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Abstract

This paper argues that forecast estimators should minimise the loss

function in a statistical, rather than deterministic, way. We introduce two

new elements into the classical econometric analysis: a subjective guess

on the variable to be forecasted and a probability reflecting the confidence

associated to it. We then propose a new forecast estimator based on

a test of whether the first derivatives of the loss function evaluated at

the subjective guess are statistically different from zero. We show that

the classical estimator is a special case of this new estimator, and that in

general the two estimators are asymptotically equivalent. We illustrate the

implications of this new theory with a simple simulation, an application

to GDP forecast and an example of mean-variance portfolio selection.

Keywords: Decision under uncertainty, estimation, overfitting, asset

allocation.

JEL classification: C13, C53, G11.
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Non-technical summary

Classical forecast estimators typically ignore non-sample information and es-

timation errors due to finite sample approximations. This paper shows how

these two problems are closely connected. We argue that forecast estimators

should minimise the loss function in a statistical sense, rather than in the usual

deterministic way. We formally introduce into the classical econometric analy-

sis two new elements: a subjective guess on the variable to be forecasted and

a probability reflecting the confidence associated to it. These elements serve

to summarise the non-sample information available to the decision-maker, and

allow us to formalise the interaction between judgement and data in the fore-

casting process. We then propose a new forecast estimator based on a test of

whether the first derivatives of the loss function evaluated at the subjective

guess are statistically different from zero. If this is the case, the subjective

guess becomes the forecast, since the null hypothesis that it minimises the loss

function cannot be rejected at the given confidence level. Otherwise, the loss

function is decreased as long as its first derivatives are significantly different

from zero, and a new, model-based forecast is obtained.

Classical estimators deterministically set the first order conditions equal to

zero. They can therefore be obtained as a special case of our estimator by

choosing a confidence level equal to zero, which corresponds to ignoring any

subjective guess. Moreover, under standard regularity conditions the classical

estimator is shown to be asymptotically equivalent to our estimator.
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We argue that the forecasting process should be characterised by a clear

separation between “experts” - who should provide the subjective guess and the

confidence associated to it - and econometric modellers, who should test whether

the given subjective guess is supported by the available data and models used

for the analysis. We also argue that under the forecasting framework developed

in this paper the responsibility for good or bad forecasts is shared between

“experts” and econometricians: formulating a good initial guess may be as

important as the quality of the econometric model.

We illustrate the implications of this new theory with three examples. In

the first one, we perform a simple Monte Carlo simulation with different sample

sizes and show how under certain circumstances our new estimator outperforms

the classical sample mean. In the second example, we provide an application to

GDP growth rate forecasts, explaining how an initial guess on the dependent

variable may be mapped into an initial guess on the parameters of the econo-

metrician’s favourite model. In the third example, we show how this forecasting

theory can be used to tackle some of the well-known implementation problems

of mean-variance portfolio selection models. The practical effect of our estima-

tor is to provide a shrinkage device to be applied directly to portfolio weights.

We also discuss how GARCH-type heteroscedasticity can be accounted for.

6
ECB
Working Paper Series No. 584
January 2006



1 Introduction

That some macroeconomic and financial econometric models forecast poorly

is a well-known fact. The ongoing debate was effectively summarised by the

different contributions to the 100th volume of the Journal of Econometrics, an

open forum on the current state and future challenges of econometrics. In this

paper, we argue that standard estimation methods may be partly responsible

for the poor forecasting performance of econometric models and we propose an

alternative theory of forecasting.

Forecasting is intrinsically intertwined with decision-making. Forecasts serve

their purpose by helping agents to make decisions about an uncertain future.

Forecast errors generate costs to the decision-maker, to the extent that different

forecasts command different decisions. Since forecast errors are unavoidable in a

random world, the classical theory of forecasting builds on the assumption that

agents wish to minimise the expected cost associated to these errors (Granger

1969, Granger and Newbold 1986, Granger and Machina 2005). Classical fore-

cast estimators are then obtained as the minimisers of the sample equivalent of

the unobservable expected cost.
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We emphasise two closely related problems with this theory. First, classical

forecasts do not explicitly account for non-sample information available to the

decision-maker, even though subjective judgement often plays an important role

in many real world forecasting processes. Second, classical estimators minimise

a loss function, which depends on unknown parameters and is only a finite

sample approximation of the true loss function to be minimised. Since any

finite sample approximation is subject to estimation error, minimisation of this

function does not necessarily coincide with the minimisation of the true loss

function.

To address the first problem, we formally introduce two new elements into

the classical econometric analysis: a subjective guess on the variable to be fore-

casted and a probability reflecting the confidence of the decision-maker in this

guess. These elements serve to summarise the non-sample information avail-

able to the decision-maker, and allow us to formalise the interaction between

judgement and data in the forecasting process.

