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Abstract

It is standard in applied work to select forecasting models by ranking candidate models by
their prediction mean squared error (PMSE) in simulated out-of-sample (SOOS) forecasts. Al-
ternatively, forecast models may be selected using information criteria (IC). We compare the
asymptotic and finite-sample properties of these methods in terms of their ability to mimimize
the true out-of-sample PMSE, allowing for possible misspecification of the forecast models un-
der consideration. We first study a covariance stationary environment. We show that under
suitable conditions the IC method will be consistent for the best approximating model among
the candidate models. In contrast, under standard assumptions the SOOS method will select
overparameterized models with positive probability, resulting in excessive finite-sample PMSEs.
We also show that in the presence of unmodelled structural change both methods will be in-
admissible in the sense that they may select a model with strictly higher PMSE than the best
approximating model among the candidate models.

JEL: C22, C52, C53
KEYWORDS: Model selection; Forecast accuracy; Structural change; Information criteria;
Simulated out-of-sample method.
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NONTECHNICAL SUMMARY

We study the problem of how to select the best linear forecast model from a finite number of candidate
models. Our objective is to select the model with the smallest out-of-sample prediction mean squared
error (PMSE). The two most common methods of forecast model selection are information criteria
(IC) and the simulated out-of-sample (SOOS) forecast comparison method. The aim of this paper is to
shed light on the asymptotic and finite-sample properties of these procedures. We establish the
asymptotic validity of both methods for covariance stationary data under fairly general conditions that
allow for forecast model misspecification. Our results cover many applications of interest in
macroeconomics and finance. We show that there is no strong support for the common current practice
of selecting models by the SOOS methodology. Although both the IC and the SOOS method have
asymptotic justification under standard assumptions, we show that only the IC method is consistent for
the asymptotically best forecast model. Notably, in forecast model comparisons that involve nested
pairs of models, when the best forecast model is also the most parsimonious model, the SOOS method
will select an overparameterized model with positive probability. A similar - if less practically relevant
- inconsistency result is obtained when comparing nonnested models of differing dimensions that have
the same PMSE.

Forecast model selection involves a tradeoff between finding a model with good fit and
overfitting the data. In the case of the IC method, this tradeoff is solved by imposing an explicit
penalty term. Under suitable assumption on this penalty term, which are derived in this paper, the IC
method will always select the less parsimonious model of two forecast models with the same
asymptotic out-of-sample PMSE. These conditions rule out for example the AIC, but include criteria
of the type proposed by Sin and White (1996). In contrast, in the case of the SOOS method of ranking
forecast models by their simulated recursive PMSE the penalty term is implicit. We show that this
implicit penalty term under standard assumptions converges to zero at the same rate as the AIC. This
result implies that the SOOS method will assign positive probability to forecast models that are
overparameterized relative to the true model or - in the absence of the true model - the best

approximating model.

ECB « Working Paper No 214 « February 2003 5



This inconsistency of SOOS model selection does not affect the out-of-sample forecast accuracy
in the limit, because the parameter estimation uncertainty vanishes asymptotically. It does, however,
inflate the finite-sample accuracy of out-of-sample forecasts. We quantify this finite-sample effect by
simulation for some empirically plausible forecast settings and show that indeed the SOOS method
tends to select less accurate forecast models than the IC method. We also find that even in cases when
the best forecast model is not the most parsimonious model and both methods are consistent as a
result, the SIC method typically implies a lower out-of-sample PMSE in finite samples.

Although the IC method compares favorably to the SOOS method in many finite-sample
situations, this result cannot be generalized. We characterize conditions under which the SOOS
method may select more accurate forecast models in small samples. We also compare the finite-
sample performance of the IC and the SOOS method under an alternative asymptotic thought
experiment due to Rissanen (1986) and Wei (1992). We show that our asymptotic results tend to
provide better finite-sample approximations than the asymptotic results of Rissanen.

A common concern is that information criteria may be misleading when the forecasting
environment changes over time. Our theoretical analysis reveals that in the presence of unmodeled
structural change the IC method is indeed inadmissible, in the sense that it may select models with
strictly higher out-of-sample PMSE than the best approximating model. We show, however, that the
same result also holds for the SOOS method. The failure of both methods is driven by the fact that - in
the presence of parameter instability - the loss function of the forecaster differs from the loss functions
implicit in the choice of model selection method. Moreover, we demonstrate that even in cases, in
which both methods remain asymptotically justified, they have a tendency to overparameterize relative
to the best approximating model. Our analysis also shows that there is no presumption that the SOOS

method is more reliable than the IC method in the presence of unmodeled structural change.
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1 Introduction

We are interested in generating predictions for a scalar variable y;. We have in mind a number of
candidate models involving alternative sets of predictors. Data are available for period 1,...,T.
The problem is how to select among the candidate models the forecast model that will generate
the most accurate forecast for period T+ 1 in terms of the prediction mean squared error
(PMSE).! Although other metrics could be considered such as the ability of models to forecast
signs or turning points, the use of PMSEs is by far the most common evaluation criterion in
macroeconometrics and we will follow that tradition.

Forecast model selection problems such as this one arise frequently in macroeconometrics and
finance. For example, we may be interested in forecasting exchange returns based on alternative
sets of macroeconomic fundamentals or we may be interested in forecasting inflation based on
alternative formulations of the Phillips curve. Similar issues arise in lag order selection for
autoregressive models or in the selection of the number of factors for dynamic factor models.

In studying the theoretical properties of forecast model selection methods, it will be use-
ful to distinguish between nested and nonnested forecast model comparisons. An example of
a nonnested model comparison would be the choice between alternative specifications of the
Phillips curve relationship based on alternative measures of the output gap. Specifically, we
may be interested in choosing between two regression models designed to forecast changes in
inflation (Amy):

Ampy = alAm+ Bgapt
A7Tt+1 = aA’ﬂ't + ,But

where gap; and u; refer to detrended output and the demeaned unemployment rate, respectively.
An example of a nested forecast model comparison would be the comparison of a random walk
model for the exchange rate (e;) with a regression model based on deviations of the exchange
rate from economic fundamentals (e, — fi):

Nepyy = @
Neryn = a+Ber—f)

Here the random walk model is nested in the model based on economic fundamentals. In applied
work, it is common to consider several forecast models, involving typically some nested and some
nonnested pairs of models. Our analysis will cover all these cases.

The tools used by practitioners for selecting among competing models are the same whether
the forecasting models are nested or not. It is standard practice in applied work to select
the best forecasting model by ranking candidate models, i = 1,..., M, by their root PMSE in

1Our explicit objective is to select one forecast model among the candidate models. An alternative approach
would be to search for optimal combinations of forecasts from several models. We do not address this problem in
this paper. See Swanson and Zeng (2001) for a review of the literature on how to combine forecasts from competing
models.
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simulated recursive out-of-sample forecasts (see e.g., Meese and Rogoff 1983; Stock 1999; Stock
and Watson 1999a,b, 2000). This simulated out-of-sample (SOOS) procedure involves fitting
each candidate model on the first S observations and evaluating the mean squared error of the
forecast of observation S + 1, for S =R, R+1,R+2,....T — 1.2

Although the SOOS methodology is most common in practice, alternatively, forecast models
may be selected by evaluating their in-sample PMSE subject to a penalty term. This approach
has been used for example by Bossaerts and Hillion (1999) to select among alternative predictors
of stock returns. The penalty term is necessary because minimizing in-sample PMSEs alone
simply amounts to maximizing R? and leads to overfitting and poor predictive accuracy when
comparing models of different dimension. This idea is the guiding principle underlying the
use of information criteria (IC). Forecast model selection based on information criteria involves
estimating all M candidate models on the sample period 1, ..., T and selecting the forecast model
that minimizes a suitably chosen criterion function, denoted by IC(.). When we are interested
in one-step ahead forecasts, this function takes the form:

IC(i) = In(G?) + n; * cr, (1)

where n; is the number of parameters used in the estimation of forecast model i, i = 1, ..., M,
and 67 = SSR;/T. The term SSR; denotes the sum of the squared residuals of the forecast
model i evaluated over the sample period 1,...,T. The term cr is a function of the sample size
T, subject to suitable restrictions. We select the forecast model that yields the smallest criterion
value. When all candidate models involve the same number of regressors, this procedure amounts
to ranking forecast models by their in-sample fit, measured by ln((?f). Since the term n; * cr is
increasing in the number of parameters, models with additional regressors receive a penalty to
avoid overfitting.

In this paper, we compare the asymptotic and finite-sample properties of these two forecast
model selection methods. For simplicity attention is restricted to one-step ahead forecasts.
The focus is on linear forecast models. It is assumed that the regressand and regressors have
been transformed to make them stationary. Extensions to nearly integrated environments or
nonlinear forecast models are not covered in this paper. Our theory allows for some or all
forecast models under consideration to be misspecified due to omitted variables. It even allows
the data generating process (DGP) to be nonlinear, provided the functional central limit theorem
(FCLT) holds. This fact is important because in practice the true model is unlikely to be known.
Throughout the paper we will postulate that the number of candidate forecast models is fixed

2It is sometimes suggested that we select forecast models based on the outcome of tests of equal predictive accuracy.
It is important to note that from the point of view of forecast model selection nothing would be gained from conducting
such a test. To see this consider two forecasting models and consider the implications first of a failure to reject the
null and then of rejection of the null. Suppose that Model 1 has a lower estimated recursive PMSE than Model 2. In
this case, the standard procedure of ranking the models by their estimated recursive PMSE suggests that we select
Model 1. This conclusion would also be supported by a test. If we cannot reject the null of equal predictive accuracy
at a given significance level, we conclude that the recursive PMSEs are equal and hence there is no loss from having
selected Model 1 for forecasting. Alternatively, if we reject the null in favor of the alternative that the recursive
PMSE of Model 1 is lower, we conclude that Model 1 is preferred. Thus, the forecast model selection decision does
not depend on the outcome of the test.
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as the sample size increases. This assumption seems reasonable in many contexts, in which the
number of predictors increases slowly over time, if at all. For example, the set of economic
fundamentals used for exchange rate prediction has changed little since Meese and Rogoff’s
(1983) comprehensive empirical study.

In section 2, we study the ability of the IC and SOOS methods to select the model with the
smallest possible true out-of-sample PMSE, among the candidate models. Our analysis breaks
new ground in that we analyze the asymptotic properties of the SOOS method for prediction
under standard assumptions on the choice of R similar to those used in the closely related
literature on simulated out-of-sample inference. We obtain results that in part differ markedly
from the predictive least squares results obtained by Rissanen (1986) and Wei (1992) under
the assumption that R is fixed with respect to T. We will show that our asymptotic results
are useful in understanding the finite-sample behavior of the SOOS method. In addition, we
extend the existing literature on the IC method. Although the IC approach to model selection
has been studied extensively in the context of providing good in-sample fits, little attention has
been given to its implications for out-of-sample prediction.

