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Abstract

Tomeasure contagion empirically, we propose using a Bayesian time-varying coefficient model
estimated with Markov Chain Monte Carlo methods. The proposed measure works in the joint
presence of heteroskedasticity and omitted variables and does not require knowledge of the
timing of the crisis. It distinguishes contagion not only from interdependence but also from
structural breaks. It can be used to investigate positive as well as negative contagion. The
proposed measure appears to work well using both simulated and actual data.

Key Words: Contagion, Gibbs sampling, Heteroskedasticity, Omitted variable bias, Time-
varying coefficient models.
Jel Classification Codes: C11, C15, F41, F42, G15.
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Non technical summary

This paper proposes a time-varying coefficient model to measure contagion. In the last few
years, due to the high correlation across markets and countries of financial turmoils, there has
been a growing interest in “contagion”, broadly defined as the transmission of shocks (or crises)
across markets (or countries). The literature has made the point that crises may be transmitted
in two qualitatively different ways: either through stable cross-country linkages (or channels) or
through sudden changes (or shifts) in these linkages of varying persistence. Policy makers are
clearly interested in discriminating between these two alternative transmission mechanisms when
they decide economic adjustments. In this paper, we narrow the scope of this general definition
and focus on measurement problems, with a view to distinguish between changes in cross-markets
linkages during a crisis on the one hand, and strong but stable cross-markets linkages and permanent
shifts in these linkages on the other hand. Specifically, we define contagion as a “temporary shift
in the linkages across markets following a shock in one or more markets”. The definition we
adopt is based on a commonly accepted definition proposed by Forbes and Rigobon (2001, 2002),
who define contagion as a “significant change in cross-country linkages following a crisis in one
or more countries” and call this “shift-contagion”. As known, a strong association between two
markets, both before and after a crisis in one market, is not an instance of “shift-contagion” but of
“interdependence” according to this definition. We narrow the scope of this intuitive definition, by
requiring that the shift in the linkages is temporary, to distinguish “contagion” from a permanent
(or at least very persistent) shift in the transmission channels, which are usually called a “structural
breaks” in the econometric literature.

Existing approaches to measure contagion include methods based on simple rolling correlations,
OLS regressions, regressions with dummy variables, and also principal component analysis. Typ-
ically, once assumed that a particular market or country is the source of the crisis, the empirical
model is estimated before and after the crisis period or including dummy variables for the crisis
period. Then, the statistical significance of the dummy variables or the statistical significance of
the estimated differences in the coefficients before and after the crisis, is checked. Thus, all these
methods assume that both the source and the precise timing of the crisis is known. In our opinion
this is a drawback, especially for the analysis of those crises that are difficult to date clearly, as in
the case of Argentina and Turkey in 2001 and Brazil in 2002.

From a statistical point of view there are other problems in measuring contagion as it has
been defined here and elsewhere. In a limited information setting (small models), cross-market
correlations may shift even without a shift in the underlying linkages when volatility increases in
the crisis country, and this (upward) shift can be corrected only if we do not have simultaneity
and/or omitted variables. OLS-based and principal component methods can be safely applied in
the absence of simultaneity and omitted variable problems, with the advantage that they provide
also evidence on the specific channels through which shocks or crises are transmitted across markets
(e.g., trade, finance, investors preference and technology, etc.). However, in the joint presence of
heteroskedasticity and either omitted variables or simultaneity, these methods are inconsistent (in
the presence of simultaneity) and “biased”, in the sense that shift in the cross-market linkages are
interpreted as contagion, as opposed to an inappropriate accounting of volatility shifts. Moreover,
under these circumstances, there are no simple corrections that can be implemented, as extensively
documented by Rigobon (2001). Finally, in a full information setting (large model), some of the
relevant variables may not be available if they are unobservable (e.g., global risk aversion).
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The contagion measure we propose has a number of advantages over existing methods in sev-
eral dimensions. First, it works in the joint presence of heteroskedasticity and omitted variables.
Second, unlike any of the existing methods discussed, there is no need to define a “crisis period”
outside the empirical model, as coefficients are allowed to change continually. Third, the framework
we propose allows for analysis of both interdependence and contagion. Fourth, even if full informa-
tion specifications are available, these are more easily estimated without running into overfitting
problems. In fact, the model is estimated using Bayesian procedures which allow us to enlarge
considerably the dimensionality of the model and, at the same time, to provide a sensible estimate
of the relevant coefficient in a recursive fashion as time passes by. Finally, given the time-varying
feature of the population structure, it may distinguish between temporary shifts and structural
breaks, as well as positive from negative contagion.

The framework is applied to both artificial and actual data. Overall, the evidence suggests that
the proposed framework measures contagion effectively. Evidence based on a worse-case scenario
generated with artificial data shows that the proposed framework effectively detects false contagion
in the joint presence of heteroskedasticity and omitted variable bias. Evidence based on actual data
shows that the results obtained in a limited information setting correcting for potential omitted
variables bias are comparable to those obtained in fuller information settings.
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1 Introduction

Financial crises appear correlated across markets or countries. As a consequence, there has been

a growing interest in “contagion”, broadly defined as the transmission of shocks (or crises) across

markets (or countries). Crises may be transmitted in two qualitatively different ways: either

through stable cross-country linkages (or channels) or through sudden changes (or shifts) in these

linkages of varying persistence.

From a policy perspective, it is important to discriminate between these two alternative trans-

mission mechanisms. Short-term “insulation” policies through public sector intervention in the

economy may be desirable and effective in the presence of temporary shifts in the transmission

mechanism, but may not be the best (nor even a viable) policy response in presence of stable but

strong linkages or a permanent change in the transmission mechanism. For instance, the temporary

effects of a crisis in a neighboring country on the local foreign exchange market might call for a

currency defense by means of interest rates or official reserves. But if the foreign exchange market

reaction reflects more permanent features, such as strong trade and financial linkages or a long-term

shift in the transmission mechanism of shocks, it is unlikely that such a defense would be advisable.

In this paper, we narrow the scope of a contagion definition well known in the literature and focus

on measurement problems, with a view to distinguish between changes in cross-markets linkages

during a crisis on the one hand, and strong but stable cross-markets linkages and permanent shifts

in these linkages on the other hand. Specifically, we define contagion as a “temporary shift in

the linkages across markets following a shock in one or more markets”. We then show that a

time-varying coefficient model may be used to measure contagion so defined without knowing the

timing of the crisis and in the joint presence of heteroskedasticity and omitted variables. This is

achieved by (i) modelling cross-market linkages empirically as changing randomly all the time, (ii)

estimating the time profile of these links with a numerical Bayesian procedure that corrects for

possible omitted variables, and (iii) by looking at quantitatively sizable and economically plausible

temporary shifts in the estimated links. Finally, the performance of the proposed measurement

method is assessed by means of both simulated and actual data.

The contagion definition we adopt is that proposed by Forbes and Rigobon (2001, 2002), (hence-

forth, FR), and also used by King and Wadhwani (1990) among others. FR define contagion as a

“significant change in cross-country linkages following a crisis in one or more countries” and call
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this “shift-contagion”. As known, a strong association between two markets, both before and after

a crisis in one market, is not an instance of “shift-contagion” but of “interdependence” according

to this definition. We narrow the scope of this intuitive definition, by requiring that the shift in

the linkages is temporary, to distinguish “contagion” from a permanent (or at least very persistent)

shift in the transmission channels, which are usually called a “structural breaks” in the econometric

literature.