As for the second problem, estimation error is explicitly taken into consid-

eration by testing whether the subjective guess statistically minimises the loss

function. This is equivalent to testing whether the first derivatives evaluated at
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the parameter values implied by the subjective guess are statistically equal to

zero at the given confidence level. If this is the case, the subjective guess is re-

tained as the best estimate. Otherwise, the loss function is decreased as long as

its first derivatives are significantly different from zero, and a new, model-based

forecast is obtained.

Classical estimators deterministically set the first order conditions equal to

zero. They can therefore be obtained as a special case of our estimator by

choosing a confidence level equal to zero, which corresponds to ignoring any

subjective guess. Moreover, under standard regularity conditions the classical

estimator is shown to be asymptotically equivalent to the estimator proposed

in this paper. As the sample size grows, the true loss function is approximated

with greater precision, and the subjective guess becomes less and less relevant.

We illustrate the implications of this new theory with three examples. In

the first one, we perform a simple Monte Carlo simulation with different sample

sizes. We show how our new estimator outperforms the classical estimator,

whenever the subjective guess is close enough to the true parameter value.

We argue that the dichotomy between judgement and estimation implies that

the forecasting process should be characterised by a clear separation between

decision-makers - who should provide the judgement and their confidence in it

- and econometricians, who should test whether such judgement is supported

by the available data and models used for the analysis. It also implies that the
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responsibility for good or bad forecasts is shared between decision-makers and

econometricians: having good judgement may be as important as the quality

of the econometric model.

In the second example, we provide an application to GDP growth rate fore-

casts. Econometric models are complicated functions of parameters which are

often devoid of economic meaning. It may therefore be difficult to express a

subjective guess directly on these parameters. We suggest a simple and in-

tuitive strategy to map the subjective guess on the variable of interest to the

decision-maker into values for the parameters of the econometrician’s favourite

model. Specifically, these “judgemental parameter values” are obtained by min-

imising the loss function subject to the constraint that the forecast implied by

the model is equal to the subjective guess. We illustrate how this works in the

context of a simple autoregressive model.

In the third example, we show how the forecasting framework proposed

in this paper can be used to tackle some of the well-known implementation

problems of mean-variance portfolio selection models. For a given benchmark

portfolio (the subjective guess, in the terminology used before), we derive the as-

sociated optimal portfolio which increases the empirical expected utility as long

as the first derivatives are statistically different from zero. From this perspec-

tive, the confidence level associated to the subjective guess may be thought of

as a device against overfitting, since it crucially determines when the increase in
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the objective function stops to be statistically significant. Alternatively, it may

be interpreted as the cost of underperfoming relative to the benchmark. The

practical effect of our estimator is to provide a shrinkage device to be applied

directly to portfolio weights. The two ends of the shrinkage are the bench-

mark portfolio and the classical mean-variance optimal portfolio. The amount

of shrinkage is determined by the risk preferences of the decision-maker. We

also discuss how GARCH-type heteroscedasticity can be accounted for.

The paper is structured as follows. In the next section, we use a stylised

statistical model to highlight the problems associated to classical estimators.

In section 3, we build on this stylised model to develop the heuristics behind

our new forecasting theory. Section 4 contains a formal development of the

new forecasting theory. The empirical applications are in section 5. Section 6

concludes.

2 The Problem

In this section we illustrate with a simple example the problem associated with

classical estimators. The intuition is the following. Classical forecast estima-

tors approximate the expected loss function with its sample equivalent. While

asymptotically this approximation is perfect, in finite samples it is not. The

quality of the finite sample approximation - which is out of the econometrician’s

control - will crucially determine the quality of the forecasts.
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Assume that {yt}Tt=1 is a series of i.i.d. normally distributed observations.

We are interested in the forecast θ of yT+1, using the information available up

to time T . Let’s denote the forecast error by e ≡ yT+1 − θ. Suppose that the

agent quantifies the cost of the error with a quadratic cost function, C(e) ≡ e2.

The optimal forecast minimises the expected cost:

min
θ
E[(yT+1 − θ)2] (1)

Setting the first derivative equal to zero, the optimal point forecast is given

by the expected value of yT+1, leading to the optimal forecast estimator θ̂T ≡

T−1
PT

t=1 yt. But θ̂T is the minimiser of T
−1PT

t=1[(yt − θ)2] and the problem

can be rewritten as:

min
θ
{E[(yT+1 − θ)2] + εT (θ)} (2)

where εT (θ) ≡ T−1
PT

t=1[(yt− θ)2]−E[(yT+1− θ)2]. εT (θ) is the error induced

by the finite sample approximation of the expected cost function, which by the

Law of Large Numbers converges to zero only as T goes to infinity. Therefore

in finite samples, classical estimators don’t minimise the expected cost, but also

an unbounded error term εT (θ) which vanishes only asymptotically.

3 An Alternative Theory of Forecasting

The question is now whether we can find an alternative estimator which may

have better properties than the classical one. To answer this question we in-

troduce extra elements into the analysis: a subjective guess on the model’s
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parameter and a probability summarising the confidence of the forecaster in

this guess.