We compare the IC method and the SOOS method along two dimensions. First, we study
their ability to select the model with the lowest population PMSE among a set of candidate
models. Second, we study whether they satisfy the principle of parsimony. The principle of
parsimony comes into play when we have the choice between two or more forecast models with
the same population PMSE. The principle of parsimony states that of any two models of different
dimension, but with the same PMSE in population, we always prefer the more parsimonious
model on the grounds that this model is likely to have smaller PMSE in finite samples. This
idea is closely related to the principle of parsimony as discussed by Granger and Newbold (1986)
and Box and Jenkins (1970) in the context of ARMA model selection.

When the true model is included among the forecast models under consideration, the princi-
ple of parsimony reduces to the standard notion of consistency. Consistency refers to the ability
of a model selection method to detect the true model or DGP with probability 1 asymptotically,
when this model is included among the forecast models under consideration. This notion of
consistency must be modified when all forecast models under consideration are misspecified. In
the latter case, the principle of parsimony dictates that the best approximating model is the
most parsimonious model among the models with minimum population PMSE at 7'+ 1. Thus,
the relevant notion of consistency under misspecification will refer to the ability of a forecast
model selection method to select this best approximating model with probability 1 in the limit.

In section 2.3. we focus on the covariance stationary environment. Qur first main theoretical
result is that under suitable conditions both the IC method and the SOOS method are equally
asymptotically valid in the sense of selecting models with smallest possible PMSE. This result is
important because it provides a formal justification for the use of these methods, even when the
forecast models are misspecified. Our second main result is that under standard assumptions
the SOOS method will tend to be inconsistent for the best approximating model in the sense
that it asymptotically will select an overparameterized model with positive probability. This
tendency to overparameterize will result in excessive finite-sample PMSEs. In contrast, under
suitable conditions on the penalty term, the IC method will always select the true model with
probability one asymptotically among a set of candidate models that includes the true model,
or, alternatively, will select the best approximating model with probability one asymptotically
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if all candidate models are misspecified. This theoretical result applies equally to nested and
to nonnested model comparisons. As a result, we would expect the models selected by the IC
method to have lower finite-sample PMSEs in out-of-sample forecasting. We show, however, that
not all information criteria have this attractive theoretical property and that existing criteria
may have to be modified.

In section 3, we investigate by simulation the extent, to which this inconsistency of the SOOS
method affects the finite-sample root PMSE at T+ 1. For pairwise nested model comparisons the
resulting increase in root PMSE is quantitatively small, but clearly observable. As suggested by
theory, the effect of model overparameterization on the root PMSE tends to become negligible
as the sample size gets large. We also investigate the relative finite-sample performance of the
IC method and the SOOS method in comparisons involving more than two models. We find that
in many empirically plausible situations the IC method may offer substantial gains in accuracy
relative to the SOOS method. The largest gains occur in small and moderately large samples.
The gains in accuracy decline as the sample size increases, as suggested by theory.

There are two main exceptions to this result. Both occur in small samples only. One excep-
tion is a nonnested comparison involving persistent data. In this case, spurious correlations may
arise in small samples that favor the SOOS method. The other exception involves nested forecast
model comparisons in which the more parsimonious model is false. In this case, for sufficiently
small samples, the misspecification bias from underparameterizing the forecast model will be
more than offset by the reduction in parameter uncertainty. This trade-off between misspeci-
fication bias and estimation variance allows misspecified models to have a lower out-of-sample
PMSE in small samples than even the true model. Thus, the PMSE criterion in small samples
may favor the method with the greater tendency to underfit relative to the true model, and
methods that detect the true model (or the best approximating model) with high probability in
small samples may be inferior forecasting tools. We conclude that there can be no unambiguous
ranking of the IC method and the SOOS method in small samples. As the sample size increases,
however, in all cases, the bias-variance trade-off favors the consistent forecast model selection
method, as suggested by theory, and the spurious correlations vanish.

Finally, in section 3, we also investigate the sensitivity of our results to the choice of R/T,
and we show that our asymptotic thought experiment provides a better approximation than the
Rissanen (1986) asymptotics when R is large relative to T

A common concern is that information criteria may be misleading when the forecasting envi-
ronment changes over time (e.g., Stock (1999), p. 24). In section 2.4., we relax the assumption
of covariance stationarity and allow for the presence of unmodeled structural change in the
paramters of the DGP. Our analysis shows that in the presence of unmodeled structural change
indeed the IC method is inadmissible in the sense that it may select models with strictly higher
out-of-sample PMSE than the best approximating model among the candidate models. We show,
however, that the same result also holds for the SOOS method. Our proof of inadmissibility is
based on a counterexample for nonnested model comparisons. For nested model comparisons,
we are able to establish the inconsistency of both the IC and SOOS method by counterexample.
Thus, the theoretical advantages of the IC method do not extend to situations, in which there
is unmodeled structural change. In the presence of unmodeled change, both methods can be
shown to overparameterize relative to the best approximating model. Although we were unable
to prove inadmissibility in the nested case, we note that there is no presumption of admissibility.
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Unfortunately, there is no ready alternative to the IC and SOOS methods of forecast model
selection. An interesting topic for future research will be an investigation of the extent to which
our inadmissibility and inconsistency results in section 2.4. are practically relevant. Some
preliminary simulation evidence in section 3 suggests that deterministic structural breaks have
no systematic effect on the relative performance in finite samples of the IC method and SOOS
method. There is no evidence that the SOOS method of forecast model selection is more reliable
than the IC method in the presence of unmodeled parameter shifts. This result casts doubt on
the perception that the SOOS method provides at least partial protection against parameter
instability, but much more work is needed for a final verdict.

Our theoretical analysis clearly establishes that under standard assumptions there is no
presumption that the SOOS method is more reliable than the IC method on a priori grounds,
but that in fact the IC method can be expected in some cases to deliver higher finite-sample
accuracy in out-of-sample forecasting. Thus, there is no strong support for the current practice
of selecting models by the SOOS methodology. We also conclude that the presence of unmodeled
structural change is a serious challenge to current methods of forecast model selection.

2 Asymptotic Theory

2.1 Preliminaries

Our objective in this paper is to select among M candidate models the forecast model that will
generate the most accurate forecast for period 7'+ 1 in terms of the prediction mean squared
error (PMSE), given data for period 1, ..., T. The number of forecast models under consideration,
M, is presumed to be fixed with respect to the sample size. This model selection problem may
be approached using the IC method or the SOOS method. In this section, we will compare
these methods along two dimensions. First, we study their ability to select asymptotically the
model with the lowest population PMSE at T+ 1 among a set of candidate models. Methods of
forecast model selection that asymptotically may select models with strictly higher PMSE than
the best approximating model will be referred to as inadmissible model selection rules.

Second, we study whether the IC and SOOS methods satisfy the principle of parsimony. The
principle of parsimony comes into play when we have the choice between two or more forecast
models with the same population PMSE. The principle of parsimony states that of any two
models of different dimension, but with the same population PMSE, we always prefer the more
parsimonious model on the grounds that this model is likely to have smaller PMSE in finite
samples.

When the true model is included among the forecast models under consideration, the princi-
ple of parsimony reduces to the standard notion of consistency. Consistency refers to the ability
of a model selection method to detect the true model or DGP with probability 1 asymptotically,
when this model is included among the forecast models under consideration. This notion of
consistency must be modified when all forecast models under consideration are misspecified. In
the latter case, the principle of parsimony dictates that the best forecast model is the most
parsimonious model among the models with minimum population PMSE. Thus, the relevant
notion of consistency under misspecification will refer to the ability of a forecast model selection
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method to select this best forecast model with probability 1 in the limit. We illustrate these
concepts by three examples:

Example 1. Suppose the DGP is y; = &; where ¢, ~ NID(0,02). The two forecast models
under consideration include the no-change forecast of yry; and the forecast generated by an
AR(1) regression model. In this nested model comparison, both forecast models have a popula-
tion of 02, but only a method that selects the no-change forecast model will satisfy the principle
of parsimony. Any method that assigns positive probability to the AR(1) model, in contrast,
will be inconsistent. A similar situation might arise in nonnested model comparisons when two
models have the same population PMSE, but the more parsimonious model is the true model.

Alternatively, consider an example in which all forecast models under consideration are
misspecified.

Example 2. Suppose that the DGP is an M A(1) model, i.e., y4 = e; — Oer_1, where g ~
NID(0,0%),and we compare a no-change forecast of yr; to the forecast generated by an AR(1)
regression model. In this case, both forecast models are misspecified. The population PMSE of
the no-change forecast model is (14 6?)0?, whereas the PMSE of the AR(1) model is [(1+ 6?) —
6%/(1+6%)]o2. For 6 # 0, the latter PMSE is lower by construction and hence the AR(1) model
is the best forecast model among the two candidate models. Forecast model selection methods
that select the best approximating model with probability 1 asymptotically, will be considered
consistent. In this example, the principle of parsimony does not come into play because the best
model is uniquely determined by the PMSE rank.

Example 3. Finally, suppose again the DGP is y; = &; where ¢, ~ NID(0,0?). We compare
the M A(1) forecast model and the AR(1) forecast model. In this case, both models have the
same population PMSE of 02 and both models satisfy the principle of parsimony because they
involve the same number of parameters. Hence, we are unable to rank these models from the
point of view of our objective function. Both models must be considered consistent for the best
approximating model.

2.2 Notation

We first present some theory for pairwise comparisons of forecast models. This results may be
extended to multiple comparisons by repeated application of the pairwise comparison, as we
will subsequently show in Corollary 1. Let z; and 2; denote [ and k dimensional vectors of
deterministic or predetermined regressors (possibly including lagged dependent variables). We
are interested in comparing two regression models:

Model 1: v = o’z + uy (2)
Model 2: y; = 'z + v, (3)

where u; and v; may be serially correlated. In the special case when Model 1 is nested in Model
2, x; is a subvector of z¢, 8 = [@ 7/]" and u; = v; such that the unrestricted model with v # 0
can be written as
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ye = Bz +vp = o'y + A wy + vy (4)

and the restricted model with v = 0 can be written as

yr = o' Ty + vy (5)

In this context, the SOOS method is implemented as follows. We fit each model by ordinary
least squares (OLS) on the first S observations and evaluate its mean squared forecast error on
observation S +1,for S=R,R+1,R+2,..,T — 1. The recursive OLS estimators are defined
by & = (0 ws2l) P L 2y, and B = (Z';:t 2s2) 73| 2.y, The resulting recursive
PMSESs are given by

62, = (1/(T-R)) Z u?
tR+1

62, = (1/(T—R)) Z o2,
t=R+1

where 4y = yp — &4_ T, Uy = Yp — Bé_yzt- The model with the smallest recursive PMSE is
re-estimated on the data up to T and used for forecasting ypy1.

