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Abstract

This paper examines the feasibility of implementing Linear Quadratic
Gaussian (LQG) Control in structural cointegrated VAR models and
sheds some light on the two major problems generated by such imple-
mentation. The first aspect to be taken into account is the effect of the
presence of unit roots in the system on the policymaker’s ability to con-
trol it, partially or thoroughly. Different control techniques are proposed
according to the extent to which the policymaker can exercise his control
on the overall dynamics of the economy, i.e. depending on whether he/she
can stabilize the whole system, only part of it or none of it. The second
issue involves the structural form of the model. It will be shown in this
paper that, in general, a system’s features will change when implement-
ing a new control rule. In particular, a controlled system will generally
not retain features that should be intrinsecally invariant to policy changes
(e.g., neutrality of money in the long-run).

Keywords: Optimal control, cointegration, policy invariance

JEL Classification: C32, C61, E52
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Non Technical Summary

Structural VAR models are a predominant tool for monetary policy analysis.
They appear to be able to identify the effects of policy without a complete struc-
tural model of the economy (as the Cowles Commission approach proposed), but
using instead a very restricted number of identifying assumptions. In addition to
this, these models have the very appealing characteristic of being able to incor-
porate the concept of cointegration and to, therefore, model in a sound manner
the non-stationarity that characterizes most of the macroeconomic variables of
interest for the policymaker (prices, money, etc..).
SVAR models give us the framework for the analysis of monetary policy

strategies. Optimal control is then one of the main tools for modeling the
central bank’s decisional process and for, therefore, deriving "optimal" policy
rules. The policymaker will define a loss function in terms of the deviations of the
goal variables from their targets and will then minimize it under the constraints
given by the dynamics of the economy, in order to obtain an optimal rule for the
policy instruments. The literature regarding optimal control in VAR contexts
applied to monetary policy is vast, but it has focused almost exclusively on
implementing optimal control on stationary systems, which are easier to handle,
but often less able to represent the data. In general, differentiation and filtering
techniques are used to eliminate non-stationarity from the model with great loss
of information. Our work focuses instead on incorporating optimal control in a
non-stationary context, using in particular cointegrated VARs.
Following Monti and Mosconi (2003), we will show how it is possible to

apply optimal control techniques to models that present non-stationarity and
discuss the eventual issues and criticalities such implementation gives rise to.
The feasibility of any control and the extent to which the policymaker can
control the system depends on characteristics of the reduced form model like
the cointegrating rank and the number of unit roots.
Moreover we will highlight a criticality that involves the structural form of

the model. It will be shown that, in general, a system’s structural features will
change when implementing a new control rule. In particular, a controlled system
will generally not retain features that should be intrinsically invariant to policy
changes (e.g., neutrality of money in the long-run). The structural form of the
model is, by definition, built to capture features of the model that are supposed
to be invariant to changes in the policy regime. Our findings contradict this
assumption. In order to control the system it is obvious that the control rule
has to influence the dynamics of the non-policy variables: all coefficients of the
system can be affected by the policy changes. This means that features of the
system that are assumed to be invariant to policy are instead affected by policy
changes.
We shall show this through two examples. The two models examined in

this analysis are characterized by long-run neutrality of monetary policy on the
real variables. This latter assumption is entrenched wisdom in modern macro-
economic theory and is generally built in as a feature in most macroeconomic
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models. In both models, nonetheless, the feature of long-run neutrality of money
disappears. This paper acknowledges this shortcoming. Nevertheless, since the
policy non-invariance property of certain features is essential for the soundness
of the SVAR approach, future steps of research should seek to define conditions
on the VAR coefficients that allow policy non-invariance.
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1 Introduction

Structural Vector AutoRegressive models or SVARs, first conceived by Sims
(1980,1986), have become a predominant tool for monetary policy analysis. The
greatest appeal of using SVARs for evaluating monetary policy strategies and
studying the monetary policy transmission mechanism is that they appear to be
able to identify the effects of policy without a complete structural model of the
economy (as the Cowles Commission approach proposed), but using instead a
very restricted number of identifying assumptions. Bernanke and Mihov (1986),
Christiano, Eichenbaum and Evans (1998) and Piffanelli (1999) are just a few
examples of the application of the SVAR approach for monetary policy analysis.
SVAR models also have the very appealing characteristic of being able to

incorporate the concept of cointegration and to, therefore, model in a sound
manner the non-stationarity that characterizes most of the macroeconomic vari-
ables of interest for the policymaker (prices, money, etc..). In particular, the
common-trends approach for the identification on SVARs (Warne, 1993) allows
to model structural stochastic trends. We will focus exclusively on the latter
identification strategy.
SVAR models give us the framework for the analysis of monetary policy

strategies. Optimal control is then one of the main tools for modeling the
central bank’s decisional process and for therefore deriving "optimal" policy
rules. The solution of an optimal control problem is, in fact, a motion-law for
the policy instrument, that minimizes the central bank’s loss function under the
constraints given by the dynamics of the economy. In general the central bank’s
loss function is modeled so to be quadratic and to assign a cost to deviations of
some objective-variables from their targets and, possibly, to the differences of
the policy instruments (interest rate smoothing). Other functional forms have
been proposed to model the central bank’s loss function (e.g., the asymmetric
linex function proposed by Ruge’-Murcia, 2001), in order to achieve a higher
degree of realism in its description. The great majority of the literature has,
nonetheless, continued to focus on quadratic loss functions and we will do so
too.
The literature regarding the definition of optimal control rules using optimal

control applied in VAR contexts is vast: a very incomplete list of relevant articles
would include Ball (1999), Taylor (1999) and Rudebusch and Svensson (2001,
1999). This massive literature, however, focuses mainly on implementing opti-
mal control on stationary systems. One of the few attempts to tackle the issue
of controlling a cointegrated VAR can be found in the Johansen and Juselius
(2001) paper "Controlling Inflation in a Cointegrated Vector AutoRegressive
Model with an Application to U.S. data". Johansen and Juselius develop a
control technique for reduced form cointegrated VARs that returns a so-called
instrument rule1, i.e. a rule that does not derive from any type of optimization
problem. Given the fact that cointegrated SVARs seem able to describe more
closely the economy’s functioning and that the policymaker’s decisional process

1Refer to Rudebusch e Svennson (1999) for a definition of instrument rules and targeting
rules.
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seems to be reasonably well approximated by a linear quadratic (LQ) optimal
control problem, our goal is to define targeting rules (i.e. rules that derive
from an optimization problem, defined as in Rudebusch e Svennson (1999)) and
understand the issues related to implementing optimal control on cointegrated
SVAR models and the criticalities such implementation eventually gives rise to.
Such issues and criticalities are numerous and involve different aspects of the

problem: on the one hand, there are issues more related with the reduced form
model (i.e. is the system stabilizable?, how many unit roots can be removed?,
etc..), on the other hand, there are the criticalities which are more related to
the properties of the structural model (i.e., are the structural features identified
before control maintained after control? If not, what conditions are to be met
for such features to hold before and after control?). We will, therefore, organize
our analysis in the following way. Section 2 focuses on how to cast a cointegrated
structural VAR into a representation that makes it suitable for the application
of optimal control techniques. In particular, subsection 2.1 briefly describes
cointegrated VARs and the common-trends approach, subsection 2.2 illustrates
the optimal control problem and subsection 2.3 shows how to define the VAR
so to be compatible with the standard control problem. Section 3 focuses on
how the presence of unit roots affects the feasibility of control and the ways of
controlling a system. Section 4 discusses how the implementation of an optimal
control rule derived on the basis of this may transform the structure of the
system. In section 5 we present a number of empirical examples to illustrate
the validity of the findings of the previous sections. Section 6 concludes.

2 Bridging Optimal Control and Cointegrated
Structural VARs

This section mainly summarizes the most important results of Vector AutoRe-
gressions theory and of control theory and demonstrate how to express VARs
so to be in line with the Control theory representation of the problem.

2.1 Cointegrated VARs and the Common Trends approach
to Structuralisation

Consider the p-dimensional VAR(k), cointegrated I(1) with rank r:

�� =
�X

�=1

Π���−� +Φ�� + �� (1)

where �� represents the deterministic term and can contain a constant, a linear
term, seasonal dummies, intervention dummies, or any other regressor that
we consider fixed and non stochastic. The residuals �� are independent and
identically distributed as a gaussian with mean zero and variance matrix Ω, i.e.
�� ∼ �������(0�Ω). The model can be expressed in the vector error correction
form
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∆�� = 	
0��−1 +
�−1X
�=1

Γ�∆��−� +Φ�� + ��

where 	 and 
 are (�× �)-dimensional matrices and represent, respectively, the
loadings matrix and the cointegration matrix. Based on Johansen (1996) we
obtain the Vector Moving Average representation (VMA, from now on)

�� = 
� +�
�−1X
�=0

(��−� +Φ��−�) +�∗(�)(�� +Φ��) (2)

where 
� is dependent on initial values and is such that 

0
 = 0� with 
 =

lim
�−�∞
�� �∗(�) = � +

P∞
�=0�

∗
� and � = 
⊥(	0⊥Γ
⊥)

−1	0⊥, with Γ = � −P�−1
�=1 Γ�� It can be seen from equation 2 that the non-stationarity in the process

is generated by the cumulated sum of the residuals, or, more precisely, by the
linear combinations 	0⊥

P�−1
�=0 ��−� , the so-called common trends of the model.