Measuring contagion poses a host of statistical problems and defining it as clearly as possible is

only a first step in trying to discriminate between different channels of transmission of crises across

countries. In theory, one would like to use a two-steps approach to measure contagion (Favero

and Giavazzi, 2002): first, by identifying the channels of transmission by estimating a model of

interdependence; second, by checking whether the strength of the transmission channel has changed

significantly following a crisis. However, in practice, there is a trade off between the efficiency costs

of identifying all channels with large models (we shall call this full information methods) and the

potential bias deriving from omitting relevant variables, observable or latent, that may distort the

analysis in smaller set ups (we shall call this limited information methods).

There are several existing approaches to measure contagion.1 These include methods based on

simple rolling correlations, OLS regressions, regressions with dummy variables, and also principal

component analysis. Typically, once assumed that a particular market or country is the source of

the crisis, the empirical model is estimated before and after the crisis period or including dummy

variables for the crisis period. Then, the statistical significance of the dummy variables or the

statistical significance of the estimated differences in the coefficients before and after the crisis, is

checked. Thus, all these methods assume that both the source and the precise timing of the crisis

is known. This is a drawback, especially for the analysis of those crises that are difficult to date

clearly, as in the case of Argentina and Turkey in 2001 and Brazil in 2002.

There are also other problems in measuring contagion of a more statistical nature.2 In a limited

information setting, cross-market correlations may shift even without a shift in the underlying

linkages when volatility increases in the crisis country, and this (upward) shift can be corrected

only if we do not have simultaneity and/or omitted variables. OLS-based and principal component

methods can be safely applied in the absence of simultaneity and omitted variable problems, with

1For a survey of the recent literature, see Pericoli and Sbracia (2002).
2For a formal discussion, see, for instance, Rigobon (2001).
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the advantage that they provide also evidence on the specific channels through which shocks or

crises are transmitted across markets (e.g., trade, finance, investors preference and technology, etc.).

However, in the joint presence of heteroskedasticity and either omitted variables or simultaneity,

these methods are inconsistent (in the presence of simultaneity) and “biased”, in the sense that shift

in the cross-market linkages are interpreted as contagion, as opposed to an inappropriate accounting

of volatility shifts. Moreover, under these circumstances, there are no simple corrections that can

be implemented, as extensively documented by Rigobon (2001). Finally, in a full information

setting, some of the relevant variables may not be available if they are unobservable (e.g., global

risk aversion).

The contagion measure we propose has a number of advantages over existing methods: the

measurement method we propose works in the joint presence of heteroskedasticity and omitted

variables, as the limited information approach proposed by FR but unlike OLS and principal

components methods; unlike any of the existing methods discussed, there is no need to define a

“crisis period” outside the empirical model, as coefficients are allowed to change continually. More

generally, the framework we propose allows for analysis of both interdependence and contagion, as

full information specifications are more easily estimated without running into overfitting problems

using Bayesian procedures. It may distinguish between temporary shifts and structural breaks, as

well as positive from negative contagion.

We apply the proposed framework to both artificial and actual data. With artificial data, we

find that it detects false contagion even in the most adverse experimental conditions. With actual

data, we find that it replicates the results obtained in a fuller information setting when applied in

a limited information setting correcting for omitted variable bias. The proposed framework can be

easily implemented in a multivariate context, but may involve significant computing costs if the

number of markets or countries considered is large.

The paper is organized as follows. Section two presents the econometric framework proposed

and discusses its main features and properties. Given its importance in this context, the problem of

omitted variables is dealt with separately in Section three, where we report and discuss a Bayesian

correction for omitted variable bias. Section four analyzes the performance of the overall framework

proposed by using both artificial and actual data. Section five concludes. Some technical details of

the estimation procedure used are provided in appendix.
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2 Modeling Contagion and Interdependence

In this section we present a general econometric model that may be used to measure both contagion

and interdependence and discuss its specification and estimation.

The transmission of shocks or crises across markets or countries, either through stable channels

and linkages or though shifts or changes in these links, may be modelled by means of a standard

vector-autoregression (VAR) with time-varying coefficients:

�� (�)�� = �� (�)�� +�� + ��� (1)

where �� = [	1� � · · · � 	�� ]0 is a 
×1 vector of asset prices or quantities, �� = [�1� � · · · � ��
� ]
0 is a �×1

vector of controls and sources of shocks, �� (�) and �� (�) are respectively (
 × 
) and (
 ×�)

time-varying polynomial matrices in the lag operator � with lag length 
 and � respectively, and

�� is a 
 × 1 vector of constants. �� = [�1� � · · · � ��� ]0 is a (
 × 1) vector of country or market
specific shocks with variance-covariance matrix Σ. Thus, in principle, this specification allows for

both interdependence and contagion: a stable association between two markets before and after a

crisis may be traced in the usual manner through impulse response analysis, while contagion can

be detected by a temporary shift in the model parameters.

This approach to the measurement of contagion has other advantages. First, as coefficients

are allowed to change randomly all the time, we do not require knowledge of the precise timing of

the crisis. Second, as in the case of OLS-based methods, it may provides evidence on the specific

channels of transmission of shocks across markets and is not contaminated by shifts in volatility

alone. Third, as we shall discuss in section three, unlike OLS-based methods, the approach may

be adjusted to take possible omitted factors into consideration. Fourth, potential simultaneity

problems may be resolved either by focusing at the variance-covariance matrix of the reduced form

residuals (Σ) rather than on the estimated coefficients, or by modeling Σ as in the structural VAR

literature.3

In practice, one estimates parameter values for all time observations and then look at the time

profile of this series for sizable temporary shifts. As estimation is Bayesian, there is a lesser need

to test the statistical significance of any economically significant shift identified. This is because

the posterior distribution of the parameter of interest already summarize the uncertainty around

3See Ciccarelli and Rebucci (2001) and Coogley and Sargent (2002) for examples of structural time-varying coef-
ficient models.
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the point estimate, as opposed to one draw from such a distribution under a classical approach.

The analogous of a classical test for parameter stability, however, could be easily implemented.

2.1 Specification

Collect �� and �� with all their lags and the constant term in �� and all parameters in ��. Then

the model may be rewritten as:

�� = ���� + ��� (2)

where �� and �� have dimension 
× � and �× 1 respectively, with � = 

+�� +1, while �� and

�� are 
× 1 vector stochastic processes.
To fit (2) to the data, following Canova (1993), we assume, for all �:

(i) �� | �� ∼ ��� with �[�� | ��] = 0 and �[���
0
� | ��] = Σ;

(ii) �� = ���−1 + ��0 +��� with �� ∼ ��� � (0�Φ) ;

(iii) ��, �� and �� are conditionally independent.

In addition, innovating upon Canova (1993), we assume that:

(iv) �� | �� ∼ ��� �� (0�Ω) � with Ω =
�−2
� Σ and � � 2 (so that�[�� | ��] = 0 and �[���

0
� | ��] = Σ).

Here, �[·] is the expectation operator, “ ∼ ���” means identically and independently distributed,

and � (0�Φ) denotes a multivariate normal distribution with zero mean and variance-covariance

matrix Φ� �� (0�Ω) a centered multivariate t-student distribution with � degrees of freedom–� ∈
(0�∞)–and (symmetric and positive definite) scale matrix Ω, while �, � , and � are known

matrices of conforming dimension.