In contrast, the IC method is implemented as follows. We fit each model by OLS on the
first T observations. The OLS estimators are defined by a = (Zle A Z?zl xeyr, and

B= (Zthl 22p) 7t Zle z1yr. We evaluate the criterion function:

1C(1) = (> _u7/T)+dim(a)  cr
1C(2) = (> _T7/T)+ dim(B)  cr,

where u; = y; — &'zy and v = Y — B2z The form of cp depends on the criterion chosen.
For the Schwarz Information Criterion (SIC) due to Schwarz (1978), for example, we have
cer =In(T)/T. The model with the smallest IC' value is chosen for forecasting yr41.

We conclude this subsection by defining the population PMSEs for the (T'+ 1)th observation
associated with each forecast model. Let

aryr = argmin, E[(yr41 — &/zr41)?],

Bry1 = argmingE[(yry1 — B'2r41)%,
oir = Ellyri—orpzr)?,
U%,Tﬂ = Ellyra1 — ﬁ&"+IZT+1)2]'
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Here ar41 and Or41 correspond to the parameter values that result in the minimum PMSE
forecast for model 1 and 2, respectively. The minimum PMSE of Model 1 and Model 2 is
denoted as aiT 41 and aiT 11, respectively, and corresponds to the population PMSE of the
model. When the process is covariance stationary, o7 ;. and O'g,T 1 are independent of T,
that is, aiTH =07 and 03 1., = 03 where

T
1
Qg = argmina leI};O T Z E[(yt — Oé/l't)2],
t=1
1T
fo = argming TlgnOO T ZE[(yt — 8'%)%,
t=1
1 X
2 : /N2
o = lim = ZE[(yt — apxt)?],
T—oo T =1
1 X
o3 = Jim =% By — Goz)°).
t=1

By analogy, the population PMSEs obtained by recursive estimation can be obtained as
follows. Let

[rT]
ap = argmin, TlgnOo m Z El(y; — 'x0)?],
t=1
1 [rT]
B, = argming TILH;O m ZE[(yt —B8'%)%,
t=1
1 T
2 - - E V] 2
oir = ST t:[;m [(ye = ey /re)°);
1 T
2 / 2
“in = i 2 F Fanra))

where R/T — m € (0,1) as T — oo and r € [m,1]. Here «, and Or correspond to the
parameter values that result in the minimum recursive PMSE forecast for Model 1 and Model 2,
respectively. The minimum recursive PMSE of Model 1 and Model 2 is denoted as o7, and 03,
respectively, and corresponds to the population recursive PMSE. Note that under covariance
stationarity 0? = o7, and 03 = 025.

2.3 Results for the Covariance Stationary Case

This section collects our assumptions and theoretical results for the covariance stationary case.
The proofs can be found in the appendix.

Assumption 1.
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(a) ¢, yr and z satisfy the uniform law of large numbers in second moments, that is,
suprrr [(1/T) SE2 el — Blaal)| = 0,(1), subreyc | (1/T) T2 wn — Blavzf)| =
rT rT
0p(1), suprcycn 1(1/) T2 212~ Bep)|| = 0p(1), subnzycr (1/T) )20 cee—E )| =
0p(1) where limp_o. (1/T) 1" E(x,2}) and limp_ oo (1/T) 17 E(2,2)) are positive def-
inite uniformly in r € [, 1]. vec([z} 2z; yi]' [z} 2 yi]) satisfies the functional central limit
theorem (FCLT).

(b) limy_.oo(1/T) ZLT:Tl] Elxx)] and limgp_,oo(1/7) I[ET:TE Elz z;] are positive definite for r €
[7,1].

(c¢) Let f; = E(y¢|F:) and e; = y: — f: where F; is the o-field generated by x4 and z, for s < t.
Then sup, E[f?] < 0o, 02 = E(e2|F;—1) a.s. and sup, E(ef|F;—1) < 0o a.s. for some k > 2.

(d) There are positive definite matrices I'; and I'y and positive semi-definite matrices ¥; and
Y9 such that I'y = plim(1/7T) Z?:l vy (fi) — af_y24)%, Ty = plim(1/T) Zthl 22y (fr —
Giaze)?, B = plim(1/T) Yz wea(fi = ajy@e)? and Xy = plim(1/T) Yi_y z02(e -
Bi_12t)°.

Assumption 2.

(a) If the forecast models are nested, then ¢y = o(1) and Ter — o0 as T — oc.

(b) If the forecast models are nonnested, then c¢r = o(1) and TV/?cp — 0o as T — oo.

Assumption 3. R/T — 7 € (0,1) as T — oo.
Assumption 4. [z}, 2}, y:] are covariance stationary.

Assumption 1(a) is satisfied, for example, if z¢, y and z; are near-epoch dependent (NED)
with respect to mixing processes (see Wooldridge and White 1988). Thus Assumption 1 includes
both nested and nonnested pairs of models and it covers both correctly specified and misspecified
models. Assumption 1 even allows for the forecast model to be misspecified due to nonlinearities
in the DGP, provided the FCLT holds (see Davidson 2002). Assumption 1 does not include unit
root processes, however. Note that for the IC method a slightly weaker version of Assumption
1(a) involving the CLT in place of the FCLT would suffice. Assumption 3 is a typical condition
for simulated out-of-sample inference in that R increases with 7', as T — 00.? At the end of this
subsection we will discuss an alternative assumption due to Rissanen (1986) and Wei (1992)
that involves fixing R, as T — oo. Assumption 4 is required to establish that the recursive
PMSE for model i, 07, and the population PMSE, 07 1, are the same in the limit.

Assumption 2 imposes conditions on the penalty term in the information criterion (see Sin
and White 1996). In the nested case, these conditions are met for example by the STC, which

3For example, McCracken (2000) postulates 7 € (0,1) as T — co. Clark and McCracken (2001) and Corradi et
al. (2001) allow for w € (0,1] as T — oco. West (1996) and West and McCracken (1998) require R and T'— R to
diverge to infinity such that 7 € [0,1] as T — oo.
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sets c¢pr = In(T)/T, but they are not met by the Akaike Information Criterion (AIC). As-
sumption 2(b) for the nonnested case rules out even the SIC. Specifically, the SIC will be
inconsistent for the best approximating model when two nonnested models have the same as-
ymptotic PMSE at T' 4 1. The problem is that the SIC will tend to overfit relative to the best
approximating model with positive probability. In all other cases of interest, the SIC will be
consistent. Notwithstanding this violation of the principle of parsimony, however, the SIC re-
mains an admissible method of forecast model selection because asymptotically it will correctly
select a model with minimum out-of-sample PMSE.

More generally, note that the in-sample PMSEs (and their differences) converge in probability
to their population counterparts at rate 7%/2, provided that one model has a smaller population
PMSE than the other. This rate holds whether the models are nested or not. Thus, as long as
the penalty term is of order smaller than O(T~/2), any information criterion will be admissible.
This result implies that, for example, the AIC, the SIC and even R? are all admissible model
selection criteria.

The partial inconsistency of the SIC illustrates the need for Assumption 2(b). Interestingly,
none of the commonly used information criteria (such as AIC, SIC or the PIC of Phillips and
Ploberger 1996) satisfies the conditions of Assumption 2(b). One modified information criterion
that meets these conditions has been proposed by Sin and White (1996). They suggest cr =
(In(T")/T)*/?. Note that this new criterion is not the only criterion one could propose. Since
there are many alternative criteria that would be equally asymptotically valid, further study
will be required to arrive at a criterion with satisfactory small-sample properties. We will not
pursue this question in this paper.

We now formally establish the consistency of model selection based on modified information
criteria that meet Assumption 2:

Theorem 1. [Consistency of Forecast Model Selection based on the Modified IC Method]
Suppose that Assumptions 1, 2 and 4 hold.

(a) If 0f 1 = 057,y and if dim(ap) < dim(Gy), then

Jim P(IC(1) <1C(2)) = L.

(b) If 03 1y y = 03 1y and if dim(ag) > dim(Gp), then

Jim P(IC(1) > 1C(2)) = 1.

2 2
(¢) Moy py <057y then

I
=

lim P(IC(1) < 1C(2)

(d) 1t U%’Tﬂ > U%TH then
Jim P(IC(1) > IC(2))

Il
=
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Parts (a) and (b) of Theorem 1 cover situations in which two models have the same PMSE in
population. This situation arises for example for nested model comparisons when the restricted
model is the DGP. Parts (a) and (b) imply that suitably modified information criteria will be
consistent in that case in that they will select the more parsimonious of the two nested models
with probability 1 asymptotically. A similar situation arises when two nonnested models of
different dimensions have the same population PMSE. In that case, part (a) and (b) of Theorem
1 imply that information criteria will select the more parsimonious model of two nonnested
models that have the same population PMSE. The latter case is primarily of academic interest,
however, since in practice two nonnested models are unlikely to have the same population
PMSE. In that sense, for most practical purposes there is little to choose between the SIC and
the modified IC.

Parts (¢) and (d) of Theorem 1 cover the case in which one model has lower population
PMSE than the other. This situation arises for nested model comparison when the unrestricted
model is the DGP. Tt is also likely to arise in nonnested model comparisons. In this case, model
selection based on information criteria is consistent in the sense that it will select the model
with the lower population PMSE with probability 1 in the limit.

We now turn to the analysis of the SOOS method. The following theorem shows that the
SOOS method is not necessarily consistent for the best approximating model:

Theorem 2. [Possible Inconsistency of Model Selection based on the SOOS Method]
Suppose that Assumptions 1, 3 and 4 hold.

(a) If 0 1y y = 0301 and if dim(ag) < dim(f), then

lim P(Gip < 05g) < 1.
T—o00

(b) If oiTH = 05 7, and if dim(ag) > dim(fo), then

T—o00

(c) Ifof 1y <03y, then
T—o0

(d) If 0f 1y > 03 pyy, then
—00

Parts (a) and (b) of Theorem 2 cover situations in which two models have the same PMSE
in population. This situation will arise for example when the more parsimonious of two nested
models is the DGP or when two nonnested models have the same population PMSE. Parts (a)
and (b) show that the SOOS method is inconsistent in this case in the sense that it will select an

ECB « Working Paper No 214 « February 2003 |7



overparameterized model with positive probability. Although we had mentioned earlier that the
SIC suffers from a similar inconsistency, when two nonnested models have the same asymptotic
PMSE, the failure of the SOOS method is much more serious because it also extends to nested
models with the same asymptotic PMSE. The latter case is highly empirically relevant. Part
(c) and (d) of Theorem 2 cover the case in which one model has lower population PMSE than
the other, as would be the case for nested model comparison if the unrestricted model is the
DGP or for nonnested model comparisons in the likely case that the population PMSEs differ.
Part (c) and (d) of Theorem 2 imply that the SOOS method is consistent in this case.