Let’s go back to the first order condition of the optimal forecast problem

(1):

E[yT+1 − θ] = 0 (3)

The sample equivalent of this expectation evaluated at θ̃ is:

fT (θ̃) ≡ T−1
TX
t=1

[yt − θ̃] (4)

where θ̃ is some subjective guess. fT (θ̃) is the sample realisation of the first

derivatives of the expected cost function. It is a random variable which may be

different from zero just because of statistical error. Under the null hypothesis

that θ̃ is the optimal estimator, fT (θ̃) ∼ N(0, σ2T (θ̃)), where σ
2
T (θ̃) ≡ T−1E[(yt−

θ̃)2].

For a given confidence level α, let ±κα/2 denote the corresponding standard

normal critical values and ±η̂α/2(θ) ≡ ±
q
σ̂2T (θ)κα/2, where σ̂

2
T (θ) is a suitable

estimator of σ2T (θ). An intuitive estimator θ̂
∗
T given the confidence level α is:

θ̂
∗
T =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

θ̃ if− η̂α/2(θ̃) < fT (θ̃) < η̂α/2(θ̃)

argmin
θ
[fT (θ) + η̂α/2(θ)]

2 if fT (θ̃) < −η̂α/2(θ̃)

argmin
θ
[fT (θ)− η̂α/2(θ)]

2 if fT (θ̃) > η̂α/2(θ̃)

That is, given the subjective guess θ̃ and the confidence level α, if the null

hypothesis H0 : fT (θ̃) = 0 cannot be rejected, the subjective guess θ̃ becomes
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the forecast. Rejection of the null signals that the subjective guess can be

statistically improved, until fT (θ̂
∗
T ) is exactly equal to its critical value. Note

that as long as σ̂2T (θ) is a consistent estimator of σ
2
T (θ), η̂α/2(θ) converges to

zero as T goes to infinity. Therefore θ̂
∗
T converges asymptotically to the classical

estimator and is consistent.

This estimator has a natural economic interpretation in terms of the ex-

pected cost/utility function used in the forecasting problem. For a given sub-

jective guess θ̃, it answers the following question: Can the forecaster increase

his/her expected utility in a statistically significant way? If the answer is no, i.e.

if one cannot reject the null that the first derivatives evaluated at θ̃ are equal

to zero, θ̃ should be taken as the forecast. If, on the contrary, the answer is yes,

the econometrician will move the parameter θ as long as the first derivatives

are statistically different from zero. S/he will stop only when θ̂
∗
T is such that

the empirical expected utility cannot be increased any more in a statistically

significant way.

The confidence level α may have different interpretations. It may be inter-

preted as the confidence of the forecaster in the subjective guess and in this case

it should reflect the knowledge of the environment in which the forecast takes

place. Alternatively, it may be thought of as the probability of committing type

I errors, i.e. of rejecting the null when θ̃ is indeed the optimal forecast. Finally,

since it determines when the increase in expected utility stops to be statistically
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significant, it may be seen as a device against overfitting. The forecaster will

choose a low α whenever s/he is reasonably confident in the subjective guess θ̃,

and/or if the cost of committing type I errors is high, and/or if she is concerned

about overfitting.

Note that in the classical paradigm there is no place for subjective guesses

and therefore α = 100%: in this case κα/2 = 0 and θ̂
∗
T is simply the solution

obtained by setting the first derivatives (4) equal to zero.

4 Generalisation

In this section we generalise the analysis of the previous section. We formally

define a new estimator which depends on a subjective guess and the confidence

associated to it, and establish its relationships with classical estimators. This

new estimator is obtained by adding a constraint on the first derivatives to

the classical optimisation problem. We show that the classical estimator is a

special case of our new estimator and that the two estimators are asymptotically

equivalent.

Classical forecasts typically maximise some objective function that depends

on parameters, data and sample size. Following the framework of Newey and

McFadden (1994), denote with Q̂T (θ) such objective function, where θ is the

vector of parameters belonging to the k-dimensional parameter space Θ. We

assume the following:

15
ECB

Working Paper Series No. 584
January 2006



Condition 1 (Uniform Convergence) Q̂T (θ) converges uniformly in prob-

ability to Q0(θ).

Condition 2 (Identification) Q0(θ) is uniquely maximised at θ0.

Condition 3 (Compactness) Θ is compact.

Condition 4 (Continuity) Q0(θ) is continuous.

We will refer to θ0 as to the true (or pseudo-true) parameter (see White

1994 for a treatment of quasi-maximum likelihood estimation). These are the

standard conditions needed for consistency results of extremum estimators (see

theorem 2.1 of Newey and McFadden 1994). For the present context we need

to impose also the following conditions:

Condition 5 θ0 ∈interior(Θ).

Condition 6 (Differentiability) Q̂T (θ) is continuously differentiable.

