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Abstract

The objectives of this paper are : first, to quantify the stabilization welfare gains from

commitment; second, to examine how commitment to an optimal rule can be sustained

as an equilibrium and third, to find a simple interest rate rule that closely approxi-

mates the optimal commitment one. We utilize an influential empirical micro-founded

DSGE model, the euro area model of Smets and Wouters (2003), and a quadratic

approximation of the representative household’s utility as the welfare criterion. Im-

portantly, we impose the effect of a nominal interest rate zero lower bound. In contrast

with previous studies, we find significant stabilization gains from commitment: our

central estimate is a 0.4 − 0.5% equivalent permanent increase in consumption, but

in a variant with a higher degree of price stickiness, gains of over 2% are found. We

also find that a simple optimized commitment rule with the nominal interest rate re-

sponding to current inflation and the real wage closely mimics the optimal rule.

JEL Classification: E52, E37, E58

Keywords: Monetary rules, commitment, discretion, welfare gains.

4
ECB 
Working Paper Series No 709
January 2007



Non-technical Summary 
 
This paper has three principle objectives. First, to quantify the stabilization gains from 
commitment in terms of household welfare. Second, to examine how commitment to an 
optimal or approximately optimal rule can be sustained as an equilibrium in which reneging 
hardly ever occurs. And finally, to find a simple interest rate rule that closely approximates 
the optimal commitment (and complex) rule.  
 
We utilize an influential empirical micro-founded dynamic stochastic general equilibrium 
(DSGE) model of the euro area in which there are four sources of time-inconsistency: from 
forward-looking pricing, consumption, investment and wage setting. In the absence of 
commitment, following a shock which diverts the economy from its steady state and given 
expectations of inflation, the opportunist policy-maker can increase or decrease output by 
reducing or increasing the interest rate which increases or decreases inflation. This results in a 
higher variability of inflation and the nominal interest rate under discretion. The latter means 
that the interest rate zero lower bound constraint is tighter under discretion and its presence 
increases the stabilization gains from commitment. The constraint can be relaxed by 
increasing the steady state inflation rate, but at a cost of an increase in the deterministic 
component of the welfare loss.  
 
In terms of methodology our welfare-based loss function uses the ‘small distortions’ quadratic 
approximation to the consumer’s utility which is accurate if the steady state is close to the 
social optimum. In assessing this condition we highlight a neglected aspect of typical New 
Keynesian models: external habit in consumption tends to make labour supply and the natural 
rate of output too high compared with the social optimum. If the habit effect is sufficiently 
high and labour market and product market distortions are not too big then, with a sufficiently 
small tax wedge, the natural rate can actually be above the social optimum. This would then 
render the long-run ‘inflationary bias’ negative.  
 
Whilst the validity of an inflationary bias arising from the pursuit of an ambitious output 
target above its natural rate has been criticized, our analysis suggests a rather different form of 
bias arising from the interest rate zero lower bound. We find that the optimal steady state 
inflation rate necessary to avoid the lower bound is far lower under commitment than under 
discretion, so there is a new sense in which there is a long-run inflationary bias which is really 
an integral part of the stabilization bias.  
 
Our exercises, suggest that the stabilization gains from commitment rise considerably if the 
lower bound effect is taken into account. Using empirical estimates from the core model and 
the preferred variant of the model without indexation, we find an average consumption and 
inflation-equivalent gains of gain 0.4-0.5% and 0.6-0.7% respectively, the latter on a quarterly 
basis. For the variant of the model with lower price stickiness, these rise considerably. 
 
Given these large gains from commitment, the incentive for central banks to avoid a loss of 
reputation for commitment is substantial. Consequently, unless the policymaker is 
implausibly myopic, a commitment rule can be sustained as a perfect Bayesian equilibrium in 
which deviation from commitment hardly ever happens despite the possibility of large 
exogenous shocks.  
 
Finally, we find that simple interest rate rules should respond to labour-market conditions as 
well as inflation. The optimal commitment rule can be closely approximated in terms of its 
good stabilization properties by an interest rate rule that responds positively to current 
inflation and to the current real wage.  
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1 Introduction

Following the pioneering contributions of Kydland and Prescott (1977) and Barro and

Gordon (1983), the credibility problem associated with monetary policy has stimulated a

huge academic literature that has been influential with policymakers. The central mes-

sage underlying these contributions is the existence of significant macroeconomic gains, in

some sense, from ‘enhancing credibility’ through formal commitment to a policy rule or

through institutional arrangements for central banks such as independence, transparency,

and forward-looking inflation targets, that achieve the same outcome.

In the essentially static model used in those seminal papers and in much of the huge

literature they inspired, the loss associated with a lack of credibility takes the form of a

long-run inflationary bias. For a dynamic models of the New Keynesian genre, such as

the DSGE euro area model employed in this paper, the influential review of Clarida et al.

(1999) emphasizes the stabilization gains from commitment which exist whether or not

there is a long-run inflationary bias. But what are the size of these stabilization gains

from commitment? If they are small then the credibility problem is solely concerned with

the credibility of long-run low inflation.

The first objective of the paper is to quantify the stabilization gains from commit-

ment in terms of household welfare. Previous work has addressed this question (see, for

example, Currie and Levine (1993), Vestin (2001), Ehrmann and Smets (2003), McCal-

lum and Nelson (2004), Dieppe et al. (2005) and Dennis and Söderström (2006)), but

only in the context of econometric models without micro-foundations and using an ad

hoc loss function, or both, or for rudimentary New Keynesian models. The credibility

issue only arises because the decisions of consumers and firms are forward looking and

depends on expectations of future policy. In the earlier generation of econometric models

lacking micro-foundations, many aspects of such forward-looking behaviour were lacking

and therefore important sources of time-inconsistency were missing. Although for simple

New Keynesian models a quadratic approximation of the representative consumer’s utility

coincides with the standard ad hoc loss that penalizes variances of the output gap and

inflation, in more developed DSGE models this is far from the case. By utilizing an influ-

ential empirical micro-founded DSGE model, the euro area model of Smets and Wouters

(2003), and using a quadratic approximation of the representative household’s utility as

the welfare criterion, we remedy these deficiencies of earlier estimates of commitment

gains.

An further important consideration when addressing the gains from commitment, and

missing from these earlier studies, is the existence of a nominal interest rate zero lower
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bound. A number of papers have studied optimal commitment policy with this constraint

(for example, Coenen and Wieland (2003), Eggertsson and Woodford (2003), Woodford

(2003), chapter 6). In an important contribution to the credibility literature, Adam and

Billi (2006) show that ignoring the zero lower bound constraint for the setting of the

nominal interest rate can result in considerably underestimating the stabilization gain

from commitment. The reason for this is that under discretion the monetary authority

cannot make credible promises about future policy. For a given setting of future interest

rates the volatility of inflation is driven up by the expectations of the private sector that

the monetary authority will re-optimize in the future. This means that to achieve a given

low volatility of inflation the lower bound is reached more often under discretion than

under commitment. These authors study a simple New Keynesaian model and are able to

employ non-linear techniques. Since we employ a more developed model, we choose a more

tractable linear-quadratic (LQ) framework.1 We follow Woodford (2003) in approximating

the effects of a zero interest rate lower bound by imposing the requirement that the interest

rate volatility in a commitment are discretionary equilibria are small enough to ensure that

the violations of the zero lower bound are very infrequent.

Our second objective is to examine how commitment to an optimal or approximately

optimal rule can be sustained as an ‘reputational’ equilibrium in which reneging hardly

ever occurs. We extend the incomplete information2 of Barro (1986) to a stochastic setting

and to a model with structural dynamics. Our final objective is to search for a simple

interest rate rule that closely approximates the optimal commitment (and complex) rule.

This particular part of the paper closely follows Levin et al. (2006) but unlike these authors

incorporates a interest rate lower bound into the design of the rule.3

The rest of the paper is organized as follows. Section 2 begins by using a simple

New Keynesian model to show analytically how a stabilization bias arises in models with

structural dynamics. It goes on to generalize the treatment to any linear DSGE model

with a quadratic loss function and also to take into account the interest rate lower bound.

1A LQ framework is convenient for a number of reasons: it allows closed-form expressions for the wel-

fare loss under optimal commitment, discretion and simple commitment rules that enable us to study the

incentives to renege on commitment. Bayesian estimation methods use a linearized form of the dynamic

model. A linear framework further allows us to characterize saddle-path stability and the possible inde-

terminacy of simple rules. Last but not least, the implementation of the numerical methods utilized by

Adam and Billi (2006) for a simple New Keynesian model with only 2 state variables would fall foul of the

“curse of dimensionality” (Judd (1998), chapter 7) in our model with 11 state variables.
2This avoids well-established problems of trigger strategies use in Barro and Gordon (1983)–see al-

Nowaihi and Levine (1994) and Persson and Tabellini (1994).
3See Primiceri (2006) for a discussion of the importance of imposing the zero lower bound in the design

of monetary rules.
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We derive closed-form expressions for welfare under optimal commitment, discretion and

simple commitment rules and use these to derive a ‘no-deviation condition’ for commitment

to exist as an equilibrium in which reneging on commitment takes place very infrequently.

Section 3 sets out a version of the Smets-Wouters model (henceforth SW) with one

additional feature: the addition of a tax wedge in the steady state. A linearization of the

model about a zero-interest steady state and a quadratic approximation of the represen-

tative household’s utility (provided in section 5) sets up the optimization problem facing

the monetary authority in the required LQ framework. Section 4 estimates the SW model

and variants where the indexing of prices and/or wages is suppressed, and a price contract

of 4 quarters is imposed.

Our welfare quadratic approximations assumes that the zero-inflation steady state is

close to the social optimum (the ‘small distortions case’ of Woodford (2003)). In section 5

we therefore assess the quality of this approximation. In doing this we examine a relatively

neglected aspect of New Keynesian models that arises with the inclusion of external habit

in consumption, namely that the natural rate of output and employment can actually be

above the social optimum making the inflationary bias negative and the tax wedge, up to a

point, welfare-enhancing. In section 6 we address the three central questions in the paper:

how big are stabilization gains, how can the fully optimal commitment rule be sustained

as an equilibrium given the time-inconsistency problem and can a simple rule mimic the

optimal commitment rule? Section 7 concludes the paper.

2 The Time Inconsistency Problem

2.1 The Stabilization Bias in Two Simple DSGE Models

We first demonstrate how a stabilization bias in addition to the better known long-run

inflationary bias can arise using two simple and now very standard DSGE models. The

first popularized notably by Clarida et al. (1999) and Woodford (2003) is ‘New Keynesian’

and takes the form.

πt = βEtπt+1 + λyt + ut (1)

yt = Etyt+1 −
1

σ
(rt − Etπt+1) (2)

In (1) and (2), πt is the inflation rate, β is the private sector’s discount factor, Et(·)
is the expectations operator and yt is output measured relative to its flexi-price value,

the ‘output gap’, which equals consumption measured relative to its flexi-price value in

this closed-economy model without capital or government spending. (1) is derived as a

linearized form of Calvo staggered price setting about a zero-inflation steady state and (2)
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is a linearized Euler equation with nominal interest rate rt and a risk aversion parameter σ.

ut is a zero-mean shock to marginal costs. All variables are expressed as deviations about

the steady state, πt and rt as absolute deviations, and yt as a proportional deviation.

The second model simply replaces (1) with a ‘New Classical Phillips Curve’ (see Wood-

ford (2003), chapter 3):

πt = Et−1πt + λyt + ut (3)

This aggregate supply curve can be derived by assuming some firms fix prices one period

in advance and others can adjust immediately.

Kydland and Prescott (1977) and Barro and Gordon (1983) employed the ‘New Clas-

sical Phillips Curve’ (3) and showed that a time-inconsistency or credibility problem in

monetary policy arises when the monetary authority at time 0 sets a state-contingent

inflation rate πt to minimize the loss function

Ω0 = E0

[
(1 − β)

∞∑

t=0

βt
[
wy(yt − k)2 + π2

t

]
]

(4)

Having set the inflation rule, the Euler equation (2) then determines the nominal interest

rate that will put the economy on a path with the implied interest rate trajectory. The

constant k in the loss function arises because the steady state is inefficient owing to

imperfect competition and other distortions. For this simple, essentially static model of

the economy (it is really SGE rather than DSGE), optimal rules must take the form of a

constant deterministic component plus a stochastic shock-contingent component. These

rules depend on whether the policymaker can commit, or she exercises discretion and

engages in period-by-period optimization. The standard results in these two cases are

respectively:

πt =
wy

wy + λ2
ut = πC(ut) (5)

πt =
wyk

λ
+

wy

wy + λ2
ut = πD(ut) (6)

Thus the optimal inflation rule with commitment, πC(ut) consists of zero average infla-

tion plus a shock-contingent component which sees inflation raised (i.e., monetary policy

relaxed) in the face of a negative supply shock. The discretionary policy, πD(ut), can

be implemented as a rule with the same shock-continent component as the ex ante op-

timal rule. The only difference is now that it includes a non-zero average inflation or

inflationary bias equal to
wyk
λ which renders the rule time-consistent. The credibility

or ‘time-inconsistency’ problem, first raised by Kydland and Prescott, was simply how to

eliminate the inflationary bias whilst retaining the flexibility to deal with exogenous shocks.
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We have established that there are no stabilization gains from commitment in a model

economy characterized by the New Classical Philips Curve. This is not the case when

we move to the New Keynesian Phillips Curve, (1). Then using general optimization

procedures described below in section 2.2.2 and in Appendix A, (5) and (6) now become

πC
t = πC

t (ut, ut−1) = δπC
t−1 + δ(ut − ut−1) (7)

πD
t = πD

t (ut) =
wyk

λ
+

wy

wy + λ2
ut (8)

where δ =
1−
√

1−4βw2
y

2bβ .4 Comparing these two sets of results we see that the discretionary

rule is unchanged, but the commitment rule now is a rule responding to past shocks (i.e.,

is a rule with memory) and therefore the stabilization component of the commitment rules

now differs from that of the discretionary rule. Since the commitment rule is the ex ante

optimal policy it follows that there are also now stabilization gains from commitment. The

time-inconsistency problem facing the monetary authority in a New Keynesian economic

environment now becomes the elimination of the inflationary bias whilst retaining the

flexibility to deal with exogenous shocks in an optimal way.

2.2 The Stabilization Bias in General DSGE Models

The stabilization bias arose in our simple DSGE model by replacing a Phillips Curve

based on one-period ahead price contracts with one based on staggered Calvo-type price

setting. In the DSGE model of the euro area presented in the next section there are a

number of additional mechanisms that create price, wage and output persistence. The

model also incorporates capital accumulation. All these features add structural dynamics

to the model and these, together will forward-looking behaviour involving consumption,

investment, price-setting and wage- setting add further sources of stabilization gains from

commitment.

To examine this further, consider a general linear state-space model

[
zt+1

Etxt+1

]
= A

[
zt

xt

]
+ Brt + Cǫt+1 (9)

ot = E

[
zt

xt

]
(10)

where zt is a (n − m) × 1 vector of predetermined variables at time t with z0 given, xt, is

a m× 1 vector of non-predetermined variables and ot is a vector of outputs. All variables

are expressed as absolute or proportional deviations about a steady state. A, C and A are

4See also Clarida et al. (1999)
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fixed matrices and ǫt as a vector of random zero-mean shocks. Rational expectations are

formed assuming an information set {zs, xs, ǫs}, s ≤ t, the model and the monetary rule.

The linearized euro-area model set out in the next section can be expressed in this form

where zt consists of exogenous shocks, lags in non-predetermined and output variables

and capital stock; xt consists of current inflation, the real wage, investment, Tobin’s Q,

consumption and flexi-price outcomes for the latter two variables, and outputs ot consist

of marginal costs, the marginal rate of substitution between consumption and leisure,

the cost of capital, labour supply, output, flexi-price outcomes, the output gap and other

target variables for the monetary authority. Let st = M [zT
t x

T
t ]T be the vector of such

target variables. For both ad hoc and welfare-based loss function discussed below, the

inter-temporal loss function (4) generalizes to

Ω0 = E0

[
(1 − β)

∞∑

t=0

βtLt

]
(11)

where the single-period loss function is given by Lt = s
T
t Q1st = y

T
t Qyt where yt = [zT

t x
T
t ]T

and Q = MT Q1M .