Since the model is cointegrated I(1), the number of unit roots in the model is
exactly � = �− ��2

Let us assume, for the sake of notational simplicity, but without loss of
generality, that the deterministic component of the model is given by a constant
�0 * ��(	) that it gives rise to a linear trend and a linear term �1�, with
�1 ⊆ ��(	), so that it does not generate a quadratic trend. The VMA form of
the model will then be

�� = �
�−1X
�=0

��−� +�∗(�)�� + �0 + �1�

where the functional forms of �0 and �1 are derived in appendix A.
The relationship between the reduced form residuals �� ∼ �������(0�Ω) and

the structural form innovations �� ∼ �������(0� �) is assumed to be

�� = ���� (3)

where � is a �× � non singular matrix. It is therefore possible to write

�� = ��
�−1X
�=0

��−� +�∗(�)��� + �0 + �1�� (4)

The �� matrix contains the long run impact coefficients for the structural
innovations. The reduced form parameters can be estimated with maximum
likelihood techniques (Johansen, 1996). The identification of � is obtained
in the following manner. First of all the hypothesis of orthonormality of the
structural innovations, i.e.,

2We will retain the standard assumption of VAR theory that all the roots of the charac-
teristic polynomial of the VAR, �(�) = � −P�

�=1Π��
� , are all lying outside or on the unit

circle. The literature that discards this assumption is very small. See Juselius and Mladenovic
(2001) for an example.
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�(���
0
�) = �−1Ω�−10 = ��

places �(�+1)�2 non-linear restrictions on B. To obtain just-identification, other
�(�− 1)�2 restrictions are needed. Following Warne (1993) (�− �)� restrictions
are found by assuming that only the first � = � − � structural innovations, ��,
are permanent (cumulated in ��), while the rest, ��, are transitory. This implies
that the following restrictions have to be imposed on the long run impact matrix
��

��� = 0���

where � =
£
0�−��� ��

¤0
extracts the last r rows of ��. �� =

£
�0� �0�

¤0
.

Since � = 
⊥(	0⊥
⊥)
−1	0⊥, one can write

	0⊥�� = 0�−���� (5)

The other restrictions needed can be derived from hypotheses regarding the
long run effect of permanent innovations and the instantaneous impact of both
transitory and permanent innovations. Economic models used to describe the
economy for monetary policy analysis generally comprise real variables (differ-
ent measures of output, real money balances, etc...), nominal variables to be
controlled (inflation indices, long-term interest rate, etc.) and a control instru-
ment, typically a short term interest rate. It is common practice (Blanchard
and Quah, 1989 and Warne, 1993 are just the most famous examples) to impose
constraints on the long-run impact matrix that compel the nominal variables
(in particular inflation) not to have long-run effects on the real variables (i.e.,
the output). This feature is considered to be policy invariant.

2.2 The Standard Linear Quadratic Gaussian Control Prob-
lem

Consider the following first order linear system:

�� = 
��−1 +���−1 + �� (6)

 � = !�� + "��

where �� and �� are � -dimensional and m-dimensional and represent, respec-
tively, the state of the system at time � and the vector of control variables at time
�.  � is a �-dimensional vector of target-variables and �� is an � -dimensional
vector of disturbances, white noise with mean zero and covariance matrix given
by ��(��+1�0�+1) = Ω. The goal of an optimal control problem is to find, if it
exists, a sequence of controls

�[�0�� ) = {��}∞�=�0
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during the whole regulation period [�0�∞) (which we assume to be infinite,
in line with the greater part of economic literature), that minimizes the loss
function defined as:

� =
∞X

�=�0

 0�# �

or

� =
∞X

�=�0

£
� 0

� �0�
¤ · $ %

% 0 &

¸·
��

��

¸
where $ = !0#!�% = ! 0#" and & = " 0#" are assumed to be symmetric
matrices. In the standard LQG control problem $ and % are assumed to be
positive semidefinite and & positive definite3. The control problem can then be
written in the following way:

min
	�

∞X
�=�0

£
�0

� �0�
¤ · $ %

% 0 &

¸ ·
��

��

¸
(7)

���� �� = 
��−1 +���−1 + ��

with�0 given. The two latter formulations of the control problem are absolutely
equivalent, so, from now on, we shall refer solely to model (7), bearing in mind
that $� % and & are obtained from the costs on the goal variables as described
just above.
The control problem (7) can be solved, if a solution exists, using dynamic

programming techniques (refer to Mosca, 1995, Bertsekas, 1995 or Anderson and
Moore, 1989 for a detailed analyses of optimal control and dynamic program-
ming). The existence of a solution is conditional to the fulfillment of certain
regularity conditions we will describe just below. Before illustrating the solution
of the control problem (7), one important remark has to be made. When the
vector of disturbances that affects the system is white noise with mean zero and
serially non correlated, the so-called certainty equivalence principle holds and
states that the optimal control rule for the stochastic system is equivalent to the
optimal rule for the deterministic system, except for the fact that it responds
to efficient estimates of the state-variables vector, instead of their actual value.
Since the assumption of "white-noiseness" underlies all our work, we simply
derive the deterministic solution.
Now, consider again problem (7), assuming that �� = 0 for � = �0� �0+1� �0+

2� ���. It is possible to demonstrate that, if the system (6) is stabilizable and
detectable4, the solution of control problem (7) is

�� = −'�� (8)

3 If the latter assumption is removed, i.e. if the instrument is allowed to be costless, i.e.
� = 0, the control problem takes the name of cheap control problem

4A system Σ = (������ �) is said to be stabilizable if there exist matrices 	 (
×�) such
that the matrix � − �	 has all eigenvalues strictly contained in the unit circle. A system
Σ = (������ �) is said to be detectable if there exist matrices � (�×
) such that the matrix
�+�� has all eigenvalues strictly contained in the unit circle.
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where
' = (&+�0 b(�)−1(�0 b(
+% 0)

and b( is the solution of the so called Algebraic Riccati Equation (ARE),b( = $+
0 b(
− (
0 b(� +% )(&+�0 b(�)−1(�0 b(
+% 0)�

A detailed analysis of computational techniques and algorithms for solving the
ARE can be found in Anderson, Hansen, McGrattan and Sargent (1996).
The possibility of driving target variables on desired means or trends will

be analyzed in section 3. Anyhow, it can be proven that the solution of such
control problem is the following policy rule:

�� = −'�� + �(�)�

where ' is the solution of the same control problem without deterministic trends
and the derivation of �(�) will be shown soon. Refer to Monti and Mosconi
(2003) for the demonstration of why the two parts of the control rule can be
defined separately.

2.3 Bridging the two theories

The VAR(k) model displayed in equation (1) is a closed-loop model (i.e., con-
taining the equation for the control instrument) with k lags and deterministic
components, while the system in equation (6) is a first order homogeneous sys-
tem in which the control instrument is considered exogenous. The model in
equation (1) can, however be expressed as the model in equation (6).
Consider again the p-dimensional VAR(k), cointegrated I(1) with rank �

(� = �− � unit roots):

�� =
�X

�=1

Π���−� + �0 + �1�+ ��

where �0 * ��(	) and �1 ⊆ ��(	) and the residuals �� are independent and
identically distributed as a Gaussian with mean zero and variance matrix Ω, i.e.
�� ∼ �������(0�Ω). The solution to this model is

�� = �
�−1X
�=0

��−� +�∗(�)�� + �0 + �1�

where the functional forms of �0 and �1 are derived in appendix A. The first
step is to transform the VAR model with deterministic components into a ho-
mogenous VAR. This can be easily accomplished by defining a new variable
�� = �� − �0 − �1�: this new process �� is represented by a VAR cointegrated
I(1) analogous to the previous one, but devoid of deterministic components, i.e.

�� =
�X

�=1

Π���−� + ��� (9)

ECB •  Work ing  Paper  No 288 •  November  200312



Let us now assume that �� can be divided in two subvectors )� (*×1) and ��
(+× 1) with + = �− *, respectively containing the non-policy macroeconomic
variables and policy (control) variables. Model (9) can then be rewritten as:·

)�
��

¸
=

�X
�=1

·
Π�
11 Π�
12

Π�
21 Π�
22

¸·
)�−�
��−�

¸
+ ��

This model can be straightforwardly expressed as a VAR(1), using the so-called
"companion form" transformation, i.e.

f,� = eΠ1 e,�−1 + e�� -� ∆f,� = e	e
0 e,�−1 + e�� (10)

where

f,� =


��
��−1
...

��−�+1

 � eΠ1 =

Π1 Π2 Π�

�� 0 ��� 0
...

. . .
...

0 ��� �� 0

 � e�� =

��
0
...
0

 �
f,� is (� × .)-dimensional. This model has the same number of unit roots as
model (9), i.e. �, and will therefore have rank e� = �. − �� e	 and e
 are (�. × e�)
matrices, defined in the following way:

e	 =

	 Γ1 ��� Γ�−1
0 �� 0
...

. . .
0 ��� 0 ��

 � e
 =


 �� 0 0
0 −�� 0
...