Condition 7 (Asymptotic Normality)
√
T∇θQ̂T (θ

0)
d−→ N(0,Σ).

The first derivative of Q̂T (θ) evaluated at a subjective guess θ̃ is a k-

dimensional random variable. Denote with Σ̂T a
√
T -consistent estimate of

Σ. Under the null hypothesis H0 : θ̃ = θ0, the above conditions imply:

ẑT (θ) ≡ T∇0θQ̂T (θ̃)Σ̂
−1
T ∇θQ̂T (θ̃)

d−→ χ2k (5)

The classical and new estimators are given in the following definitions.
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Definition 1 (Classical Estimator) The classical estimator is θ̂T = argmax
θ

Q̂T (θ).

Definition 2 (New Estimator) Let θ̃ denote the subjective guess and, for

a given confidence level α, let ηα,k denote the critical value of χ
2
k. The new

estimator θ̂
∗
T is defined as follows:

1. if @ θ̈ ∈ Θ s.t. ẑT (θ̈) > ηα,k and Q̂T (θ̈) > Q̂T (θ̃):

θ̂
∗
T = θ̃; (6)

2. if ∃ θ̈ ∈ Θ s.t. ẑT (θ̈) > ηα,k and Q̂T (θ̈) > Q̂T (θ̃), θ̂
∗
T is the solution of the

following constrained maximisation problem:

max
θ

Q̂T (θ) (7)

s.t. ẑT (θ) = ηα,k

According to the above definition, the new estimator can be obtained from the

classical maximisation problem, by adding a constraint. The role of the con-

straint is to make sure that the classical maximisation problem takes explicitly

into account estimation errors. If at a given subjective guess θ̃ and confidence

level α, the likelihood cannot be increased in a statistically significant way, the

subjective guess θ̃ should be retained as the forecast estimator. If instead the

null hypothesis that θ̃ maximises the likelihood is rejected, the subjective guess

can be statistically improved upon, until the first derivatives are not signifi-

cantly different from zero. The slightly cumbersome conditions of points 1 and
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2 in Definition 2 are needed to account for the fact that the first order conditions

can generally have multiple roots.

Note that the test statistic in (5) relies on an asymptotic approximation

to its distribution. If it is suspected that with the available sample size such

approximation may be poor, one could resort to bootstrap methods to improve

the accuracy of the estimator.

The following theorem shows that the new estimator is consistent and es-

tablishes its relationship with the classical estimator.

Theorem 1 (Properties of the New Estimator) Under Conditions 1-7 the

estimator θ̂
∗
T of Definition 2 satisfies the following properties:

1. If α = 100%, θ̂
∗
T is the classical estimator;

2. If α > 0, θ̂
∗
T converges in probability to the classical estimator.

Proof. See Appendix.

The intuition behind this result is that as the sample size grows the dis-

tribution of the first derivatives will be more and more concentrated around

its true mean. If the subjective guess θ̃ coincides with the true parameter, the

chi-square statistic (5) will be lower than its critical value for large T and ac-

cording to Definition 2 the estimator will be θ̂
∗
T = θ̃. If, on the other hand,

the true parameter is different from the subjective guess, the constraint of the

maximisation problem in Definition 2, coupled with Conditions 1-7, will guar-
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antee that θ̂
∗
T will get closer and closer to the true parameter, as the sample

size grows.

5 Examples

We illustrate some of the implications of our theory with three examples. The

first one is based on a Monte Carlo simulation. We show how the performance

of the new estimator crucially depends on the quality of the subjective guess

and the confidence associated to it. We argue that the choice of the subjective

guess should be independent of the econometric model used for estimation.

The second example is an application to U.S. GDP forecast. We show how

one can map a subjective guess on future GDP growth rates into subjective

guesses on the parameters of the econometrician’s favourite model. We provide

an illustration using an autoregressive model to forecast quarterly GDPs.

In the third example, we estimate the optimal portfolio weights maximising

a mean-variance utility function. We highlight how the theory proposed in this

paper naturally takes into account the impact of estimation errors - which typi-

cally plague standard mean-variance optimisers - by shrinking portfolio weights

estimates from a given benchmark towards the classical estimates.
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5.1 Simulation

We generated random draws from a standard normal distribution, with differ-

ent sample sizes, T = 5, 20, 60, 120, 240, 1000. For each series, we estimated

the classical forecast estimator (θ̂T = T−1
PT

t=1 yt) and the one proposed in

this paper (θ̂
∗
T ), using a quadratic loss function, i.e. Q̂T (θ) ≡ −C(θ) =

−T−1
PT

t=1(yt − θ)2. In the estimation of θ̂
∗
T , we set α = 10%. Next, we

computed the expected costs associated to these estimators and to the sub-

jective guess ã (Ei[C(θ̂T )], Ei[C(θ̂
∗
T )] and Ei[C(θ̃)]) with a Monte Carlo sim-

ulation (with 10, 000 random draws from the normal distribution). We re-

peated this procedure 5000 times and then averaged the expected utilities, i.e.