The first assumption is standard for stationary time series. The second assumption specifies

the (stochastic) law of motion of the parameter vector as a general class of VAR process–including

VAR processes with discrete regime shifts a-la Hamilton, as for instance used by Sims (1999) , or

the kind of process specified by Cogley and Sargent (2002). The third assumption is also standard

and helps keeping the model as simple as possible, but could be relaxed in principle. The fourth

hypothesis generalizes the more common ��� � (0�Σ) assumption for the vector of error terms and

takes the likely presence of outliers in high frequency data into account.
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In the latter regard, note first that assuming �� | �� ∼ �� (0�Ω) is equivalent to assume �� =
√
���� with �� | �� ∼ � (0�Ω) and �� | �� ∼Inv- 2 (�� 1), where Inv- 2 (�� 1) denotes an inverted

chi-squared distribution with � degrees of freedom and unit scale. Thus, if �� | �� ∼ �� (0�Ω), then

�� | ��� �� ∼ � (0� ��Σ). Second, note that the t-student assigns higher probability mass on the tails

of the distribution of the vector of error terms than the normal–i.e., higher probability on extreme

values or outliers–and the extent to which �� | �� departs from normality depends on the number

of degrees of freedom, �. In fact, �� | �� converges in distribution to � (0�Σ) as � approaches

infinity as in the limit �[�� | ��] tends to one and its variance, ! [�� | ��], tends to zero. Finally,

note that it would be possible assuming an autoregressive structure on the log of �� to account for

systematic shifts in volatility, in line with other related studies (e.g., Cogley and Sargent, 2002).

However, we prefer a more parsimonious specification which impose a minimal structure on the

error term because, as explained below (in Section 2.2.2), even with this simple a priori structure

the model is capable to reproduce the permanent shifts in the innovation variance a posteriori.

Substitute assumption (ii) in (2) and take the conditional expectation with respect to the

distribution of �� under (i)-(iii), then we have:

�� = ���̃�−1 + e���
where

�̃�−1 = ���−1 + ��0 and e�� = ����� + ���

with

�[�� | ��] = ���̃�−1 and ! [�� | ��] = Σ+���Φ�
0� 0

�"

Thus, under assumptions (i)-(iii), �� is a conditionally heteroskedastic process, with non-linear

conditional mean and variance (in the vector of variables ��). Further, under assumption (iv), �� is

a non-normal process (i.e., with fat tails). Hence, despite its simplicity, this specification captures

many typical features of high frequency financial data.4

2.2 Bayesian Estimation

Although simple versions of (2) under assumptions (i)-(iv) could also be estimated in a classi-

cal fashion (e.g., by using the Kalman filter, rolling regressions, or other recursive procedures),

4For more details on our model’s ability to fit financial, high frequency time series, see Canova (1993).
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a Bayesian approach allows to estimate more general specifications for a significant number of

equations.5 As we shall discuss below, a Bayesian approach also allows to correct for the presence

of omitted variables in a quite simple manner, while a classical procedure would not allow to do so.

Bayesian estimation is simple in principle, though may be computationally demanding. Prior

distributions are assigned to the hyperparameters of the model (in our case, Σ� �̃0� Φ� and �), and

are combined with the information contained in the data (in the form of a likelihood function),

together with a set of initial conditions, to obtain a joint posterior distribution of the parameters

of interest via the Bayes rule. Marginal posterior distributions are then obtained by integrating

out other parameters from the joint posterior distribution.

In many applications analytical integration of the joint posterior distribution may be difficult

or even impossible to implement. This problem, however, can often be solved by using numerical

integration methods based on Markov Chain Monte Carlo (MCMC) simulation methods (e.g.,

Geweke, 2000). In this paper, we use the Gibbs sampler, which is a recursive simulation method

requiring only knowledge of the conditional posterior distribution of the parameters of interest on

MCMC methods (e.g., Gelfand et al., 1990).

In the rest of this subsection, we describe the specific prior assumptions suggested, discuss the

posterior distributions of the parameters of interest, and show how the estimation procedure may

be corrected for omitted variable bias. The derivation of the posterior distributions is reported in

appendix.

2.2.1 Priors

By assuming prior independence, as customarily done, the joint prior distribution of the model

parameters can be expressed as the product of the marginal priors:


 (Σ� ��� Φ� �) = 
 (Σ) 
 (��) 
 (Φ) 
 (�) �

where ‘
’ denotes a probability density function. On these marginal priors, as also fairly standard,

we assume:


(Σ−1) = � (#� $)


(��) = �(�∗� �Θ)
5For specification and estimation of a time varying SUR model, see Chib and Greenberg (1995). For extension of

this model to a panel VAR framework, see Canova and Ciccarelli (2000).
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(Φ−1) = � (��%) (3)


(�) = Uniform (2� &) �

where � (#� $) (� (��%)) denotes a Wishart distributions with degrees of freedom # (�) and

symmetric, positive definite scale matrix $ (%). The hyperparameters of these distributions

(#� �� �∗� � '() ($), '() (Θ) � '() (%) � and &, with '() (·) denoting the column-wise vectorization of
a matrix) are also assumed to be known.

Denote � � = (�1� """� �� ) the sample data and * = ({��}� � {��}� � Σ� ��� Φ� �) the set of para-
meters of interest. Given prior independence and assumption (iii) above, the joint posterior density

is:



³
* | � �

´
∝ |��Σ|−��2 exp

(
−1
2

�X
�=1

(�� −����)
0 (��Σ)−1 (�� −����)

)

× ¯̄�Φ� 0¯̄−��2 exp(−1
2

�X
�=1

³
�� − �̃�−1

´0 ¡
�Φ� 0¢−1 ³�� − �̃�−1´

)

×
Y
�

�
−(��2+1)
� exp

(
−1
2

X
�

�

��

)

×|Θ|−1�2 exp
½
−1
2
(�� − �∗�)0Θ−1 (�� − �∗�)

¾
×|Σ|− 1

2
(	−�−1) exp

½
−1
2
�& ($)Σ−1

¾
×|Φ|− 1

2
(
−�−1) exp

½
−1
2
�& (%)Φ−1

¾
× 1

&− 2 (4)

where the first line corresponds to the likelihood function, while the others represent the prior

information described above, with �̃�−1 = ���−1 + ��0 as before.

2.2.2 Posteriors

As known, to implement the Gibbs sampler, we need to derive analytically conditional posterior

distributions of the parameters of interest. Given the conditional posterior distributions of the

parameters of interest, the Gibbs sampler produces an approximation to the joint posterior density.

Convergence of the Gibbs sampler to the true invariant distribution in our case is subject to

standard, mild conditions since model (2) is a time-varying SUR with serially correlated errors

(e.g., Geweke, 2000). Marginal posterior densities are then obtained by integrating out of these joint
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posterior numerically within the Gibbs sampler. Moreover, inference on any continuous function

of the parameters of interest, G(*), can be constructed using the output of the Gibbs sampler and
the ergodic theorem.

For example

�(G(*)) =
Z
G(*)
(*|� )�*

can be approximated using

1

�̄
[
�+�̄X


=�+1

G(*
)−1]−1

where *
 is the +-�� draws of vector *� (� + �̄) is the total number of iterations in the Gibbs

sampler, and � is the number of discarded iterations.

