the bootstrapped methods for the multivariate spectra

described in Berkowitz and Diebold (1998).

19Results on the commutation matrix and more details on the facts used to derive (21), (22) and (23) may
be found in Magnus and Neudecker (1988) which is the original source of the results quoted from Lütkepohl
(1996).
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Table 1: Bias and MSE of Estimated rank. Linear Model.a

Bias MSE
Model Noise Test rank 200 600 200 600

CK 1 0.191 0.134 0.206 0.135
2 -0.366 -0.218 0.418 0.230

Normal JM 1 0.058 0.055 0.061 0.059
2 0.059 0.060 0.059 0.060

JT 1 0.060 0.056 0.073 0.070
Linear 2 0.059 0.060 0.059 0.060

CK 1 0.196 0.135 0.206 0.137
2 -0.369 -0.206 0.425 0.218

MA(1) JM 1 0.158 0.162 0.183 0.187
2 0.095 0.078 0.095 0.078

JT 1 0.169 0.172 0.218 0.217
2 0.095 0.078 0.095 0.078

CK 1 0.158 0.130 0.209 0.136
2 -0.543 -0.307 0.670 0.341

Normal JM 1 0.055 0.056 0.059 0.059
2 0.063 0.060 0.063 0.060

JT 1 0.057 0.056 0.068 0.066
STAR 2 0.063 0.060 0.063 0.060

CK 1 0.173 0.125 0.206 0.129
2 -0.492 -0.275 0.596 0.295

MA(1) JM 1 0.156 0.150 0.188 0.170
2 0.093 0.081 0.093 0.081

JT 1 0.145 0.160 0.229 0.196
2 0.093 0.081 0.093 0.081

CK 1 -0.125 0.081 0.342 0.156
2 -1.019 -0.647 1.452 0.825

Normal JM 1 -0.115 0.055 0.208 0.058
2 -0.041 0.060 0.177 0.060

JT 1 -0.161 0.057 0.273 0.069
SETAR 2 -0.028 0.060 0.156 0.060

CK 1 0.036 0.123 0.257 0.143
2 -0.824 -0.466 1.110 0.558

MA(1) JM 1 -0.144 0.152 0.384 0.175
2 -0.151 0.081 0.366 0.081

JT 1 -0.166 0.159 0.489 0.202
2 -0.055 0.081 0.236 0.081

aSample sizes for Monte Carlo experiments are 200 and 600. CK denotes the test described in
section 3 in this paper. JM refers to Johansen’s maximum eigenvalue test and JT to Johansen’s
trace test. rk denotes the cointegrating rank which is 1 or 2 for the different exercises conducted as
described in the text.
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