E[C(θ̂T )] =
P5000

i=1 Ei[C(θ̂T )]/5000 and the same for the other estimators. The

results are reported in table 1.

The major points to be highlighted are the following. First, the new estima-

tor θ̂
∗
T may be biased but is consistent. Second, in small samples the classical

estimator θ̂T performs worse than θ̂
∗
T when the subjective guess θ̃ is reasonably

close to the true value. Third, in large samples, the performance of θ̂T and θ̂
∗
T

becomes roughly equivalent, independently of the subjective guess θ̃.

5.1.1 Discussion

These results have implications for the organisation of the forecasting process

of any institution interested in forecasting. There should be a clear separation
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T 5 20 60 120 240 1000

θ̃ E[C(θ̃)] E[C(θ̂T )] 1.2068 1.0497 1.0167 1.0083 1.0039 1.0009

0 1 1.0045 1.0012 1.0000 1.0003 0.9999 0.9999

0.05 1.0025 1.0071 1.0035 1.0022 1.0024 1.0020 1.0016

0.1 1.01 E[C(θ̂
∗
T )] 1.0142 1.0102 1.0085 1.0082 1.0070 1.0034

0.5 1.2500 1.2151 1.1452 1.0621 1.0317 1.0150 1.0036

1 2.0000 1.6572 1.2019 1.0629 1.0317 1.0150 1.0036

Table 1: Monte Carlo comparison of expected cost functions associated to dif-

ferent estimators. We formatted in bold the cases where the new estimator

outperforms the classical estimator.

between the decision-maker providing the subjective guess and the confidence

associated to it, and the econometrician whose task is to check whether such

a subjective guess is supported by the available data or whether it can be

improved. In particular, the formulation of the subjective guess should be

independent of the econometric model used to evaluate it. In the previous

example a subjective guess based on the OLS estimator would never be rejected

by the data, but it would also have very little value added.

Within this new framework, the responsibility of good or bad forecasts is

shared between the decision-maker and the econometrician. High confidence

in a bad subjective guess would inevitably result in poor forecasts (in small

samples). Therefore, under the new forecasting framework developed in this
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paper, formulating a good subjective guess may become as important as having

a good econometric model.

5.2 Forecasting U.S. GDP

We illustrate how the theory of section 4 can be applied to forecast the U.S.

real GDP. A possible difficulty in implementing the theory is related to the

formulation of a subjective guess on parameters of an econometric model about

which the decision-maker may know nothing or very little. We propose a simple

strategy to map a subjective guess on the variable of interest to the decision-

maker (GDP in this case) into subjective guesses on the parameters of the

econometrician’s favourite model.

In principle, it is possible to express a subjective guess directly on the pa-

rameter vector θ or indirectly on the dependent variable yT+1 to be forecasted.

If the decision-maker can formulate a guess on θ, the theory of section 4 can

be applied directly. In most circumstances, however, it may be more natural

to have a judgement about the future behaviour of yT+1, rather than about

abstract model parameters. Let’s denote this subjective guess as ỹT+1. Using

the notation of section 4, this can be translated into a subjective guess on θ as

follows:

θ̃ = argmax
θ

Q̂T (θ) (8)

s.t. ŷT+1(θ) = ỹT+1
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where ŷT+1(θ) is the model’s forecast conditional on the parameter vector θ.

The subjective guess ỹT+1 is mapped into a subjective guess on the parameter

vector by choosing the θ̃ that maximises the likelihood subject to the constraint

that the forecast at time T is equal to ỹT+1.

Let’s consider, for concreteness, an application to quarterly GDP forecast-

ing, using an AR(4) model:

yt = θ0 +
4X

i=1

θiyt−i + εt (9)

If the model is estimated via OLS, we have:

Q̂T (θ) ≡ −T−1
TX
t=1

[yt − ŷt(θ)]
2 (10)

where ŷt(θ) ≡ θ0 +
P4

i=1 θiyt−i. The score evaluated at θ̃ is

∇θQ̂T (θ̃) = 2T
−1

TX
t=1

ε̂t(θ̃)∇θŷt(θ̃) (11)

where ε̂t(θ̃) ≡ yt − ŷt(θ̃) and ∇θŷt(θ̃) ≡ [1, yt−1, yt−2, yt−3, yt−4]0. We esti-

mate the asymptotic variance-covariance matrix of the score using standard

heteroscedasticity-consistent estimators (White 1980):

Σ̂T ≡ 4T−1
TX
t=1

ε̂t(θ̃)
2∇θŷt(θ̃)∇0θŷt(θ̃) (12)

We estimate this model using quarterly data for the U.S. real GDP growth

rates. The data are taken from the FRED R° database1. The data has been

seasonally adjusted and our sample runs from Q1 1983 to Q3 2005, with 90

observations. The growth rates are computed as log differences.
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ỹT+1 = 3% ỹT+1 = 5%