The conditional posterior distributions needed to implement the Gibbs sampler in our model

are derived in appendix. Here we focus only on the interpretation of the marginal posterior means

of �� and ��, the shift factor in variance of the error term ��. In particular, defining *−� ≡
({��}� �Σ� ��� Φ� �) and *−� ≡ ({��}� �Σ� ��� Φ� �), in appendix we show that:

�� | ��� ��� *−� ∼ �
³
�̂�� !̂�

´
� (5)

with

�̂� = �̂�−1 + !̂�−1��

³
��Σ+��!̂�−1� 0

�

´−1 ³
�� −���̂�−1

´
(6)

!̂� = !̂�−1 − !̂�−1� 0
�

³
��Σ+��!̂�−1� 0

�

´−1
��!̂�−1" (7)

while

�� | ��� ��� *−� ∼ Inv- 2
³
��� ,

2
�

´
(8)

with

��,
2
� = ��−1,2�−1 +

¡
�� −� 0

���
¢0
Σ−1

¡
�� −� 0

���
¢

(9)

�� = ��−1 + 1" (10)

Consider the expression for the posterior mean of the parameter vector, �̂�, equation (6). This

can be written as:

�̂� =
h
� 0

� (��Σ)
−1�� + !̂ −1�−1

i−1 h
� 0

� (��Σ)
−1 �� + !̂ −1�−1�̂�−1

i
" (11)

Note that this expression is easily interpretable as a (time-varying) Theil’s mixed type of estimator.

This, in turn, says that, for each �� �̂� is centered on the OLS estimator, and is identical to the
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OLS estimator (and thus also to the MLE estimator) if we assume that the prior distribution is

non-informative–i.e., if its prior variance is set arbitrarily large or its precision arbitrarily small

(Φ−1 = 0). The claim is proved with details in the appendix.

Consider then the expression for the posterior distribution of �� in (8). The conditional posterior

distribution of �� also has an interesting interpretation, which helps to appreciate the role of the

t-distribution in the model. As we can see from (9), the expression for ��,
2
� , which apart from a

multiplicative factor provides the posterior mean of ��, evolves as a random walk without drift.

Therefore, the assumed prior structure generates a posterior conditional heteroskedasticity effect of

the type assumed a priori by Cogley and Sargent (2002). Thus, this effect allows for a permanent

shifts in the innovation variance, even in a specification which does not assume it a priori.

As an OLS estimate, however, this estimation procedure is not robust to the possible presence

of omitted variables, even though a correction for omitted variables bias can be easily implemented

in our model by following Leamer (1978, Chapter 9).6 As we noted before, in the presence of both

heteroskedasticity and omitted variables, conventional measures of contagion are biased, in the

sense that genuine shifts in the cross market linkages cannot be distinguished from inappropriate

accounting of volatility changes. The estimator we use is also subject to this problem. However,

unlike the case of a classical OLS estimate, our Bayesian estimation procedure can be corrected for

this, as we show in the next section.

3 Correcting for Omitted Variable bias

It is well known that omitting a relevant variable in the estimation of a linear model biases the

estimation results and may produce false inference, even if the omitted variables are orthogonal

to the variables included in the analysis. This is because of the lack of association between the

omitted and the included variables produces unbiased estimates of the coefficients, but it is not

sufficient to yield an unbiased estimator of their variance.

Consider a non-stochastic linear regression function:

�� = ��� + -�. (12)

6Unlike the classical framework, in the Bayesian literature unbiasedness is usually not an interesting property
for an estimator to have. However, inference in regression models that have been simplified prior to estimation by
omitting possibly relevant variables is a crucial topic even in the Bayesian framework (Leamer, 1978).
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where � and � are 
 × 1 and 
 × � matrices, respectively, - is 
 × 
 matrix (with 
 / �) and

could be unobservable, while � and . are parameter vectors. Assume, for instance, that

(- | �) = �0+ 1 (13)

where 1 is a vector of random variables independent of �, and 0 is known. Thus, the true model

is

� = �� +�0. + 1. (14)

If instead we estimate the model

� = �� + �� (15)

then b� will be biased unless 0 = 0 (omitted variables are uncorrelated with the included variables)
or . = 0 (omitted variables have no effect on � ).

However, inferences about � may be made based on � and � alone in a Bayesian estimation

framework, provided we have a (probabilistic) view about -. To see this, assume that the true

model is as in (12)-(13). The model

� = �� +��� + 2� (16)

where �� = 0. and 2 = 1.� approximates (14) by admitting the possibility of omitted variables.

The fundamental difference between (15) and (16) is that the latter includes a statement about the

quality of the experiment (a prior on ��), while the former does not. In the literature, the parameter

vector ��
� is called the contamination vector (or the experimental bias) because it summarizes the

bias in the information about � due to omitted variables. The model in (15) is misspecified because

it sets the contamination vector to zero. Evidently, (16) could not be estimated in a classical way

because of the perfect collinearity among the regressors included, but its analysis is feasible in a

Bayesian context by choosing an appropriate prior to identify �� from ��� .

More specifically, following Leamer (1978), assume data normality and let the prior be normal

with mean and variance, respectively,

�

Ã
�
��

!
=

Ã
�∗

0

!
� (17)

!

Ã
�
��

!
=

Ã
�∗ 0
0 �

!−1
� (18)
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where �∗ and � are positive semi-definite matrices. Leamer (1978, p. 295) shows that the posterior

mean and variance are given by, respectively,

�

Ã"
�
��

#
| �
!

=

Ã
�∗ +� �
� � +�

!−1Ã
�∗�∗ +��̂���
��̂���

!
(19)

!

Ã"
�
��

#
| �
!

=

Ã
�∗ +� �
� � +�

!−1
(20)

with �̂��� = (�
0�)−1� 0� and � = � 0�. By the algebra rules of partition matrices we also have:Ã

�∗ +� �
� � +�

!−1

=

Ã
�−1 −�−1� (� +�)−1

−�−1� (�∗ +�)−1 �−1

!−1
where

� =
³
�∗ +� −� (� +�)−1�

´
� =

³
� +� −� (�∗ +�)−1�

´
"

Hence,

�

Ã"
�
��

#
| �
!

(21)

=

 �−1
n
�∗�∗ +

h
� −� (� +�)−1�

i
�̂���

o
�−1� (�∗ +�)−1�∗

³
�̂��� − �∗

´  "
The posterior mean of � in (21), as usual, is a weighted average of the prior mean (�∗) and the

sample OLS estimate
³
�̂���

´
. However, the weight of the latter is (� − � (� +�)−1�) rather

than � as it usually happens in the absence of such a correction. Thus, the corrected estimate

weights the OLS estimate less than in a model without correction. Also note that the “discount

factor”, � (� +�)−1�� depends on � (the prior precision of ��). Hence, as � grows, the posterior

mean converges to its value in a model without correction.

The posterior mean of �� in (21) is a weighted average of zero and
³
�̂��� − �∗

´
, the difference

between the OLS estimate and the prior mean. Hence, the posterior distribution of �� is centered

away from zero. This corrects for the excess of skewness toward �∗ in the posterior distribution of

�, compared to the case in which there is no correction in the model. In fact, if the posterior distrib-

ution of �� were centered on zero and the weight of �̂��� in (21) was discounted by � (� +�)−1� ,
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we would overweight �∗. To correct for this distortion induced by the correction, the posterior

mean of �� must be different from zero and depend on the excess of �̂��� over �
∗.7

Leamer’s correction for omitted variable bias was designed for a standard linear regression model

in which the omitted variable depends on the variable included in the regression. However, it can

be easily adapted to our time-varying, non-normal model, or to cases in which the omitted variable

is a common factor as often assumed in the contagion literature (see, for instance, Rigobon, 2001).