We conclude that, as a matter of theory, only modified information criteria are guaranteed to
be consistent forecast model selection criteria. This conclusion applies equally to nonnested and
to nested forecast model comparisons, but is especially relevant for the latter situation. Since we
do not know a priori whether the data were generated by the restricted model or the unrestricted
model, there always is the risk that the SOOS method will select an overparameterized model.
This inconsistency does not matter asymptotically because the inconsistent model selected by
the SOOS method will still have the same PMSE in the limit. In finite samples, however,
overparameterized models will have excessive PMSEs. Thus, we would expect that in practice
the IC method of forecast model selection will result in more accurate out-of-sample forecasts
than the SOOS method. We will explore this question in a simulation study in section 3.

Theorems 1 and 2 cover pairwise model comparisons. In many applications, however, we are
interested in comparing more than two forecast models. The following corollary generalizes our
results to such multiple forecast model comparisons.

Suppose that there are M models. Let oﬁT 11 denote the population PMSE for the ith
model, i =1, ..., M, and let oiTﬂ = min; U?,TH' As defined earlier, n; denotes the number of
parameters of model 7 and n; the number of parameters of model 1.

Corollary 1. [Asymptotic Properties of the Modified IC and SOOS Methods in Multiple
Forecast Model Comparisons]
Suppose that Assumptions 1, 2, 3 and 4 hold for each model.

(a) Suppose there is some i = 2,..., M such that JE’TH = 0'%7T+1 and n; > ny, then the IC
method is consistent in the sense of selecting Model 1 with probability 1 in the limit.

(b) Suppose that JZTH > JiTH for all ¢ = 2, ..., M, then the IC method is consistent in the
sense of selecting Model 1 with probability 1 in the limit.

(c) Suppose there is some i = 2, ..., M, such that 677, = 0 1,1 and n; > ny, then the SOOS
method is inconsistent in the sense of not selecting Model with probability 1 in the limit.

(d) Suppose that o7, > 0F p for all i = 2,..., M, then the SOOS method is consistent in
the sense of selecting Model 1 with probability 1 in the limit.

Corollary 1 follows from repeated application of Theorems 1 and 2. Note that these results
also extend to the SIC, provided the comparison involves no nonnested model pairs with 01-2, Ti1 =

2
95, T+1"
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It is important to note that our results differ from the predictive least squares results obtained
by Rissanen (1986) and Wei (1992). Rissanen (1986) studied the asymptotic properties of the
SOOS method under the assumption that R is fixed with respect to T. He referred to this
method as predictive least squares. When the true model is included among the forecast models,
Rissanen (1996) shows that predictive least squares is asymptotically equivalent to the SIC. This
result immediately implies that predictive least squares is consistent for nested forecast model
comparisons. More generally, when the best model differs from the true model, Wei (1992) shows
that the implicit penalty term of predictive least squares converges at the same rate as the SIC.
Although the two criteria are not equivalent, both are consistent for the best approximating
model among two nested models. In contrast, for nonnested model comparisons neither the
SIC nor predictive least squares will be consistent. This result follows immediately from the
inconsistency of the SIC for nonnested model comparisons.

In sharp contrast, we showed that the SOOS method of forecast model selection will be
inconsistent for both nested and nonnested model comparisons. This difference in results can
be traced to different assumptions about the choice of R as T — oco. Whereas Rissanen and
Wei treat R as fixed with respect to the sample size, we presume that the researcher will
gradually increase R as more observations become available. To appreciate the difference that
this assumption makes, it is instructive to express the selection criterion of the predictive least
squares method in the same form as the information criterion. To facilitate this comparison we
will make some simplifying assumptions. For details the reader is referred to Appendix B.

Suppose that the model is correctly specified i.e.,I' 1_121 = 0, and assume that covariance
stationary holds. Then it follows from the derivations in the Appendix, that the SOOS model
selection criterion can be decomposed into the sum of a term describing the fit of the model and
a remainder term which may be viewed as an implicit penalty term not unlike the penalty term
of an information criterion. For example, for model 1 we obtain the approximation:

T2 R g2 n
In(67p) = In (Ztﬂ i (TT) — %le t(R)) n T(:C/ g) dim(e) + 0y (1), (6)

where 44(S) = y+ — &qz¢. Given this result, we may consider two alternative thought experi-
ments: (i) R is fixed with respect to T and (i7) R is fixed as a fraction of T'. For fixed R as in
Rissanen (1986), it follows that:

(i) = In(G?) + ln—Tdim(a) + 0p(1). (7)

From this expression, predictive least squares is seen to be asymptotically equivalent to the SIC
(see Rissanen, 1986 and Wei, 1992) and hence consistent for nested forecast model comparisons,
but not for nonnested comparisons, as we have shown. Inspection of equation (7) also makes
it clear that the predictive least squares method is admissible for both nested and nonnested
comparisons for the same reasons that information criteria are admissible.

Now let R = [nT] + o(T) instead. This assumption corresponds to the standard thought
experiment underlying the SOOS method described in this paper. In that case we obtain:
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~ ~ In(m )

n(5e) = (3?) - oo dim(a) + oy(1), 5)
Because the implicit penalty term converges to zero at the same rate as the penalty term of AIC,
it can be seen immediately that the SOOS method is generally inconsistent, but admissible.

In practice, of course, a researcher faces a given finite sample size. Which of these two
alternative thought experiments provides a better approximation to the finite-sample behavior
of the SOOS method can be answered only by a simulation study. Heuristically, one would
expect our asymptotic thought experiment to provide a better approximation when R is large
relative to T. We will address this question in section 3. For the time being we only note that
the thought experiment underlying our analysis is consistent with the assumptions of the rapidly
growing literature on simulated out-of-sample inference (see footnote 3).

2.4 Results in the Presence of Unmodeled Structural Change

The main conclusion of the preceding analysis was that under covariance stationarity both the
IC method and the SOOS method are asymptotically valid (in the sense of selecting models
with minimum UZTH, i = 1,..,M), but that only the IC method will be consistent for the
best approximating model (in the sense of selecting the most parsimonious among the minimum
PMSE models). We now turn to the analysis of the effects of unmodeled structural change on
the properties of forecast model selection methods.* This problem is of paramount importance
for practitioners. Allowing for structural change in the parameters of the DGP in our context
amounts to dropping Assumption 4.

In related work, Sin and White (1996) study the ability of the IC method to select the best
approximating model among a number of candidate models. They define the best approximating
model in terms of the in-sample PMSE, 2. They show that the IC approach remains consistent
for the best approximating model in terms of o7 under general conditions that also allow for
certain forms of structural change. This result may seem to suggest that the IC method may
also be able to select the best approximating model in terms of out-of-sample PMSE, 01»27 741 As
we will show in this subsection, this is not the case. In Theorem 3 we will show that indeed the
IC method will pick the model with minimum o2 under our assumptions, but - in the absence of
covariance stationarity - nothing ensures that min[o?, 03] = min[aiT 1 a;T +1)- This fact may
be proved formally by counterexample. We will provide one example, in which the IC method
is inconsistent for the best approximating model. We will provide another example, in which
the IC method even asymptotically will select models with higher out-of-sample PMSE, o oy
than the best approximating model. The latter counterexample establishes that the IC method
of forecast model selection is inadmissible (in the sense defined in section 2.1) in the presence
of unmodeled structural change.

What about the use of the SOOS method? It is sometimes believed that the SOOS method -
unlike the IC method- offers at least partial protection against parameter instability. We there-

“We do not consider the case when the date and form of structural change are known or can be consistently
estimated because in that case the forecast model may be modified to incorporate the structural change and the
results of the previous section will continue to apply.
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fore investigate whether the SOOS method can be relied upon to select the min[o? ., 1,03 4]
model even in the presence of structural change. In Theorem 4 we will show that the SOOS
method continues to select the minfo%p,03;] model in the presence of unmodeled structural
change. This result is not enough, however, to establish the theoretical validity of the SOOS
method for forecast model selection because in the absence of covariance stationarity nothing
ensures that the min[o?, 03] = min[o} 1, 1,03 1, ;]. We will show by counterexample that the
SOOS method not only may be inconsistent for the best approximating model at T+ 1, but
that it may select models with strictly higher out-of-sample PMSE than the best approximating
model. As in the case of the IC method the root cause of the failure of the SOOS method is
that it uses a loss function that differs from the loss function of interest to the forecaster. Thus,
neither the IC method nor the SOOS method has any theoretical justification in the presence
of unmodeled structural change.

We now formally illustrate the consequences of dropping the assumption of covariance sta-
tionarity for pairwise model comparisons. Theorems 3 and 4 evaluate each model selection
method in terms of its underlying loss function, which in the absence of covariance stationarity
may differ from the loss function of interest to the forecaster.

Theorem 3. [Asymptotic Properties of the Modified IC Method in the Presence of Unmodeled
Structural Change]
Suppose that Assumptions 1, 2 and 3 hold.

a) If 02 = 03 and if dim(ayg) < dim(Bp), then limy_, o, P(IC(1) < IC(2))

( 1.
(b) If 02 = 02 and if dim(ag) > dim(8p), then limy_ ., P(IC(1) > IC(2)) = 1.
(c) If 03 < 03, then limr_,o, P(IC(1) < IC(2)) = 1.

)

(d) If 02 > 02, then limr_o P(IC(1) > IC(2)) = 1.

Theorem 4. [Asymptotic Properties of the SOOS Method in the Presence of Unmodeled
Structural Change]
Suppose that Assumptions 1 and 3 hold.
(a) If 02 = 025 and if dim(ag) < dim(Bp), then limy_,o P(63, < 035) < 1.
(b) If 02y = 035 and if dim(ag) > dim(SBo), then limr_,o P(6%, > 735) < 1.
(c) If 03 < 02p, then limyp_,o P(6%, < 0325) = 1.
)

(d) If o3 > 02y, then limy_,o P(G3; > G3p) 1.