2.2.1 Imposing an Interest Rate Zero Lower Bound Constraint

In the absence of a lower bound constraint on the nominal interest rate the policymaker’s

optimization problem is to minimize (11) subject to (9) and (10). If the variances of

shocks are sufficiently large, this will lead to a large nominal interest rate variability and

the possibility of the nominal interest rate becoming negative. To rule out this possibility

and to remain within the convenient LQ framework of this paper we follow Woodford

(2003), chapter 6, and approximate the interest rate lower bound effect by introducing

constraints of the form

E0

[
(1 − β)

∞∑

t=0

βtrt

]
≥ 0 (12)

E0

[
(1 − β)

∞∑

t=0

βtr2
t

]
≤ K

[
E0

[
(1 − β)

∞∑

t=0

βtrt

]]2

(13)

Then Woodford shows that the effect of these extra constraints is to follow the same

optimization as before except that the single period loss function is replaced with

Lt = y
T
t Qyt + wr(rt − r∗)2 (14)

where wr > 0 if (13) binds (which we assume) and r∗ is a nominal interest rate target. We

linearize around a zero-inflation deterministic steady state with rt an absolute deviation
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about its steady state value. Then r∗ equals a non-zero steady state inflation target.

r∗ > 0 if monetary transactions frictions are negligible, but r∗ < 0 is possible otherwise.

In what follows we consider a model with no monetary transactions frictions, so r∗ > 0 is

appropriate. The policymaker’s optimization problem is now to choose an unconditional

distribution for rt (i.e., the steady state variance) shifted to the right about a new non-zero

steady state inflation rate, such that the probability of the interest rate hitting the lower

bound is very low. As we demonstrate below in section 6.2, this is achieved by an optimal

combination of a sufficiently small unconditional variance and the choice of the new steady

state inflation rate.

2.2.2 Commitment Versus Discretion

To derive the ex ante optimal policy with commitment following Currie and Levine (1993)

we maximize the Lagrangian

L0 = E0

[
(1 − β)

∞∑

t=0

βt
[
(yT

t Qyt + wrr
2
t + pt+1(Ayt + Brt − yt+1)

]
]

(15)

with respect to {rt}, {yt} and the row vector of costate variables, pt, given z0. From

Appendix A where more details are provided, this leads to an optimal rule of the form

rt = D

[
zt

p2t

]
(16)

where [
zt+1

p2t+1

]
= H

[
zt

p2t

]
(17)

and the optimality condition5 at time t = 0 imposes p20 = 0. In (16) and (17) p
T
t =

[
p

T
1t p

T
2t

]

is partitioned so that p1t, the co-state vector associated with the predetermined variables, is

of dimension (n−m)×1 and p2t, the co-state vector associated with the non-predetermined

variables, is of dimension m × 1. The (conditional) loss function is given by

ΩOP
t = −(1 − β)tr

(
N11

(
Zt +

β

1 − β
Σ

)
+ N22p2tp

T
2t

)
(18)

where Zt = ztz
T
t , Σ = cov(ǫt),

N =

[
S11 − S12S

−1
22 S21 S12S

−1
22

−S−1
22 S21 S−1

22

]
=

[
N11 N12

N21 N22

]
(19)

5Optimality from a ‘timeless perspective’ imposes a different condition at time t = 0 (see Appendix

A.1.2), but this has no bearing on the stochastic component of policy.
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and S is the solution to the steady-state Ricatti equation. In (19) matrices S and N

are partitioned conformably with yt = [zT
t x

T
t ]T so that S11 for instance has dimensions

(n − m) × (n − m).

Note that in order to achieve optimality the policy-maker sets p20 = 0 at time t = 0.

At time t > 0 there exists a gain from reneging by resetting p2t = 0. It can be shown

that matrices N11 and N22 are negative definite, so the the loss in (18) is positive and

an incentive to renege exists at all points along the trajectory of the optimal policy by

resetting p2t = 0. This essentially is the time-inconsistency problem facing stabilization

policy in a model with structural dynamics.

To evaluate the discretionary (time-consistent) policy we write the expected loss Ωt at

time t as

Ωt = Et

[
(1 − β)

∞∑

τ=t

βτ−tLτ

]
= (1 − β)(yT

t Qyt + wrr
2
t ) + βΩt+1 (20)

The dynamic programming solution then seeks a stationary solution of the form rt =

−Fzt, Ωt = z
T Sz and x = −Nz where matrices S and N are different matrices from

those under commitment (unless there is no forward-looking behviour), now of dimensions

(n−m)×(n−m) and m×(n−m) respectively. The value function Ωt is minimized at time t,

subject to (9) and (10), in the knowledge that a similar procedure will be used to minimize

Ωt+1 at time t + 1.6 Both the instrument rt and the forward-looking variables xt are now

proportional to the predetermined component of the state-vector zt and the equilibrium

we seek is therefore Markov Perfect. In Appendix A we set out an iterative process for Ft,

Nt, and St starting with some initial values. If the process converges to stationary values

independent of these initial values,7 F, N and S say, then the time-consistent feedback

rule is rt = −Fzt with loss at time t given by

ΩTC
t = (1 − β)tr

(
S

(
Zt +

β

1 − β
Σ

))
(21)

2.2.3 Simple Commitment Rules

We now address a problem with the optimal commitment rule: that in all but very simple

models it is extremely complex, with the interest rate feeding back at time t on the full

state vector zt and all past realizations of zt back to the initiation of the rule at t = 0.8

We therefore seek to mimic the optimal commitment rule with simpler rules of the form

rt = Dyt = D

[
zt

xt

]
(22)

6See Currie and Levine (1993) and Söderlind (1999).
7Indeed we find this is the case in the results reported in the paper.
8See Appendix A.1.1.
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where D is constrained to be sparse in some specified way. In Appendix A we show that

the loss at time t is given by

ΩSIM
t = (1 − β)tr

(
V

(
Zt +

β

1 − β
Σ

))
(23)

where V = V (D) satisfies a Lyapanov equation. ΩSIM
t can now be minimized with respect

to D to give an optimized simple rule of the form (22) with D = D∗. A very important

feature of optimized simple rules is that unlike their optimal commitment or optimal

discretionary counterparts they are not certainty equivalent. In fact if the rule is designed

at time t = 0 then D∗ = D∗

(
Z0 + β

1−β Σ
)

and so depends on the displacement z0 at

time t = 0 and on the covariance matrix of innovations Σ = cov(ǫt). From non-certainty

equivalence it follows that if the simple rule were to be re-designed at ant time t > 0, since

the re-optimized D∗ will then depend on Zt the new rule will differ from that at t = 0.

This feature is true in models with or without rational forward-looking behaviour and it

implies that simple rules are time-inconsistent even in non-RE models.

2.3 Sustaining the Commitment Outcome as An Equilibrium

Suppose that there are two types of monetary policymaker, a ‘strong’ type who likes to

commit and perceives substantial costs from reneging on any such commitment, and a

‘weak’ type who optimizes in an opportunistic fashion on a period-by-period basis. The

‘strong type’ could be a policymaker with a modified loss function as in Rogoff (1985),

Walsh (1995), Svensson and Woodford (2005), though for the case of Rogoff-delegation the

outcome is second-best. In a complete information setting, these types would be observed

by the public and the strong type would pursue the optimal commitment monetary rule

or a simple approximation, and the weak type would pursue the discretionary policy. We

assume there is uncertainty about the type of policymaker and the weak type is trying to

build a reputation for commitment. The game is now one of incomplete information and

we examine the possibility that commitment rules can be sustained as a Perfect Bayesian

Equilibrium.

Consider the following strategy profile.

1. A strong type follows an optimal or simple commitment rule.

2. In period t a weak type acts as strong and follows the commitment rule with prob-

ability 1 − qt, if it has acted strong (qt = 0) in all previous periods. Otherwise it

pursues the discretionary rule and reveals its type.

3. Let ρt be the probability assigned by the private sector to the event that the pol-

icymaker is of the strong type. We can regard ρt as a measure of reputation. At
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the beginning of period 0 the private sector chooses its prior ρ0 > 0. In period t the

private sector receives the ‘signal’ consisting of the inflation set by the policymaker.

At the end of the period it updates the probability ρt, using Bayes rule, and then

forms expectations of the next period’s inflation rate.

In principle there are three types of equilibria to these games. If both strong and weak

governments send the same message (i.e. implement the same interest rate) we have a

pooling equilibrium. If they send different messages this gives a separating equilibrium. If

one or more players randomizes with a mixed strategy we have a hybrid equilibrium. Thus

in the above game, qt = 0 gives a pooling equilibrium, qt = 1 a separating equilibrium and

0 < qt < 1 a hybrid equilibrium. If qt = 0 is a Perfect Bayesian Equilibrium to this game,

then we have solved the time-inconsistency problem.

To show that qt = 0, it is sufficient to show that, given beliefs by the private sector,

there is no incentive for a weak government to ever deviate from acting strong. To show this

we must compare the welfare if the policymaker continues with the optimal commitment

policy at time t with that if it reneges, re-optimizes and then suffers a loss of reputation.

Consider the optimal commitment rule first. At time t the single period loss function

is L(zt, p2t) and the intertemporal loss function can be written

ΩOP
t (zt, p2t) = (1 − β)L(zt, p2t) + βΩOP

t+1(z
OP
t+1, p2,t+1) (24)

where (zOP
t+1, p2,t+1) is given by (17). If the policymaker re-optimizes at time t the corre-

sponding loss is

ΩR
t (zt, 0) = (1 − β)L(zt, 0) + βΩTC

t+1(z
R
t+1) (25)

where from (17) we now have that z
R
t+1 = H11zt.

The condition for a perfect Bayesian pooling equilibrium is that for all realizations of

shocks to (zt, p2t) at every time t the no-deviation condition

ΩOP
t (zt, p2t) < ΩR

t (zt, 0) (26)

holds. If this condition holds, then the weak authority always mimics the strong author-

ity and follows the commitment rule thus sustaining average zero inflation coupled with

optimal stabilization.

Using (24), (31), (18) and (21) the no-deviation condition (26) can be written as

L(zt, p2t) − L(zt, 0) − βEt

[
tr(SZR

t+1 + N11Z
OP
t+1 + N22p

T
2,t+1p2,t+1)

]

<
β2

1 − β
tr((S + N11)Σ) (27)
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The first term on the left-hand-side of (27) is the single-period gain from reneging and

putting p2t = 0. The second term on the left-hand-side of (27) are the possible one-off

stabilization gains since the state of the economy after reneging reflected in z
R
t+1 will be

closer to the long-run than that along the commitment policy reflected in z
OP
t+1, p2t+1. These

two terms together constitute the temptation to renege. Since tr((S +N11) > 0, the right-

hand-side is always positive and constitutes the penalty in the shape of the stabilization

loss when dealing with future shocks following a loss of reputation.

If the time-period is small (i.e. β ≃ 1), then the single-period gains are also relatively

small and we can treat the loss of reputation as if it were instantaneous. Then the no

deviation condition becomes simply

ΩOP
t < ΩTC

t (28)

for all realizations of exogenous stochastic shocks. From (18) and (21) this becomes

tr((N11 + S)(Zt +
β

1 − β
Σ) > −tr(N22p2tp

T
2t) (29)

Note that both −N22 and (N11 + S) are positive definite (see Currie and Levine (1993),

chapter 5 for a continuous-time analysis on which the discrete-time analysis here is based).

It follows that both the right-hand-side and the left-hand side are positive, so (29) is not

automatically satisfied.9 Finally we consider the no-deviation condition for a simple rule.

Consider the optimized rule set at t = 0 which we take to be the steady state. Then

Z0 = 0 and D∗ = D∗(Σ). If the policymaker continues with this policy then in state zt at

time t the welfare loss is given by

ΩSIM
t (zt, D

∗) = (1 − β)L(zt, D
∗) + βΩSIM

t+1 (zSIM
t+1 , D∗) (30)

where z
SIM
t+1 = H(D∗)zt and H is given in Appendix A. If the policy deviates she goes to a

re-optimized reneging rule DR = DR((Zt + β
1−β Σ)) which now depends on the realization

of zt at Time t. The welfare loss is then

ΩR
t (zt, D

R) = (1 − β)L(zt, D
R) + βΩTC

t+1(z
R
t+1) (31)

where z
SIM
t+1 = H(DR)zt. Proceeding as before the no-deviation condition now becomes

L(zt, D
∗) − L(zt, D

R) − βEt

[
tr(SZR

t+1 − V ZSIM
t+1

]
<

β2

1 − β
tr((S − V )Σ) (32)

9The analysis of this section assumes that the steady state is the same under commitment and discretion.

When the interest rate lower bound constraint is introduced this is no longer the case. Let the new steady-

state inflation rates for the two cases be (π∗)OP and (π∗)TC respectively and the increase in the steady

state welfare loss arising from an positive inflation rate be W (π∗). Then a term W ((π∗)T C)−W ((π∗)OP )
1−β

is

added to the left-hand-side of (27) and (29).
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The intuition behind this condition is very similar to that of (27). In these three no-

deviation conditions (27), (29) and (32), since Zt or p2t are unbounded stochastic variables

there will inevitably be some realizations for which they are not satisfied. In other words

the Bayesian equilibrium must be of the mixed-strategy type with qt > 0. What we

must now show that qt is very small so we will only experience very occasional losses of

reputation. This we examine in section 6.6.

3 The Model

3.1 The Smets-Wouters Model

The Smets-Wouters (SW) model in an extended version of the standard New-Keynesian

DSGE closed-economy model with sticky prices and wages estimated by Bayesian tech-

niques. The model features three types of agents: households, firms and the monetary

policy authority. Households maximize a utility function with two arguments (goods and

leisure) over an infinite horizon. Consumption appears in the utility function relative to a

time-varying external habit-formation variable. Labour is differentiated over households,

so that there is some monopoly power over wages, which results in an explicit wage equa-

tion and allows for the introduction of sticky nominal Calvo-type wages contracts (Calvo

(1983)). Households also rent capital services to firms and decide how much capital to

accumulate given certain capital adjustment costs. Firms produce differentiated goods,

decide on labour and capital inputs, and set Calvo-type price contracts. Wage and price

setting is augmented by the assumption that those prices and wages that can not be freely

set are partially indexed to past inflation. Prices are therefore set as a function of current

and expected real marginal cost, but are also influenced by past inflation. Real marginal

cost depends on wages and the rental rate of capital. The short-term nominal interest

rate is the instrument of monetary policy. The stochastic behaviour of the model is driven

by ten exogenous shocks: five shocks arising from technology and preferences, three cost-

push shocks and two monetary-policy shocks. Consistent with the DSGE set up, potential

output is defined as the level of output that would prevail under flexible prices and wages

in the absence of cost-push shocks.

We incorporate one important modification to the SW model: the addition of distor-

tionary taxes at the steady state. As we will see this has a bearing on the inefficiency at

the steady state, the quadratic approximation of the utility function used for the welfare

analysis and the existence of an inflationary bias.
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3.2 Households

There are ν households of which a representative household r maximizes

E0

∞∑

t=0

βtUC,t




(Ct(r) − HC,t)
1−σ

1 − σ
+ UM,t

(
Mt(r)

Pt

)1−ϕ

1 − ϕ
− UL,t

Lt(r)
1+φ

1 + φ
+ u(Gt)


 (33)

where Et is the expectations operator indicating expectations formed at time t, β is the

household’s discount factor, UC,t, UM,t and UL,t are preference shocks common to all

households, Ct(r) is an index of consumption, Lt(r) are hours worked, HC,t represents

the habit in consumption, or desire not to differ too much from other households, and

we choose HC,t = hCt−1, where Ct = 1
ν

∑ν
r=1 Ct(r) is the average consumption index,

h ∈ [0, 1). When h = 0, σ > 1 is the risk aversion parameter (or the inverse of the

intertemporal elasticity of substitution) Mt(r) are end-of-period nominal money balances

and u(Gt) is the utility from exogenous real government spending Gt. We normalize the

household number ν to unity.