To adapt the correction to a time-varying model in which the omitted variable is a common factor,

the prior of the parameter vector can be expressed as:

3� = 3̃�−1 + 4�

where

3̃�−1 =

Ã
�̃�−1 = �1��−1 + �1�0
�̃��−1 = ����−1 + � ��0

!
�

4� =

Ã
�1 0
0 ��

!Ã
�1�
���

!
= ����

with

! (��) = !

Ã
�1�
���

!
=

Ã
Φ1 0
0 Φ�

!
= Φ"

Thus, the model (2) becomes

�� =��3� + 5�

where�� = [�� ��] and 3� = [�� ��� ]. Then, the the joint posterior distribution of the parameters

is given by (4), after replacing �� with ��, �� with 3�� and �� with 5�.8

The intuition of why Leamer’s correction works also in cases in which the omitted variable is

a common factor is simple. The correction exploits the correlation between the included and the

excluded variables in the true model and may be interpreted as an instrumental variable estimate

that uses the included regressor as instrument for the omitted regressor. For this purpose, it does

not matter whether the omitted variable is common to both the dependent and the independent

variable, assuming it is not endogenous to the dependent variable. We also conjecture that, when the

omitted variable is a common factor, its performance might improve with the number of variables

7For more details, see Leamer (1978, page 297).
8The block diagonality of the variance-covariance matrix of �� is a necessary prior identification assumption, but

does not need to be preserved a posteriori.
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included in the model. This suggests potential scope for combining common factor analysis with

Bayesian estimation methods to improve upon its performance.

4 How Does the Proposed Measure Perform?

To assess the performance of the measurement method proposed, in this section, we run two set

of experiments. The first set is based on artificial data and thus a known data generating process

(DGP). Here we analyze the performance of the proposed measure in a worse-case, false-positive

example. Specifically, we set up the Monte Carlo experiment analyzed by Rigobon (2001), with

the same DGP and combination of parameter values giving rise to the highest possible bias, and

then check whether our procedure is able to detect the false hypothesis of contagion.

The second set is based on actual data and thus an unknown DGP. Here we revisit an actual

application in which both contagion and interdependence were detected and assess the perfor-

mance of our measure when it is applied omitting an important source of interdependence but,

at the same time, correcting as discussed in the previous section. As we shall see, our procedure

turns out to perform remarkably well in both cases: it identifies false positives even in the most

adverse experimental conditions and replicates results obtained in a much richer empirical model

specification.

4.1 Evidence Based on Artificial Data

In the first set of experiments, we consider a case in which there is both heteroskedasticity and

omitted variable bias and no contagion, and ask whether our measure could instead lead us to

conclude erroneously (because of the variable omission) that there is contagion. Thus, we apply

our measure to a case in which (i) the true cross-market linkage remains stable over time, (ii) there

is interdependence, (iii) a common shock causes volatility to increase, and (iv) the model used

to measure contagion omits this common source of volatility, say because this is an unobservable

variable. However (v), the estimation procedure corrects for potential omitted variable bias as

discussed in the previous section.

We generate the data from the following univariate, time-invariant model, consistent with model

No. 3 of Rigobon (2001):

	� = �6� + .7� + �� (22)
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6� = 37� + ���

7� = 87�−1 + 1��

� = 1� """� 200"

In this model, the omitted variable (7�) is a factor common to the market or country assumed to

be the source of the shock or crisis (6�) and the country potentially affected by this crisis’ spillovers

(	�). This common factor may be an observable variable, such as a shock in a third market, or

unobservable, such as a shift in investors preferences as discussed by Kumar and Presaud (2001).

The model is parametrized in the most unfavorable manner (to our measurement procedure)

by selecting the worst-case among those considered by Rigobon (2001 pages 30-31).9 Hence, the

parameters and error terms of the model are drawn under the assumptions that:

• � ∼ �
³
�̄� 92�

´
and . ∼ �

³
.̄� 92�

´
with9� = �̄:4, 9� = .̄:4, 9��� = 0, �̄ = .̄ = 1, and 3 = 1;

• �� ∼ �
¡
0� 92�

¢
and �� ∼ �

¡
0� 92�

¢
with 9� = 9� = 1 and 9��� = 0;

• 1� ∼ �
³
0� 921��

´
for � = 1� 100 and 1� ∼ �

³
0� 922��

´
for � = 101� 200, with 70 ∼ �

µ
0�

�2�
1−�2

¶
,

91�� = 1� 92�� =
√
10, and 8 = 0"5.

We then estimate this model with our time-varying procedure, omitting 7� from the first regres-

sion above, with and without Leamer’s correction.

The model estimated without correction is:

	� = ��6� + ��" (23)

In this case, the prior assumptions for �� and �� and the required initial conditions, consistent with

assumptions (i)—(iv) in section 2, are:

• � = � = ;, � = 0 and Φ = <! ∗� with < = 0"001;

• �� | �� ∼ �
¡
0� ��9

2
¢
with 92 = 9̂2���;

• �� ∼ ;
' −  2 (�� 1) with � = 5;
9It would be simple, albeit time consuming, to consider other points in the parameter space and run a proper Monte

Carlo simulation experiments as done by Rigobon (2001). For the purpose of verifying the maintained statement that
the proposed measure of contagion is robust to the joint presence of heteroschedasticity and omitted variable bias,
however, it suffices to consider the most unfavorable point of those considered by Rigobon.
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• �� ∼ � (�∗� � ! ∗� ) with �∗� = 8∗ and ! ∗� = 92 (� 0�)−1 ∗102, where 8∗ is the sample conditional
correlation coefficient corrected as suggested by FR.

In this case, the OLS bias is given by . �� (�)
�2� (�)+� (�) , which is increasing in ! (7) and decreasing

with ! (�). If these variances change in turmoil periods, we can expect the bias to change accord-

ingly, thus erroneously revealing presence of contagion when in fact the cross-market linkages have

not changed. Volatility may shift because either ! (7) or ! (�) change. In our example, we focus

on changes of ! (7) " Therefore, we expect that our estimate of �� is biased, with a larger bias in the

second part of the sample (� ∈ [100� 200]), following the increase in the variance of 1�, erroneously
leading the analyst to detect presence of contagion.10

Baig and Goldfajn (2000) note that increased volatility in the crisis country may be seen as the

source of “contagion”, and the consequent strengthening of cross-market correlations even in the

absence of a shift in the underlying relations is part of the “contagion” process. In this case, cross-

market correlations continue to provide useful information, even though they cannot be used to

disentangle a shift in the linkage from other reasons for the increased co-movement across markets

following a crisis. In our view, this perspective is more appealing to portfolio managers than

policy makers. From a portfolio management standpoint, what matters is the extent to which asset

prices comove regardless of the reasons why they do so. From policymaking standpoint, instead,

it is certainly important to be able to discriminate among different sources of fluctuations in asset

prices.