Theorems 3 and 4 establish that the IC method will select the model with minimum in-
sample PMSE and that the SOOS method will select the model with minimum recursive PMSE;,
even in the presence of unmodeled structural change. This result is not sufficient, however, to
establish the asymptotic validity of these methods. The reason is that the loss function implicit
in IC and SOOS model selection differs from that of the applied forecaster. Our presumption is
that the forecaster is concerned with minimizing the PMSE for period T + 1. It would not be
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helpful to the forecaster, if a procedure succeeded in finding the model with minimum in-sample
PMSE or minimum recursive PMSE, unless this model also happens to be the model with
minimum out-of-sample PMSE. Under the assumptions of Theorems 3 and 4 nothing ensures
that this will be the case. Recall that given covariance stationarity the recursive PMSE and the
population PMSE of a given model will coincide in the limit. In contrast, in the presence of
structural change, the in-sample and recursive PMSE in population will in general differ from
the population PMSE of the forecast model at T'+ 1. Thus, the criteria used by the IC and
SOOS methods for ranking forecast models no longer coincide with the criterion of interest to
the forecaster, even asymptotically. This fact will be immaterial, as long as the minimum under
the in-sample and recursive PMSE criterion still coincides with the minimum under the PMSE
criterion. Unfortunately, this need not be the case in general. The following counterexamples
show that - if there is structural change in the DGP - the IC and SOOS methods of forecast model
selection will not necessarily select the model with smallest out-of-sample PMSE. Example 4
focuses on a nested model comparison in the presence of an unmodeled one-time shift in the
mean. Example 5 focuses on a nonnested model comparison in the presence of a time-varying
mean.

Example 4. [Inconsistency of the IC and SOOS Methods for Nested Model Comparisons in
the Presence of Unmodeled Structural Change]
Consider the DGP
yo = I1(t>[T/2]) + e,

where ¢, is iid with zero mean and variance o2. The structural change consists of a one-time

shift in the mean. The econometrician compares two forecast models:

Yo = MU, 9)
Yy = C+pYr-1+t v (10)

We will refer to the models in (9) and (10) as Model 1 and Model 2. For Model 1 the minimum
value of the loss function o2 41 is obtained at p = 1. At that value we have UiT 1= o2. For
Model 2 the loss function O'%T 118 minimized at the same value of o? for the parameter choices
¢ =1and p = 0. Although asymptotically both models have the same out-of-sample forecast
accuracy, by the principle of parsimony the econometrician prefers Model 1 to Model 2.

We now turn to the question of which model the IC method would select. Asymptotically,
minimizing the information criterion function amounts to minimizing the in-sample PMSE,
02,4 = 1,2, because the penalty term vanishes as T — oo and the log function is a monotonic
transformation. The in-sample PMSE of Model 1 is minimized at g = 1/2 with a minimum
value of

o2 =0?+1/4.

The in-sample PMSE of Model 2 is minimized at ¢ = 20%/(1 + 40?) and p = 1/(1 + 40?) with

a minimum value of
9 9 4ot + 02

92 = 160% + 802 + 1
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which is strictly less than o2 4+ 1/4. Thus, the IC method would select Model 2.

Now consider the SOOS method. For simplicity, suppose that the fraction of the sample
used for the initial estimate is @ = 1/2. Then using the first [r7T] observations for estimation,
the asymptotic recursive PMSE for Model 1 and Model 2 is minimized at

_ 0, for0 <r <1/2,
T Y 1-1/@r) for1/2<r<1.
( ) (0,0) for0 <r < 1/2,
Cr, Pr = — o2r(2r—
g (40'232+21r71 ’ 742027’2(1327‘1)1’ for 1/2 S r S 1’
respectively. The resulting values of the SOOS loss function of Model 1 and of Model 2 are.
1 7
2 — 524 2
oip = 20 + 3
1 1
e = [ Qe [ G- pidr
1/2 1/2
= 0(d?),

Thus 025 < o3y for sufficiently small o2. In that case, the SOOS method also selects Model 2.

Since the IC and the SOOS method both fail to select Model 1, which satisfies the principle
of parsimony, we conclude that they are both inconsistent for the best approximating model.
Thus, the theoretical advantages of the IC method do not in general extend to situations, in
which there is unmodeled structural change. As the next example shows, there may be even
more serious consequences when structural change is not explicitly modelled by the forecaster.

Example 5. [Inadmissibility of the IC and SOOS Methods for Nonnested Model Comparisons
in the Presence of Unmodeled Structural Change]

Suppose that Assumptions 1 and 3 hold. Further suppose that the dependent variable is
generated by:

Ly
= — £
Yt T t

where ¢, is iid with mean zero and variance o?. This model is nonstationary in that the mean
is subject to smooth structural change. Consider two regression models. Model 1 only involves
estimating the mean:

Yt = [+ ut (11)

Model 2 is a fitted autoregression of the form:

Yt = pYt—1 + V¢ (12)
The values of the (T + 1) loss function of Model 1 and of Model 2 are:

2 _ 2
1,741 =0
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2 _ o, T+ + (T +1)?
02141 =0 (1+ 02)2T2 :

Thus, Model 1 is preferable from the point of view of a forecaster.
The asymptotic PMSE of the Model 1 is minimized at p = 1/2:

1
af = U2+ﬂ

and that of Model 2 is minimized at p = 1/(1 + 302):

52— 180°+ 150 4 4o?
> 18ot+ 120242

For m = 1/2, the asymptotic recursive PMSE of Model 1 is minimized at p, = r/2 for 0 <r < 1:

The corresponding asymptotic recursive PMSE of Model 2 is minimized at p, = 72/(r? + 302):

1 L6 4 302r% 4 90212
2 _ 2 2
%2R T 3¢ to /0 rt 4+ 602r2 + 904 "

By inspection, when o2 is sufficiently small, e.g., 02 = 1/12, we have 03 < 0% and U%R < UfR.
Thus, the IC and SOOS methods select Model 2, which has higher out-of-sample PMSE than
Model 1. We conclude that both criteria are inadmissible for forecast model selection in the

sense defined in section 2.1.

Example 5 proves that - in the presence of unmodeled structural change - neither the IC
nor the SOOS method are admissible for nonnested model comparisons. Although we were
unable to come up with a counterexample that would disprove the admissibility of the IC and
SOOS methods for nested model comparisons, there is no presumption that these methods are
admissible in the nested case. It is important to note that at present there is no theoretical
basis for the application of either method in that context.

An interesting topic for future research will be an investigation of the extent to which our
inadmissibility and inconsistency results in this subsection are practically relevant. If it could
be shown that for most practical purposes at least the inadmissibility result is unlikely to arise,
we might regain some confidence in model rankings based on the IC or SOOS method. We will
provide some preliminary simulation evidence in section 3 that addresses this point.

3 Simulation Evidence

In this section we illustrate the implications of our theoretical results for applied work. We
quantify both the probabilities of selecting the true (or best approximating) model and the
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implications of model selection for the root PMSE of forecast models. A full-fledged simulation
study is beyond the scope of this paper. Rather we focus on some stylized examples motivated
by problems frequently encountered in empirical research. We evaluate the relative merits of
the IC approach to forecast model selection and the SOOS methodology in a controlled envi-
ronment. We distinguish between nested and nonnested forecast model comparisons (as well as
situations that involve both nested and nonnested forecast models) and we differentiate between
environments in which the true model is contained among the forecast models considered and
environments in which all forecast models are misspecified. Subsection 3.1 abstracts from the
possibility of structural change. The issue of structural change will be dealt with in subsection
3.2.

3.1 Baseline Setting without Structural Change

For expository purposes, we focus on the problem of predicting a scalar variable ;. We postulate
a DGP for y; and generate 5000 trials of data of length T+ 1, where Te{50, 100, 150, 200, 300, 400,
500,1000}. For each sample of length 7'+ 1, we use the first T' observations to select the
best forecast model among a set of candidate forecast models. The forecast model selection is
carried out alternatively using the Schwarz Information Criterion (SIC) and using the simulated
recursive out-of-sample methodology (abbreviated as SOOS). Since none of our DGPs involves
comparisons of nonnested models with exactly the same PMSE, all consistency results we derived
for the modified IC approach will carry over to the SIC. The best forecast model selected by each
method is re-estimated on the first T' observations and used to predict yr41. This procedure
allows us to evaluate the prediction error of these forecast models for period 7'+ 1 in a genuine
out-of-sample setting. The performance of each procedure is evaluated by averaging the squared
prediction errors for each sample size across the 5000 trials. We follow the common practice of
presenting the square root of this prediction mean squared error (abbreviated as RPMSE). In
addition, we compute the probabilities that each procedure selects the true model (or the best
approximating model when the true model is not included among the forecast models under
consideration).

In this subsection we will study two prototypical applications of our theory. First, we will
consider the problem of forecasting variables like asset returns, inflation or economic growth
based on economic fundamentals. The second application will involve the selection of lag orders
in univariate autoregression. Although the SOOS method is not commonly used for the purpose
of selecting autoregressive lag orders, this application fits naturally into our framework. The
discussion is organized as follows. We begin with pairwise forecast model comparisons. Such
pairs of models may be either nested or nonnested. The subsequent analysis is devoted to mul-
tiple model comparisons. Comparisons of more than two models may be viewed as a collection
of pairwise comparisons. That collection of pairs may consist of nonnested pairs of models only
or it may consist of some nested and some nonnested pairs. Initially, we will implement the
SOOS method with R = 0.97. Alternative assumptions will be considered in subsections 3.1.3.
and 3.1.4.
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3.1.1 Application 1: Forecasting based on Economic Fundamentals

Case 1: Pairwise Comparison of Nested Models

The first example of a nested forecast model comparison is motivated by the literature on
exchange rate return prediction. In this literature interest centers on the random walk model
of nominal exchange rates, which implies that exchange rate returns should be unpredictable.
Thus, a natural benchmark is the no-change forecast of returns. The alternative forecast models
under consideration involve a number of predictors based on economic fundamentals (see Meese
and Rogoff 1983). We study a stylized version of this forecasting problem. Our DGP for returns
is y; = u; where uy ~ NID(0,02) for simplicity. Thus the true process is unpredictable white
noise. We are interested in predicting yry1. We can select from two competing forecast models.
The first competitor is the no-change forecast yr 17 = 0. The other competitor takes the form
Yryr = a + B\wT, where w; = pwi—1 + n:. We postulate that 7, ~ NID(O,diag(af,). We set
p = 0.9, 03, = 0.005 and o2 = 0.05. These values are close to values obtained in empirical
research on quarterly exchange rate returns and monetary fundamentals (see e.g., Mark 1995).

Since the no-change forecast model is nested in the model based on fundamentals, by The-
orems 1 and 3 only the SIC method can be expected to select the true model with probability
one asymptotically. Since the restricted model is the true model, the SOOS method will tend to
select overparameterized models with positive probability, even asymptotically. The simulation
results in Table la are consistent with this asymptotic result. Even for samples as small as
T = 50 the SIC selects the true model with a probability of about 98%. The probability of
selecting the true model steadily increases with T and exceeds 99.5% for T" = 300. In contrast,
the probability that the simulated out-of-sample procedure selects the true model never exceeds
about 66% for any sample size and remains stable as T increases. Put differently, the simulated
out-of-sample methodology selects an overparameterized model with about 34% probability.