The representative household r must obey a budget constraint:

(1+TC,t)Pt(Ct(r)+I(r))+Et[Dt+1Bt+1(r)]+Mt(r) = (1−TY,t)PtYt(r)+Bt(r)+Mt−1(r)+TRt

(34)

where Pt is the GDP price index and It(r) is investment. Assuming complete financial

markets, Bt+1(r) is a random variable denoting the payoff of the portfolio Bt(r), purchased

at time t, and Dt+1 is the stochastic discount factor over the interval [t, t + 1] that pays

one unit of currency in a particular state of period t + 1 divided by the probability of

an occurrence of that state given information available in period t. The nominal rate of

return on bonds (the nominal interest rate), Rt, is then given by the relation Et[Dt+1] =
1

1+Rt
. The tax structure is as follows: TRt are lump-sum transfers to households by the

government net of lump-sum taxes, TC,t and TY,t are consumption and income tax rates

respectively. The income tax rate is paid on total income, PtYt(r), given by

PtYt(r) = Wt(r)Lt(r) + (RK,tZt(r) − Ψ(Zt(r))PtKt−1(r) + Γt(r) (35)

where Wt(r) is the wage rate, RK,t is the real return on beginning-of period t capital stock,

Kt−1, owned by households, Zt(r) ∈ [0, 1] is the degree of capital utilization with costs

PtΨ(Zt(r))Kt−1(r) where Ψ′, Ψ′′ > 0, and Γt(r) is income from dividends derived from the

imperfectly competitive intermediate firms plus the net cash inflow from state-contingent

securities. We first consider the case of flexible wages and introduce wage stickiness at a

later stage.
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Capital accumulation is given by

Kt(r) = (1 − δ)Kt−1(r) + (1 − S (Xt(r))) It(r) (36)

where Xt(r) =
UI,tIt(r)
It−1(r)

, UI,t is a shock to investment costs and we assume the investment

adjustment cost function, S(·), has the properties S(1) = S′(1) = 0.

As set below, intermediate firms employ differentiated labour with a constant CES

technology with elasticity of supply η. Then the demand for each consumer’s labour is

given by

Lt(r) =

(
Wt(r)

Wt

)
−η

Lt (37)

where Wt =
[∫ 1

0 Wt(r)
1−ηdr

] 1
1−η

is an average wage index and Lt =
[∫ 1

0 Lt(r)
η−1

η dr
] η

η−1

is average employment.

Household r chooses {Ct(r)}, {Mt(r)}, {Kt(r)}, {Z(r)} and {Lt(r)} (or {Wt(r)}) to

maximize (33) subject to (34)–(37), taking external habit HC,t, RK,t and prices and as

given. The insurance provided by state-contingency securities (the complete financial

markets assumption) enables us to impose symmetry on households (so that Ct(r) =

Ct, etc). Then by the standard Lagrangian method we have the first-order necessary

conditions:

1 = β(1 + Rt)Et

[
MUC

t+1

MUC
t

Pt

Pt+1

]

= β(1 + Rt)Et

[(
UC,t+1(Ct+1 − HC,t+1)

−σ

UC,t(Ct − HC,t)−σ

)
Pt

Pt+1

]
(38)

UM,t

(
Mt

Pt

)
−ϕ

=
(Ct − HC,t)

−σ

χPt

[
Rt

1 + Rt

]
(39)

Qt = Et

[
β

(
(Ct+1 − HC,t+1)

(Ct − HC,t)

)
−σ

(Qt+1(1 − δ)

+ RK,t+1Zt − Ψ(Zt+1))

]
(40)

1 = Qt[1 − (1 − S(Xt) − S′(Xt)Xt)]

+ βEtQt+1

(
(Ct+1 − HC,t+1)

(Ct − HC,t)

)
−σ

S′(Xt)
UI,t+1I

2
t+1

I2
t

(41)

RK,t = Ψ′(Zt) (42)

Wt(1 − TY,t)

(1 + TC,t)Pt
= − 1

(1 − 1
η )

MUL
t

MUC
t

≡ 1

(1 − 1
η )

MRSt =
UL,t

(1 − 1
η )

Lφ
t (Ct − HC,t)

σ (43)

where MUC
t and MUL

t are the marginal utilities of consumption and work respectively.

(38) is the familiar Keynes-Ramsey rule adapted to take into account habit in consumption.
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In (39), the demand for money balances depends positively on consumption relative to

habit and negatively on the nominal interest rate. Given the central bank’s setting of

the latter, (39) is completely recursive to the rest of the system describing our macro-

model. In (40) and (41), Qt is the real value of capital (Tobin’s Q) and these conditions

describe optimal investment behaviour. (42) describes optimal capacity utilization and

(43) equates the real disposable wage with the marginal rate of substitution (MRSt)

between consumption and leisure and reflects the market power of households arising

from their monopolistic supply of a differentiated factor input with elasticity η.

3.3 Firms

Competitive final goods firms use a continuum of intermediate goods according to a con-

stant returns CES technology to produce aggregate output

Yt =

(∫ 1

0
Yt(f)(ζ−1)/ζdf

)ζ/(ζ−1)

(44)

where ζ is the elasticity of substitution. This implies a set of demand equations for each

intermediate good f with price Pt(f) of the form

Yt(f) =

(
Pt(f)

Pt

)
−ζ

Yt (45)

where Pt =
[∫ 1

0 Pt(f)1−ζdf
] 1

1−ζ
. Pt is an aggregate intermediate price index, but since

final goods firms are competitive and the only inputs are intermediate goods, it is also the

GDP price level.

In the intermediate goods sector each good f is produced by a single firm f using

differentiated labour and capital with a Cobb-Douglas technology:

Yt(f) = At(Zt(f)Kt−1(f))αLt(f)1−α − F (46)

where F are fixed costs of production and

Lt(f) =

(∫ 1

0
Lt(r, f)(η−1)/ηdr

)η/(η−1)

(47)

is an index of differentiated labour types used by the firm, where Lt(r, f) is the labour input

of type r by firm f , and At is an exogenous shock capturing shifts to trend total factor

productivity (TFP) in this sector. The cost of labour to the firm is (1+TL,t)Wt where TL,t

is a pay-roll tax paid by the firm. Minimizing costs PtRK,tZt(f)Kt−1(f)+(1+TL,t)WtLt(f)

gives
(1 + TL,t)WtLt(f)

ZtPtRK,tKt−1(f)
=

1 − α

α
(48)
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Then aggregating over firms and denoting
∫ 1
0 Lt(r, f)df = Lt(r) leads to the demand for

labour as shown in (37). In an equilibrium of equal households and firms, all wages adjust

to the same level Wt and it follows that Yt = At(ZtKt−1)
αL1−α

t . For later analysis we

need the firm’s minimum real marginal cost:

MCt =

(
(1+TL,t)Wt

Pt

)1−α
Rα

K

At
α−α(1 − α)−(1−α) (49)

Turning to price-setting, we assume there is a probability of 1 − ξp at each period

that the price of each good f is set optimally to P 0
t (f). If the price is not re-optimized,

then it is indexed to last period’s aggregate producer price inflation.10 With indexation

parameter γp ≥ 0, this implies that successive prices with no re-optimization are given by

P 0
t (f), P 0

t (f)
(

Pt

Pt−1

)γp

, P 0
t (f)

(
Pt+1

Pt−1

)γp

, ... . For each producer firm f the objective is

at time t to choose P 0
t (f) to maximize discounted profits

Et

∞∑

k=0

ξk
HDt+kYt+k(f)

[
P 0

t (f)

(
Pt+k−1

Pt−1

)γp

− Pt+kMCt+k

]
(50)

where Dt+k is the stochastic discount factor over the interval [t, t+k], subject to a common

downward sloping demand given by (45). The solution to this is

Et

∞∑

k=0

ξk
pDt+kYt+k(f)

[
P 0

t (f)

(
Pt+k−1

Pt−1

)γp

− ζ

(ζ − 1)
Pt+kMCt+k

]
= 0 (51)

and by the law of large numbers the evolution of the price index is given by

P 1−ζ
t+1 = ξp

(
Pt

(
Pt

Pt−1

)γp
)1−ζ

+ (1 − ξp)(P
0
t+1(f))1−ζ (52)

3.4 Staggered Wage-Setting

We introduce wage stickiness in an analogous way. There is a probability 1 − ξw that the

wage rate of a household of type r is set optimally at W 0
t (r). If the wage is not re-optimized

then it is indexed to last period’s GDP inflation. With a wage indexation parameter γw,

the wage rate trajectory with no re-optimization is given by W 0
t (r), W 0

t (r)
(

Pt

Pt−1

)γw

,

W 0
t (r)

(
Pt+1

Pt−1

)γw

, · · ·. The household of type r at time t then chooses W 0
t (r) to maximize

Et

∞∑

k=0

(ξwβ)k

[
W 0

t (r)(1 − TY,t+k)

(
Pt+k−1

Pt−1

)γw

Lt+k(r)Λt+k(r) − UL,t+k
(Lt+k(r))

1+φ

1 + φ

]

(53)

10Thus we can interpret 1
1−ξp

as the average duration for which prices are left unchanged.

21
ECB 

Working Paper Series No 709
January 2007



where Λt(r) =
MUC

t (r)
Pt

is the real marginal utility of consumption income and Lt(r) is

given by (37). The first-order condition for this problem is

Et

∞∑

k=0

(ξwβ)k W η
t+k

(
Pt+k−1

Pt−1

)
−γwη

Lt+kΛt+k(r)
[
W 0

t (r)(1 − TY,t+k)

(
Pt+k−1

Pt−1

)γw

− 1

(1 − 1
η )

Pt+kMRSt+k(r)
]

= 0 (54)

Note that as ξw → 0 and wages become perfectly flexible, only the first term in the

summation in (53) counts and we then have the result (43) obtained previously. By

analogy with (52), by the law of large numbers the evolution of the wage index is given by

W 1−η
t+1 = ξw

(
Wt

(
Pt

Pt−1

)γw
)1−η

+ (1 − ξw)(W 0
t+1(r))

1−η (55)

3.5 Equilibrium

In equilibrium, goods markets, money markets and the bond market all clear. Equating

the supply and demand of the consumer good we obtain

Yt = At(ZtKt−1)
αL1−α

t − F = Ct + Gt + It + Ψ(Zt)Kt−1 (56)

We examine the dynamic behaviour in the vicinity of a steady state in which the govern-

ment budget constraint is in balance; i.e.,

TRt + PtGt = (TY,t + TC,t)PtYt + TL,tWtLt + Mt − Mt−1 (57)

As in Coenen et al. (2005) we further assume that changes in government spending are

financed exclusively by changes in lump-sum taxes with tax rates TY,t, TC,t and TL,t held

constant at their steady-state values.

Given the interest rate Rt (expressed later in terms of an optimal or IFB rule) the

money supply is fixed by the central banks to accommodate money demand. By Walras’

Law we can dispense with the bond market equilibrium condition and therefore the house-

hold constraint. Then the equilibrium is defined at t = 0 by stochastic processes Ct, Bt,

It, Pt, Mt, Lt, Kt, Zt, RK,t, Wt, Yt, given past price indices and exogenous shocks and

government spending processes.

In what follows we will assume a ‘cashless economy’ version of the model in which both

seigniorage in (57) and the utility contribution of money balances in (33) are negligible.

Then given the nominal interest rate, our chosen monetary instrument, we can dispense

altogether with the money demand relationship (39). For estimation purposes the model

is closed with a “empirical Taylor rule” specified in section 4.
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3.6 Zero-Inflation Steady State

For the cashless economy, deterministic zero-inflation steady state, denoted by variables

without the time subscripts, Et−1(UC,t) = 1 and Et−1(UL,t) = κ is given by

1 = β(1 + R) (58)

Q = β(Q(1 − δ) + RKZ − Ψ(Z)) (59)

RK = Ψ′(Z) (60)

Q = 1 (61)

W (1 − TY )

P (1 + TC)
=

κ(1 − h)σ

1 − 1
η

LφCσ (62)

Y = A(KZ)αL1−α − F (63)

W (1 + TL)L

PZRKK
=

1 − α

α
(64)

1 =
P 0

P
=

MC(
1 − 1

ζ

) (65)

MC =

(
W (1+TL)

P

)1−α
Rα

K

A
(66)

Y = C + (δ + Ψ(Z))K + G (67)

TR + PG = (TY + TC)PY + TLWL (68)

giving us 11 equations to determine R, Z, Q, W
P , L, K, RK , MC, C, Y and possible tax

structures, (TR, TY , TC), given G. In this cashless economy the price level is indetermi-

nate.

The solution for steady state values decomposes into a number of independent calcu-

lations. First from (58) the natural rate of interest is given by

R =
1

β
− 1 (69)

which is therefore pinned down by the household’s discount factor. Equations (59) to (61)

give

1 = β[1 − δ + ZΨ′(Z) − Ψ(Z)] (70)

which determines steady state capacity utilization. As in SW we assume that Z = 1 and

Ψ(1) = 0 so that (70) and (60) imply that RK = Ψ′(Z) = 1
β − 1 + δ = R + δ meaning that

perfect capital market conditions apply in the deterministic steady state.11

11As we shall see later Z is socially efficient thus justifying the assumption Z = 1.
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From (64) to (66) a little algebra yields the capital-labour ratio and the real wage W
P :

K

L
=

[
A

(
1 − 1

ζ

)
α

RK

] 1
1−α

(71)

W

P
=

(1 − α)RK

(1 + TL)α

K

L
(72)

Denote the total tax wedge by T between the real effective wage income of households

(the purchasing power of the post-tax wage) and the real effective labour cost of firms.

Then

T ≡ 1 − 1 − TY

(1 + TC)(1 + TL)
≃ TY + TC + TL (73)

Then combining (62), (63) and (67) and substituting for RK from (71) we arrive at

(
1 +

F

Y

)φ

Y φ+σ
(
1 − δ

A

(
K

L

)1−α

−
G + δα

RK
F

Y

)

=
(1 − α)(1 − T )

(
1 − 1

η

) (
1 − 1

ζ

)
A1+φ

(
K
L

)α(1+φ)

ακ(1 − h)σ
(74)

Equations (74), with K
L defined by (71), and RK = 1

β − 1 + δ define the natural rate of

output in terms of underlying parameters and the tax wedge T . Thus given government

spending as a proportion of GDP, the natural rate of output falls as market power in

output and labour markets increases (with decreases in ζ and η respectively) and the tax

wedge T increases. However external habit in consumption causes households to supply

more labour thus increasing the natural rate of output. Market power, taxes and external

habit are all sources of inefficiency, but as we shall see in section 5, they do not impact on

efficiency in the same direction.

3.7 Linearization about the Zero-Inflation Steady State

We now linearize about the deterministic zero-inflation steady state. Define all lower case

variables as proportional deviations from this baseline steady state except for rates of
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change which are absolute deviations.12 Then the linearization takes the form:

ct =
h

1 + h
ct−1 +

1

1 + h
Etct+1

− 1 − h

(1 + h)σ
(rt − Etπt+1 + EtuC,t+1 − uC,t)

qt = β(1 − δ)Etqt+1 − (rt − Etπt+1) + βZEtrK,t+1 + ǫQ,t+1

zt =
rK,t

ZΨ′′(Z)
=

ψ

RK
rK,t where ψ =

Ψ′(Z)

ZΨ′′(Z)

it =
1

1 + β
it−1 +

β

1 + β
Etit+1 +

1

S′′(1)(1 + β)
qt +

βuI,t+1 − uI,t

1 + β

πt =
β

1 + βγp
Etπt+1 +

γp

1 + βγp
πt−1 +

(1 − βξp)(1 − ξp)

(1 + βγp)ξp
mct

kt = (1 − δ)kt−1 + δit

mct = (1 − α)wrt +
α

RK
rK,t − at + ǫP,t+1

wrt =
β

1 + β
Etwrt+1 +

1

1 + β
wrt−1 +

β

1 + β
Etπt+1 −

1 + βγw

1 + β
πt +

γw

1 + β
πt−1

+
(1 − βξw)(1 − ξw)

(1 + β)ξw(1 + ηφ)
(mrst − wrt)

mrst =
σ

1 − h
(ct − hct−1) + φlt + uL,t + ǫW,t+1

lt = kt−1 +
1

RK
(1 + ψ)rK,t − wrt

yt = cyct + gygt + iyit + kyψrK,t

yt = φF [at + α(
ψ

RK
rK,t + kt−1) + (1 − α)lt] where φF = 1 +

F

Y
uC,t+1 = ρCuC,t + ǫC,t+1

uL,t+1 = ρLuL,t + ǫL,t+1

uI,t+1 = ρIuI,t + ǫI,t+1

gt+1 = ρggt + ǫg,t+1

at+1 = ρaat + ǫa,t+1

where ‘inefficient cost-push’ shocks ǫQ,t+1, ǫP,t+1 and ǫW,t+1 have been added to the value

of capital, marginal cost and marginal rate of substitution equations respectively. Vari-

ables yt, ct, mct, uC,t, uN,t, at, gt are proportional deviations about the steady state.