The model estimated with Leamer’s correction is:

	� = ��6� + ���6� + ��" (24)

In this second case, we expect that the posterior estimate of �� is not biased (and hence �� does

not change following the increase in ! (7)) and we assume:

• � = �� = ;, � = � � = 0, � = �� = ;, Φ1 = <! ∗� and Φ� = <! �
� with < = 0"001;

• �� ∼ � (�∗� � ! ∗� ) and ��� ∼ � (0� ! �
� ) with �

∗
� = 8∗, ! ∗� = 92 (� 0�)−1 · 102, ! �

� = 92;, and

)=' (��� �
�
�) = 0.

10Note that an increase in � (�) decreases the bias, thus potentially leading to erroneously detect presence of
positive contagion.
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Figure 1 reports the posterior mean and a 68-percent band of the estimated posterior distri-

bution of �� for the model estimated without correction as in (23). Figure 2 plots the results in

the case in which we estimate the model with Leamer’s correction. For each sample observation,

as already noted, the mean of the posterior distribution (i.e., the central line in these plots) may

be compared to a rolling OLS estimate. The band contains 68 percent of the probability mass

under the estimated posterior distribution of �� and may be compared to a one-standard deviation,

classical confidence interval. Thus, when the posterior mean at time � moves outside its 68-percent

band at time �− 1, we can assume this is a statistically significant shift, in a ‘classical’ sense.
As we can see from Figure 1, when the model is estimated without correction, the posterior

mean is severely biased (on average by more than 50 percent of the true value), thus not only

providing a potentially misleading assessment on the presence of contagion, but also of the extent

to which these two markets co-move in all states of nature. The variability of the omitted variable

also induces a marked, seemingly random time-variation in the posterior mean of �� that makes

it even harder to draw conclusions. Then, as expected, the shift in the variance of the omitted,

common variable at � = 100 produces an upward shift in the estimated coefficient of about 20

percent. This pushes the lower band of the posterior distribution above its upper bound before the

shift, possibly leading the analyst to conclude that this could be evidence of contagion.

As we can see from Figure 2, the Leamer’s correction works remarkably well: (i) it reduces the

bias, which on average is now only about 5 percent of the true value; (ii) it removes the random

movements in the estimated posterior mean of �� due to the omitted movements of 7 and (iii), most

importantly, it also eliminates the shift in the coefficient due to the shift in the bias. This suggests

that our proposed measure of contagion detects false positive effectively, even under rather adverse

conditions.

4.2 Evidence Based on Actual Data

In the second set of experiments, we assess how the framework proposed to measure contagion

works when we don’t know the true DGP. We do so by revisiting an application of the framework

proposed here by one of us to the investigation of contagion from the Argentine crisis on the Chilean

foreign exchange market in 2001 (Rebucci, 2002). That study concluded that, once controlled for

a comprehensive set of other factors, fundamental linkages between Chile and Argentina were not

strong enough to explain the peso/dollar rate in the second part of 2001, and that the presence of
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contagion could not be ruled out. Here, we shall omit all the control variables used in that study

and apply the Leamer’s correction to see whether a corrected “limited information” model yields

the same results as a “fuller information” model.

More specifically, we use two empirical models. A “full” information model, which considers the

same comprehensive set of potential explanatory factors used by Rebucci (2002), and a “limited”

information model, which includes only two variables, as in the experiments with simulated data

discussed before, and as one would have to do in an actual multi-country application because of

lack of degree of freedoms. We then estimate both models with and without Leamer’s correction for

omitted variable bias and then compare the results. This should permits to see clearly the extent

to which our proposed framework, when applied in a limited information setting with correction

for omitted variable bias, replicates the results of a fuller information model.

The application we consider is interesting for several reasons. First, because it is a natural

experiment in which both an approximate full and a limited information model can actually be

specified. Chile is relatively small, even compared to other Latin American countries; there are no

evident endogeneity problems, and it is possible to consider a large set of potential explanatory

factors in a single equation model.

Second, this is a case in which other measurement approaches would be difficult to apply. The

Argentine crisis unfolded slowly and was far from over by the time the sample period used ended

(i.e., January 2002). It would have been hard to define the right estimation window for a “before

and after crisis” approach. Even assuming a window of interest could have been established, there

probably would have been too few observations for efficient estimation after the crisis, while our

method can be applied in real time. For the same reasons, selecting a suitable number of dummy

variables could also have been difficult.

Finally, it is also an interesting case from a policy standpoint. On the one hand, the Chilean

peso depreciated sharply in 2001, and there was no consensus view on which were the main driving

forces. The fall in the copper price (one of Chile’s most important exports), the relative loosening

of domestic monetary policy, fundamental trade and investment linkages with Argentina, and also

contagion from Argentina have all been considered by financial commentators and policy analysts.11

On the other hand, the central bank of Chile intervened in the foreign exchange market in August-

December 2001 for the first time since the free flotation of the peso in September 1999, motivating its

11See Rebucci (2002) for more details on the context of the experiments we run.
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decision by invoking “exceptional circumstances” consistent with its previously stated intervention

policy. In addition, Rebucci (2002) did not control for possible omitted variable bias. It is therefore

also interesting to see whether his finding of contagion, which lends support to the central bank’s

decision to intervene, would have survived controlling for such a possibility.

The full information model is the following auto-regressive distributed lag (ADL):

��(� = >0� + >1���(�−1 + Z
0
�.� + ���

where (� denotes the nominal exchange rate vis-a-vis the US dollar, �6� = 6�−6�−1, �6� = log(6�),
and Z� represents a comprehensive set of potential explanatory variables, as listed and explained in

Table 1. These include (i) a terms of trade variable (the copper price), (ii) a set of domestic factors

(i.e., a set of return differential with US comparable assets), (iii) a set of regional factors (Argentine

and Brazilian country and currency risk indicators and their nominal exchange rate vis-a-vis the

US dollar), and finally (iv) a set of global factors (the dollar/euro rate and a semiconductor price

index).12

All experiments with actual data are based on the same sample period and use daily data from

June 2, 1999 to January 31, 2002. This sample includes 641 observations obtained by taking only

common trading days across different markets.13

Although this is a fairly comprehensive list, the full information model considered may still

omit relevant variables, observable or unobservable. These might include, for instance, other terms

of trade variables and domestic factors (such as the oil price, the long-run equilibrium relation

with copper, a Chilean corporate bond spread, and a direct measure of central bank intervention),

regional factors (such as Mexico, the only other investment grade country in the region), global

factors (such as US corporate bond spreads and a stock return differential with the NASDAQ),

and unobservable variables such as global risk aversion or global liquidity conditions. Thus, there

is plenty of scope for potential omitted variable bias.

12We report a correlation matrix and summary statistics for all time series used in the analysis in Tables 2 and 3,
respectively.
13As discussed by Rebucci (2002), the first difference of the level, or the log-level, of the variables are calculated

with respect to the previous trading day included in the sample. By proceeding in this manner, consistency across
variables at any given point in time is assured. Because of this, however, the first difference following a holiday may
refer to more than one trading day. This potentially creates outliers artificially. Alternatively, observations following
non-overlapping holidays would reflect different information sets across variables and time. Either way, we would
introduce some noise into the data. Given that the estimation procedure used is robust to the presence of outliers,
the former approach is preferable.
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The limited information model we consider is an ADL including only a (one-trading-day) lag of

the exchange rate log-change and the contemporaneous change in the Argentine country spread:

��(� = >0� + >1���(�−1 + .���
��
� + ��"

Thus, the second model omits all control variables included in the first model, and particularly two

(observable) common factors between Chile and Argentina found to have significant explanatory

power by Rebucci (2002): the Brazilian country risk indicator and nominal exchange rate (see

also, for instance, the correlation matrix in Table 2). In fact, this second model is analogous to a

rolling-correlation or rolling-OLS analysis, except for the lagged endogenous variable included to

capture some predictability detected in the data (result not reported). We note finally that this

is the same specification one would likely want to adopt in a multi-country application because of

the need in that case to keep the model as parsimoniously parametrized as possible.