A second implication of the theory is that the RPMSE of the model selected by the SIC
method should be no lower than that of the true model asymptotically, but higher than that
of the model selected by the simulated out-of-sample procedure in finite samples. It is not
immediately obvious how quantitatively important this effect is because, as T increases, the
parameters of the redundant regressors will be estimated with increasing precision and their
effect on the RPMSE will become negligible. This consideration suggests that we would expect
the biggest RPMSE differences in moderately large samples, rather than in large samples. The
simulation results in Table 1 are consistent with this intuition. The last column shows the
percent loss in RPMSE caused by relying on the simulated out-of-sample methodology instead
of the SIC. For T' = 50 the loss is 0.9 percentage points. The percent loss steadily declines as
T increases, but it becomes negligible only for 7" = 150. Although the losses shown in Table 1a
may appear small, it is worth pointing out that they may be eliminated at no cost.

The results in Table la are based on the presumption that the true model is among the
forecast models under consideration. This assumption may not be realistic. We therefore
repeated the exercise with the important difference that the true model is not white noise,
but follows an MA(1) process of the form y; = 0.1u;_; + u; where u; ~ NID(0,02/(1 +0.12)).
Thus the unconditional variance of y; remains unchanged. The set of forecast models under
consideration also remains unchanged. Note that the no-change forecast now is no longer the
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true model, but still the best forecast model asymptotically (abbreviated as the ”best model”).
Table 1b shows that for the same sample size, the probability of selecting the best forecast model
tends to be slightly lower than that of selecting the true model in Table la. This conclusion
holds for both forecast model selection methods. It has no effect on the ranking of the methods in
terms of the RPMSE, however. The SOOS method still implies small losses that are diminishing
with T'. Thus, the qualitative results are unchanged.

For the exercise in Table 1 we postulated that the true model (or best model) corresponds
to the restricted model. In Table 2a we consider the alternative setting, in which the data
were generated under the unrestricted model. Thus, the DGP is y; = 0.9y;_1 + u;,where
ug ~ NID(0,0.005). Otherwise the setting is identical to that in Table la. This situation
is fundamentally different from the previous table. First, both the SIC and SOOS method
will select the true model with probability 1 asymptotically and in the limit will be equally
accurate. Second, it is possible for the model selection procedures to underfit relative to the
asymptotically best forecast model. Thus, parsimony does not necessarily favor the best forecast
model. This fact makes no difference asymptotically, of course, but it may have important
implications for the small-sample behavior of forecast model selection procedures. Underfitting
causes misspecification bias, but it also reduces the estimation error. Thus, the net effect on
the RPMSE depends on the relative size of these effects, which in turn will depend on the DGP,
the set of forecast models under consideration and the sample size.

As Table 2a shows, the probability of selecting the true model indeed reaches 100% for both
methods for T > 500, as expected, but the SIC has much higher probability of selecting the
true model in small samples. Even for T = 50 it selects the true model with probability 100%.
In contrast, the SOOS method selects the true model only with a probability of 84% for that
sample size. At the same time, use of the SOOS method implies RPMSE losses of up to 5% in
small samples. As expected, however, these losses decline with T" and are negligible for T' > 200.

In Table 2b we relax the assumption that the true model is included in the forecast model
comparison. Instead we postulate that the best predictor available is merely positively corre-
lated with the true predictor. Recall the DGP y; = 0.9y:—1 + us,where u; ~ NI1D(0,0.005).
The model based on economic fundamentals now takes the form yr 7 = @ + BwT, where
wy = pwy—1 + n and corr(n, , uy) = 0.95. This assumption implies that Yryir = a+ Bwt is
merely the best approximating model for the DGP among the two models under consideration.
Theorems 1 and 3 imply that this approximation error does not affect the consistency of the
forecast model selection methods. Both methods will select the best model with probability 1
asymptotically. This prediction is borne out by the results in Table 2b. For T" = 1000, both
methods select the best model with probability 1. Although both methods are less likely to
select the best model in small samples than in Table 2a, the SIC has much higher probability
of selecting the best model in small samples. It also results in more accurate predictions in
small samples. The RPMSE losses of the SOOS method may be larger than without model
misspecification and in the example persist even for T" = 500. We conclude that as long as
the best predictor is strongly correlated with the true predictor the results will be qualitatively
similar to Table 2a.

Table 2¢ repeats the exercise under the assumption that the best approximating model is only
weakly correlated with the true predictor. Specifically, we postulate that corr(n; , u;) = 0.6. As
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before, we find that the SIC has higher probability of selecting the best model in small samples.
In fact, even though the probability that the SOOS method will select the best model steadily
increases with T, as suggested by theory, even for 7" = 1000 this probability has reached only
about 84%. In small samples, the differences are even more striking. For T' = 50, for example,
the SIC selects the best model with probability 90% compared with only 59% for the SOOS
method. Thus, in terms of the probability of selecting the true model, the SIC becomes relatively
even more attractive than in Tables 2a and 2b. Nevertheless, as the last column shows, in small
samples the SOOS method implies more accurate predictions. These RPMSE gains may be as
high as 8% for T = 50. This tendency is only reversed in favor of the SIC for T > 200. As
before, there is little to choose between the SIC and the SOOS method for very large samples.

Why are the small-sample results in Table 2c so different from the earlier findings, which
tended to favor the SIC? Although they may seem odd at first, the results in Table 2c have a
straightforward explanation. Unlike in Table 1, where the more parsimonious of the two models
coincided with the best model, in Table 2 the less parsimonious model is the best model. This
feature causes a trade-off between misspecification bias and estimation variance reduction that
was absent in Table 1. The presence of such a trade-off means that the objectives of selecting the
true (or best) model and the objective of generating a forecast with low RPMSE are no longer
identical in small samples. For very small samples, underfitting relative to the best model will
tend to make sense because the effect of the variance reduction on the RPMSE will outweigh
the bias caused by the omission of relevant predictors. In fact, in this setting, underfitting will
be advantageous even relative to the (asymptotically) best forecast model. Note that in Table
2¢ the RPMSE of the SOOS method is actually smaller than the RPMSE of the best model.
Thus, a method that has high probability of selecting the true model will be disadvantageous
for such small T'.

As the sample size increases, however, the benefits from variance reduction decline and the
costs of misspecification bias increase. A method that continues to underfit in that range will
actually result in higher RPMSE, as seen in Table 2¢, where for 7" > 300 the RPMSE of the
SOOS method exceeds that of the best model. How large these respective ranges are, will depend
on how strong the signal-to-noise ratio is in the data. When the best model is quite different
from the alternative model, the misspecification bias will dominate even in small samples. This
is what can be observed in Tables 2a and 2b. Only in a noisy environment, as in Table 2¢, where
the best model is not as clearly distinguished from the alternative model in small samples, the
variance reduction effect dominates.

We conclude that the simulation evidence is fully consistent with the theoretical results of
section 2 that asymptotically the SIC and SOOS method both will select a model with minimum
out-of-sample PMSE. The simulation results also are consistent with the theoretical result that
when the data are generated from the restricted model, the SIC method can be expected to have
higher accuracy in finite samples than the SOOS method. In practice, of course, we do not know
whether the data were generated under the restricted or the unrestricted model. We showed that
the bias-variance trade-off that arises when the data are generated under the unrestricted model
causes the ranking of the SIC and SOOS method to be ambiguous in small samples. In general,
it is not clear which method will be favored by this bias-variance trade-off. For sufficiently large
sample sizes, however, we found that the SIC performed at least as well as the SOOS method
even when the data are generated from the unrestricted model.
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Case 2: Pairwise Comparison of Nonnested Models

We now turn to pairwise comparison of nonnested models. In the nonnested case, both SIC
and SOOS forecast model selection is consistent, provided that no two models have identical
PMSE at T + 1 in population. Thus, there is little to choose between them asymptotically.
What is not clear is how these methods compare in small samples. The pervasiveness of the
use of the simulated out-of-sample methodology in applied work may seem to suggest that this
method must enjoy the better small-sample properties. The following example illustrates that
this is not necessarily the case.

This example is motivated by empirical work on predicting variables like inflation, changes
in inflation or economic growth based on economic fundamentals. The objective is to select
among alternative, mutually exclusive sets of predictors. We postulate that the DGP is y; =
0.9y:—1 + ug,where uy ~ NID(0, 02). Again we are interested in predicting y7y1. There are
two alternative forecast models under consideration. The first forecast model is the true model
forecast yryq 7 = o1 + Blle =01 + ﬂlyT The alternative model takes the form yr i1 =

Qs + ﬁngT, where 201 = pzor—1 + 12:. We postulate that 7o ~ NID(O,Un) and that 7o is
independent of u;. As before, we set p = 0.9, 072] = 0.005 and 02 = 0.005. As each forecast model
involves a different set of regressors, the models are nonnested.

Table 3a provides evidence that indeed the probabilities of selecting the true model approach
one for larger sample sizes, as suggested by theory. This tendency holds whether we use the
SIC or the SOOS method for forecast model selection. The SIC, however, has a much higher
probability of selecting the true model in small samples. For example, for T =50 the SIC selects
the true model with almost 100% probability, compared to only 86% for the simulated out-
of-sample methodology. Although the reliability of the SOOS method improves with increases
in the sample size, only for T" > 500 the two methods are equally reliable. The differences
in probabilities are also reflected in substantial differences in the RPMSE. The last column of
Table 3a shows that for T = 50 the SOOS method involves a 6% increase in RPMSE relative
to the SIC. Even for T' = 200, the increase is almost 2%. As in the nested case, these RPMSE
losses decline, as the sample size increases and become negligible for 7" = 400.

Tables 3b and Table 3¢ show the corresponding results under the assumption that the true
model is not included among the candidate models, but is replaced by a predictor that is merely
correlated with the true predictor. Specifically, we postulate that z1; = pz1t—1 + n1¢ wWhere
corr(ny , wg) = 0.95 and corr(ny , u;) = 0.6, respectively. Whereas the results in Table 3b
are qualitatively similar to those in Table 3a, in Table 3c the SOOS method in small samples
actually has lower RPMSE than the SIC method, even though the SIC has higher probability
of selecting the best approximating model for all 7. This result is intriguing because - unlike
in Table 2 - all models under consideration are of exactly the same dimension, so there is no
bias-variance trade-off that could explain these results. The explanation is that in small samples
by mere chance data generated from an independent process may be correlated with the variable
to be forecast. Since both the variable to be forecast and the predictors under consideration in
this exercise are persistent, a predictor that by chance exhibited high correlation in the past,
it also likely to forecast well in the near future. Put differently, from an RPMSE point of view
it may pay to exploit entirely spurious correlations in the data. This may be inferred from
comparing the respective RPMSE columns of the SOOS method and of the best model in Table

ECB « Working Paper No 214 « February 2003 29



3c. This example is a warning to users of the SOOS method that apparent predictability in
small samples may be entirely spurious when the data are persistent. In contrast, the SIC does
not suffer from this tendency. This example also reinforces the point made earlier that the
objective of forecasting well is fundamentally different from the objective of identifying genuine
relationships in the data that hold in population.