[ǫC,t, ǫN,t, ǫg,t, ǫa,t] are i.i.d. disturbances. πt, rK,t and rt are absolute deviations about the

steady state.13

12That is, for a typical variable Xt, xt = Xt−X
X

≃ log
(

Xt

X

)
where X is the baseline steady state. For

variables expressing a rate of change over time such as it, xt = Xt − X.
13In the SW model they define r̂K,t =

rK,t

RK
. Then zt = Ψ′(Z)

ZΨ′′(Z)
r̂K,t = ψr̂K,t. In our set-up zt = ψ

RK
rK,t

has been eliminated. (75) has a term in rK,t omitted in SW, a mistake also corrected in Levin et al. (2006).
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For later use we require the output gap the difference between output for the sticky price

model obtained above and output when prices and wages are flexible, ŷt say. Following

SW we also eliminate the inefficient shocks from this target level of output. The latter,

obtained by setting ξp = ξw = ǫQ,t+1 = ǫP,t+1 = ǫW,t+1 = 0 in the sticky-price linearizarion

above, is given by14

ĉt =
h

1 + h
ĉt−1 +

1

1 + h
Etĉt+1

− 1 − h

(1 + h)σ
(r̂t − Etπ̂t+1 + EtuC,t+1 − uC,t)

q̂t = β(1 − δ)Etq̂t+1 − (r̂t − Etπ̂t+1) + βZEtr̂K,t+1

ît =
1

1 + β
ît−1 +

β

1 + β
Etît+1 +

1

S′′(1)(1 + β)
q̂t +

βuI,t+1 + uI,t

1 + β

k̂t = (1 − δ)k̂t−1 + δît

m̂ct = 0 = (1 − α)ŵrt +
α

RK
r̂K,t − at

m̂rst = ŵrt =
σ

1 − h
(ĉt − hĉt−1) + φl̂t + uL,t

l̂t = k̂t−1 +
1

RK
(1 + ψ)r̂K,t − ŵrt

ŷt = cy ĉt + gygt + iy ît + kyψr̂K,t

ŷt = φF [at + α(
ψ

RK
r̂K,t + k̂t−1) + (1 − α)l̂t]

Table 1 provides a summary of our notation.

14Note that the zero-inflation steady states of the sticky and flexi-price steady states are the same.
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πt producer price inflation over interval [t − 1, t]

rt nominal interest rate over interval [t, t + 1]

wrt = wt − pt real wage

mct marginal cost

mrs marginal rate of substitution between work and consumption

lt employment

zt capacity utilization

kt end-of-period t capital stock

it investment

rK,t return on capital

qt Tobin’s Q

ct consumption

yt, ŷt output with sticky prices and flexi-prices

ot = ŷt − yt output gap

ui,t+1 = ρaui,t + ǫi,t+1 AR(1) processes for utility preference shocks, ui,t, i = C, L, I

at+1 = ρaat + ǫa,t+1 AR(1) process for factor productivity shock, at

gt+1 = ρggt + ǫg,t+1 AR(1) process government spending shock, gt

β discount parameter

γp, γw indexation parameters

h habit parameter

1 − ξp, 1 − ξw probability of a price, wage re-optimization

σ risk-aversion parameter

φ disutility of labour supply parameter

ϕ 1
S′′(1)

φF 1 + F
Y

Table 1. Summary of Notation (Variables in Deviation Form).

4 Estimation

As in SW we estimate the model using Bayesian techniques. We close the model with an

empirical linearized Taylor rule of the form

rt = ρrt−1 + (1 − ρ)[π̄t + θπEt(πt+j − π̄t+j) + θyot] + θ∆π(πt − πt−1) + θ∆y(ot − ot−1)

The Bayesian approach itself combines the prior distributions for the individual pa-

rameters with the likelihood function to form the posterior density. This posterior den-

sity can then be optimized with respect to the model parameters through the use of the
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Monte-Carlo Markov Chain sampling methods. The model is estimated using the Dynare

software, Juillard (2004).15 Table 2 reports the posterior mean and the 5th and 95th

percentiles of the posterior distribution obtained through the Metropolis-Hasting (MH)

sampling algorithm (using 100,000 draws from the posterior and an average “acceptance

rate” of around 0.25) for the various model variants as well as the marginal likelihood

(LL). Note, in re-estimating we use identical priors to those used in SW.

In the table we report results for five models: the core SW model, then the SW model

without indexing in wages, γw = 0, without indexing in prices, γp = 0, with neither and

finally the SW model with a 4-quarter average price contract, ξp = 0.75, imposed. From

the LL values and the model posterior probabilities (with equal priors) we can see that the

model without any indexing performs the best, followed by the core SW mode, followed

by the model with only price indexing with ξp = 0.75 massively behind the others. The

latter variant is therefore only empirically supported if the priors are very strongly in its

favour.16 In Section 6, we provide results for the core SW model and the γp = γw = 0 and

ξp = 0.75 variants.

15We are grateful to Gregory De Walque and Raf Wouters for providing the SW model in Dynare code.
16As discussed in Geweke (1999), the Bayesian approach to estimation allows a formal comparison of

different models based on their marginal likelihoods. The marginal likelihood of Model Mi is given by,

p (Y | Mi) =

∫

Ξ

p (ξ | Mi) p (Y | ξ, Mi) dξ

where p (ξ | Mi) is the prior density for model Mi and p (Y | ξ, Mi) is the data density for model Mi given

the parameter vector ξ and the data vector Y . Then the posterior odds ratio is given by

POij ≡
p(Mi|Y )

p(Mj |Y )
=

p(Y |Mi)p(Mi)

p(Y |Mj)p(Mj)
=

p(Y |Mi)

p(Y |Mj)

assuming equal prior model probabilities (p(Mi) = p(Mj)). The posterior model probabilities are reported

in Table 3.
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Core γw = 0 γp = 0 γw = γp = 0 ξp = 0.75

ρa 0.89 [0.81:0.96] 0.89 [0.82:0.97] 0.87 [0.80:0.95] 0.88 [0.81:0.96] 0.91 [0.84:0.99]

ρpb 0.84 [0.68:0.99] 0.84 [0.68:0.99] 0.86 [0.71:0.99] 0.86 [0.70:0.99] 0.84 [0.70:0.99]

ρb 0.83 [0.77:0.89] 0.83 [0.77:0.90] 0.84 [0.78:0.90] 0.84 [0.77:0.89] 0.82 [0.74:0.92]

ρg 0.95 [0.90:0.99] 0.95 [0.91:0.99] 0.95 [0.91:0.99] 0.95 [0.91:0.99] 0.95 [0.91:0.99]

ρl 0.91 [0.84:0.97] 0.93 [0.89:0.98] 0.92 [0.88:0.98] 0.93 [0.89:0.98] 0.87 [0.78:0.97]

ρi 0.91 [0.87:0.97] 0.92 [0.86:0.97] 0.92 [0.86:0.97] 0.92 [0.87:0.98] 0.90 [0.84:0.98]

ϕ−1 6.79 [5.08:8.55] 6.70 [5.04:8.44] 6.77 [4.96:8.50] 6.78 [5.13:8.65] 6.12 [4.31:8.07]

σ 1.40 [0.94:1.86] 1.44 [0.96:1.88] 1.43 [0.97:1.91] 1.45 [0.97:1.90] 1.36 [0.93:1.76]

h 0.57 [0.45:0.68] 0.57 [0.45:0.68] 0.57 [0.45:0.68] 0.56 [0.45:0.68] 0.54 [0.41:0:68]

ξw 0.73 [0.66:0.81] 0.71 [0.64:0.77] 0.74 [0.66:0.81] 0.71 [0.65:0.78] 0.76 [0.67:0.84]

φ 2.40 [1.37:3.35] 2.31 [1.29:3.23] 2.39 [1.44:3.39] 2.38 [1.39:3.33] 2.17 [1.28:3.21]

ξp 0.91 [0.89:0.92] 0.91 [0.89:0.92] 0.89 [0.87:0.91] 0.90 [0.88:0.92] 0.75 [-]

γw 0.69 [0.44:0.94] - 0.66 [0.40:0.93] - 0.44 [0.19:0.67]

γp 0.44 [0.26:0.60] 0.42 [0.25:0.59] - - 0.46 [0.30:0.63]

ψ−1 0.32 [0.21:0.42] 0.32 [0.21:0.42] 0.32 [0.21:0.42] 0.32 [0.21:0.42] 0.34 [0.24:0:45]

φF 1.56 [1.39:1.73] 1.57 [1.40:1.74] 1.55 [1.37:1.72] 1.55 [1.39:1.72] 1.59 [1.42:1.76]

θπ 1.69 [1.54:1.86] 1.70 [1.53:1.86] 1.69 [1.53:1.84] 1.69 [1.52:1.85] 1.69 [1.53:1.87]

θ∆π 0.15 [0.07:0.23] 0.17 [0.09:0.24] 0.17 [0.08:0.25] 0.17 [0.09:0.26] 0.14 [0.06:0.23]

ρ 0.96 [0.94:0.98] 0.96 [0.94:0.98] 0.96 [0.95:0.98] 0.96 [0.95:0.98] 0.96 [0.94:0:98]

θy 0.11 [0.04:0.18] 0.10 [0.03:0.17] 0.11 [0.04:0.19] 0.11 [0.04:0.18] 0.12 [0.05:0.19]

θ∆y 0.15 [0.11:0.19] 0.15 [0.12:0.19] 0.15 [0.12:0.19] 0.16 [0.13:0.20] 0.16 [0.12:0.19]

sd(ǫa) 0.50 [0.39:0.59] 0.49 [0.38:0.58] 0.50 [0.38:0.61] 0.49 [0.39:0.59] 0.47 [0.37:0.57]

sd(ǫπ̄) 0.01 [0.00:0.06] 0.02 [0.00:0.02] 0.02 [0.00:0.03] 0.05 [0.00:0.03] 0.02 [0.01:0.03]

sd(ǫC) 0.38 [0.20:0.56] 0.38 [0.20:0.54] 0.38 [0.19:0.56] 0.37 [0.21:0.54] 0.32 [0.13:0.54]

sd(ǫg) 1.99 [1.73:2.26] 1.99 [1.74:2.26] 1.98 [1.73:2.25] 1.97 [1.73:2.23] 2.00 [1.72:2.24]

sd(ǫL) 3.33 [1.80:4.88] 2.92 [1.58:4.17] 3.22 [1.93:4.55] 3.01 [1.77:4.13] 3.10 [1.65:4.44]

sd(ǫI) 0.07 [0.03:0.10] 0.07 [0.03:0.10] 0.07 [0.03:0.11] 0.07 [0.03:0.10] 0.06 [0.03:0.10]

sd(ǫR) 0.08 [0.04:0.11] 0.09 [0.06:0.13] 0.08 [0.04:0.11] 0.08 [0.05:0.12] 0.08 [0.04:0.12]

sd(ǫQ) 0.61 [0.50:0.70] 0.61 [0.50:0.70] 0.61 [0.52:0.72] 0.61 [0.52:0.73] 0.60 [0.50:0.69]

sd(ǫP ) 0.16 [0.13:0.18] 0.16 [0.14:0.19] 0.21 [0.18:0.25] 0.22 [0.18:0.26] 0.34 [0.29:0.39]

sd(ǫW ) 0.29 [0.24:0.33] 0.27 [0.23:0.31] 0.29 [0.25:0.34] 0.27 [0.23:0.31] 0.33 [0.26:0.39]

LL -298.72 -298.96 -299.02 -298.17 -348.82

prob 0.235 0.185 0.174 0.407 0.000

Table 2. Bayesian Estimation of Parameters
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5 Is There a Long-Run Inflationary Bias?

As we have seen a long-run inflationary bias under discretion arises only if the steady

state associated with zero inflation, about which we have linearized, is inefficient. To

examine the inefficiency of the steady state we consider the social planner’s problem for

the deterministic case obtained by maximizing

Ω0 =
∞∑

t=0

βt

[
(Ct − hCt−1)

1−σ

1 − σ
− κ

L1+φ
t

(1 + φ)

]
(75)

with respect to {Ct}, {Kt}, {Lt} and {Zt} subject to the resource constraint

Yt = At(ZtKt−1)
αL1−α

t − F = Ct + Gt + Kt − (1 − δ)Kt−1 + Ψ(Zt)Kt−1 (76)

To solve this optimization problem define the Lagrangian

L = Ω0 +
∞∑

t=0

βtµt

[
At(ZtKt−1)

αL1−α
t − Ct − Gt − Kt + (1 − δ)Kt−1 − Ψ(Zt)Kt−1

]

First order conditions are:

Ct : (Ct − hCt−1)
−σ − βh(Ct+1 − hCt)

−σ − µt = 0

Kt : −µt +

[
(1 − δ)β + αβAtZt+1

(
Lt+1

Zt+1Kt

)1−α

− βΨ(Zt+1)

]
µt+1 = 0

Lt : −κLφ
t + (1 − α)At

(
ZtKt−1

Lt

)α

µt = 0

Zt : Ψ′(Zt) − αAt

(
Lt

ZtKt−1

)1−α

= 0

The efficient steady-state levels of output Yt+1 = Yt = Yt−1 = Y ∗, say, is therefore

found by solving the system:

[(1 − h)C]−σ (1 − βh) − µ = 0 (77)

−1 + (1 − δ)β + αβAZ

(
L

ZK

)1−α

− βΨ(Z) = 0 (78)

−κLφ + (1 − α)A

(
ZK

L

)α

µ = 0 (79)

Ψ′(Z) − αA

(
L

ZK

)1−α

= 0 (80)

Solving as we did for the natural rate and denoting the social optimum by Z∗, Y ∗ etc

we arrive at

1 = β[1 − δ + Z∗Ψ′(Z∗) − Ψ(Z∗)] (81)
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Hence comparing (81) and (70) it can be seen that Z∗ = Z = 1. Thus the natural rate of

capacity utilization is efficient. However since

K∗

L∗
=

[
Aα

Ψ′(Z∗)

] 1
1−α

>
K

L
=




A
(
1 − 1

ζ

)
α

Ψ′(Z)




1
1−α

(82)

it follows that the natural capital-labour ratio is below the social optimum. The socially

optimal level of output is now found from

(
1 +

F ∗

Y ∗

)φ

(Y ∗)φ+σ


1 − δ

A

(
K∗

L∗

)1−α

−

(
G∗ + δα

RK
F ∗

)

Y ∗


 =

(1 − α)A1+φ
(

K∗

L∗

)α(1+φ)
(1 − hβ)

ακ(1 − h)σ

(83)

The inefficiency of the natural rate of output can now be found by comparing (74)

with (83). Since Y φ+δ is an increasing function of Y , we arrive at17

Proposition

The natural level of output, Y , is below the efficient level, Y ∗, if and only if

the following conditions are satisfied:

(1 − T )

(
1 − 1

η

) (
1 − 1

ζ

)1+αφ

< (1 − hβ)Θ (84)

where

Θ =

(
1 − δ

[(
1 − 1

ζ

)
α

RK

] 1
1−α −

(
G+ δα

RK
F

)

Y

)
(
1 + F

Y

)φ

(
1 − δ

[
α

RK

] 1
1−α −

(
G∗+ δα

RK
F ∗

)

Y ∗

)
(
1 + F ∗

Y ∗

)φ

where

RK =
1

β
− 1 + δ

Thus Φy ≡ (1−hβ)Θ− (1−T )
(
1 − 1

ζ

) (
1 − 1

η

)1+αφ
summarizes the overall distortion

in the steady state natural level of output as a result of four elements: taxes, market power

in the output and labour markets and external habit.18 Assume government spending is

adjusted so that G
Y = G∗

Y ∗ . Since there are reasons from the IO literature for assuming

17This generalizes the result in Choudhary and Levine (2006) which considered the same model, but

without capital.
18This generalizes Woodford (2003), page 394, to include capital, labour-market power and habit.
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Ramsey fixed investment may be excessive as well as too little compared with the social

optimum, we also put F
Y = F ∗

Y ∗ . It then follows that Θ > 1. In the case where there is no

habit persistence (h = 0), then Φy > 0 and (84) always holds. Then tax distortions and

market power in the output and labour markets, captured by the elasticities η ∈ (0,∞)

and ζ ∈ (0,∞) respectively, drive the natural rate of output below the efficient level. If

h = T = 0 and η = ζ = ∞, tax distortions and market power both disappear, Φy = 0 and

the natural rate is efficient. But if h > 0, this leads to the possibility that Φy < 0 and

then the natural rate of output is actually above the efficient level (see Choudhary and

Levine (2006)).

The intuition behind this result is that external habit ensures that each household’s

consumption is a negative externality that reduces the welfare of others. The greater is

h the greater is this externality. In the efficient case the social planner internalizes this

externality and, given the other distortions, chooses less consumption and more leisure

than the decentralized households in the consumption/leisure trade-off. Consequently in

the absence of other distortions output is lower in the efficient case. On the other hand,

distortions in the output and labour markets, captured by low ζ and η and a high tax

wedge T , tend to raise the social planner’s choice of output relative to the natural rate.