Defining 	� ≡ ��(� and collecting right-hand-side variables of both the full and the limited

information model in 6� we have:

	� = 60��� + ��" (25)

For both the full and limited information model, the prior assumptions for �� and ��� and the

required initial conditions, consistent with the hypotheses (i)-(iv) in section 2 and in (3), are:

• � = � = ;, � = 0 and Φ = <! ∗� with < = 0"001;

• �� | �� ∼ �
¡
0� ��9

2
¢
with 92 = 9̂2���;

• �� ∼ ;
' −  2 (�� 1) with � = 5;

• �� ∼ � (�∗� � ! ∗� ) with �∗� = 8∗ and ! ∗� = 92 (� 0�)−1 ∗ 102.

Both models are then estimated with and without Leamer’s correction. With correction, we

initialize the model in three steps. First, we estimate the model

	� = 60��� + 60��
�
� + ��� (26)

without time variation, specifying the prior assumptions (19) and (20), assuming ��∗ = 0, �∗ = 8∗,

� = 92��� (�
0�)−1, �∗ = ?1� , and � = ?2 (�

∗ +�), and estimating the two hyperparameters ?1

and ?2 by maximizing the likelihood of the data. Second, we initialize �
∗
� , �

�∗
� , !

∗
� , and !

�∗
� in the
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time varying model with the time-invariant posterior mean of � and �� and their variance-covariance

matrices, as we do with artificial data. Finally, we assume � = �� = ;, � = � � = 0, � = �� = ;

and Φ1 = Φ� = <! ∗� , setting < to an arbitrarily small number (i.e., 0.001), as commonly done in

the literature.14

Without correction, we set ! ∗� and 92 equal to the OLS estimates of (25) assigning the corre-

lation coefficient corrected for the presence of heteroskedasticity by FR as the prior mean of ��,

�∗� .

In both the corrected and not corrected specification we set �� to 5. The Gibbs sampler

then iterates 5000 times and discards the first 2500 draws to guarantee independence from initial

conditions. We check for convergence by calculating the mean of the draws for 500, 1000, 1500, 2000

observations respectively and find that convergence is achieved after the first 1000 observations.

Figure 3 reports the posterior mean of .� and 68-percent bands of the estimated posterior

distribution for each trading day in the sample, in all cases considered. To provide a benchmark

for comparison and to help assess the results, Figure 3 also reports an 80-day rolling correlation

between the log-change of the Chilean peso and the change in the Argentine country risk indicator

(upper, left panel) and a plot of their levels (upper, right panel).

The results for the not corrected, full information model (lower, left panel) (the same result

reported by Rebucci, 2002) show clear evidence of a temporary change in the linkage between these

two countries, and thus indicate the presence of contagion according to the definition adopted. In

fact, we can clearly see a temporary increase in the strength of the association between the Chilean

exchange rate and the Argentine country risk indicator, and the magnitude of these changes leaves

no doubt on their economic significance. The coefficient of the Argentine country risk starts to

increase markedly at the beginning of July 2001 (upper, right panel), around the time the Chilean

peso first jumped sharply, after the Argentine “mega-swap” failed to restore investor confidence,

following some decline in the proceeding two-three months. The magnitude of this coefficient more

than doubled in a few days after July 3, to reach a relative peak at about three times its end-June

level on August 1, following a second downgrade of the Argentine sovereign rating in a few weeks.

The coefficient reached its maximum on October 10, declining gradually thereafter, to bottom out

on December 28 and revert to its per-June 2001 values in early January 2002, despite the Argentine

14Setting � arbitrarily small implies assuming relatively little parameter time-variation, a priori. However, a proper
prior assumption could also be given to � to increase the efficiency of the estimates obtained.

country risk remaining at very high levels.
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In the corrected, full information model (middle, left panel) the evidence of contagion is slightly

weaker, statistically, as the lower band during the turmoil period remains below the posterior

mean during the proceeding tranquil period. Nonetheless, the magnitude (and hence the economic

significance) of the shift in the cross-market linkage remains impressive: the coefficient of the

Argentine country risk indicator peaks during the turmoil period at about two times its value

during the proceeding tranquil period, even after controlling for potential omitted variable bias.

We conclude from this evidence that observed shift does not appear as the sole artefact of increased

volatility in Argentina, or as the result of an estimation bias due to the omission of other factors,

and thus confirms the previous finding of contagion.

The results in the case of a not corrected, limited information model (lower, right panel) are

clearly different from those obtained in full information settings and show the large impact of the

omitted variable bias on the estimated posterior distribution. As a result, had an analyst used such

an approach, it would have been much more difficult to draw inference on the extent to which the

Chilean foreign exchange market was affected by contagion from Argentina in 2001. Even though

a strengthening of the cross-country linkage is evident also in this case, its quantitative magnitude

is greatly overstated, and it would have been quite difficult to identify when contagion actually

started. Conclusions draws from this model would have been similar to those one could have drawn

based on the rolling correlation analysis reported in the upper, left panel.15

As expected, we can see that a corrected, limited information model (middle, right panel) per-

forms almost as well as the corrected, full information model. There is almost no bias compared to

the latter and the inference one could draw based on this evidence is the same as that one would

have drawn in the fuller information settings. Thus, confirming that our contagion measure works

well also when applied to actual data coming from an unknown DGP.

5 Conclusions

In this paper we have proposed to use a time-varying coefficient model estimated with a numerical

Bayesian procedure to measure contagion empirically. We have also shown that this framework has

a number of advantages, which are important from a policy standpoint in our view.

15Note, however, that rolling correlations are biased also in the sole presence of increased volatility in the crisis
country, while this procedure, as well as OLS regressions, are not.
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In particular, we have shown that it works well in the joint presence of heteroskedasticity and

omitted variable bias, and hence it may be applied both in a full or limited information setting.

By modeling the variance covariance matrix of the system, it could also be easily extended to

a multivariate, simultaneous equations context. In addition, it does not require knowledge of

the timing of the crisis and distinguishes contagion not only from interdependence but also from

structural breaks. Finally it could be used to investigate positive as well as negative contagion.

Overall, the evidence we reported suggests that the proposed framework measures contagion

effectively. Evidence based on a worse-case scenario generated with artificial data shows that the

proposed framework effectively detects false contagion in the joint presence of heteroskedasticity

and omitted variable bias. Evidence based on actual data shows that the results obtained in a

limited information setting correcting for potential omitted variables bias are comparable to those

obtained in fuller information settings.
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A Deriving Conditional Posterior Distributions

In this appendix we derive the conditional posterior distributions of the parameters of interest

needed to implement the Gibbs sampler.

Assume a fixed number of degrees of freedom of the �—distribution of the error term, �.16 Lete��−1 = ���−1 + ��0 and �
†
� = �� −���−1. Recall that * = ({��}� � {��}� � Σ� ��� Φ) and focus first

on *−�����
= (Σ� ��� Φ).