There are two immediate implications of this explanation of the results in Table 3c that can
be verified empirically. One implication is that the RPMSE advantages of the SOOS method in
small samples should vanish when the data are not persistent. This is exactly what happens when
we repeat the exercise with an autoregressive root of 0.2 instead of 0.9. A second implication
is that one would expect even greater advantages for the SOOS method in small samples, if we
consider - all else equal - a larger number of nonnested candidate models because the chances of
spurious correlations should increase with the number of independent models. This conjecture
is borne out by multiple comparisons involving 10 nonnested models, as shown in Table 4 next.

Case 3: Multiple Comparisons of Pairs of Nonnested Models

The analysis underlying Table 4 is substantively identical to the simulation design for Table 3,
except that now we consider a total of 9 independent nonnested predictors in addition to the true
model (or the best approximating model). As before, the objective is to select among alternative,
mutually exclusive sets of predictors. We postulate that the DGP is y; = 0.9y;_1 + us,where
u; ~ NID(0,0?). Again we are interested in predicting Yr1- The first forecast model under
consideration is the true model forecast yrar = ap + ﬁlle = a; + ﬁlyT The other nine

competitors take the form yp r = a; + ﬁ]z]T, Jj = 2,..,10, where zj; = pjzji—1 + 0t V
j. For Table 4a we postulate that Vbt ~ NID(0, diag( 72,) and that n;; is independent of wu;.
As before, we set p; = 0.9V j, 02 = 0.005 and ¢ = 0.005. For Tables 4b and 4c we let
it ~ NID(O diag(o ) with all but one 7;j; independent of u;. For that n;, say j = 1, we
postulate corr(n; , ut) = 0.95 and corr(m; , ut) = 0.9, respectively. This assumption implies
that yr 7 = ap + Blle is the best approximating model for the DGP.

The simulation results in Table 4 are qualitatively similar to the results in Table 3, so we
can be brief. The addition of more candidate models tends to lower the ability of the SIC to
select the true model, but it has a disproportionately negative effect on the ability of the SOOS
method to select the true model. It also appears to reinforce the advantages of the SIC in terms
of RPMSE, provided the best predictor is at least strongly correlated with the true predictor.
In Table 4a, the RPMSE losses implied by the SOOS method increase to 14% for T' = 50 and
2% for T = 200 (compared to 6% and 1%, respectively in Table 3a). In Table 4b the implied
RPMSE losses for the SOOS method may be as high as 8% (compared with a maximum of
4% in Table 3b). In Table 4c, however, the advantages of the SOOS method in small samples
are reinforced. In small samples, the SOOS method now may result in RPMSE gains as high
as 14% (compared with only 6% in table 3c). This result supports the earlier conjecture that
adding more irrelevant predictors increases the chances of spurious correlations if the data are
persistent. As in Table 3¢, however, this small sample phenomenon vanishes for moderate and
large sample sizes. For sufficiently large sample sizes, we find that the SIC always implies a
somewhat lower RPMSE. This example illustrates that it is not obvious at all that the common

30 ECB « Working Paper No 214 « February 2003



practice of relying on the simulated out-of-sample methodology for nonnested forecast model
selection is the best available procedure.

Case 4: Multiple Comparisons of Some Nested and Some Nonnested Pairs of
Models

The previous analysis maintained the assumption that all models under consideration are
either nested or nonnested. In applied work it is common to consider a collection of forecast
models that may involve nested pairs as well as nonnested pairs of models. In that case, the
theoretical results of section 2 continue to apply, but it becomes harder to predict the relative
performance of the SIC and SOOS method in small samples.

The DGP underlying Table 5 is the same as that for Table 1. The difference is that now
we can select from ten possible predictive relationships. The first competitor is the no-change
forecast yr41j7 = 0. The other nine competitors take the form yr 7 = @; +Bw;r, j = 1,...,9,
where wj; = pjwji—1 + 1.V j. We postulate that 7;, ~ NID(0, diag(a%). We set p; =09V j
and 0727 = 0.005. Thus, the no change forecast model is nested in the other nine models, which
in turn are pairwise nonnested. Since all models but the no-change forecast model are fairly
distant from the true model, the results - not surprisingly - are qualitatively similar to Table
1. The main difference is that the probabilities of selecting the true model are lower in small
samples and the RPMSE losses associated with the SOOS method are greater and persist for
larger sample sizes. Table 5 shows losses as high as 3% in small samples. These results are fully
consistent with the theoretical results of Theorems 1 and 3.

If Table 5 may be viewed as the counterpart to Table 1, Table 6 is the counterpart to Table
2. The difference again is the inclusion of additional nonnested predictors among the set of
candidate models. We postulate the DGP y; = 0.9y;_1 + u,where u; ~ NID(0,0?). Again we
are interested in predicting yr+1. There are ten alternative forecast models under consideration.
The first forecast model is the no-change forecast model forecast yr 17 = 0. The other nine
competitors take the form yp 7 = a; + ﬁjij, J = 2,..,10, where zj; = p;jzjt—1 + ;¢ ¥ J.
We postulate that 7, ~ NI1D(0, diag(a%) with all but one 7;; independent of u;. For that 7,
say j = 2, we postulate corr(nz: , u;) > 0. This assumption implies that yr 7 = a2 + Bozor
is the best approximating model for the DGP. As before, we set p; = 0.9V j, 072] = 0.005 and
0% = 0.005.

What makes this application interesting is that the no-change forecast model is the most
parsimonious model without being the best approximating model. Clearly, in this environment
misspecification may improve forecast accuracy in small samples. As in Table 2, the best forecast
model in small samples may be more parsimonious than the model that we know to be the best
approximation asymptotically. At the same time, too much parsimony will undermine forecast
accuracy even in small samples. Thus, the optimal degree of parsimony will change with the
sample size. In addition, the results for Table 4c suggest that in small samples there may be
a tendency for spurious predictive relationships, which should favor the SOOS method. Since
the true model is clearly different from the no-change model, we would expect the results to be
qualitatively similar to Table 4. This is indeed what Table 6 shows.
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3.1.2 Application 2: Lag Order Selection for Autoregression

Another application of our theoretical results involves the selection of the best forecasting model
among AR(p) models of order pe{0, 1,2, ...,p}. Although the SOOS method is not normally used
for autoregressive lag order selection, there is no a priori reason why it could not be used, and
contrasting the performance of the IC and the SOOS method in this context will be instructive.
As before, we postulate that the number of models under consideration is fixed, as the sample
size increases. An alternative thought experiment could be that B(T) — oo at a suitable rate as
T — oo. We do not allow for that possibility here. Let py denote the true lag order (or the lag
order of the best approximating autoregressive model).

We begin by postulating an AR(1) DGP of the form y; = 0.9y;_1+u¢,where u; ~ NID(0,0.005).

The parameter settings are motivated by Mark (1995). Again we are interested in predicting
yr+1. The nine AR(p) forecast models under consideration are indexed by pe{0, 1,2, ...,8}. All
regression models include an intercept. Note that the true AR(1) model is nested in AR(p)
models with p > 1, but is not nested in the model with p = 0. Our theoretical results suggest
that for large enough samples the SOOS method will overfit relative to pg with positive proba-
bility, but that both methods of selecting the forecast model will select a model with minimum
PMSE asymptotically.

The simulation evidence is consistent with that result. First we focus on the probabilities
that each procedure selects the true AR(1) model. Table 7a shows that the probability that the
SOOS method will select the true model rises with the sample size from 28% for T' = 50 to 35%
for T'= 150, but then fails to improve much further. We know from theory that it will not reach
100% in the limit. In contrast, the probability that the SIC will select the true model will reach
100% in the limit. The observed probability in Table 7a is 92% for T' = 50 and approaches 99%
for T = 1000. As Table 7a shows, the SIC has much higher probability of selecting the true
model than the SOOS method in small samples. Even for T'= 1000 the SOOS method selects
the true model only with 36% compared with 99% for the SIC.

Given the possibility of underfitting, there are no theoretical predictions for the relative
RPMSE of the SIC and SOOS method in small samples. Table 7a shows that the SOOS method
implies RPMSE losses as high as 6% in small samples. although, as suggested by theory, these
losses diminish as the sample size increases. This result is not surprising since the true slope
parameter of 0.9 is fairly high and an AR(0) model clearly a poor predictor. It can be shown that
the poor small-sample accuracy of the SOOS method in this example is driven by overfitting
relative to py.

Note that even stronger results in favor of the SIC would be obtained for py = 0 because in
this case the true model is also the most parsimonious model and the bias-variance trade-off is
eliminated. This case, however, seems of minor practical relevance and will not be considered
here. Instead, we focus on higher-order DGPs. The results in Table 7b are based on an AR(4)
DGP of the form y; = 1.2y;—1 — 0.3y;—2 + 0.4y; 35 — 0.4y _4 + ug,where u; ~ NI1D(0,0.005). The
dominant autoregressive root is the same as for the AR(1). The parameter settings are again
based on fitted values for the quarterly data in Mark (1995). This AR(4) model is nested in
AR(p) models with p > 4, but is not nested in AR(p) models with p < 4. Thus, there is greater
scope than in Table 7a for underfitting to improve the out-of-sample accuracy in small samples.
Not surprisingly, the probability that the SIC selects the true model drops from 92% for T' = 50
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in Table 7a to only 47% in Table 7b. A similar drop occurs for the SOOS method. Qualitatively,
however, the results are unchanged. The SIC is much more suited for detecting the true model,
and there are still RPMSE losses for the SOOS method as high as 4% that diminish only slowly
with increases in the sample size.

For Tables 7a and 7b we postulated that 0 < pg < p, where p = 8. This ensures that the
true model is contained among the candidate models. We now turn to a case, in which none of
the AR(p) models under consideration is correctly specified. This might happen, for example, if
the true model is a finite-order process with pg > p. It also might happen if the true model is an
invertible ARMA (p,q) process that can be represented only as an AR(cco) model. In this case,
the asymptotically best approximating model will be the AR(p) forecast model, as the following
proposition shows. We focus on the example of an MA(1) DGP without loss of generality. The
result generalizes to any stationary invertible ARMA(p,q) process.