Condition (84) shows the inter-play between these opposing effects.

An interesting implication of our results is that there may exist a socially optimal

positive tax wedge in the steady state for high values of the habit parameter, h. This

value can be found by equating Y = Y (T ) and Y ∗ and solving for T . Figure 1 plots the

optimal rate of tax wedge at the steady state for various values of the habit parameter

h and the parameter η that captures market power in the labour market. The figure

suggests that the tax wedge can be corrective rather than distortionary (as argued by

Layard (2005)), if habit is strong and the labour markets is competitive, with η is high.

In fact in the core SW model where the unidentified parameter η is set at η = 3 and

h = 0.57 the optimal tax wedge is clearly negative (implying a subsidy) which contrasts

with an average tax wedge of T = 0.64 for the euro area in 2004 reported in Coenen et al.

(2005).19

19Apart from the estimated parameter values for the unaltered SW model, we choose β = 0.99 and ζ = 7,

the latter corresponding to a 15% mark-up of the price over marginal cost. Note that an examination of

the linearized form of the model reveals the fact that η and ζ are not identified.
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Figure 1: The Optimal Tax Rate as h and η vary.

6 Optimal Monetary Stabilization Policy

6.1 Formulating the Policymaker’s Loss Function

Much of the optimal monetary policy literature has stayed with the ad hoc loss function

(4) which, with a interest rate lower bound constraint, becomes

Ω0 = E0

[
(1 − β)

∞∑

t=0

βt
[
(yt − ŷt − k)2 + wππ2

t + wrr
2
t

]
]

(85)

Indeed Clarida et al. (1999) provide a stout defence of a hybrid research strategy that

combines a loss function based on the stated objectives of central banks with a micro-

founded macro-model. A normative assessment of policy rules requires welfare analysis

and for this, given our linear-quadratic framework,20 we require a quadratic approximation

of the representative consumer’s utility function.

20We have emphasized the convenience of the LQ approach to optimal policy. However, recent develop-

ments in numerical methods now allow the researcher to go beyond linear approximations of their models

and to conduct analysis of both the dynamics and welfare using higher-order (usually second-order) ap-

proximations (see, Kim et al. (2003) and for an application to simple monetary policy rules, Juillard et al.

(2006)).
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A common procedure for reducing optimal policy to a LQ problem is as follows. Lin-

earize the model about a deterministic steady state as we have already done. Then expand

the consumer’s utility function as a second-order Taylor series after imposing the econ-

omy’s resource constraint. In general this procedure is incorrect unless the steady state

is not too far from the efficient outcome (see Woodford (2003), chapter 6, Benigno and

Woodford (2004), Kim and Kim (2006) and Levine et al. (2006)). This we assume and

for this case we show in Appendix C that a quadratic single-period loss function that

approximates the utility takes the form

where positive weights wc etc are defined in Appendix C. All variables are in log-deviation

form about the steady state as in the linearization.21 The first four terms in (86) give the

welfare loss from consumption, employment, price inflation and wage inflation variability

respectively. The remaining terms are contributions from arise from the resource constraint

in our quadratic approximation procedure.

6.2 Imposing the Interest Rate Zero Lower Bound

In the analysis that follows we adopt a single period loss function of the form

(87)

where Ut is given by (86). As explained in section 2.2.1, the policymaker’s optimization

problem is to choose an unconditional distribution for rt (i.e., the steady state variance)

shifted to the right about a new non-zero steady state inflation rate and a higher nominal

interest rate, such that the probability, p, of the interest rate hitting the lower bound is

very low. This is implemented by calibrating the weight wr for each of our policy rules

so that z0(p)σr < R where z0(p) is the critical value of a standard normally distributed

variable Z such that prob (Z ≤ z0) = p, R = 1
β −1+π∗ is the steady state nominal interest

rate, σr is the unconditional variance and π∗ is the new steady state inflation rate. Given

σr the steady state positive inflation rate that will ensure rt ≥ 0 with probability 1− p is

21Our quadratic approximation is along the lines of Onatski and Williams (2004) with some differences.

Note the expression is not exactly positive definite, but this is of no consequence since positive-definiteness

is a sufficient but far from necessary second-order condition for optimality (see Appendix C and Levine

et al. (2006)).
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Ut = wc(ct − hct−1)
2 + wll

2
t + wπ(πt − γpπt−1)

2 + w∆w(∆wt − γw∆wt−1)
2

+ wlk(lt − kt−1 − zt −
1

1 − α
at)

2 + wz(zt + ψat)
2 − walatlt − wi(it − it−1)

2 (86)

Lt = Ut + wr(rt − r∗t )
2



given by22

π∗ = max[z0(p)σr −
(

1

β
− 1

)
× 100, 0] (88)

In our linear-quadratic framework we can write the intertemporal expected welfare loss

at time t = 0 as the sum of stochastic and deterministic components, Ω0 = Ω̃0 + Ω̄0.

By increasing wr we can lower σr thereby decreasing π∗ and reducing the deterministic

component, but at the expense of increasing the stochastic component of the welfare loss.

By exploiting this trade-off, we then arrive at the optimal policy that, in the vicinity of

the steady state, imposes the zero lower bound constraint, rt ≥ 0 with probability 1 − p.

Tables 3a and 3b show the results of this optimization procedure under discretion and

commitment respectively using the loss function given by (86), with wπ and other weights

functions of fundamental parameters given in Appendix C.23 We choose p = 0.025. Given

wr, denote the expected intertemporal loss (stochastic plus deterministic components) at

time t = 0 by Ω0(wr). This includes a term penalizing the variance of the interest rate

which does not contribute to utility loss as such, but rather represents the interest rate

lower bound constraint. Actual utility, found by subtracting the interest rate term, is

given by Ω0(0). The steady state inflation rate, π∗, that will ensure the lower bound is

reached only with probability p = 0.025 is computed using (88). Given π∗, we can then

evaluate the deterministic component of the welfare loss, Ω̄0. Since in the new steady

state the real interest rate is unchanged, the steady state involving real variables are also

unchanged, so from (86) we can write

Ω̄0(0) =
[
wπ(1 − γp)

2 + w∆w(1 − γw)2
]
π∗2 (89)

Both the ex-ante optimal and the optimal time-consistent deterministic welfare loss that

guide the economy from a zero-inflation steady state to π = π∗ differ from Ω̄0(0) (but not

by much because the steady state contributions by far outweighs the transitional one).

From a timeless perspective (see Appendix A.1.2), however, the policymaker will jump

immediately to the new steady state justifying the use of (89).

22If the inefficiency of the steady-state output is negligible, then π∗ ≥ 0 is a credible the new steady state

inflation rate. It contrasts with a transitional deflationary bias highlighted by Krugman (1998), Eggertsson

(2006) and Adam and Billi (2006) which arises under discretion because the central bank cannot credibly

lower the expected real interest rate, following a negative demand shock, by a promise to raise the inflation

rate in the future. It must therefore rely on lowering the interest rate, hitting the zero lower bound more

often. Reduced inflationary expectations, in turn, causes a temporary negative inflation bias. This effect

is absent in the approximate approach to imposing the constraint in this paper.
23The solution procedures set out in Appendix A actually require a very small weight on the instrument.

One can get round this without significantly changing the result by letting inflation be the instrument

and then setting the interest rate at a second stage of the optimization to achieve the optimal path for

inflation.
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Tables 3a and 3b demonstrate the trade-off between reducing the stochastic compo-

nent of policy at the expense of a higher steady state inflation rate and therefore higher

deterministic component of policy. Under discretion in table 3a the optimal combination

(i.e., the minimum of ΩTC
0 (0)) is achieved at π∗ = 0.52, or at an inflation rate around

2% per year. This pins down the parameter penalizing the variability of the interest rate

at wr = 4. The same exercise for optimal policy under commitment sees π∗ = 0.26 with

wr = 20, but in the case the loss function is very flat as wr falls from the value that results

in π∗ = 0, so there is little to gain from raising the steady inflation and interest rates.

Figure 2 further demonstrates the results in table 3a. The top-left figure shows the

distribution for the nominal interest with zero steady state inflation for the case wTC
r = 2

where σr = 1.00. The probability of hitting the zero lower bound is now high, of the

order p = 0.30. If in the top-right figure, the steady state inflation increases to π∗ = 0.95,

thus shifting the distribution by this amount to the right, the probability of rt ≤ 0 falls

to p = 0.025. However this choice of π∗ and σr is sub-optimal. In the bottom-left figure

keeping p = 0.025, the total welfare loss falls if we set σr = 0.74 and π∗ = 0.68, values

obtained by tightening the variability constraint to wr = 3. Finally in the bottom right

figure illustrates the optimal combination of σr = 0.62 and π∗ = 0.52 at p = 0.025,

obtained at wr = 4 and highlighted in table 3a.

By reporting the expected intertemporal utility loss at time t = 0 under both the time-

consistent discretionary policy and optimal commitment, ΩTC
0 (0) and ΩOP

0 (0) respectively,

we can now assess the stabilization gains from commitment as the interest rate lower bound

takes greater effect. We compute these gains as equivalent permanent percentage increases

in consumption and inflation, cgain
e and πgain

e respectively. From Appendix C these are

given by

ce =
ΩTC(0) − ΩOP (0)

1 − h
× 10−2 ; πe =

√
2(ΩTC(0) − ΩOP (0))

wπ
(90)

A further useful expression is the minimum cost of fluctuations24 in consumption and

inflation equivalent terms obtained under the optimal commitment rule given by

cmin
e =

ΩOP (0)

1 − h
× 10−2 ; πmin

e =

√
2ΩOP (0)

wπ
(91)

Table 3b reports cmin
e and table 3c the gains from commitment under three scenarios:

the first where the lower bound constraint on the nominal interest rate is ignored (wTC
r =

wOP
r = 0), the second under optimal combinations of σr and π∗ highlighted in tables 3a

24But it should be noted that our quadratic approximation to the utility function omits terms indepen-

dent of policy so the cost of fluctuations is under-estimated.
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Figure 2: Imposing the Interest Rate Zero Lower Bound under Discretion.

and 3b (wTC
r = 4, wOP

r = 20), and third, under an added constraint that the steady-state

inflation rate remains at zero (wTC
r = 60, wOP

r = 45). A number of interesting points

emerge from these tables. First using (91) the minimal cost of consumption fluctuations is

given by ΩOP = 0.55 a value much larger than the welfare cost reported by Lucas (1987)

which was of the order 0.05%. Taking into account the fact we have omitted fluctuation

costs from terms independent of policy, our figures are of the order of those reported in

Levin et al. (2006) for a similar model but without the nominal interest rate lower bound.

The reason why they are much larger in these models is down to the welfare costs of price

and wage inflation not included in the Lucas calculations and to the estimated variances

of the shocks.25 Our figure rises when we impose the interest rate lower bound and is

25The Lucas calculation is based on sd(ct) = 1.5% which is somewhat lower than the standard deviation

we found under optimal commitment of sd(ct) = 2.7%. Reworking the Lucas calculation would then give

a consumption equivalent loss from fluctuations of 0.16%, still a low figure and far below the loss reported

above and by Levin et al. (2006).
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further increased by the existence of internal habit which reduces the utility increase from

a increase in consumption. Thus in our set-up the answer to the question posed by Lucas,

“Is there a Case for Stabilization Policy?” is very much in the affirmative.

Second, the most important point from these tables endorses the conclusion reached

by Adam and Billi (2006) discussed in the Introduction, namely that the lower bound

constraint on the nominal interest rate increases the gains from commitment several fold.

In terms of the consumption equivalent for the welfare-based case cgain
e we can see that

the stabilization gain from commitment rises until at the optimal combination of σr and

π∗ it reaches cgain
e = 0.42% and πgain

e = 0.62%. They report the gains in terms of a

percentage increase in welfare loss as one proceeds from commitment to discretion. Our

results indicate an increase of 76% with is remarkably close to the 65% increase reported

for the baseline calibration in the paper (but of course for a much simpler New Keynesian

model). If we require that there is no long-run inflation under discretion, the commitment

gain increases dramatically to cgain
e = 10.8% and πgain

e = 3.20%.

Weight wTC
r (σTC

r )2 Ω̃TC
0 (wr) Ω̃TC

0 (0) π∗ Ω̄TC
0 (0) ΩTC

0 (0)

0 103.6 22.2 22.2 18.9 7.08 × 103 7.10 × 103

1 1.74 27.8 26.9 1.58 49.5 76.4

2 1.00 31.4 30.5 0.95 17.9 48.4

3 0.74 34.6 33.4 0.68 9.2 42.6

4 0.61 37.5 36.2 0.52 5.4 41.6

5 0.54 40.3 39.0 0.43 3.7 42.7

10 0.40 55.7 53.7 0.23 1.0 54.7

50 0.31 420 412 0.08 0.1 412

60 0.25 497 489 0 0 489

Table 3a. Core Model: Optimal Discretion.

π∗ = max[z0(p)σTC
r − ( 1

β −1)×100, 0] = max[1.96σTC
r −1.01, 0] with p = 2.5% probability

of hitting the zero-lower bound and β = 0.99.

Ω̄TC
0 (0) = 1

2

[
wπ(1 − γp)

2 + w∆w(1 − γw)2
]
π∗2 = 19.81π∗2.

ΩTC
0 (0) = Ω̃TC

0 (0) + Ω̄TC
0 (0).
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Weight wOP
r (σOP

r )2 Ω̃OP
0 (wr) Ω̃OP

0 (0) π∗ Ω̄OP
0 (0) ΩOP

0 (0) cmin
e

0 28.1 17.1 17.1 9.4 1.75 × 103 1.75 × 103 41.2

10 0.65 23.9 20.8 0.57 6.44 27.2 0.63

20 0.42 26.3 22.4 0.260 1.34 23.7 0.55

30 0.33 28.0 23.5 0.116 0.27 23.8 0.55

40 0.27 29.4 24.3 0.01 0.002 24.3 0.56

45 0.25 30.0 24.8 0 0 24.8 0.58

50 0.24 30.5 25.1 0 0 25.1 0.58

Table 3b. Core Model: Optimal Commitment.

π∗, ΩOP (0) defined as for discretion above.

(wTC
r , wOP

r ) (σTC
r ,σOP

r ) ((π∗)TC , (π∗)OP ) cgain
e πgain

e

(0, 0) (10.1, 5.3) (0, 0) 0.12 0.44

(4, 20) (0.78, 0.65) (0.52, 0.26) 0.42 0.62

(60, 45) (0.5, 0.5) (0, 0) 10.8 3.20

Table 3c. Core Model: Stabilization Gains From Commitment:

% Consumption Equivalent (cgain
e ) and % Inflation Equivalent (πgain

e )

π∗, ΩOP (0) defined as for discretion above.

In tables 4 and 5 we repeat the same exercise for first, the preferred model variant

without any indexation, and then for the low price stickiness variant of the model ξp = 0.75,

as opposed to ξp = 0.91 or ξp = 0.90 freely estimated for the core and no indexation

variants respectively.

From tables 4a–4c we see that similar results to those of the core model are obtained

for the no indexation variant. The welfare gains from commitment are now a little higher

at cgain
e = 0.47% but without the inflation inertia bought about by indexation, this is

achieved at a lower optimal steady-state inflation rates under discretion, π∗ = 0.18% as

opposed to π∗ = 0.52% for the core model. Similarly under commitment the optimal

steady-state inflation rate is lower in the no indexation model. In the absence of inflation

inertia it is now far less costly to impose a zero long-run inflation under discretion and

doing so increases the commitment gain by a modest amount.
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Weight wTC
r (σTC

r )2 Ω̃TC
0 (wr) Ω̃TC

0 (0) π∗ Ω̄TC
0 (0) ΩTC

0 (0)

0 32.8 19.5 19.5 10.2 1.06 × 104 1.06 × 104

1 2.03 25.2 25.2 1.78 323 348

2 1.09 29.8 28.7 1.04 110 139

3 0.76 32.5 31.4 0.70 95.8 127

4 0.59 34.9 33.7 0.50 25.5 59.2

5 0.49 37.0 35.8 0.36 13.2 49.0

6 0.42 39.0 37.7 0.26 6.9 44.6

7 0.37 40.9 39.6 0.18 3.30 42.9

10 0.28 46.1 44.7 0.03 0.09 44.8

12 0.25 49.5 48.0 0 0 48.0

Table 4a. No Indexation Model (γp = γw = 0): Optimal Discretion.

π∗ = max[z0(p)σTC
r − ( 1

β −1)×100, 0] = max[1.96σTC
r −1.01, 0] with p = 2.5% probability

of hitting the zero-lower bound and β = 0.99.