. . . ��
0 ��� 0 −��


As mentioned above, we shall use the common-trends approach to identify the
system. In such case, the relationship between the reduced form residuals e�� ∼
�������(0�Ω) and the structural form innovations e�� ∼ �������(0� �) is assumed
to be: e�� = e����e���
where � is a � × � non singular matrix. The identification strategy has been
described above, in subsection 2.1. The structural model will be

f,� = eΠ1 e,�−1 + e���� e�� -� ∆f,� = e	e
0 e,�−1 + e���� e��� (11)

Comparing equations (10) and (11), it is easy to see that the coefficients for the
lags are the same. It is very useful to underline this feature, since it will allow
us to plainly extend the analysis of controllability done on the reduced form to
the structural form.
Model (11) is a homogeneous first order linear system, but it is still not in

the form of model (6), because the policy rule is still endogenous, that is the
model still contains the ”old” control rule for the policy instrument. Model (11)

ECB •  Work ing  Paper  No 288 •  November  2003 13



is, so to say, the closed loop system obtained by implementing the ”historical”
estimated policy rule. Our goal is to redefine the system so to be able to solve an
optimal control problem, i.e., to find a new "optimal" motion-law for the policy
instruments ��. That means we will have to consider the open-loop system,
i.e. the model obtained by removing the equations for the policy instruments
and by considering them exogenous entries. We have assumed that �� can be
divided in two subvectors )� (*×1) and �� (+×1) with + = �−*, respectively
containing the non-policy macroeconomic variables and policy variables. The
first order linear system we will actually use as constraint for our optimization
will then be:

�� = 
��−1 +���−1 + b���� �̂� -� ∆�� = b	b
0��−1 +���−1 + b���� �̂� (12)

where�� =
£
)� )�−1 ��� )�−�+1 ��−1 ��� ��−�+1

¤0
is an� -dimensional

matrix, with � = *. ++(. − 1)5,and


 =



Π1
11 ��� Π�
11 Π1
12 ��� Π�
12

�� 0��� ��� 0��


0���
. . .

...
... ��

0
�� ��� 0
�� 0
�
 ��� 0
�


�

...

...
. . . 0
�


0
�� ��� ��� 0
�
 �



� � =



Π1
12
0
...
0
�

0
...
0


�

b	 =



	��� Γ1
11 ��� Γ�−1
11 Γ1
12 ��� Γ�−1
12
0��� �� 0��� ��� 0��

...

. . .

0��� �� 0��

...

0
�� 0
�� �

...

. . . 0
�


0
�� ��� ��� 0
�
 �



and

b
 =



��� �� 0��� ��� 0��


0��� −�� ��
...

...
. . . 0
�


. . . �

0
�� �� �� 0
�� −�



�

5Remember that we have assumed that �� can be divided in two subvectors �� (�×1) and
�� (
× 1) with 
 = �− �, respectively containing the non-policy macroeconomic variables
and policy (control) variables
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Now, system (12) is in the form of model (6) and can be used as a constraint
for the optimization. We have extracted an equation from the system, rendering
the control variables exogenous. This can produce deep changes in the features
of the model. There, in fact, is no guarantee that model (12) will maintain
the same number of unit roots as model (6). In addition, the eigenvalues of
the model will change, and nothing assures that they will lay inside or on the
unit circle. These aspects are relevant in determining whether the system can
be controlled, partially or completely, so we will analyze these issues in the
following section.

3 Controlling Cointegrated VARs: consequences
of the presence of unit roots on the feasibility
of control

The main focus of this section is to define the conditions under which a system
like (12), or some of its variables, can be made stationary around a given mean
or trend. This depends on whether the rank of the open-loop system can be
augmented and to what extent. Notice that in the following section we will
consider the system as if it were deterministic, because the residuals are white-
noise with mean zero and serially non-correlated: this ensures that the certainty
equivalence principle (mentioned in subsection 2.2) holds.
Monti and Mosconi (2003) have derived the conditions under which it is

possible to remove unit roots from the system and we will examine them in
depth. Consider again the VAR(1) presented in equation (12) in its VECM
form, i.e.:

∆�� = b	b
0��−1 +���−1�

Let us assume that the rank of this system is ���, i.e. �/*.(b	b
0) = ���, and that
� = /	00	, where /	 and 0	 are full rank matrices. Any policy rule of the form

�� = −'���

will lead to the closed loop vector-equation for the non-policy variables

∆�� = (b	b
0 −�' )��−1

or

∆�� =
£ b	 /	

¤ " b
0
−00	'

#
��−1� (13)

Let us now define �max = �/*.
£ b	 /	

¤ ≤ �. Since the intersection of ��(b	)
and ��(/	) might not be empty, the following inequalities will hold:

��� ≤ �max ≤ ��� ++ (14)
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• The number of stationary linear combinations in the controlled closed-loop
system, say ���� depends on ' and is upward bounded by

��� ≤ �max�

Therefore, in order to make �� stationary, i.e. ��� = *, it is necessary that
�max = *� That is equivalent to saying that /	 has * − ��� columns that
are linearly independent on b	� This case is examined in section 3.1.

• When the policy variable is switched off, i.e. �� = 0, the number of unit
roots in �� is * − ���. Therefore, an active policy can remove at most
�max − ��� unit roots. The maximum number of unit roots that can be
removed from the system (13) is +� i.e. it coincides with the number
of instruments. The case in which some unit roots can be removed, but
the controlled system will still maintain some degree of non-stationarity
is treated in section 3.2

• When �max = ���� that is when � ⊆ ��(b	), it is impossible to reduce the
number of unit roots in the feedbacked system (13)� In this case it is still
possible to transform up to + of the existing cointegrating vectors into
others, that are more convenient for the policymaker. Apart from very
specific cases, the instruments vector �� will have to be non-stationary,
to be able to modify the cointegration vectors. Section 3.3 examines this
case, i.e. when � ⊆ ��(b	), with greater detail.

3.1 Case 1: the system is stabilizable

If the system is stabilizable6 in the control theoretic sense, it means that �max =
* and that the standard LQ control problem can be solved on such system and
a control rule of the type in equation (8) will be obtained, i.e.

�� = −'��

where
' = (&+�0 b(�)−1(�0 b(
+% 0)

and b( is the solution of the so called Algebraic Riccati Equation (ARE),

b( = $+
0 b(
− (
0 b(� +% )(&+�0 b(�)−1(�0 b(
+% 0)�

As mentioned above, in Monti and Mosconi (2003) it has been demonstrated
that, if one wants to drive the target variables on a specific target values or
trends, a rule of this form, �� = −' b�� + �0 + �1�� is needed and that it is
possible to derive the two parts of the rule separately. The derivation of ' has
been briefly treated in 2.2: we shall now, following Monti and Mosconi (2003),
describe how to derive �0 and �1�

6We assume the system is detectable.

These inequalities have several implications:
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Let us turn again to the initial control problem:

min
	�

∞X
�=0

£
�0

�+� �0�+�

¤ · $ %
% 0 &

¸ ·
��+�

��+�

¸
���� �� = 
��−1 +���−1 + �0 + �1�

where (
− �) = b	b
0 and �0 * ��(b	) and �1 ⊆ ��(b	). Recall that �� =£
)� )�−1 ��� )�−�+1 ��−1 ��� ��−�+1

¤0
is an� -dimensional matrix, with

� = *. ++(. − 1) and �� is +-dimensional.
Consider then the policy rule

�� = −'�� + �0 + �1��

All the eigenvalues of (
−�' 0) are strictly inside the unit circle. It is straight-
forward to show that, when such policy is adopted, the system will converge
to

lim
�−→∞

©
�� + (	


0 −�' )−1�(�0 − �1 + �1�)
ª
� (15)

irrespective of the initial condition. At first we shall derive the conditions under
which it is possible to define � such that �∞ = 10 + 11�. Finally we will show
how only some variables of vector �� can be targeted. But first we will prove
the following theorem (derived in Monti and Mosconi, 2003)

Theorem 1 A sufficient condition to make �� stable and asymptotically equal
to 10 + 11�, is that + ≥ *. However, this condition is not necessary: the
necessary and sufficient condition is that

10 ⊆ �� (&⊥)

11 ⊆ �� (&⊥)

where & = b
b	0�⊥ , with �⊥ = �⊥(�0⊥�⊥)
−1�

Proof. Letting �∞ = 1 and recalling that �⊥�
0
⊥ + ��

0
= � (with � defined

analogously to �⊥), equation (15) can be rewritten as

1 = −
Ã£

�⊥ �
¤ " �

0
⊥	


0

�
0
	
0 − '

#!−1
�(�0 − �1 + �1�)�

Let us now define & = b
b	0�⊥ and 2 = b
b	0� − ' 0� Developing the inverse we
obtain

1 = − £ 2⊥(&02⊥)−1 &⊥(20&⊥)−1
¤ " �

0
⊥

�
0

#
��

or
10 = −&⊥(20&⊥)−1(�0 − �1) (16)

11 = −&⊥(20&⊥)−11 �1

This equation may be solved for ' and � if and only if 10 ⊆ �� (&⊥) and
11 ⊆ �� (&⊥).
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It is very important to highlight the following aspect of this theorem. Since
��(&⊥) depends solely on 
 and �, it is possible to solve the control problem,
first determining ' as if�∞ = 0, i.e. solving a standard LQG regulator problem,
and then determine �. Once ' is determined the solution for � is:

�1 = −20&⊥&0⊥11
�0 = −20&⊥&0⊥(10 − 11)

The policymaker generally cannot target all the variables in the system and
does not have as many instruments as targets, so it is useful to analyze the case
in which + 3 * and not all the variables are targeted by the policymaker. More
specifically, assume that the target vector is �0�� = �0+�1�� where � is a *×+
full rank matrix and �0 and �1 are an m-dimensional vector. This target may
be easily achieved by finding the optimal ' and then solving

�0�∞ = −�0&⊥(20&⊥)−1(�0 − �1 + �1�) = �0 + �1�

for �, obtaining
�1 = −(20&⊥)(�0&⊥)−1�1� (17)

�0 = −(20&⊥)(�0&⊥)−1(�0 − �1)�

This technique for deriving the deterministic part of the control rule, i.e. the
coefficients �0 and �1� will also be used in the next section.

3.2 Case 2: the system is partially stabilizable

In this case, i.e. when �max ≥ ���, the number of unit roots present in the
system can be reduced, but the open-loop system cannot be made completely
stationary. The optimal control rule can be found with the following procedure.
Consider the following system

�� = 
��−1+���−1+�0+�1� -� ∆�� = b	b
0��−1+���−1+�0+�1� (18)

where �� =
£
)� )�−1 ��� )�−�+1 ��−1 ��� ��−�+1

¤0
.