From (4), the following three posterior distributions can be derived analytically. First,

Σ−1 | � � � *−Σ ∼�
³
#̂ � $̂

´
� (27)

where

#̂ = # + @�

$̂−1 = $−1 +
X
�

³
�−1�

´
(�� −����) (�� −����)

0 ;

second,

Φ−1 | � � � *−Φ ∼�
³
�̂� %̂

´
� (28)

where

�̂ = � + @

%̂−1 = %−1 +
X
�

h
�
³
�� − �̃�−1

´i h
�
³
�� − �̃�−1

´i0
;

and third

�� | � � � *−��
∼ �

³
�̂�� Θ̂

´
� (29)

where

�̂� = Θ̂

"X
�

� 0
¡
�Φ� 0¢−1 �†� +Θ−1�∗�

#
�

Θ̂ =

"X
�

� 0
¡
�Φ� 0¢−1 � +Θ−1#−1 "

16The assumption of a fixed � could be relaxed. In this case, the Gibbs sampler should be augmented by a step
for sampling from the conditional posterior of �. No simple method exists for this step, but a Metropolis step could
be easily used instead. A complication, however, is that such models usually have multimodal posterior densities,
requiring to search for all modes and jump between modes in the simulation (see Gelman et al., 1995, Chapter 12).

ECB  •  Work i ng  Pape r  No  263  •  Sep tembe r  200330



Since the conditioning on other parameters assumed independent is irrelevant, the first conditional

posterior is obtained from the first and fifth lines of (4), the second from the second and sixth lines

of (4), and the third and fourth lines of (4).

Focus now on the conditional posterior distributions of �� and ��, and particularly on 
(�� |
� � � *−��). Assume further that, a priori,

�̃�−1 ∼ �
¡
�∗�−1� !

∗
�−1
¢
" (30)

Given �� = e��−1 +��� (e��−1 = ���−1 + ��0) and (30), it follows that:

�� | �� ∼ �
³
�̂�−1� !̂�−1

´
(31)

where

�̂�−1 = �∗�−1� and !̂�−1 = ! ∗�−1 +�Φ� 0"

Now given the conditional normality of the data and (31), the joint conditional density of ��

and ��, 
(��� �� | ��� ��), is:Ã
��
��

| ��� *−��

!
∼ �

"Ã
���̂�−1
�̂�−1

!
�

Ã
��!̂�−1� 0

� + ��Σ ��!̂�−1
!̂�−1� 0

� !̂�−1

!#
"

Then, by using the properties of the multivariate normal distribution, from this joint posterior

distribution it is possible to compute the posterior distribution of �� conditional on ��, �� and the

other parameters as:

�� | ��� ��*−��
∼ �

³
�̂�� !̂�

´
(32)

where

�̂� = �̂�−1 + !̂�−1� 0
�

³
��Σ+��!̂�−1� 0

�

´−1 ³
�� −���̂�−1

´
(33)

and

!̂� = !̂�−1 − !̂�−1� 0
�

³
��Σ+��!̂�−1� 0

�

´−1
��!̂�−1"

To establish a connection with a classical Theil’s mixed type of estimators, as argued in the text

(Section 2.2.2), the posterior mean of �� can also be written as (11).

In fact, as

A−1 − (A+ B)−1 BA−1 = (A+ B)−1 �
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the following holds:

³
��Σ+��!̂�−1� 0

�

´−1
= (��Σ)

−1 −
·³
��Σ+��!̂�−1� 0

�

´−1 ³
��!̂�−1� 0

� (��Σ)
−1´¸ "

Now, substituting this in (33), we have that

�̂� = �̂�−1 +

+!̂�−1� 0
�

·
(��Σ)

−1 −
³
��Σ+��!̂�−1� 0

�

´−1
��!̂�−1� 0

� (��Σ)
−1
¸
�� +

−!̂�−1� 0
�

³
��Σ+��!̂�−1� 0

�

´−1
���̂�−1

=

·
!̂�−1 − !̂�−1� 0

�

³
��Σ+��!̂�−1� 0

�

´−1
��!̂�−1

¸
×h

� 0
� (��Σ)

−1 �� + !̂ −1�−1�̂�−1
i
"

But since ¡
�+�C�0

¢−1
= �−1 −�−1�

³
�0�−1� +C−1

´−1
�0��

we also have that

�̂� =
h
� 0

� (��Σ)
−1�� + !̂ −1�−1

i−1 h
� 0

� (��Σ)
−1 �� + !̂ −1�−1�̂�−1

i
"

Now remember that

!̂ −1�−1 =
¡
! ∗�−1 +�Φ� 0¢−1

= ! ∗−1�−1 − ! ∗−1�−1 �
³
� 0! ∗�−1� +Φ−1

´−1
� 0! ∗−1�−1 "

Note then that !̂ −1�−1 = 0 whenever Φ−1 = 0, provided � is non singular, and hence we also have

that,

�̂� = [����]
−1 [����] "

if Φ−1 = 0.17 This shows what claimed in Section 2.2.2, that �� is a posteriori centered on the OLS

estimator whenever the prior distribution is non-infomative, and therefore that it is as unbiased as

an OLS estimate, but is more efficient if the prior information is not diffuse (i.e., it entails more

than complete ‘ignorance’).

17Note that our posterior estimates of the model parameters at time � depend on the information of the whole
sample period. In a rolling OLS estimate, instead, only the information up to period � would be used.
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Consider now the posterior distribution of ��� 
(�� | ��� ��� *−��
)" The joint density function

of �� and �� can be obtained as the product of the likelihood function (first line of 4) and the

prior density of �� (the third line of 4), which as noted has the form of an inverted chi—square

distribution. For instance, for � = 1, it is

|��Σ|−��2 exp
½
−1
2
(�1 −�1�1)0 (�1Σ)−1 (�1 −�1�1)

¾
(34)

× (�1)−(
��
2
+1) exp

·
− ��
2�1

¸
�

where the second line is proportional to the density of an inverted chi-squared distribution with ��

degrees of freedom and scale ,2� = 1. The product in (34), in turn, is proportional to

(�1)
−( ��+12 +1) exp

·
− 1

2�1

³
�
0
1Σ
−1�1 + ��

´¸
�

which is an inverted chi-squared distribution, with �1 = �� + 1 degrees of freedom and scale ,21,

where

�1,
2
1 = ��,

2
� + �

0
1Σ
−1�1

with �� = (�� −����)" Hence, by iterating recursively find that, for any �:

�� | ��� ��� *−��
∼ ;
' −  2

³
��� ,

2
�

´
(35)

with

��,
2
� = ��−1,2�−1 + �

0
�Σ
−1��

and

�� = ��−1 + 1"

The Gibbs sampler cycles through (27)—(35). To operationalize the entire procedure, one finally

needs values for the hyperparameters of the model and suitable initial conditions for the parameters

of (30), which in turn requires to specify the matrix ! ∗�−1 and the vector �∗�−1. For instance, to

derive the results in Figure 3 we set �∗� and ! ∗� equal to OLS estimates of (25), while �� was set

arbitrarily to allow for the maximum degree of departure from normality.
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Figure 1. Posterior Distribution of �� (Without Correction)
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Figure 2. Posterior Distribution of �� (With Correction)
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Figure 3. Alternative Measures of Shift-Contagion
(Chilean Peso and Argentine Country Spread)

Source: Authors' calculations based on data described in Table 1.
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