Ω̄TC
0 (0) = 1

2

[
wπ(1 − γp)

2 + w∆w(1 − γw)2
]
π∗2 = 101.8π∗2. ΩTC

0 (0) = Ω̃TC
0 (0) + Ω̄TC

0 (0).

Weight wOP
r (σOP

r )2 Ω̃OP
0 (wr) Ω̃OP

0 (0) π∗ Ω̄OP
0 (0) ΩOP

0 (0) cmin
e

0 14.6 14.7 14.7 6.48 4.27 × 103 4.29 × 103 99.8

10 0.67 22.3 19.1 0.59 35.4 54.5 1.27

20 0.41 24.8 20.9 0.25 6.36 27.3 0.63

25 0.35 25.7 21.5 0.15 2.29 23.8 0.55

30 0.31 26.4 22.0 0.08 0.65 22.7 0.53

40 0.26 27.8 23.0 0 0 23.0 0.53

42 0.25 28.0 23.1 0 0 23.1 0.54

Table 4b. No Indexation Model: Optimal Commitment.

π∗, ΩOP (0) defined as above.

(wTC
r , wOP

r ) (σTC
r ,σOP

r ) ((π∗)TC , (π∗)OP ) cgain
e πgain

e

(0, 0) (5.7, 3.8) (0, 0) 0.11 0.32

(7, 30) (0.61, 0.56) (0.18, 0.08) 0.47 0.66

(12, 42) (0.5, 0.5) (0, 0) 0.58 0.66

Table 4c. No Indexation: Stabilization Gains From Commitment

π∗, ΩOP (0) defined as above.
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Now consider the low price stickiness variant. The inflation costs of a given rate of

inflation are now much lower and, in the absence of commitment, the incentive to raise

or lower inflation following shocks correspondingly higher. The lower interest rate bound

acts as a greater constraint for optimal discretion and as a consequence, as tables 5a–5c

show, the gains from commitment rise considerably to cgain
e = 2.35% and πgain

e = 4.39.

Weight wTC
r (σTC

r )2 Ω̃TC
0 (wr) Ω̃TC

0 (0) π∗ Ω̄TC
0 (0) ΩTC

0 (0)

0 116 26.1 26.1 20.1 2.8 × 103 2.9 × 103

0.5 6.9 35.2 33.4 4.14 120 153

0.6 6.3 37.1 35.2 3.91 107 142

0.7 6.0 39.2 37.1 3.78 100 137

0.8 5.7 41.4 39.1 3.68 95 134

0.9 5.6 43.9 41.4 3.61 92 133

1.00 5.5 46.5 43.8 3.59 90.3 134

27 0.25 375 371 0 0 375

Table 5a. Low Price Stickiness Model (ξp = 0.75): Optimal Discretion.

π∗ = max[z0(p)σTC
r − ( 1

β −1)×100, 0] = max[1.96σTC
r −1.01, 0] with p = 2.5% probability

of hitting the zero-lower bound and β = 0.99.

Ω̄TC
0 (0) = 1

2

[
wπ(1 − γp)

2 + w∆w(1 − γw)2
]
π∗2 = 7.02π∗2. ΩTC

0 (0) = Ω̃TC
0 (0) + Ω̄TC

0 (0).

Weight wOP
r (σOP

r )2 Ω̃OP
0 (wr) Ω̃OP

0 (0) π∗ Ω̄OP
0 (0) ΩOP

0 (0) cmin
e

0 36 19.8 19.8 10.8 819 839 19.5

10 1.1 31.4 26.3 1.05 7.74 34.0 0.79

15 0.81 33.6 28.1 0.75 3.99 32.1 0.74

20 0.62 35.2 29.6 0.53 1.97 31.6 0.73

30 0.41 37.4 31.9 0.25 0.44 32.3 0.75

45 0.25 39.5 34.5 0 0 34.5 0.80

Table 5b. ξp = 0.75 Model: Optimal Commitment.

(wTC
r , wOP

r ) (σTC
r ,σOP

r ) ((π∗)TC , (π∗)OP ) cgain
e πgain

e

(0, 0) (116, 36) (0, 0) 0.15 1.10

(0.9, 25) (5.56, 0.62) (3.61, 0.53) 2.35 4.39

(27, 45) (0.25, 0.25) (0, 0) 7.83 8.02

Table 5c. ξp = 0.75 Model: Stabilization Gains From Commitment.
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The overall conclusion that emerges from these results for three variants of our model

is that the stabilization gains from commitment are significantly greater than those pre-

viously reported in the literature. For the empirically supported model variants, the core

model and the alternative with no indexation we find these gains to be a 0.4−0.5% equiva-

lent permanent increase in consumption corresponding to a 0.6−0.7% permanent increase

in quarterly inflation. The latter, for instance, compares with a range of 0.04 − 0.4%

found in the comprehensive study of Dennis and Söderström (2006) across several mod-

els.26 Moreover in our variant with a more plausible degree of price stickiness, gains of

over 2% consumption equivalent are found.

6.3 Stabilization Gains with Simple Rules

We now turn to results for simple commitment rules of the general form:

rt = ρrt−1 + ΘπEtπt+j + Θy(yt − ŷt) + Θ∆w∆wt + Θwrwrt (92)

where ρ ∈ [0, 1], Θπ, Θy, Θ∆w, Θwr > 0, j ≥ 0. Putting Θ∆w = Θwr = 0 gives the standard

Taylor rule where the interest rate only to current price inflation and the output gap,

Θ∆w = Θwr = Θy = 0 gives a price inflation rule, Θπ = Θwr = Θy = 0 gives a wage

inflation rule and j = Θ∆w = Θy = 0 gives a current price inflation and real wage rule.

Results for these rules are summarized in table 6 for the core model. Since the welfare

gains from increasing the steady state inflation rate and widening the interest rate distri-

bution consistent with p = 0.025 is very small, we confine ourselves to π∗ = 0. There are

two notable results that emerge. First, we assess the effect of using an arbitrary rather

than an optimized simple commitment rule by examining the outcome when a minimal

rule ii = 1.001πt that just produces saddle-path stability. This is the worst case and we

see that the costs are substantial: cgain
e = 7.03%. Interestingly, this outcome is still better

than that under discretion if the same constraint on the variance of the interest rate as

for optimal commitment is imposed. Second, simple price inflation or wage inflation rules

perform reasonably well in that they achieve over 80% of the commitment gains achieved

by the optimal rule when π∗ = 0 is imposed. The simple rule that closely mimics optimal

commitment for the welfare-based case is the inflation and real wage rule.27 From table 5

26We have adjusted their reported annual inflation rate equivalents. Note that they examine models

without explicit micro-foundations and therefore employ an ad hoc loss function.
27This finding that simple rules should respond to labour-market conditions is in broad agreement with

the result in Levin et al. (2006). However their study, which did not incorporate a nominal interest rate

zero lower bound, found that the wage inflation rule performed a lot better than the price inflation and

closely mimicked optimal commitment.
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almost all the gains from commitment are achieved by this rule though simplicity per se

still leaves a small cost of cgain
e = 0.02% and πgain

e = 0.15% ≈ 0.60% on an annual basis.

Tables 7 and 8 again repeats the same exercise for the variants of the model with no

indexation and with ξp = 0.75 imposed. A similar story emerges: by far the best simple

interest rate rule is one that responds to current inflation and the real wage with a higher,

but still quite small, costs of simplicity of cgain
e = 0.02 − 0.07%. For the model without

indexation, the wage inflation rule performs a lot better than the price inflation rule and,

in that respect, reproduces the finding of Levin et al. (2006). It is of interest to note that,

in these alternative variants, the costs of the minimal rules are far less.

Rule ρ Θπ Θ∆w Θwr wr Ω0(wr) Ω0(0) cgain
e πgain

e σ2
r π∗

Minimal 0 1.001 0 0 0 327 327 7.03 2.57 0.46 0

πt 0.37 1.42 0 0 45 82.4 77.0 1.21 1.07 0.24 0

∆wt 0.95 0 0.68 0 25 80.3 77.2 1.22 1.08 0.25 0

wrt, πt 0.96 0.15 0 0.20 55 32.9 25.8 0.02 0.15 0.26 0

OP n.a. n.a. n.a. n.a. 45 30.0 24.8 0 0 0.25 0

Table 6. Comparison of Optimal Commitment Rules. Core model.

Rule ρ Θπ Θ∆w Θwr wr Ω(wr) Ω0(0) cgain
e πgain

e σ2
r π∗

Minimal 0 1.001 0 0 0 397 8.70 2.86 4.50 0.13 0

πt 0.43 2.55 0 0 23 77.2 74.3 1.19 1.06 0.25 0

∆wt 1.00 0 0.71 0 42 59.4 54.2 0.73 0.82 0.25 0

wrt, πt 0.93 0.37 0 0.23 43 29.4 24.0 0.02 0.14 0.25 0

OP n.a. n.a. n.a. n.a. 42 28.0 23.1 0 0 0.25 0

Table 7. Comparison of Optimal Commitment Rules: No Indexation Model

(γp = γw = 0).

Rule ρ Θπ Θ∆w Θwr wr Ω(wr) Ω0(0) cgain
e πgain

e σ2
r π∗

Minimal 0 1.001 0 0 0 90.4 90.4 1.30 3.27 2.87 0

πt 0.67 0.39 0 0 80 85.4 75.4 0.95 2.80 0.25 0

∆wt 0.72 0 0.52 0 16 86.3 84.3 1.16 3.09 0.25 0

wrt, πt 1.00 0.06 0 0.08 62 45.4 37.3 0.07 0.73 0.26 0

OP n.a. n.a. n.a. n.a. 45 39.5 34.5 0 0 0.25 0

Table 8. Comparison of Optimal Commitment Rules: Low Price Stickiness

Model (ξp = 0.75).
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6.4 Impulse Responses Under Commitment and Discretion

Figures 5-12 compare the responses under the optimal commitment, discretion and the

optimized simple inflation/real wage rule following an unanticipated government spending

shock (g0 = 1) and an unanticipated productivity shock (a0 = 1).

In order to interpret these graphs it is useful to consider the four sources of the time-

inconsistency problem in our model; namely, from forward-looking pricing, consumption,

investment and wage setting. Following a shock which diverts the economy from its steady

state, given expectations of inflation, the opportunist policy-maker can increase or decrease

output by reducing or increasing the interest rate which increases or decreases inflation.

Consider the case where the economy is below the its steady state level of output. A

reduction in the interest rate then causes consumption demand rise. Firms locked into

price contracts respond to an increase in demand by increasing output and increasing the

price according to their indexing rule. Those who can re-optimize increase only increase

their price. Given inflationary expectations, a reduction in the interest rate sees Tobin’s

Q rise, and with it investment and capital stock. This increases output on the supply side.

Given inflationary expectations an inflationary impulse results in a fall in the real wage

and an increase in labour supply, adding further to the supply side boost to output. All

these changes are for given inflationary expectations and illustrates the incentive to inflate

when the output gap increases. In an non-commitment equilibrium however the incentive

is anticipated and the result is higher inflation compared with the commitment case. This

contrast between the commitment and discretionary cases is seen clearly in the figures.

Finally, comparing the optimal commitment and the simple inflation-real wage rules, we

see how the latter closely mimics the former.

6.5 Sustaining Commitment as an Equilibrium

We now examine numerically the no-deviation condition for commitment to be a perfect

Bayesian equilibrium. We confine ourselves to reporting results for the core SW variant

and for the form of the condition given by (29) which assume an instantaneous loss of

reputation following deviation. Experiment revealed this to give very similar results to

those using (27), and this in turn implied that the condition relevant for our simple

inflation/real wage, (32), was satisfied.

Figure 4 plots a histogram from 10, 000 draws of the sector [zT
t pT

2,t]
T in the vicinity of

the steady state of the economy under the optimal commitment rule. The probability of the

weak government deviating from the optimal rule, qt, is then the proportion of these draws
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for which (29) does not hold; i.e., Φ = tr((1−β)(N11+S)(Zt+βΣ)+tr((1−β)N22p2tp
T
2t) <

0. For our model and sample of 10, 000 draws we see that in fact qt = 0 so that optimal

commitment for a weak government turns out to be a perfect Bayesian equilibrium.
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Figure 3: The No-Deviation Condition: Φ = tr((1− β)(N11 + S)(Zt + βΣ) + tr((1−
β)N22p2tp

T
2t). β = 0.99

As discussed in section 3 the no-deviation condition compares the temporary stabi-

lization gains from reneging (‘temptation’) with the long-run stabilization loss from losing

reputation (the ‘penalty’). The latter depends crucially on the policymaker’s rate of dis-

count β. In all our welfare-based results we have set β = 0.99 on a quarterly basis for

both the policymaker and theeprivate sector. But suppose that the policymaker was more

myopic than the private sector. For all β ≥ 0.75 we find that qt = 0. In figure 4 we set

β = 0.5 which could be appropriate for a non-independent central bank in which optimal

monetary policy depends on the probability of the survival (re-election) of government

was very low, in fact 0.1250 per year. We find that there is now a very small probability

of a a break-down in the no-deviation condition, namely qt = 0.002. Thus our result that

commitment can be sustained as a PBE is very robust to variations in the policymaker’s

discount factor for all conceivable institutional arrangements in the euro-area.
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Figure 4: The No-Deviation Condition: Φ = tr((1− β)(N11 + S)(Zt + βΣ) + tr((1−
β)N22p2tp

T
2t). β = 0.5

7 Conclusions

This paper has examined the credibility problem in an empirical DSGE model with four

sources of time-inconsistency: from forward-looking pricing, consumption, investment and

wage setting. In the absence of commitment, following a shock which diverts the economy

from its steady state and given expectations of inflation, the opportunist policy-maker

can increase or decrease output by reducing or increasing the interest rate which increases

or decreases inflation. This results in a higher variability of inflation and the nominal

interest rate under discretion. The latter means that the interest rate zero lower bound

constraint is tighter under discretion and its presence increases the stabilization gains from

commitment. The constraint can be relaxed by increasing the steady state inflation rate,

but this comes at a cost of an increase in the deterministic component of the welfare loss.

The main findings of this paper can be summarized as follows:

1. Our welfare-based loss function uses the ‘small distortions’ quadratic approximation

to the consumer’s utility which is accurate if the steady state is close to the social

optimum. In assessing this condition we highlight a neglected aspect of typical New

Keynesian models: external habit in consumption tends to make labour supply and
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the natural rate of output too high compared with the social optimum. If the habit

effect is sufficiently high and labour market and product market distortions are not

too big then, with a sufficiently small tax wedge, the natural rate can actually be

above the social optimum. This would then render the long-run ‘inflationary bias’

negative.

2. Whilst the validity of an inflationary bias arising from the pursuit of an ambitious

output target above its natural rate has been criticized (notably in Blinder (1998)),

our analysis suggests a rather different form of bias arising from the interest rate

zero lower bound. We find that the optimal steady state inflation rate necessary

to avoid the lower bound is far lower under commitment than under discretion, so

there is a new sense in which there is a long-run inflationary bias which is really an

integral part of the stabilization bias.

3. In terms of an equivalent permanent increase in consumption, cgain
e for the welfare-

based loss function and a permanent decrease in inflation πgain
e , the stabilization

gains from commitment rise considerably if the lower bound effect is taken into

account. Using empirical estimates from the core model and the preferred variant

without indexation, we find an average consumption and inflation-equivalent gains

of cgain
e = 0.4 − 0.5% and πgain

e = 0.6 − 0.7% respectively, the latter on a quarterly

basis. For the variant of the model with lower price stickiness, these rise considerably

to cgain
e = 2.35% and πgain

e = 4.39%

4. Given these large gains from commitment, the incentive for central banks to avoid

a loss of reputation for commitment is substantial. Consequently, unless the pol-

icymaker is implausibly myopic, a commitment rule can be sustained as a perfect

Bayesian equilibrium in which deviation from commitment hardly ever happens de-

spite the possibility of large exogenous shocks.

5. Simple interest rate rules should respond to labour-market conditions as well as

inflation. The optimal commitment rule can be closely approximated in terms of

its good stabilization properties by an interest rate rule that responds positively to

current inflation and to the current real wage.

There are a number of possible directions for future research. First, the robustness of

our finding that gains from commitment may be far higher than previously thought needs

to investigated further across an number of other DSGE models, including the SW model

fitted to US data and small open economy models such as Adolfson et al. (2004). Second, a

more accurate quadratic approximation of the household utility can be obtained from the
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‘large distortions’ procedure of Benigno and Woodford (2004).28 Finally, using estimates

for posterior model probabilities and, for each model variant, estimates of the posterior

densities of the parameters, a consistently Bayesian approach to both the estimation and

the design of robust interest rate rules can be employed as in Batini et al. (2006).