θ̂T θ̃ θ̂
∗
T θ̃ θ̂

∗
T

1.65 1.54 1.54 2.73 2.69

0.23 0.21 0.21 0.42 0.30

0.36 0.37 0.37 0.30 0.20

-0.16 -0.18 -0.18 -0.03 -0.14

0.04 0.05 0.05 -0.04 -0.13

Table 2: Subjective guesses and estimated parameters associated to different

subjective guesses on Q4 2005 GDP growth rates (3% and 5%). A subjective

guess of 3% is not rejected by the data and maps into parameter values very

close to the OLS θ̂T . A subjective guess of 5%, instead, is rejected by the data,

resulting in parameter estimates different from the parameter guess.
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One quarter ahead GDP forecasts (guess = 3%)
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Figure 1: Plot of the forecasts associated to the subjective guess of 3% GDP

growth rate for Q4 2005 (thick dashed line) and to the OLS estimate (thin solid

line). Note that the forecast at the end of the sample of the dashed line is

exactly 3% by construction.
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One quarter ahead GDP forecasts (guess = 5%)
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Figure 2: Plot of the forecasts associated to the subjective guess of 5% GDP

growth rate for Q4 2005 (thick dashed line) and to the new estimator (thin

solid line). The subjective guess of 5% is rejected by the data and results in

very different forecasts associated to the estimated parameters.
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For illustratory purposes, we consider two different subjective guesses for

GDP growth in the next quarter (Q4 2005), ỹT+1 = 3% and ỹT+1 = 5%, both

with a confidence level α = 10%. The results are reported in table 2 and figures

1-2. As we can see from the table, ỹT+1 = 3% maps into a parameter guess

θ̃ which cannot be rejected by the data (θ̂
∗
T = θ̃). These parameter values are

also very close to the OLS estimates θ̂T , resulting in very similar forecasts (see

figure 1). Note that in figure 1 the forecast at Q4 2005 associated to θ̂
∗
T is equal

to 3%, the original subjective guess (ỹT+1 = 3%).

The other subjective guess, ỹT+1 = 5%, is instead rejected by the data at the

chosen confidence level, resulting in parameter estimates θ̂
∗
T which are different

from the parameter guess θ̃. The implications can be seen in figure 2, where we

plot the in-sample forecasts associated to these two parameter values. There are

very remarkable differences between the two plotted time series, the one based

on θ̂
∗
T (labelled “New Estimator”) being a couple of percentage points lower

than the one based on θ̃ (labelled “Guess”). The out of sample forecast at Q4

2005 associated to θ̂
∗
T is 3.49% and the OLS forecast is 3.19%, both definitely

lower than the subjective guess of 5%.

5.3 Mean-Variance Asset Allocation

In this section we illustrate how our theory can be applied to the mean-variance

portfolio selection problem. Markowitz’s (1952) mean-variance model provides

1See http://research.stlouisfed.org/fred2.
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the standard benchmark for portfolio allocation. It formalises the intuition that

investors optimise the trade off between returns and risks, resulting in optimal

portfolio allocations which are a function of expected return, variance (the proxy

used for risk) and the degree of risk aversion of the decision-maker. Despite

its theoretical appeal, it is well known that standard implementations of this

model produce portfolio allocations with no economic intuition and little (if not

negative) investment value. These problems were initially pointed out, among

others, by Jobson and Korkie (1981), who used a Monte Carlo experiment to

show that estimated mean-variance frontiers can be quite far away from the

true ones. The crux of the problem is colourfully, but effectively highlighted by

the following quotation of Michaud (1998, p. 3):

“[Mean-variance optimizers] overuse statistically estimated in-

formation and magnify the impact of estimation errors. It is not

simply a matter of garbage in, garbage out, but, rather, a molehill

of garbage in, a mountain of garbage out.”

The problem can be restated in terms of the theory developed in section

4. Classical estimators maximise the empirical expected utility, without taking

into consideration whether this maximisation is statistically significant or not.

Our theory provides a natural alternative. For a given benchmark portfolio

(the subjective guess θ̃ in the notation of section 4) and a confidence level α,

the resulting optimal portfolio is the one which increases the empirical expected
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To formalise this discussion, consider a portfolio with N + 1 assets. De-

note with θ the N -vector of weights associated to the first N assets entering

a given portfolio, and denote with yt(θ) the portfolio return at time t, where

the dependence on the individual asset weights has been made explicit. Since

all the weights must sum to one, note that θN+1 = 1−
PN

i=1 θi, where θN+1 is

the weight associated to the (N + 1)th asset of the portfolio. Let’s assume an

investor wants to maximise a trade-off between mean and variance of portfolio

returns, resulting in the following expected utility function:

Q0(θ) ≡ U [θ; yT+1] = E[yT+1(θ)]− λV [yT+1(θ)] (13)