Assume that, �max = ��� ++� i.e. + unit roots can be removed from the
non-policy variable equations. Using the following transformation, it is possible
to clearly separate the stabilizable part of system (18) from the non-stabilizable
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part, �� = 4��

�� =



��−1
∆)�
...

∆)�−�+2
∆��−1
...

∆��−�+2

0��−�+1
50��

�0��


4 =



0
�� ��� 0
�� �
 ��� 0
�


�� −��
0���

. . . 0��� ��� ��� 0��

... �� −�� 0��


0
�� �
 −�

...

...
... 0
�


0
�
 �
 −�

0��
 ��� b
0 0��
 ��� 0��

50 0
�� ��� 0
�


�0 0�−
�� ��� 0�−
��


where 4 is an invertible �−dimensional matrix, 5 is a +-dimensional matrix
that extracts the + variables that the policymaker chooses to control with the
+ instruments to him available and � has dimensions (�−+)× * and extracts
the linear combinations that the policymaker has chosen not to stabilize. The
first � − � rows of �� are stationary by definition: the model is I(1), so the
lagged differences of �� and �� are stationary, as are the vectors containing the
cointegrating relationships 
0��−�+1. The transformed system will then be:

�� = 
��−1 +���−1 + �0 + �1�

where 
 = 4
4−1� � = 4�� �0 = 4�0 and �1 = 4�1 and 
 and � have the
following structure:


 =

·
6�−� 0�−���
7���−� ��

¸
/*� � =

·
��

�����

¸
with 6

6 =



0
�
 0
�� ��� ��� 0
��

0��
 Γ1
11 ��� Γ�−2
11 Γ1
12 ��� Γ�−1
12 b	
... �� 0���

0
��

. . . �� 0���

−�
 0
��

. . .
...

0
�� �
 0
��

. . .

0
�
 ��� 0
�


. . . �
 0
��

0��
 ��� 0��� b
 0��
 ��� 0��
 ��


and 7 is a �× (� − �) matrix

7 =

·
71

��−�
72
�−
��−�

¸
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where 71

��−�(72
�−
��−�) contains the coefficients that describe the impact
of the first � − � rows of �� on 50��(�0��)� The coefficients describing the im-
pact of the non stationary variables on the stationary variables are zero, as are
zero also the coefficients of the non-stabilizable variables on the stabilizable vari-
ables. That means the system can be divided into two subsystems, namely the
stabilizable one and the non-stabilizable one. The stabilizable system comprises
the first � ++ variables ���

��� = 
����−1+����−1+�0�+�1�� 8��9 
� =

·
6�−� 0�−��


72
�−
��−� �


¸
A standard optimal control problem can be solved on this stabilizable sub-

system. Detectability is implicitly assured by the fact that the policymaker has
already decided which variables to target (i.e., vector 50��) and has put them
in the stabilizable system. The technique described in subsection 3.1 for solv-
ing the optimal control problem and deriving the coefficients �0 and �1� needed
to target desired values or trends, can now be used on the stabilizable system
��� = 
����−1 +����−1 + �0� + �1��
This decomposition has a very appealing feature. As emphasized above, the

stabilizable state-vector ��� contains the lagged differences of all the variables,
including the ones that the policymaker has chosen not to control, given the
instruments to him available. This means that, although he/she cannot control
the levels of �0)�, he/she will still be able to control their lagged differences.

3.3 Case 3: the rank of the open-loop system cannot be
augmented

Let us now consider the case in which �max = ���� i.e. � ⊆ ��(b	). The policy-
maker will only be able to redefine + cointegrating vectors in a way that suits
him better. To see this consider model (18) again:

∆�� = b	b
0��−1 +���−1

Assuming we are using a control rule like �� = −'�� the latter equation can
be rewritten as:

∆�� = (b	b
0 −�' )��−1�

� can be expressed as � = /	00	, where /	 = b	�� since � ⊆ ��(b	), therefore:
∆�� = b	(b
0 − �00	' )��−1 (19)

where 
� = b
 − ' 00	� is the new cointegrating space. It is clearly possible to
choose ' so that an +-dimensional space : is included in �� (
�) � As Monti
and Mosconi (2003) show, any ' taking the general form

' 0 = (:� − b
6)6 0
�00

0
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where6 is any ���×+ full rank matrix,6 =6(6 06)−1 (� and 0	 are defined
in an analogous manner) and � is any +×+ full rank matrix, is such that


�6 = :�


�6⊥ = b
6⊥�
So, b
6 defines the linear combinations of the original cointegration which will
be modified, while b
6⊥ defines those that will be retained. When this control
rule is applied the expression for the control instrument is

�� = −0	�6(� 0: 0 −6 0b
0) b�� (20)

In the majority of the cases, the policy rule in equation (20) is such that
�� is non-stationary, because it will be a linear combination of : 0 b��, which is
stationary, but also of 6 0b
0 b�� which is, generally, non stationary. This means
that there will be no solution for a standard LQG problem with & ; 0, only
cheap control can be implemented. Nevertheless, in some very specific case it is
possible to change some cointegrating relations while preserving the stationarity
of the instrument. This is absolutely worth mentioning, because of its interest
from the policymaking standpoint and because the two empirical exercise of
section 5.1 falls in this category.
It will be possible to make + target-variables stationary with stationary

instruments only if + out of the � cointegrating vectors have to relate ex-
clusively the instruments and the target variables. For example, assume that
�� =

£
<� =� ��

¤0
, where <� is a measure of the output, =� is a measure of

inflation, while �� is a short-run interest-rate and it is assumed to be the poli-
cymaker’s control instrument. This model is described in detail in section 5.1,
for now we will just summarize its most salient features. The estimated model
is a VAR(2) cointegrated I(1) with cointegration rank 1. The cointegrating
relationship has been identified as being a Fisher parity:


1 =

 0
−1�77
1


Let us assume that the policymaker’s target is to make inflation stationary
around a given mean. It’s obvious that he can make inflation stationary simply
by putting 
31 to zero. Plus, he can also always add the cointegration vector

2 =

£
0 0 1

¤0
. The new closed-loop cointegrating matrix, generated from

the control procedure is 
� =
£

1 
2

¤
� As will be shown in section 4, the

new system will have a new � = 
⊥(	0⊥Γ
⊥)
−1	0⊥ that has all zeros on the

rows of inflation and interest rate.
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4 Controlling Structural Models: The policy non-
invariance problem

In this section we shall examine the consequences of implementing a new control
rule in a previously estimated structural VAR. First we will analyze the new
structure of the model and show how some of the features that should be policy-
invariant are instead altered by policy-regime changes.
Structural VAR models have become a dominant tool for monetary policy

analysis. These models are able to identify the effects of policy shocks on the
economy imposing only a small number of restrictions on the system. They are
also thought to be able to capture some features of the economy’s functioning
that are invariant to policy changes. These characteristics make them very
appealing for monetary policy analysis. We will, therefore, analyze the effects
of a policy change on the structural model and question whether it is really able
to depict policy invariant characteristics.
Consider the following p-dimensional VAR(1), cointegrated I(1) with rank

�:

�� =

·
)�
��

¸
=

·
Π1
11 Π1
12
Π1
21 Π1
22

¸
��−1 + �� (21)

=

·
Π1
1
Π1
2

¸
��−1 + ��

or
∆�� = 	
0��−1 + ��

where 	 and 
 are (�× �)-dimensional matrices and represent, respectively, the
loadings matrix and the cointegration matrix. �0 * ��(	), so it will give rise to
a linear trend and �1 ⊆ ��(	). The subvectors )� (*× 1) and �� (+× 1)� with
+ = � − *, respectively contain the non-policy macroeconomic variables and
policy variable. �� ∼ �������(0�Ω). ��. For notational simplicity we are taking
into account a VAR(1) devoid of deterministic terms: remember however that
every VAR(k) with deterministic terms can be expressed in the form of model
(21) by using the transformation described in subsection 2.3. 7

The strategy we use to identify the system is in line with the common-
trends approach. The relationship between the reduced form residuals �� ∼
�������(0�Ω) and the structural form innovations �� =

·
��

��

¸
∼ �������(0� �)

(where �� are permanent innovations, while �� are transitory ones,) is assumed
to be

�� = ������ =

·
����
1� ����

1�

����
2� ����

2�

¸·
��

��

¸
�

where � is a �× � non singular matrix. The VMA form of the model is:

7Refer to section 2.1 for a more detailed review on cointegrated VAR theory.
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�� = 
� +�����

�−1X
�=0

��−� +�∗(�)�������

where 
� is dependent on initial values and is such that 

0
 = 0� with 
 =

lim
�−�∞
�. The �� matrix contains the long run impact coefficients for the

structural innovations. The identification of the system is obtained via: ortho-
normality restrictions

³
�(�+1)
2

´
�(���

0
�) = ����−1Ω����−10 = ���

other (�− �)× � restrictions are found by assuming that only the first � = �− �
structural innovations, ��, are permanent (cumulated in ��), while the rest, ��,
are transitory, i.e.