A Details of Policy Rules

First consider the purely deterministic problem. In general policy involving several (for

example monetary and fiscal) instruments starts with a model in state-space form:
[

zt+1

x
e
t+1,t

]
= A

[
zt

xt

]
+ Bwt (A.1)

where zt is an (n − m) × 1 vector of predetermined variables including non-stationary

processed, z0 is given, wt is a vector of policy variables, xt is an m × 1 vector of non-

predetermined variables and x
e
t+1,t denotes rational (model consistent) expectations of

xt+1 formed at time t. Then x
e
t+1,t = xt+1 and letting y

T
t =

[
z
T
t x

T
t

]
(A.1) becomes

yt+1 = Ayt + Bwt (A.2)

Define target variables st by

st = Myt + Hwt (A.3)

and the policy-maker’s loss function at time t by

Ωt =
1

2

∞∑

i=0

βt[sTt+iQ1st+i + w
T
t+iQ2wt+i] (A.4)

which we can rewrite as

Ωt =
1

2

∞∑

i=0

βt[yT
t+iQyt+i + 2y

T
t+iUwt+i + w

T
t+iRwt+i] (A.5)

where Q = MT Q1M , U = MT Q1H, R = Q2 + HT Q1H, Q1 and Q2 are symmetric

and non-negative definite, R is required to be positive definite and β ∈ (0, 1) is discount

factor. The procedures for evaluating the three policy rules are outlined in the rest of this

appendix (or Currie and Levine (1993) for a more detailed treatment).

A.1 The Optimal Policy with Commitment

Consider the policy-maker’s ex-ante optimal policy at t = 0. This is found by minimizing

Ω0 given by (A.5) subject to (A.2) and (A.3) and given z0. We proceed by defining the

Hamiltonian

Ht(yt, yt+1, µt+1) =
1

2
βt(yT

t Qyt + 2y
T
t Uwt + w

T
t Rwt) + µt+1(Ayt + Bwt − yt+1) (A.6)

28See Levine et al. (2006) for a method to computationally implement this procedure.
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where µt is a row vector of costate variables. By standard Lagrange multiplier theory we

minimize

L0(y0, y1, . . . , w0, w1, . . . , µ1, µ2, . . .) =
∞∑

t=0

Ht (A.7)

with respect to the arguments of L0 (except z0 which is given). Then at the optimum,

L0 = Ω0.

Redefining a new costate column vector pt = β−tµT
t , the first-order conditions lead to

wt = −R−1(βBT
pt+1 + UT

yt) (A.8)

βAT
pt+1 − pt = −(Qyt + Uwt) (A.9)

Substituting (A.8) into (A.2)) we arrive at the following system under control

[
I βBR−1BT

0 β(AT − UR−1BT )

] [
yt+1

pt+1

]
=

[
A − BR−1UT 0

−(Q − UR−1UT I

] [
yt

pt

]
(A.10)

To complete the solution we require 2n boundary conditions for (A.10). Specifying z0

gives us n−m of these conditions. The remaining condition is the ‘transversality condition’

lim
t→∞

µT
t = lim

t→∞

βt
pt = 0 (A.11)

and the initial condition

p20 = 0 (A.12)

where p
T
t =

[
p

T
1t p

T
2t

]
is partitioned so that p1t is of dimension (n − m) × 1. Equation

(A.3), (A.8), (A.10) together with the 2n boundary conditions constitute the system under

optimal control.

Solving the system under control leads to the following rule

wt = −F

[
I 0

−N21 −N22

] [
zt

p2t

]
≡ D

[
zt

p2t

]
= −F

[
zt

x2t

]
(A.13)

where
[

zt+1

p2t+1

]
=

[
I 0

S21 S22

]
G

[
I 0

−N21 −N22

] [
zt

p2t

]
≡ H

[
zt

p2t

]
(A.14)

N =

[
S11 − S12S

−1
22 S21 S12S

−1
22

−S−1
22 S21 S−1

22

]
=

[
N11 N12

N21 N22

]
(A.15)

xt = −
[

N21 N22

] [
zt

p2t

]
(A.16)

where F = −(R + BT SB)−1(BT SA + UT ), G = A − BF and
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S =

[
S11 S12

S21 S22

]
(A.17)

partitioned so that S11 is (n − m) × (n − m) and S22 is m × m is the solution to the

steady-state Ricatti equation

S = Q − UF − F T UT + F T RF + β(A − BF )T S(A − BF ) (A.18)

The cost-to-go for the optimal policy (OP) at time t is

ΩOP
t = −1

2
(tr(N11Zt) + tr(N22p2tp

T
2t)) (A.19)

where Zt = ztz
T
t . To achieve optimality the policy-maker sets p20 = 0 at time t = 0. At

time t > 0 there exists a gain from reneging by resetting p2t = 0. It can be shown that

N11 < 0 and N22 < 0.29, so the incentive to renege exists at all points along the trajectory

of the optimal policy. This is the time-inconsistency problem.

A.1.1 Implementation

The rule may also be expressed in two other forms: First as

wt = D1zt + D2H21

t∑

τ=1

(H22)
τ−1

zt−τ (A.20)

where D = [D1 D2] is partitioned conformably with zt and p2t. The rule then consists

of a feedback on the lagged predetermined variables with geometrically declining weights

with lags extending back to time t = 0, the time of the formulation and announcement of

the policy.

The final way of expressing the rule is express the process for wt in terms of the target

variables only, st, in the loss function. This in particular eliminates feedback from the

exogenous processes in the vector zt. Since the rule does not require knowledge of these

processes to design, Woodford (2003) refers to this as “robust” in describing it as the

Robust Optimal Explicit rule.

A.1.2 Optimal Policy from a Timeless Perspective

Noting from (A.16) that long the optimal policy we have xt = −N21zt − N22p2t, the

optimal policy “from a timeless perspective” proposed by Woodford (2003) replaces the

initial condition for optimality p20 = 0 with

Jx0 = −N21z0 − N22p20 (A.21)

29See Currie and Levine (1993), chapter 5.
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where J is some 1 × m matrix. Typically in New Keynesian models the particular choice

of condition is π0 = 0 thus avoiding any once-and-for-all initial surprise inflation. This

initial condition applies only at t = 0 and only affects the deterministic component of

policy and not the stochastic, stabilization component.

A.2 The Dynamic Programming Discretionary Policy

The evaluate the discretionary (time-consistent) policy we rewrite the cost-to-go Ωt given

by (A.5) as

Ωt =
1

2
[yT

t Qyt + 2y
T
t Uwt + w

T
t Rwt + βΩt+1] (A.22)

The dynamic programming solution then seeks a stationary solution of the form wt =

−Fzt in which Ωt is minimized at time t subject to (1) in the knowledge that a similar

procedure will be used to minimize Ωt+1 at time t + 1.

Suppose that the policy-maker at time t expects a private-sector response from t + 1

onwards, determined by subsequent re-optimization, of the form

xt+τ = −Nt+1zt+τ , τ ≥ 1 (A.23)

The loss at time t for the ex ante optimal policy was from (A.19) found to be a

quadratic function of xt and p2t. We have seen that the inclusion of p2t was the source of

the time inconsistency in that case. We therefore seek a lower-order controller

wt = −F zt (A.24)

with the cost-to-go quadratic in zt only. We then write Ωt+1 = 1
2z

T
t+1St+1zt+1 in (A.22).

This leads to the following iterative process for Ft

wt = −Ftzt (A.25)

where

Ft = (Rt + λB
T
t St+1Bt)

−1(U
T
t + βB

T
t St+1At)

Rt = R + KT
t Q22Kt + U2T Kt + KT

t U2

Kt = −(A22 + Nt+1A12)
−1(Nt+1B

1 + B2)

Bt = B1 + A12Kt

U t = U1 + Q12Kt + JT
t U2 + JT

t Q22Jt

J t = −(A22 + Nt+1A12)
−1(Nt+1A11 + A12)

At = A11 + A12Jt

St = Qt − U tFt − F T
t U

T
+ F

T
t RtFt + β(At − BtFt)

T St+1(At − BtF t)

Qt = Q11 + JT
t Q21 + Q12Jt + JT

t Q22Jt

Nt = −Jt + KtFt
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where B =

[
B1

B2

]
, U =

[
U1

U2

]
, A =

[
A11 A12

A21 A22

]
, and Q similarly are partitioned

conformably with the predetermined and non-predetermined components of the state vec-

tor.

The sequence above describes an iterative process for Ft, Nt, and St starting with some

initial values for Nt and St. If the process converges to stationary values, F, N and S say,

then the time-consistent feedback rule is wt = −Fzt with loss at time t given by

ΩTC
t =

1

2
z
T
t Szt =

1

2
tr(SZt) (A.26)

A.3 Optimized Simple Rules

We now consider simple sub-optimal rules of the form

wt = Dyt = D

[
zt

xt

]
(A.27)

where D is constrained to be sparse in some specified way. Rule (A.27) can be quite

general. By augmenting the state vector in an appropriate way it can represent a PID

(proportional-integral-derivative)controller.

Substituting (A.27) into (A.5) gives

Ωt =
1

2

∞∑

i=0

βt
y
T
t+iPt+iyt+i (A.28)

where P = Q + UD + DT UT + DT RD. The system under control (A.1), with wt given by

(A.27), has a rational expectations solution with xt = −Nzt where N = N(D). Hence

y
T
t P yt = z

T
t T zt (A.29)

where T = P11 − NT P21 − P12N + NT P22N , P is partitioned as for S in (A.17) onwards

and

zt+1 = (G11 − G12N)zt (A.30)

where G = A + BD is partitioned as for P . Solving (A.30) we have

zt = (G11 − G12N)t
z0 (A.31)

Hence from (A.32), (A.29) and (A.31) we may write at time t

ΩSIM
t =

1

2
zT
t V zt =

1

2
tr(V Zt) (A.32)

where Zt = ztz
T
t and V satisfies the Lyapunov equation

V = T + HT V H (A.33)

52
ECB 
Working Paper Series No 709
January 2007



where H = G11 − G12N . At time t = 0 the optimized simple rule is then found by

minimizing Ω0 given by (A.32) with respect to the non-zero elements of D given z0 using

a standard numerical technique. An important feature of the result is that unlike the

previous solution the optimal value of D, D∗ say, is not independent of z0. That is to say

D∗ = D∗(z0)

A.4 The Stochastic Case

Consider the stochastic generalization of (A.1)

[
zt+1

x
e
t+1,t

]
= A

[
zt

xt

]
+ Bwt +

[
ut

0

]
(A.34)

where ut is an n × 1 vector of white noise disturbances independently distributed with

cov(ut) = Σ. Then, it can be shown that certainty equivalence applies to all the policy

rules apart from the simple rules (see Currie and Levine (1993)). The expected loss at

time t is as before with quadratic terms of the form z
T
t Xzt = tr(Xzt, Z

T
t ) replaced with

Et

(
tr

[
X

(
ztz

T
t +

∞∑

i=1

βt
ut+iu

T
t+i

)])
= tr

[
X

(
zT
t zt +

λ

1 − λ
Σ

)]
(A.35)

where Et is the expectations operator with expectations formed at time t.

Thus for the optimal policy with commitment (A.19) becomes in the stochastic case

ΩOP
t = −1

2
tr

(
N11

(
Zt +

β

1 − β
Σ

)
+ N22p2tp

T
2t

)
(A.36)

For the time-consistent policy (A.26) becomes

ΩTC
t = −1

2
tr

(
S

(
Zt +

β

1 − β
Σ

))
(A.37)

and for the simple rule, generalizing (A.32)

ΩSIM
t = −1

2
tr

(
V

(
Zt +

β

1 − β
Σ

))
(A.38)

The optimized simple rule is found at time t = 0 by minimizing ΩSIM
0 given by (A.38).

Now we find that

D∗ = D∗

(
z0z

T
0 +

β

1 − β
Σ

)
(A.39)

or, in other words, the optimized rule depends both on the initial displacement z0 and on

the covariance matrix of disturbances Σ.
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B Dynamic Representation as Difference Equations

The linearizations in the main text, especially that for the real wage equation, requires

us to express the price and wage-setting first order conditions as stochastic non-linear

difference equations.30 To do this first define

Πt ≡ Pt

Pt−1
= 1 + πt (B.1)

Φt ≡ P 0
t /Pt (B.2)

Π̃t ≡ Πt

Πγ
t−1

(B.3)

and use Dt+k = βk MUC
t+k

Pt+k
where MUC

t = C−σ
t H1−σ

C,t is the marginal utility of consumption.

Then we can write the first order condition for optimal price-setting, (51) as

ΦtΞ = Λt (B.4)

where new variables Ξt and Λt are defined by

Ξt − ξβEt[Π̃
ζ−1
t+1 Ξt+1] = YtMUC

t (B.5)

Λt − ξβEt[Π̃
ζ
t+1Λt+1] =

UL,t
Wt

Pt
LtMUC

t

(1 − 1/ζ)(1 − 1/η)(1 − Tt)
(B.6)

(B.7)

From our definitions (B.2) and (B.3), (52) can now be written as

1 = ξpΠ̃
ζ−1
t + (1 − ξp)Φ

1−ζ
t (B.8)

Five equations (B.2) to (B.8) in Πt, Φt, Π̃t, Ξt and Ωt now provide the dynamics of optimal

setting in a convenient form

Similarly we can carry out the same exercise for wage setting. We can now use

βkΛt+k(r) = Dt+k, obtained from (38), and Λt(r) =
MUC

t (r)
Pt

, and from (37) we have

Lt+k(r) = Lt+k




W 0
t (r)

(
Pt+k−1

Pt−1

)γw

Wt+k




−η

(B.9)

to write (54) as

(
W 0

t

Pt

)1+ηφ

Et

∞∑

k=0

(ξwβ)k(1 − Tt+k)Lt+kMUC
t+k

(
Wt+k

Pt+k

)η (
Pt+k−1

Pt−1

)γw(1−η) (
Pt

Pt+k

)1−η

=
η

(η − 1)
Et

∞∑

k=0

(ξwβ)kL1+φ
t+k

(
Wt+k

Pt+k

)η(1+φ) (
Pt+k−1

Pt−1

)
−γwη(1+φ) (

Pt+k

Pt

)η(1+φ)

(B.10)

30This is also necessary if one wants to set up and solve numerically in standard software the non-linear

DSGE model.
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We can now see that for labour supply habit in ratio form31 we can proceed as for the

price dynamics. The following difference equations corresponding to (B.4) to (B.8) now

apply:

(
W 0

t

Pt

)1+ηφ

Υt = Γt (B.11)

Υt − ξwβEt[Π̃
η−1
t+1 Υt+1] =

(
Wt

Pt

)η

(1 − Tt)LtMUC
t (B.12)

Γt − ξwβEt[Π̃
η(1+φ)
t+1 Γt+1] =

(
Wt

Pt

)η(1+φ) UL,tL
1+φ
t

(1 − 1/η)
(B.13)

(
Wt+1

Pt+1

)1−η

= ξw

(
Wt

Pt

)1−η

Π̃η−1
t+1 + (1 − ξw)

(
W 0

t+1

Pt+1

)1−η

(B.14)

C Welfare Quadratic Approximation for the Case of An Ap-

proximately Efficient Steady State

We denote by Lt(r) the total labour supplied by household r and denote by Lt(f) the

index of differentiated labour employed by firm f . Defining Lt(f, r) as the labour supplied

to firm f by household r, we have

Lt(r) =

∫
Lt(r, f)df Lt(f)(η−1)/η =

∫
Lt(r, f)(η−1)/ηdr (C.1)

To clarify the exposition we first consider the case without capital.