= E[yT+1(θ)]− λ{E[y2T+1(θ)]−E[yT+1(θ)]
2}

where λ describes the investor’s attitude towards risk. The empirical analogue

is:

Q̂T (θ) ≡ ÛT [θ; {yt}Tt=1] = T−1
TX
t=1

yt(θ)− λ{T−1
TX
t=1

y2t (θ)− [T−1
TX
t=1

yt(θ)]
2}

(14)

The first order conditions are:

∇θÛT [θ; {yt}Tt=1] = T−1
TX
t=1

∇θyt(θ)−

−λ{T−12
TX
t=1

yt(θ)∇θyt(θ)− 2[T−1
TX
t=1

yt(θ)]T
−1

TX
t=1

∇θyt(θ)}

where ∇θyt(θ) ≡ yNt − yN+1t ι, yNt is an N -vector containing the returns at time

t of the first N assets, yN+1t is the return at time t of the (N + 1)th asset, and
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α 100% 0.01% 10-8% 10-14%

Var(θ̂
∗
T ) 0.0199 0.0057 0.0018 0.0001

min -0.16 -0.07 -0.01 0.02

max 0.45 0.19 0.13 0.11

Table 3: This table reports variance, minimum and maximum of the optimal

vector of portfolio weights associated to different confidence levels, starting

from an equally weighted portfolio. The lower the confidence level, the closer

the optimal allocation to the benchmark portfolio.

ι is an N -vector of ones.

We apply the methodology developed in section 4 to monthly log returns

of 15 stocks of the Dow Jones Industrial Average (DJIA) index, as of July 15,

2005. The sample runs from January 1, 1987 to July 1, 2005, for a total of 223

observations. We set λ = 4 and use as subjective guess the equally weighted

portfolio. We tried different confidence levels α, which in this case can be

interpreted as the cost of underperforming relative to the benchmark portfolio.

In table 3 we report variance, minimum and maximum of the optimised portfolio

weights. As we can see from this table, a low α results in a lower dispersion

of the portfolio weights, implying a portfolio closer to the equally weighted

benchmark. This can be visually seen in figure 3.

The case with α = 100% corresponds to the standard implementation of

the mean-variance model (i.e., it corresponds to the case where the sample
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Figure 3: Plots of the optimal weights associated to the different confidence

levels α.
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estimates of expected returns and variance-covariances are substituted into the

analytical solution of the optimal portfolio weights). To see why, rewrite (13)

as

U [θ; yT+1] = θ̄
0
E[yT+1]− λθ̄

0
V [yT+1]θ̄ (15)

where θ̄ ≡ [θ0, θN+1]0. Standard implementations maximise this expected utility

analytically (subject to the constraint that the weights sum to 1) and then

substitute into the solution the sample estimates for E[yT+1] and V [yT+1]. This

is equivalent to first substituting the sample estimates for E[yT+1] and V [yT+1]

and then maximising with respect to θ, which in turn is equivalent to directly

maximising (14).

Figure 3 offers an alternative interpretation of our estimator: it is a shrink-

age estimator, shrinking the portfolio weights from the benchmark θ̃ towards

the classical estimator. The confidence level α determines the amount of shrink-

age: the higher the α, the stronger the shrinkage effect towards the classical

weights. Setting α = 100% corresponds to a complete shrinkage, resulting in

the usual optimal portfolio allocation.

5.3.1 Accounting for heteroscedasticity

The previous analysis has assumed constant means and variance-covariance ma-

trices. In practice, it is well known that financial returns at higher frequencies

are heteroscedatic. This feature of the data can be effectively captured by
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Engle’s (1982) and Bollerslev’s (1986) GARCH models. One concrete draw-

back of these models in applications to multivariate asset allocation problems

is the curse of dimensionality: as the number of assets included in the portfolio

increases, the number of parameters to be estimated in multivariate GARCH

models grows exponentially. Manganelli (2004) proposes a solution to this prob-

lem, which can be directly extended to the new theory developed in this paper.

The idea is to work with univariate portfolio GARCH models. The multivariate

dimension of the portfolio allocation problem is recovered via the derivatives of

the estimated GARCH variance with respect to the portfolio weights.

Assume that portfolio returns yt(θ) are modelled as a zero-mean process

with a GARCH(p, q) conditional variance:

yt(θ) =
p
ht(β, θ)εt εt ∼ (0, 1) (16)

ht(β, θ) = z0t(β, θ) · β

where zt(β, θ) ≡ [1, y2t−1(θ), ..., y
2
t−p(θ), ht−1(β, θ), ..., ht−q(β, θ)]

0 and we have

made explicit the dependence on the GARCH parameter β and the vector of

portfolio weights θ. The utility (13) becomes U [β, θ; yT+1(θ)] = −λhT+1(β, θ)

and its empirical analogue is:

U [β̂T , θ; {yt(θ)}Tt=1] = −λhT+1(β̂T , θ)

where hT+1(β̂T , θ) represents the GARCH variance evaluated at the maximum

likelihood estimate β̂T . Notice that in this context β̂T depends on the portfolio
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weights θ: changes in θ imply a different time series {yt(θ)}Tt=1 and therefore

different estimates β̂T . The first derivatives are:

∇θU [β̂T , θ; {yt(θ)}Tt=1] = −λ∇θhT+1(β̂T , θ)

= −λ[∇θz
0
T+1(β̂T , θ) · β̂T +∇θβ̂

0
T · zT+1(β̂T , θ)]

The formula to compute ∇θβ̂T is given in theorem 1 of Manganelli (2004). To

obtain the distribution of the first derivatives, we use a mean value expansion

around β0. Under the null hypothesis that the allocation θ is optimal, the first

derivatives evaluated at the true parameter should be zero and we get:

∇θU [β̂T , θ; {yt(θ)}Tt=1] = ∇θU [β
0, θ; {yt(θ)}Tt=1] +∇θβU [β

∗
T , θ; {yt(θ)}Tt=1] · (β̂T − β0)

= −λ∇θβhT+1(β
∗
T , θ) · (β̂T − β0)

where β∗T lies between β̂T and β0.

By the standard GARCH results,
√
T (β̂T −β0)

d−→ N(0,Φ). See Bollerslev,

Engle and Nelson (1994) for a discussion of how to estimate Φ. Since β̂T is a

consistent estimator of β0, under the null hypothesis that a given allocation θ

is optimal, the first derivatives of the utility function will have the following

asymptotic distribution:

√
T∇θU [θ, β̂T ; {yt(θ)}Tt=1]

d−→ N(0, λ2∇θβhT+1(β
0, θ) · Φ ·∇θβhT+1(β

0, θ)0)

34
ECB
Working Paper Series No. 584
January 2006



analytical expression:

∇θβhT+1(β̂T , θ) = ∇θz
0
T+1(β̂T , θ) + (β̂

0
T ⊗ IN) ·∇θβz

0
T+1(β̂T , θ) +

+∇θβ̂
0
T · (∇βz

0
T+1(β̂T , θ))

0 + (z0T+1(β̂T , θ)⊗ IN ) ·∇θββ̂
0
T

where ⊗ denotes the Kronecker product and IN is an identity matrix of dimen-

sion N , the dimension of θ. It is now possible to derive the chi-square statistic

and apply the methodology of section 4.

6 Conclusion

Classical forecast estimators typically ignore non-sample information and esti-

mation errors due to finite sample approximations. In this paper we pointed

out how these two problems are connected. We argued that forecast estimators

should optimise the objective function in a statistical sense, rather than in the

usual deterministic way. We formally introduced into the classical econometric

analysis two new elements: a subjective guess on the variable to be forecasted

and a confidence associated to it. Their role is to explicitly take into con-

sideration the non-sample information available to the decision-maker. These

elements served to define a new estimator, which statistically optimises the ob-

jective function, and to formalise the interaction between judgement and data

in the forecasting process.

We provided three empirical applications, which give strong support to our

theory. We argued that there should be a clear separation between the decision-
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maker - who should provide the subjective guess and the confidence associated

to it - and the econometrician - whose task is to check whether such subjective

guess is supported by the available data or whether it can be improved. We

showed how a subjective guess on the variable to be forecasted can be mapped

into a subjective guess on the parameters of the econometrician’s favourite

model. Finally, we illustrated how our new estimator may provide a satisfactory

solution to the well-known implementation problems of the mean-variance asset

allocation model.

7 Appendix

Proof of Theorem 1 (Properties of the New Estimator) - 1. If α =

100%, ηα,k = 0 and the constraint in (7) becomes ẑT (θ) = 0. This implies

∇θQ̂T (θ) = 0, which coupled with (7) implies θ̂
∗
T = θ̂T , where θ̂T is defined in

Definition 1.

2. Let θ0 ≡ p lim
T→∞

θ̂T . We need to show that θ̂
∗
T

p→ θ0. By (7) and

Condition 2, this is equivalent to show that ||∇θQ̂T (θ̂
∗
T )||

p→ 0. Suppose

by contradiction that ||∇θQ̂T (θ̂
∗
T )||

p→ c 6= 0. Then Pr(ẑT (θ̂
∗
T ) > ηα,k) =

Pr(∇0θQ̂T (θ̂
∗
T )Σ̂

−1
T ∇θQ̂T (θ̂

∗
T ) > ηα,k/T ). But since ∇0θQ̂T (θ̂

∗
T )Σ̂

−1
T ∇θQ̂T (θ̂

∗
T ) is

bounded in probability above zero and ηα,k/T converges to 0 as T goes to in-

finity, for any q ∈ [0, 1) there must exist a T ∗ such that, for any T > T ∗,

Pr(∇0θQ̂T (θ̂
∗
T )Σ̂

−1
T ∇θQ̂T (θ̂

∗
T ) > ηα,k/T ) > q. This implies a violation of the
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