������ = 0�−����

Finally, the other restrictions needed can be derived from hypotheses regarding
the long run effect of permanent innovations and the instantaneous impact of
both transitory and permanent innovations.
The model has been estimated and identified in its closed-loop form, i.e.

considering the policy instrument(s) as endogenous. In order to be able to
obtain the optimal control rule we have to eliminate the old policy rule, i.e. the
equation for the instrument, from the model. This operation will render the
open-loop system:

)� = Π11)�−1 +Π12��−1 +
£
����
1� ����

1�

¤ · ��

��

¸
(22)

It is essential to highlight certain features of the system (22): first of all, there
is no guarantee that the features of the closed-loop estimated system will con-
tinue to hold. The first issue of concern regards the roots of model (22). As
highlighted before, when passing from model (21) to model (22), the system
can maintain or not the same rank. If it does then the model (22) will loose
as many unit roots as instruments, i.e. exactly +. In addition to this, the rest
of the roots of the model also change: there is, moreover, no guarantee that all
the roots of the characteristic polynomial of the VAR, 
(�) = � −P�

�=1Π��
�

, will lie outside or on the unit circle. The dynamics of the system can change
dramatically. Nevertheless, while the presence of unit roots in the open-loop
system affects the possibility to partially or thoroughly control the system, the
presence of explosive roots does not8. Given that our interest focuses on neces-
sary conditions for control and the consequences of control, we will dismiss this
issue and leave it for further research.
We shall now examine the consequences of implementing optimal control on

a structural system. Consider again the open-loop model (22) and the optimal

8This result is demonstrated, in another context, in Blanchard and Kahn (1980)
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control rule �� = −')�. After the control rule has been implemented, the
closed-loop system will be:·

�� 0
' �


¸ ·
)�
��

¸
=

·
Π1
11 Π1
12
0 0

¸ ·
)�−1
��−1

¸
+

·
����
1� ����

1�

0 ����
2�

¸
���

The structure of model is now block recursive, because the control rule reacts
instantaneously to the state variables. To return to our original structure we

need to invert the matrix
·
�� 0
' �


¸
and therefore9

·
)�
��

¸
= Π∗1

·
)�−1
��−1

¸
+����∗��� (23)

where Π∗1 =
·
Π1
1
−'Π1
1

¸
. and ����∗ =

·
����
1

−'����
1� ����

2�

¸
� Model (23) is

the new controlled VAR. This system will have new cointegrating and loadings
matrices 	∗ and 
∗ of dimension �×�∗, where �∗ is the rank of the new controlled
system (23). The VMA form of this new model is

�� = 
∗� +�∗����∗
�−1X
�=0

��−� +�∗(�)����∗���

where �∗ = 
∗⊥(	∗0⊥

∗
⊥)−1	∗0⊥�Although, the coefficients of equations for the non-

policy variables appear unchanged in the controlled system (23), the loadings
and the cointegrating matrices, 	∗ and 
∗, change. The will give rise to totally
new 	∗⊥ and 


∗
⊥, and therefore to a completely different �∗ = 
∗⊥(	∗0⊥


∗
⊥)−1	∗0⊥.

The empirical example reported in section 5 shows how deep and extensive these
changes are.

5 Empirical Evidence

We now turn to an illustration of the above results through a couple of empirical
exercises. We draw on two existing small-scale macro-models respectively for
the US and the Euro area, for both of which we will derive the control rule and
implement it. We will then examine the new "controlled" structural system and
analyze the effects of policy changes on the structure. Both models considered
fall in the category described as case 3 described in section 3.3, but the first
one allows the stabilization of inflation using a stationary instrument, while in
the second one it is possible to control inflation only by using a non-stationary
instrument. The coefficients of these two models are reported, respectively, in
Appendix B and C. The models we are using have mainly explanatory purposes
and do not aspire to fully interpret the economy’s functioning.

9Notice that

Ã·
�� 0
	 ��

¸−1
=

·
�� 0
−	 ��

¸!
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There is general consensus among economists and policymakers that the
central bank’s main goals should be the stabilization of inflation and, possibly,
the stabilization of output fluctuations. This is pursued through the use of an
instrument, usually the overnight interest rate on the reserves market. As we
have shown in the previous section, in many cases it is not possible to target
more than one variable with one instrument. In such case, we will assume
that the policymaker will choose to target inflation, which is its primary goal.
If possible, we will also allow for interest rate smoothing, which is a standard
feature of most optimizing monetary policy models (see, for example, Rudebusch
and Svensson, 2001 or Söderström, 1999).

5.1 Model 1

The first model we refer to draws on a cointegration analysis of the model sug-
gested by Rudebusch and Svensson (1999). It is a trivariate model comprising
the following variables: the log of real GDP (<�), inflation (=�) measured as the
annualized quarter-over-quarter difference in the GDP deflator and a 3-month
money market interest rate (��) � We use quarterly US data from 1980Q1 to
2001Q4 (for a plot, see figures 1 and 2).
Univariate analysis of the model suggests the presence of non-stationarity in

both <� and ��. Statistical analysis for the trivariate VAR returns the following
results. First of all, testing for the maximum lag, the three information criteria
(AIC, BIC and HQ) agree in suggesting a maximum number of lags of 2. The
trace test (Johansen,1996) for the cointegration rank indicates that the cointe-
gration rank is 1. Tests for the deterministic components of the system suggest
the presence of a constant lying out of the space of 	, i.e. � * ��(	), but
no trend component. The estimated model is a VAR(2) cointegrated I(1) with
cointegration rank r:

�� =

 <�
=�

��

 = Π1��−1 +Π2��−2 + �+ �� (24)

∆�� = 	
0��−1 + Γ1∆��−1 + �+ ��

where 	 and 
, (3× 1) matrices, are respectively the loadings matrix and the
cointegrating matrix and the residuals �� are independent and identically distrib-
uted as a Gaussian with mean zero and variance matrixΩ, i.e. �� ∼ �������(0�Ω).
We also define )� =

£
<� =�

¤0
, the vector containing the non-policy variables,

and �� = ��, the instrument.
The single cointegrating relationship has been interpreted as a Fisher Parity

on the basis of the following results. Exclusion tests performed on each of the
three variables suggest that <� can be excluded from the cointegrating relation-
ship. When tested, this over-identifying restriction has a high significance level

ECB •  Work ing  Paper  No 288 •  November  2003 25



(see Appendix B). So, the restricted cointegrating vector is:


 =

 0
−1�7768

1

 �
The long-run effect of inflation on the interest rate is higher than unity, id est
the value suggested by the Fisher relationship. This is a quite common result -
see, for example, Bagliano, Golinelli, Morana (2001) - and can be explained by
the fact that inflation, in the long-run, impacts on the interest rate also through
an "inflation premium", that is positively related to the level of inflation. The
VMA representation of this model is

�� = �
�−1X
�=0

��−� +�∗(�)�� + �0 + �1�

where the functional forms of �0 and �1 are derived in appendix A. Knowing
that the relationship between reduced form and structural residuals is defined
by �� = ������, where �� ∼ �������(0� �), one can write

�� = �����

�−1X
�=0

��−� +�∗(�)��������−1�� + �0 + �1�

The SVAR analysis returns the following results. ���� is a 3× 3 symmetric
matrix, so 3×(3+1)

2 restrictions are needed to identify the matrix: 3 of them are
derived from the orthonormality of the structural residuals. Since the model is
I(1) with rank 1, it will have 2 common trends, the condition

	0⊥�
���� = 02�1�

that allows to identify the two permanent innovations �� =
£
�1� �2�

¤0
from

the transitory one ��� will convey other 2 restrictions. One more restriction is
needed to obtain identification. If we assume that �1� is the real permanent
innovation, while �2� is the nominal permanent innovation, the most natural
and most commonly used restriction is to assume that the nominal permanent
innovation �2� will not have a permanent effect on the real variables, i.e. on <��
This will return a long-run impact matrix ����� of the following form:

����� =

 [�����]11 0 0
[�����]21 [�����]22 0
[�����]31 [�����]32 0

 �
The system we have estimated includes the estimates of the "historical"

policy rule. We now want to define a new policy rule, obtained with optimal
control techniques. We will follow the procedure described in subsection 2.3 to
rewrite model (24) as a first order homogenous linear system, first eliminating
the deterministic components then defining the companion form system (6× 1)

f,� = eΠ1 e,�−1 + e�� -� ∆f,� = e	e
0 e,�−1 + e��
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where f,� =

·
��
��−1

¸
� eΠ1 = · Π1 Π2

�� 0

¸
� e�� = · ��

0

¸
�

and �� = ��−�0−�1�. This model retains the same number of unit roots, i.e. 2,
of the system it derives from: therefore, it has rank 4. Removing the equation
for the control instrument at time � ��, the system becomes

�� = 
��−1 +���−1 + b���� �̂� -� ∆�� = b	b
0��−1 +���−1 + b���� �̂� (25)

where �� =
£
)� )�−1 ��−1

¤0
is (5× 1)� Model (25) has cointegration rank

4 and only one unit root.
The first step of our analysis is to understand to which extent the system

can be controlled, following the "roadmap" defined in section 3. Since � lies
in the space of b	, i.e. � ⊆ ��(b	), the rank of the open-loop system cannot
be augmented (this system falls in the third of the three cases described in
section 3). Therefore, the only possibility the policymaker has is to redefine the
cointegrating vector in a manner that suits him better. In this case, generally,
he/she will only be able to implement cheap control, i.e. a type of linear-
quadratic control where no cost is assigned to the instrument. Nonetheless, as we
have mentioned before, this case is special, because the form of the cointegrating
vector allows for a stationary control rule to be implemented and, therefore a
standard optimal control problem can be solved.
We are therefore assuming that the policymaker is following a strict infla-

tion targeting strategy with interest rate smoothing and that his target for the
annualized quarterly inflation rate is 2%. As highlighted before, the solution to
this problem is a policy rule of the form �� = −'�� + �0, where ' and �0 can
be found separately, as already emphasized in section 3. We will first recover
' that renders the inflation rate stationary around its mean and later we will
define �0, so as to make it stationary around a desired value, different from its
mean.
The policymaker’s loss function can be expressed as:

��

Ã ∞X
�=0

��+�

!

where ��+� =  0�+�# �+� and  � = !�� + "��, with

! =

·
0 1 0 0 0
0 0 0 0 −1

¸
� " =

·
0
1

¸
� # =

·
0�8 0
0 0�2

¸
and $ = ! 0#!�% = ! 0#"�& = " 0#". The control problem can be solved by
solving iteratively the Differential Riccati Equation to convergence. Once theb( Riccati matrix is found, the control rule, expressed in terms of the open-loop
system can be recovered:

�� = −'�� = −
£
'1 '2

¤ £
<� =� <�−1 =�−1 ��−1

¤0
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where
' = (&+�0 b(�)−1(�0 b(
+% 0)�

and '1 is a (2× 1) matrix containing the coefficients that describe the instanta-
neous relation between the instrument and the non-policy variables, while '2 is
a (3× 1) matrix describing the reaction of the policy instrument to the lags of
all variables. All the parameters of the system, the control rule and the parame-
ters of the new system obtained with this control rule are reported in Appendix
B. The companion form of the controlled system is:

�� = (
−�' )��−1

So, the controlled system in its VAR form is:·
�� 0
'1 �


¸ ·
)�
��

¸
=

·
Π1
11 Π1
12
−'2

¸·
)�−1
��−1

¸
+ (26)

+

·
Π2
11 Π2
12

01�3

¸ ·
)�−2
��−2

¸
+

·
�1� �1�
0 �2�

¸
���

The structuralisation of this model is clearly different from the one previously
estimated. To return to the latter we will premultiply model (26) by the inverse

of
·
�� 0
'1 �


¸
� Defining, Π1
1 =

£
Π1
11 Π1
12

¤
and Π2
1 =

£
Π2
11 Π2
12

¤
one can write

�� =

·
)�
��

¸
= Π∗1��−1 +Π

∗
2��−2 + ���� +����∗�� =

=

·
Π1
1

−'1Π1
1 − '2

¸·
)�−1
��−1

¸
+

·
Π2
1
−'1Π2
1

¸·
)�−2
��−2

¸
+ (27)

+

·
��

−'1��

¸
+����∗���

It is straightforward to show that the new Π∗ = 	∗
∗0 = −�+Π∗1+Π∗2 has rank
2. The new cointegrating vector is:


∗ =

 0 0
1 0
0 1


and the new loadings matrix can be easily found as 	∗ = Π∗
∗, where is 


∗

defined as 

∗
= 
∗(
∗0
∗)−1. The VMA form of this model is:

�� = �∗
�−1X
�=0

��−� +�∗(�)�� + ����0

where �∗ =

 �∗11 �∗21 0
0 0 0
0 0 0

. It is easy to notice, given the form of �∗� that

the inflation and the interest rate will both be stationary. As proved in Appendix
A, when �0 * ��(	) and �1 = 0� �

���
0 = �∗�0−	∗(
∗0	∗)−1(
∗0	∗)−1
∗0����.
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The next step of the control procedure involves the recovery of �0. Equation
(27) displays the model in which the control rule �� = −'��� If we were to
implement the rule �� = −'�� + �0, the model would be:

����� =

·
)�
��

¸
= Π∗1��−1 +Π

∗
2��−2 + ���� +����∗�� =

=

·
Π1
1

−'1Π1
1 − '2

¸·
)�−1
��−1

¸
+

·
Π2
1
−'1Π2
1

¸ ·
)�−2
��−2

¸
+

+

·
��

−'1�� + �0

¸
+����∗���

����∗ is obtained as:

����∗ =
·

� 0
−'1 �

¸−1 · b����

0 ����
33

¸
Now, lim�→∞�(����� |�0) = � ���0 = �∗�0−	∗(
∗0	∗)−1(
∗0	∗)−1
∗0����� Assume
that the policymaker’s goal is to drive the inflation rate to a 2% mean, i.e. to
impose � ���0
2 = 0�02� With some algebra it is straightforward to prove that, in
order to obtain ����0
2 = 0�02� one has to impose �0 = 0�038811�
Figures 3 displays the simulation of the controlled system for the deter-

ministic case. The main purpose of the empirical exercise was to verify the
effectiveness of the control rule: nonetheless, always bearing in mind that this
is a very small and stylized model, some economic intuitions can be recovered.
First of all, Figure 3 shows that inflation can be made stationary and driven
to its target in 15 to 20 quarters. This figure also show how the Fisher parity
holds in the long-run, allowing ex post for a positive and constant real interest
rate >� = =�−��� Figures 4, 5 and 6 present the three variables of the simulated
system separately. Comparing these figures, it is straightforward to see that
inflation and the interest rate are stationary, while <� maintains the unit root
and allows for stochastic trends in addition to its deterministic trend. Looking
at Figures 5 and 6 it is easy to notice that the interest rate is definitely smoother
than the inflation rate, due to the presence of an interest rate smoothing term
in the loss function.
We have shown that the control rule we have implemented succeeds in mak-

ing inflation stationary around the desired mean. But what is the impact of the
control rule on the structural system? Appendix B reports the coefficients of
the estimated long-run impact matrix ����� and the coefficients of the long-run
impact matrix �∗����∗ obtained after the new policy rule is implemented. The
two matrices have very different features: in particular, in the �∗����∗� both
inflation and interest rate are stationary and, hence, do not have any entry in
the long-run impact matrix of the controlled system. The structural features
of the system, i.e. the ones that should be invariant to changes in the policy
regime, are the following:

• The number and designation of the permanent and transitory structural
innovations

ECB •  Work ing  Paper  No 288 •  November  2003 29



• The long-run neutrality of money, modeled by imposing that only the real
permanent structural innovation has an impact on the real variable (GDP)

• The steady state of the real variables.
Only the first feature is maintained in the controlled system, while the others

are lost. This obviously undermines the model, since the long-run neutrality of
money hypothesis is entrenched wisdom in economic theory: a valid model
should maintain this feature.

5.2 Model 2

The second model we shall consider is based on Brand and Cassola (2002). In
this study we use quarterly data on broad money (M3), GDP, the GDP deflator
and interest rates from 1980Q1 through 2001Q4. In particular the following
five variables will be used to represent the economy: logs of real GDP (<�),
inflation (=�) measured as the quarter over-quarter change in the logs of the
GDP deflator. Short-term rates (��) are 3-month money market interest rates
and long-term interest rates (?�) are 10 year government bond yields or close
substitutes.
Univariate analysis of these six variables suggests that (+− �)� and <� can

be characterized as I(1) processes with positive drift and ��, =� and ?� as I(1)
processes without drift. These variables seem to be well represented by a coin-
tegrated I(1) VAR(2) with rank 3, constant component �0 * ��(	) and a trend
component �1 ⊆ ��(	) (so that it will not give rise to a quadratic trend):

�� =


(+− �)�

=�

?�
<�
��

 = Π1��−1 +Π2��−2 + �0 + 	001�+ �� (28)

∆�� = 	
0��−1 + Γ1∆��−1 + �0 + 	001�+ ��

where 	 and 
, (5× 3) matrices, are respectively the loadings matrix and the
cointegrating matrix and the residuals �� are independent and identically distrib-
uted as a Gaussian with mean zero and variance matrixΩ, i.e. �� ∼ �������(0�Ω).
We also define )� =

£
(+− �)� =� ?� <�

¤0
, the vector containing the non-

policy variables, and �� = ��, the instrument. The three cointegrating relations
have been identified in the following way:


 =
£

1 
2 
3

¤
=


1 0 0
0 1 −1
0 −0�5739 0
−1 0 −0�1412
0 0 1


The first relationship 
1 can be interpreted as a long-run money demand func-
tion, 
2 is a Fisher Parity relationship, while the third cointegrating vector can
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be viewed as a long-run policy function. A more detailed description of the
model is presented in Appendix C.
The following step of our analysis is to verify to what degree this system

can be controlled. To do so, we first have to define the system in the open-loop
form, following the procedure described in section 2.3 and obtain

�� = 
��−1 +���−1 + b���� �̂� -� ∆�� = b	b
0��−1 +���−1 + b���� �̂�

where �� =
£
)� )�−1 ��−1

¤0
is (9× 1)� This model has cointegration rank

8 and only one unit root. Also in this second example � lies in the space of b	,
i.e. � ⊆ ��(b	), so the rank of the open-loop system cannot be augmented. In
addition to this, there is no cointegrating relationship involving exclusively the
instrument and and the target variable, which is assumed to be inflation: in line
with the findings of section 3, it will be possible to make inflation stationary only
rendering the instrument non-stationary. This implies that only cheap control
(i.e., & = 0) can be implemented on this model. Let us assume our goal is to
make inflation stationary around the value 2%: it has been proven in section 3
that it is possible to find first the matrix ' , such that �� = −'�� make inflation
stationary around its own trend, and then define �0 and �1 that will drive it
to be stationary around the desired value 2%. We shall now find ' . So, the
policymaker’s loss function can be expressed as:

��

Ã ∞X
�=0

��+�

!

where ��+� =  0�+�# �+� and  � = !��, with

! =
£
0 1 0 0 0

¤
� " = [0] � # = [1]

and $ = ! 0#!�% = ! 0#" = 0 and & = " 0#" = 0. The control problem can
be solved by solving iteratively the Differential Riccati Equation to convergence.
Once the b( Riccati matrix is found, the control rule, expressed in terms of the
open-loop system can be recovered:

�� = −'�� = −
£
'1 '2

¤ £
)� )�−1 ��−1

¤0
where

' = (�0 b(�)−1(�0 b(
+% 0)�

and '1 is a (4× 1) matrix containing the coefficients that describe the instanta-
neous relation between the instrument and the non-policy variables, while '2 is
a (5× 1) matrix describing the reaction of the policy instrument to the lags of
all variables. All the parameters of the system, the control rule and the parame-
ters of the new system obtained with this control rule are reported in Appendix
C. The companion form of the controlled system is:

�� = (
−�' )��−1
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The new controlled VAR(2) can be obtained exactly as in the previous ex-
ample (see equations (26) and (27)) and it will be

�� =

·
)�
��

¸
= Π∗1��−1 +Π

∗
2��−2 + ����

0 + ����
1 �+����∗�� =

=

·
Π1
1

−'1Π1
1 − '2

¸·
)�−1
��−1

¸
+

·
Π2
1
−'1Π2
1

¸·
)�−2
��−2

¸
+

+

·
�0�
−'1�0�

¸
+

·
�1�
−'1�1�

¸
�+����∗���

It is straightforward to show that the new Π∗ = 	∗
∗0 = −� + Π∗1 + Π∗2 has
rank 2 and that ����

1 still lies in the space of b	 (no quadratic trend). The new
cointegrating vector is:


∗ =


1 0 0 0
0 1 0 −1
0 0 1 0
−1 0 0 −0�1412
0 0 0 1


and the new loadings matrix can be easily found as 	∗ = Π∗
∗, where is 


∗

defined as 

∗
= 
∗(
∗0
∗)−1. The VMA form of this model is:

�� = �∗
�−1X
�=0

��−� +�∗1 (�)�� + ����0 + ����1 � (29)

where �∗ =


�∗11 �∗12 �∗13 �∗14 0
0 0 0 0 0
0 0 0 0 0
�∗41 �∗42 �∗43 �∗44 0
�∗51 �∗52 �∗53 �∗54 0

. It is easy to notice, given the form
of �∗� that the inflation and the long-term interest rate will both be stationary.
Now that we have obtained model (29), we can derive �0 and �1. We know,

from Appendix A, that ����0 = �∗�0−	∗(
∗0	∗)−1(
∗0	∗)−1
¡

∗0���� +#��

¢
and that ����1 = �����

0 −	(
0	)−1(
0	)−1
0����
1 , but if we were to implement

the rule �� = −'�� + �0 + �1�, the model would be:

����� =

·
)�
��

¸
= Π∗1��−1 +Π

∗
2��−2 + ���� +����∗�� =

=

·
Π1
1

−'1Π1
1 − '2

¸·
)�−1
��−1

¸
+

·
Π2
1
−'1Π2
1

¸ ·
)�−2
��−2

¸
+

+

·
�0�

−'1�0� + �0

¸
+

·
�1�

−'1�1� + �1

¸
�+����∗���

����∗ is build as in the previous example. Now, lim�→∞�(����� |�0) = ����0 +
lim�→∞ � ���1 �� where � ���0 and ����1 are as:

� ���1 = �∗����
0 − 	(
0	)−1(
0	)−1
0����

1

� ���0 = �∗�0 − 	∗(
∗0	∗)−1(
∗0	∗)−1
¡

∗0���� +#��

¢
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The policymaker’s goal is to drive the inflation rate to a 2% mean, i.e. he wants
to impose � ���0
2 = 0�02 and � ���1
2 = 0. Remembering that the second row of �

∗

is all filled with zeros, with some algebra it is quite simple to define �0 and �1
that satisfy the policymaker’s needs (the values are reported in Appendix C).
Figures 7-9 show the simulated controlled VAR. As expected, it is possible to

drive inflation to be stationary around 2%, but the instrument will necessarily
be non-stationary (Figures 7 and 8). Figure 9 shows the pattern of real GDP
and real money balances in the controlled system.
What can be said regarding the new structure of the model is analogous to

what was said in the previous section regarding model 1. Appendix C reports the
coefficients of the estimated long-run impact matrix ����� and the coefficients
of the long-run impact matrix �∗����∗ obtained after the new policy rule is
implemented. The two matrices have very different features: in particular, in
the �∗����∗� both inflation and the long-run interest rate are stationary and,
hence, do not have any entry in the long-run impact matrix of the controlled
system. The issues regarding the structure of the model, presented in Section 4,
are evident: the property of long-run neutrality of money is lost and the steady
state of the real variables is affected by policy.

6 Conclusions
The scope of this paper is very broad: its main accomplishment is to unveil the
most critical issues that arise when implementing optimal control techniques in
Structural Cointegrated VAR models and, in particular, in Stochastic Common
Trends Models. The former techniques and the latter models are extensively
exploited in the economic literature regarding monetary policy analysis, but
these issues have been apparently neglected.
Our approach to such a broad matter is the following. We first analyze

the implications and the effects of the presence of unit roots in the model on
the policymaker’s ability to control the system, partially or completely. Based
on the results obtained in Monti and Mosconi (2003), we report the regularity
conditions that the system has to meet for the policymaker to be able to stabilize
it, partially or thoroughly. For the different cases we then derive the optimizing
control technique to be adopted. In section 5 we present two empirical examples.
The first one is a small scale macro-model, comprising inflation rate, the GDP
and the interest rate, while the second one is a five-variable model including real
money balances, inflation long-run and short run interest rate and real output.
The second part of our analysis regards the impact on the structural form of

changes in the control rule. The structural form of the model is, by definition,
built to capture features of the model that are supposed to be invariant to
changes in the policy regime. Our findings contradict this assumption. In order
to control the system it is obvious that the control rule has to influence the
dynamics of the non-policy variables: what surprises is to see that all coefficients
of the system can be affected by the policy changes. This means that features
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of the system that are assumed to be invariant to policy are instead affected
by policy changes. Both models in section 5 have been identified also by the
long-run neutrality on money on the real variables. This latter assumption
is entrenched wisdom in recent macroeconomic theory and is generally built
in as a feature in most macroeconomic models. In both models in section 5,
nonetheless, the feature of long-run neutrality of money disappears. This paper
acknowledges this shortcoming. Nevertheless, since the policy non-invariance
property of certain features is essential for the soundness of the SVAR approach,
the following step in this research is, if possible, the definition of conditions on
the VAR coefficients that allows policy non-invariance of some of the VMA
representation coefficients.
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A Derivation of the Functional Form of the De-
terministic Components in the VMA Repre-
sentation of a VAR

Consider the following p-dimensional VAR(1), cointegrated I(1) with cointegra-
tion rank �:

�� = Π1��−1 + �0 + �1�+ �� (A.1)

where �� ∼ �(0�Ω). There is no loss in generality in considering a VAR with a
single lag, since every VAR(k), where k is the maximum number of lags, can be
rewritten as a VAR(1) using the so-called Companion Form. The VECM form
of (A.1) is

∆�� = 	
0��−1 + �0 + �1�+ ��

where 	 and 
� (�)�) matrices, are respectively the loadings matrix and the
cointegration matrix. Following Johansen(1996) it is possible to write model
(A1) in the Moving Average Representation (MAR) form, i.e. only in terms the
shocks and the deterministic components:

�� = �
�−1X
�=0

��−� +�∗(�)�� + �0 + �1�+ �2�
2

Our goal is to derive the functional form of �0,�1 and �2 .
The solution of this model with initial value �0 can be written as

�� = (� + 	
0)��0 +
�−1X
�=0

(� + 	
0)�[�0 + �1(�− �) + ��−�] (A.2)

We are interested in defining the long-run coefficients for the deterministic part
in the most general way, i.e. for �0 and �1 both possibly * ��(	)�To do so, we
shall use the following relations

	(
0	)−1
0 + 
⊥(	
0
⊥
⊥)

−1	0⊥ = � (A.3)

	0⊥(� + 	
0)� = 	0⊥


0(� + 	
0)� = (�� + 
0	)�
0

Using the first relation, the expected value of �� given the initial vales �0,
i.e. �� (��|�0) � can be rewritten as:

�� (��|�0) = 	(
0	)−1��(

0��|�0) + 
⊥(	

0
⊥
⊥)−1��(	

0
⊥��|�0)� (A.4)

Now using equation (A.2) to define �� and using the relations in (A.3), we can
write the two components ��(	

0
⊥��|�0) and ��(


0��|�0) respectively as
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��(	
0
⊥��|�0) = 	0⊥�0 +

�−1X
�=0

	0⊥[�0 + �1(�− �)] = (A.5)

= 	0⊥�0 + 	0⊥�0�+ 	0⊥�1
�(�+ 1)

2
=

= 	0⊥�0 + (	
0
⊥�0 + 	0⊥�1�2)�+ 	0⊥�1

�2

2

and

��(

0��|�0) = (�� + 
0	)�
0�0 +

�−1X
�=0

(�� + 
0	)�
0[�0 + �1(�− �)]

The model is defined as being I(1), therefore¯̄
��@(�� + 
0	)

¯̄
3 1

� This means that lim�→∞(�� + 
0	)� = 0 and that

∞X
�=0

(�� + 
0	)� = (�� − (�� + 
0	))−1 = (−
0	)−1

� The limit of ��(

0��|�0) for �→∞ can be expressed as

lim
�→∞��(


0��|�0) = (−
0	)−1
0�0 + lim
�→∞

�−1X
�=0

(�� + 
0	)�
0�1(�− �) =(A.6)

= (−
0	)−1
0�0 + lim
�→∞(−


0	)−1
0�1�+#��

where #�� =
P∞

�=0(�� + 
0	)�
0�1(−�) is a constant value. It is easy to see it
will converge, considering that (�� + 
0	)� has a higher ”speed of convergence”
compared to the speed at which � diverges. Now, using equation (A.4), it is
possible to define lim�→∞�� (��|�0) combining equations (A.5) and (A.6), i.e.

lim
�→∞��(��|�0) = 
⊥(	

0
⊥
⊥)−1 lim

�→∞��(	
0
⊥��|�0) + 	(
0	)−1 lim

�→∞��(

0��|�0) =

��0 + lim
�→∞(��0 +��1�2)�+ lim

�→∞��1
�2

2
+ (A.7)

+	(
0	)−1[(−
0	)−1
0�0 +#�� + lim
�→∞(−


0	)−1
0�1�]

where � = 
⊥(	0⊥
⊥)
−1	0⊥�

We can now derive the form of �0,�1 and �2 in the MAR .