C.1 Labour The Only Factor

Ignoring the welfare implications of monetary frictions, the utility of household r is given

by

E0

∞∑

t=0

βt

[
(Ct(r) − hCt−1)

1−σ

1 − σ
− κ

Lt(r)
1+φ

1 + φ

]
(C.2)

Since we assume complete risk-sharing within each bloc, we may regard each consumer

as being identical with every other. From the point of view of leisure, to obtain the

social welfare function, we need to sum over all workers. Before doing this, we obtain the

expected value of Lt(r)
1+φ. We note that

Lt(r) =

∫
Lt(r, f)df =

(
Wt(r)

Wt

)
−η ∫

Lt(f)df

=

(
Wt(r)

Wt

)
−η ∫

Yt(f)

At
df =

(
Wt(r)

Wt

)
−η Yt

At

∫ (
Pt(f)

Pt

)
−ζ

df (C.3)

31This is reason we choose the ratio form over the difference form.
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Assuming that lnWt(r) ∼ N(µW
t , DW

t ) and lnPt(r) ∼ N(µP
t , DP

t ), from subsection C.4 we

have that

∫ (
Pt(f)

Pt

)
−ζ

df ≃ 1 +
1

2
ζDP

t

∫ (
Wt(r)

Wt

)
−η

dr ≃ 1 +
1

2
ηDW

t (C.4)

and in addition

∫ (
Wt(r)

Wt

)
−η(1+φ)

dr ≃ 1 +
1

2
η(1 + φ)(1 + ηφ)DW

t (C.5)

It follows from this that summing over all r, we obtain the social welfare loss approximately

as

E0

∞∑

t=0

βt

[
(Ct − hCt−1)

1−σ

1 − σ
− κ

(Yt/At)
1+φ

1 + φ

(
1 +

1

2
(1 + φ)(ζDP

t + η(1 + ηφ)DW
t )

)]
(C.6)

where

DP
t = ξpD

P
t−1 +

ξp

1 − ξp
(πt − γpπt−1)

2 (C.7)

and

DW
t = ξwDW

t−1+
ξw

1 − ξw
(∆wt−γw∆wt−1)

2 = ξwDW
t−1+

ξw

1 − ξw
(∆wrt+πt−γw(∆wrt−1+πt−1))

2

(C.8)

where for convenience we have written the log of the real wage relative to domestic pro-

ducer prices wrt = wt − pt, and πt is the inflation rate for domestic producer prices.

C.2 Labour, Capital and Fixed costs F

With capital and fixed costs of production, the previous analysis changes to

Yt(f) = AtZ
α
t Kα

t−1Lt(f)1−α − F Kt−1(f) =
1 − α

α

WtLt(f)

PtRK,t
RK,t = Ψ′(Zt) (C.9)

Hence we can write output per industry as

Yt(f) =

(
α

1 − α

)α

Lt(f)

(
Wt

Pt

)α

AtZ
α
t R−α

K,t − F (C.10)

and labour supply of type r as

Lt(r) =

∫
Lt(r, f)df =

(
Wt(r)

Wt

)
−η ∫

Lt(f)df

=

(
Wt(r)

Wt

)
−η ∫

Yt(f) + F

AtZα
t

(
1 − α

α

)α (
Pt

Wt

)α

Rα
K,tdf

=

(
Wt(r)

Wt

)
−η (

1 − α

α

)α (
Pt

Wt

)α Rα
K,t

AtZα
t

(F + Yt

∫ (
Pt(f)

Pt

)
−ζ

df) (C.11)
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and after defining 1
Bt

=
(

1−α
α

)α Rα
K,t

AtZα
t

we deduce from this that

Lt =

∫
Lt(r)dr =

(
Pt

Wt

)α (
Yt

Bt
(1 +

1

2
(ηDW

t + ζDP
t )) +

F

Bt
(1 +

1

2
ηDW

t )

)
(C.12)

We also infer that when we sum over all individuals, we obtain

∫
Lt(r)

1+φdr =

(
Pt

Wt

)α(1+φ) (
1

Bt

)1+φ (
F + Yt(1 +

1

2
ζDP

t )

)1+φ

(1 +
1

2
η(1 + ηφ)(1 + φ)DW

t )

∼=
(

Pt

Wt

)α(1+φ) (
F + Yt

Bt

)1+φ (
1 +

Yt

F + Yt

1

2
ζ(1 + φ)DP

t

)
(1 +

1

2
η(1 + ηφ)(1 + φ)DW

t ) (C.13)

Note that (
Pt

Wt

)α (
F + Yt

Bt

)
=

(
PtKt−1RK,t

WtLt

)α

Lt

(
1 − α

α

)α

= Lt (C.14)

which is obtained by substituting for Bt and Yt from (C.9), and then using the second

minimum cost condition in the same equation. it follows that the utility function can be

approximately written as

E0

∞∑

t=0

βt

[
(Ct − hCt−1)

1−σ

1 − σ
− κ

L1+φ
t

1 + φ

(
1 +

1

2
(1 + φ)(

Yt

F + Yt
ζDP

t + η(1 + ηφ)DW
t )

)]
(C.15)

We shall expand this about the efficient steady state level described earlier, using the

resource constraints in Zt, Lt, Kt−1. We use proportional deviations for all variables,

denoted by the corresponding lower-case letters, so that for example ct = Ct−C
C .

Result: The first order terms in this expansion are zero.

Proof: The latter are given by

dU = E0

∞∑

t=0

βt

[
C1−σ(1 − h)−σ(ct − hct−1) − κN1+φlt

]

= E0

∞∑

t=0

βt

[
C1−σ(1 − h)−σ(1 − βh)ct − κN1+φlt

]
(C.16)

But aggregate consumption is given by

Ct = AtZ
α
t L1−α

t Kα
t−1 − F − Gt − It(1 − S(It/It−1)) − Ψ(Zt)Kt−1 (C.17)

which is a consequence of the fact that Kt−1(f)/Lt(f) is the same for all firms. From this

we can calculate ct, so recalling that Ψ(1) = 0, and ignoring for the moment the second-

order deviations in ct, the first-order deviations of the resource constraints in utility (C.16)

become

dU = E0

∞∑

t=0

βt

[
C−σ(1 − h)−σ(1 − βh)

(
α(Y + F )zt + (1 − α)(Y + F )lt

+(α(Y + F ) − 1

β
+ 1 − δ)Kkt−1 − Ψ′(1)Kzt

)
− κN1+φlt

]
(C.18)
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The terms in zt, lt, kt−1 are all zero as a consequence of first-order conditions (77) to

(80).

It follows that the second-order terms in the Taylor-series approximation of the welfare

loss is given by the sum of two expressions: the second-order terms in ct, lt from (C.15),

and the second-order terms in zt, lt, kt−1 from the expansion of ct in (C.16). The former

expression is given by

−1

2
E0

∞∑

t=0

βt[C1−σ(1 − h)−1−σσ(ct − hct−1)
2

+κL1+φ

(
φl2t +

Y

F + Y

ζξp

(1 − βξp)(1 − ξp)
(πt − γpπt−1)

2

+
η(1 + ηφ)ξw

(1 − βξw)(1 − ξw)
(∆wrt + πt − γw(∆wrt−1 + πt−1))

2

)
] (C.19)

where all the steady state values C, L, Y correspond to their efficient values. Note that we

can replace κL1+φ in this expression by C1−σ(1−h)−σ(1−1/η)(1−α)/cy where cy = C
Y +F ,

which holds for the zero-inflation decentralized equilibrium. Thus (C.19) may be rewritten

as

−C1−σ(1−h)−σ

2 E0
∑

∞

t=0 βt[(1 − h)−1σ(ct − hct−1)
2

+ (1−1/η)(1−α)
cy

(
φl2t + Y

F+Y
ζξp

(1−βξp)(1−ξp)(πt − γpπt−1)
2

+ η(1+ηφ)ξw

(1−βξw)(1−ξw)(∆wrt + πt − γw(∆wrt−1 + πt−1))
2

)
] (C.20)

Finally the second-order terms which arise from the resource constraint (C.17) are

given by

−1−βh
2 C−σ(1 − h)−σE0

∑
∞

t=0 βt

[
(Y + F )

(
α(1 − α)(lt − kt−1)

2 − 2[(1 − α)lt + αkt−1](at + αzt)

+α(1 − α)z2
t

)
+ K(Ψ′′(1)z2

t + 2Ψ′(1)ztkt−1) − S′′(1)(it − it−1)
2

]

Using the definition ψ = Ψ′(1)/Ψ′′(1), and the deterministic equilibrium conditions Ψ′(1) =

RK and α(Y + F ) = RKK, this may be rewritten as

−1−βh
2cy

C1−σ(1 − h)−σE0
∑

∞

t=0 βt

[
α(1 − α)(lt − kt−1 − zt − 1

1−αat)
2

+α
ψ

(
zt + ψat)

)2

− 2atlt − δK
Y +F S′′(1)(it − it−1)

2

]
(C.21)

To summarise, the quadratic form of the welfare is given by the sum of (C.20) and (C.21).

A number of points are worthy of note:
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1. Ignoring exogenous terms independent of policy, the quadratic approximation to the

utility is negative definite only if S′′(1) < 0. In our assumption and estimate for this

parameter is positive, so the utility is not completely positive definite.

2. There are of course no second order contributions from first order changes in Lt.

3. When there is no capital stock, habit, wage-stickiness and government spending we

end up with the loss function in Woodford (2003):

Ω0 = E0

[
1

2

∞∑

t=0

βt
[
(yt − ŷt)

2 + wπ(πt − γpπt−1)
2
]
]

(C.22)

where ŷt = 1+φ
σ+φat is potential output achieved when prices are flexible and

wπ =
ζξ

(1 − ξ)(1 − βξ)(σ + φ)
(C.23)

4. To work out the welfare in terms of a consumption equivalent percentage increase,

expanding U(C) = C1−σ(1−h)1−σ

1−σ as a Taylor series, a 1% permanent increase in

consumption of 1 per cent yields a first-order welfare increase (1 − h)1−σC−σ∆C =

(1 − hc)C
1−σ(1 − h)−σ × 0.01. Since standard deviations are expressed in terms of

percentages, the welfare loss terms which are proportional to the covariance matrix

(and pre-multiplied by 1/2) are of order 10−4. Letting X be these losses reported

in the paper. Then ce = X
(1−h) × 0.01 as given in (90). The expressions in (91) are

derived using only the quadratic terms.

C.3 Derivation of (C.4) and (C.5)

It is convenient though not essential to assume a normal distribution with lnWt(r) ∼
N(µ, σ2). By definition,

W 1−η
t =

∫
Wt(r)

1−ηdr = exp((1 − η)µ + (1 − η)2
1

2
σ2) (C.24)

Hence

Wt = exp(µ + (1 − η)
1

2
σ2) (C.25)

Thus it follows that
∫

Wt(r)
−ηdi = exp(−ηµ + η2 1

2
σ2) W−η

t = exp(−ηµ − η(1 − η)
1

2
σ2) (C.26)

from which we obtain (C.4). Similarly
∫

Wt(r)
−η(1+φ)dr = exp(−η(1 + φ)µ + η2(1 + φ)2

1

2
σ2) (C.27)

W
−η(1+φ)
t = exp(−η(1 + φ)µ − η(1 + φ)(1 − η)

1

2
σ2) (C.28)

and hence (C.5).
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Figure 5: Price Inflation Rate Following a 1% Government Spending Shock
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Figure 6: Output Gap Following a 1% Government Spending Shock
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Figure 7: Wage Inflation Rate Following a 1% Government Spending Shock
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Figure 8: Interest Rate Following a 1% Government Spending Shock
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Figure 9: Price Inflation Rate Following a 1% Technology Shock
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Figure 10: Output Gap Following a 1% Technology Shock
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Figure 11: Wage Inflation Rate Following a 1% Technology Shock
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Figure 12: Interest Rate Following a 1% Technology Shock

66
ECB 
Working Paper Series No 709
January 2007



67
ECB 

Working Paper Series No 709
January 2007

European Central Bank Working Paper Series

For a complete list of Working Papers published by the ECB, please visit the ECB’s website
(http://www.ecb.int)

680 “Comparing alternative predictors based on large-panel factor models” by A. D’Agostino and D. Giannone, 
October 2006.

681  “Regional inflation dynamics within and across euro area countries and a comparison with the US” 
by G. W. Beck, K. Hubrich and M. Marcellino, October 2006.

682 “Is reversion to PPP in euro exchange rates non-linear?” by B. Schnatz, October 2006.

683 “Financial integration of new EU Member States” by L. Cappiello, B. Gérard, A. Kadareja and 
S. Manganelli, October 2006.

684 “Inflation dynamics and regime shifts” by J. Lendvai, October 2006.

685 “Home bias in global bond and equity markets: the role of real exchange rate volatility” 
by M. Fidora, M. Fratzscher and C. Thimann, October 2006

686 “Stale information, shocks and volatility” by R. Gropp and A. Kadareja, October 2006.

687 “Credit growth in Central and Eastern Europe: new (over)shooting stars?” 
by B. Égert, P. Backé and T. Zumer, October 2006.

688 “Determinants of workers’ remittances: evidence from the European Neighbouring Region” 
by I. Schiopu and N. Siegfried, October 2006.

689 “The effect of financial development on the investment-cash flow relationship: cross-country 
evidence from Europe” by B. Becker and J. Sivadasan, October 2006.

690 “Optimal simple monetary policy rules and non-atomistic wage setters in a New-Keynesian 
framework” by S. Gnocchi, October 2006.

691 “The yield curve as a predictor and emerging economies” by A. Mehl, November 2006.

692 “Bayesian inference in cointegrated VAR models: with applications to the demand for 
euro area M3” by A. Warne, November 2006.

693 “Evaluating China’s integration in world trade with a gravity model based benchmark” 
by M. Bussière and B. Schnatz, November 2006.

694 “Optimal currency shares in international reserves: the impact of the euro and the prospects for the dollar” 
by E. Papaioannou, R. Portes and G. Siourounis, November 2006.

695 “Geography or skills: What explains Fed watchers’ forecast accuracy of US monetary policy?” by H. Berger, 
M. Ehrmann and M. Fratzscher, November 2006.

696 “What is global excess liquidity, and does it matter?” by R. Rüffer and L. Stracca, November 2006.



68
ECB 
Working Paper Series No 709
January 2007

697  “How wages change: micro evidence from the International Wage Flexibility Project” 
by W. T. Dickens, L. Götte, E. L. Groshen, S. Holden, J. Messina, M. E. Schweitzer, J. Turunen, 
and M. E. Ward, November 2006.

698 “Optimal monetary policy rules with labor market frictions” by E. Faia, November 2006.

699 “The behaviour of producer prices: some evidence from the French PPI micro data” 
by E. Gautier, December 2006.

700 “Forecasting using a large number of predictors: Is Bayesian regression a valid alternative to
principal components?” by C. De Mol, D. Giannone and L. Reichlin, December 2006.

701 “Is there a single frontier in a single European banking market?” by J. W. B. Bos and 
H. Schmiedel, December 2006.

702 “Comparing financial systems: a structural analysis” by S. Champonnois, December 2006.

703 “Comovements in volatility in the euro money market” by N. Cassola and C. Morana, 
December 2006.

704 “Are money and consumption additively separable in the euro area? A non-parametric approach” 
by B. E. Jones and L. Stracca, December 2006.

705 “What does a technology shock do? A VAR analysis with model-based sign restrictions” 
by L. Dedola and S. Neri, December 2006.

706 “What drives investors’ behaviour in different FX market segments? A VAR-based return
decomposition analysis” by O. Castrén, C. Osbat and M. Sydow, December 2006.

707 “Ramsey monetary policy with labour market frictions” by E. Faia, January 2007.

708 “Regional housing market spillovers in the US: lessons from regional divergences in a common monetary 
policy setting” by I. Vansteenkiste, January 2007.

709 “Quantifying and sustaining welfare gains from monetary commitment” by P. Levine, P. McAdam 
and J. Pearlman, January 2007.



ISSN 1561081-0

9 7 7 1 5 6 1 0 8 1 0 0 5


	Quantifying and sustaining welfare gains from monetary commitment
	Contents
	Abstract
	Non-technical Summary
	1 Introduction
	2 The Time Inconsistency Problem
	2.1 The Stabilization Bias in Two Simple DSGE Models
	2.2 The Stabilization Bias in General DSGE Models
	2.2.1 Imposing an Interest Rate Zero Lower Bound Constraint
	2.2.2 Commitment Versus Discretion
	2.2.3 Simple Commitment Rules

	2.3 Sustaining the Commitment Outcome as An Equilibrium

	3 The Model
	3.1 The Smets-Wouters Model
	3.2 Households
	3.3 Firms
	3.4 Staggered Wage-Setting
	3.5 Equilibrium
	3.6 Zero-Inflation Steady State
	3.7 Linearization about the Zero-Inflation Steady State

	4 Estimation
	5 Is There a Long-Run Inflationary Bias?
	6 Optimal Monetary Stabilization Policy
	6.1 Formulating the Policymaker’s Loss Function
	6.2 Imposing the Interest Rate Zero Lower Bound
	6.3 Stabilization Gains with Simple Rules
	6.4 Impulse Responses Under Commitment and Discretion
	6.5 Sustaining Commitment as an Equilibrium

	7 Conclusions
	References
	Figures
	European Central Bank Working Paper Series