• �0 = ��0 − 	(
0	)−1(
0	)−1[
0�0 +#��]
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• �1 = (��0 +��1�2)− 	(
0	)−1(
0	)−1
0�1

• �2 = ��1�2

The above definitions are meant to be as general as possible, comprising the
possibility that both �0 and �1 * ��(	)

B Model 1
The dataset we refer to is the FRED database, available on the website of the
Federal Reserve Bank of St. Louis. Refer to section 5.1 for the detail description
of the model and the procedures followed. The estimated coefficients for the
trivariate VAR(2) on the process

�� =

 <�
=�

��

 = Π1��−1 +Π2��−2 + �+������

∆�� = 	
0��−1 + Γ1∆��−1 + �+�������

where �� ∼ � (0� �), are:

Γ1 =

 0�2902 −0�0391 −0�1154
0�0900 −0�1757 0�0168
0�3942 −0�3151 0�0855


and

� =

 0�0052
−0�0023
−0�0009


	 =

 0�0101
0�0895
−0�2539

 /*� 
 =

 0
−1�7768

1

 �
A LR is used to test the over-identifying restriction on the cointegrating vector.
The statistics is distributed as a A2(1), i.e. with one degree of freedom, and
returns a value of 1.92620, corresponding to a significance level of 0.16518:
therefore, the restriction cannot be rejected.

����, i.e. the matrix that describes the relations existing between the reduced
form residuals and the structural innovations, is identified by assuming that
������ = 0��� and that the nominal structural innovation will not have a
permanent impact on real variables, i.e. [��]12 = 0� We obtain

���� =

 0�00618 −0�00052 −0�00023
0�00191 0�00816 −0�00201
0�0036 0�00221 0�0057

 �
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The long-run impact matrix is:

����� =

 0�0095 0 0
0�0029 0�0049 0
0�0052 0�0087 0


The solution of the control problem, derived in section 5.1 returns the fol-

lowing law for the instrument:

�� = −'�� + �

where

' =
£
0�11777 0�80174 −0�11777 0�17561 −0�65732 ¤

� = 0�038811�

The new VECM system, obtained by implementing the control rule above, has
the following characteristics:

	∗ =

 −0�0179 0�0101
−0�1590 0�0895
−0�8477 −0�4156

 /*� 
∗ =

 0 0
1 0
0 1

 �
�∗ =

 1�3890 −0�1567 0
0 0 0
0 0 0


The coefficients of the VAR are:

Π∗1 =

 1�2902 −0�0570 0�1255
0�0900 0�6653 0�1063
−0�1063 −0�7023 0�5573

 � Π∗2 =

 −0�2902 0�0391 −0�1154
−0�0900 0�1757 −0�0168
0�1063 −0�1455 0�0271


and

����∗ =

 0�0062 −0�0005 −0�0002
0�0019 0�0082 −0�0020
−0�0023 −0�0065 0�0073


So, the long-run impact matrix is

�∗����∗ =

 0�0083 −0�0020 0
0 0 0
0 0 0


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C Model 2

The estimated 	 and 
 for the five-variable VAR(2) on the process treated in
section 5.2

∆�� = 	
0��−1 + Γ1∆��−1 + �0 + �1�+�������

where �� ∼ � (0� �), are:

	 =


−0�1298 (0�031) 0 (0) 0 (0)

0 (0) −0�4051 (0�11) 0 (0)
0�0283 (0�0106) 0 (0) −0�1939 (0�048)
0�1228 (0�056) −1�058 (0�347) −0�986 (0�335)
0�0281 (0�012) −0�3456 (0�064) −0�5308 (0�069)




 =


1 (0) 0 (0) 0 (0)
0 (0) 1 (0) −1 (0)
0 (0) −0�574 (0�0554) 0 (0)
−1 (0) 0 (0) −0�141 (0�0119)
0 (0) 0 (0) 1 (0)

−0�00239 (8�48× 10−5) 0 (0) 0�00095 (7�44× 10−5)


The standard errors on the 	 and 
 coefficients reported in the parenthesis. The
other estimated coefficients are

Γ1 =


0�5535 −0�0169 −0�6063 −0�0598 −0�4166
0�0023 −0�3579 0�0275 −0�1004 0�5989
0�0244 −0�0644 0�4154 0�0002 0�1410
0�0846 0�3749 0�0365 0�0551 0�5477
0�0469 −0�0655 −0�0120 −0�0687 0�5536


and

�0 = [−0�058 − 0�0011 − 0�3976 − 2�0304 − 1�113]0 �
Brand and Cassola (2002) draw on their earlier model, described in Brand and
Cassola (2000), to develop this new model. The data used is the same, while
the sample period is now 1980Q1-2001Q3. The over-identifying restrictions are
tested within PCGive 10.3, copyright by J. A. Doornik, using LR test, whose
statistics is distributed as a chi-square: the value of the statistics is 9.7374.
The software identifies 10 over-identifying restrictions, so the distribution is a
chi-square with 10 degrees of freedom, A2(10)� Therefore these restrictions have
a significance level of 0.4638 and they cannot be rejected.
The first cointegration relationship can be interpreted as a long run money

demand function with a "velocity specification". As a time trend could not
be excluded from the cointegration space, the historical decline in M3 income
velocity is captured by the inclusion of a trend in the long-run money demand
relation, while imposing an income elasticity of one on money demand. The
second cointegrating relationship is a Fisher relationship and remains unchanged
from Brand and Cassola (2000) to Brand and Cassola (2002). The authors find
a different specification for the third cointegrating vector, which links (ex-post)
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real short term rates with deviations of output from a linear time trend. This
yields a long-run monetary policy reaction function which specifies that real-
short term rates are set in response to deviation of output from a linear trend,
which has some similarities with a Taylor rule.
The matrix ����, i.e. the matrix that describes the relations existing be-

tween the reduced form residuals and the structural innovations, is identified by
assuming that ������ = 05�3 and that the nominal structural innovation will
not have a permanent impact on real variables� We obtain

���� =


−0�00218 −0�00060 0�00091 0�00248 0
0�00101 −0�00120 0�00079 −0�00153 0
0�00002 −0�00064 −0�00037 0�00023 −0�00031
−0�00327 0�00048 0�00031 −0�00241 −0�00156
0�00022 −0�00015 0 0�00028 −0�00084

 �
The long-run impact matrix is:

����� =


0�0064 0 0 0 0
0�0002 0�0009 0 0 0
0�0004 0�0015 0 0 0
0�0064 0 0 0 0
0�0011 0�0009 0 0 0


The solution of the control problem, derived in section 5.1 returns the fol-

lowing law for the instrument:

�� = −'�� + �0 + �1�

where

' =
£ −0�174 −0�61 −1�45 −0�08 0�106 −0�04 0�515 0�01 −0�025 ¤

�0 = −2�068 and �1 = −0�0010406�
The new VECM system, obtained by implementing the control rule above, has
the following characteristics:

	∗ =


−0�1298 0 0 0

0 −0�4051 0�2325 0
0�0283 0 0 −0�1939
0�1228 −1�0580 0�6072 −0�9860
0�0964 −0�6585 1�1228 −1�3350

 /*�


∗ =


1 0 0 0
0 1 0 −1
0 0 1 0
−1 0 0 −0�1412
0 0 0 1

 �
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�∗ =


−0�1844 −2�9610 −5�7651 1�1337 0

0 0 0 0 0
0 0 0 0 0

−0�1844 −2�9610 −5�7651 1�1337 0
−0�0260 −0�4181 −0�8140 0�1601 0


How will the new long run impact matrix �∗�∗��� look like?

����∗ =


−0�0022 −0�0006 0�0009 0�0025 0
0�0010 −0�0012 0�0008 −0�0015 0
0 −0�0006 −0�0004 0�0002 −0�0003

0�0033 0�0005 0�0003 −0�0024 −0�0016
0�0002 −0�0019 0�0001 −0�0001 −0�0014


so �∗�∗��� results

�∗�∗��� =


−0�0064 0�0079 0 0 0
0 0 0 0 0
0 0 0 0 0

−0�0064 0�0079 0 0 0
0�0009 −0�0011 0 0 0


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Figure 1: The Dataset: annualized inflation and the 3-month money market
interest rate
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Figure 2: The Dataset: log of real GDP in billions of 1996 dollars

Figure 3: Deterministic Simulation of the controlled system (Model 1)
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Figure 4: Deterministic and stochastic simulations of the target variable in the
controlled system (Model 1)
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Figure 5: Deterministic and stochastic simulation of the policy instrument in
the controlled system (Model 1)
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Figure 6: GDP in the simulated controlled system (Model 1)
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Figure 7: Deterministic simulation of the controlled model 2 (inflation, short-run
and long-run interest rate)
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Figure 8: Stochastic simulation of the controlled 5-variable model 2 (inflation
long-run and short-run interest rates)
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Figure 9: Stochastic simulation for the controlled model 2 (real money balances
and real GDP)
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