Proposition 1. [Best Approximating Model for an MA(1) DGP]

Suppose that the DGP is y; = &; — 0e;_1. where 6 # 0 and ¢; is white noise. Then the
best approximating model in terms of the population out-of-sample PMSE, 0'12777« 11, among the
set of AR(p) models of order pe{0, 1,2, ...,p} will be the AR(p) model.

The proof of this proposition is in the appendix. Although the AR(P) model is the best
approximating model asymptotically, estimating this AR(p) model in small samples involves
considerable parameter uncertainty, and there is reason to believe that in small samples more
parsimonious models will have lower RPMSE, provided the moving average component is small.
The extent to which underfitting will be beneficial will depend on the magnitude of the moving
average parameters. We explore these issues for the DGP is y; = 0.9y, 1 + 0.2u;_1 + u; where
ug ~ N1D(0,0.005). The dominant autoregressive root is the same as in Tables 7a and 7b. The
best approximating model is the AR(8) model.

Note that in this case there is no scope for overfitting since pg = p. This is similar to a
situation, in which the researcher by accident selects a p that equals the lag order pg of the true
model. Thus, both the SIC and the SOOS method must select the best model with probability
1 asymptotically. Nevertheless, as shown in Table 7c, even for T = 1000 the AR(8) is rarely
selected by either method. Interestingly, in this case the SIC is the more parsimonious method in
small samples (unlike in Table 2 for example), and as a result produces more accurate forecasts.
The RPMSE loss of the SOOS method may be as high as 5% in small samples, but diminishes,
as expected, as the sample size increases. The SIC works so well, despite selecting the wrong
model with probability 1, because it tends to select models that are even more parsimonious
than the best model and hence tend to have lower population RPMSE. This can be seen by
comparing the respective RPMSE columns in Table 7c. In fact, the SOOS method also tends
to underfit and hence improves upon the AR(8) model, but it does so less frequently than the
SIC method.

This result is not surprising, given the small magnitude of the moving average component.
In fact, this specific ARMA DGP is not very different from the AR(1) process in Table 7a. Tt
can be shown, however, that the probability of selecting the AR(8) model increases in T as well
as in the size of the MA parameter. As the sample size increases, the SIC selects the true model
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with increasing probability and the asymptotics of Theorem 1 start taking effect, but this occurs
only for sample sizes much larger than shown in Table 7c.

3.1.3 How Practically Relevant Are the Rissanen Asymptotics?

So far we have maintained the assumption that R is a fixed fraction of the sample size. Our
results in Tables 1-7 were based on the assumption that R = 0.97. We now investigate the
performance of the SOOS method under the alternative assumption that R is fixed for all T, as
postulated by Rissanen (1986) and Wei (1992). Specifically, we postulate that R = 0.9 * 50 for
all T" and recompute the results in Tables 1-7. Under this alternative thought experiment, we
would expect the probability that the SOOS method will select the best approximating model
to increase with the sample size. Given the space constraints these results are not shown. They
are available upon request. For T'= 50, by construction, the results are the same as the results
already shown, but for larger T the choice of R matters. We find that indeed the ability of
the SOOS method to select the best approximating model improves with the sample size, as
suggested by asymptotic theory, but the improvement is not quite as rapid as for the SIC.
Which of these two sets of results is more relevant for applied work? Given that a researcher
typically works with given T and R, the question is which thought experiment will provide a
better approximation to the finite-sample behavior of the SOOS method for given T and R.
Heuristically, one would expect that the Rissanen asymptotics to work best when R is small
relative to T', and our standard asymptotics to work best when R is large relative to 7. The
latter case motivated our choice of R/T = 0.9 in the simulation study. We now complete
the analysis by considering the other extreme case of R/T = 0.1. For the forecast model
comparisons based on economic fundamentals we find that the ability of the SOOS method to
select the best forecast model tends to be higher than when R/T = 0.9, but typically somewhat
lower than that of the SIC. Moreover, in some cases, the ability of the SOOS method to select
the best forecast model declines for larger 7. In those cases, the SIC is much better suited for
detecting the best forecast model. In one example the SOOS method selects the best forecasting
model even for T' = 1000 only with probability 73.5% compared with 98.5% for the SIC. Thus it
appears that even when R is small relative to T our asymptotics provide a better approximation
than the Rissanen asymptotics for fixed R. Qualitatively similar results are also obtained for
the autoregressive application in Table 7. In that application the number of parameters to be
estimated and invertibility problems in computing the OLS estimator dictate that R > 0.47T.

3.1.4 How Robust Are the Simulation Results to the Choice of R/T?

A second and unrelated question is how robust our out-of-sample PMSE rankings of the SIC and
of the SOOS method are to the choice of R/T. Our main results are based on R/T = 0.9. How
do the rankings change when R/T is small? To answer this question we recomputed the results
in Tables 1-6 for R/T = 0.1. We found that for 7' = 50 the relative performance of the SIC and
SOOS methods is mixed with little to choose between the SIC and SOOS method. For T" > 100,
the SIC virtually always has lower PMSE than the SOOS method, although the advantages
of the SIC tend to be small. Further simulation experiments suggest that for R/T = 0.25
the SIC clearly dominates the SOOS method in terms of forecast accuracy, irrespective of the
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degree of model misspecification, although the gains in accuracy rarely exceed one percentage
point. Similar results are also obtained for the autoregressive application with R = 0.47". These
additional simulation results suggest that for small R relative to T' the choice of forecast model
selection method matters little. The largest differences between the IC and SOOS methods can
be expected when R is large relative to T, as in the main simulation study.

3.2 Modified Setting with Unmodeled Structural Change

An important consideration for applied forecasters is the possibility of unmodeled structural
change along the sample path. Common examples of structural change include intercept shifts,
variance shifts and changes in the slope parameters of the DGP. Often this structural change
cannot be detected reliably, given the small sample, and its precise form is unclear. Thus, it is
of practical interest to study the implications of possible structural change for the problem of
forecast model selection. Moreover, as we showed in section 2, the theoretical justification for
the IC and SOOS methods of forecast model selection breaks down in the presence of unmodeled
structural change, so we are unsure about the performance of these methods even asymptotically.

We illustrate the consequences of deterministic structural change for forecast models based
on economic fundamentals. For expository purposes we focus on one-time structural shifts. In
the simulation study we postulate that the structural shift occurs in period AT where A = 0.5.
Intercept shifts are normalized to be of the same size as one innovation standard deviation.
Innovation variance shifts are normalized to correspond to a doubling of the innovation standard
deviation. Slope parameter shifts correspond to a 10 percent decrease in the value of the slope
parameter. Otherwise the simulation design remains unchanged. Notably, R/T = 0.9. To
conserve space we only present results for the pairwise model comparisons corresponding to
Tables 1-3 and we focus on the RPMSE comparisons. The first column in Tables 8, 9, and 10
shows the benchmark results for the model without structural change. The other columns show
the results for the model with intercept shift, variance shift and slope shift, respectively. Note
that the forecast models that were the best approximating models in Tables 1-3 may or may not
be the best approximating models in the presence of structural change. Determining the best
model in each case would require an analytic comparison of their asymptotic PMSEs at T + 1.
We do not pursue this question here since our ultimate interest is the RPMSE comparison.

Table 8 focuses on pairwise nested comparisons where the restricted model is the DGP. The
second column of Table 8 shows that the presence of structural change - far from favoring the
SOOS method - may actually favor the SIC. In the presence of an intercept change, the RPMSE
losses for the SOOS method, which were comparatively minor in the benchmark case, may be
as high as 6% in small samples. In contrast, variance shifts and slope shifts (where applicable)
have little effect on the benchmark results. In all cases, the SIC method results in more accurate
forecasts.

Table 9 shows the corresponding results for pairwise nested comparisons where the unre-
stricted model is the DGP. In this case, an intercept shift may all but wipe out the RPMSE
losses associated with the SOOS method in the benchmark case, without affecting the overall
ranking. In contrast, variance and slope shifts may increase or decrease the RPMSE losses
without systematically affecting the results. Overall, the qualitative results are unchanged.

Table 10 deals with the pairwise comparison of nonnested forecast models. Although the
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presence of variance shifts or slope shifts may change the results somewhat relative to the
benchmark, there is no systematic pattern and the qualitative results are preserved. The same
is true for intercept shifts with the important difference that intercept shifts may affect the
ranking for T = 500 and T = 1000 (but not for smaller T') when the best predictor is only
weakly correlated with the true predictor. This anomaly is a finite-sample phenomenon only
that vanishes as the sample size is increased further.

The simulation results in Tables 8-10 suggest that there is no reason to revise our assessment
of the relative merits of the IC and the SOOS method in practice. For the specific examples
investigated here, we find that the qualitative results that we obtained under covariance station-
arity are not much affected by unmodeled structural change, notwithstanding the inadmissibility
and inconsistency of the model selection rules in general. Moreover, there is no evidence that
the SOOS method of forecast model selection is more reliable than the IC method in the pres-
ence unmodeled structural change. More often than not, the IC method is more reliable. This
result casts doubt on the perception that the SOOS method provides at least partial protection
against parameter instability. That conclusion of course may be specific to our choice of DGPs,
and much more work is needed for a final verdict.

4 Concluding Remarks

We studied the problem of how to select the best linear forecast model from a number of
candidate models. Our objective has been to select the model with the smallest out-of-sample
prediction mean squared error (PMSE). We have implicitly assumed that the number of models
under consideration is fixed with respect to the sample size. The two most common methods of
forecast model selection are information criteria (IC) and the simulated out-of-sample (SOOS)
forecast comparison method. The aim of this paper has been to shed light on the asymptotic
and finite-sample properties of these procedures.

We established the asymptotic validity of both methods for covariance stationary data under
fairly general conditions that allow for forecast model misspecification. Our results cover many
applications of interest in macroeconomics and finance. We showed that there is no strong sup-
port for the common current practice of selecting models by the SOOS methodology. Although
both the IC and the SOOS method have asymptotic justification under standard assumptions,
we showed that only the IC method is consistent for the asymptotically best forecast model. No-
tably, in forecast model comparisons that involve nested pairs of models, when the best forecast
model is also the most parsimonious model, the SOOS method will select an overparameterized
model with positive probability. A similar - if less practically relevant - inconsistency result is
obtained when comparing nonnested models of differing dimensions that have the same PMSE.

Forecast model selection involves a tradeoff between finding a model with good fit and
overfitting the data. In the case of the IC method, this tradeoff is solved by imposing an explicit
penalty term. Under suitable assumption on this penalty term, which have been derived in this
paper, the IC method will always select the less parsimonious model of two forecast models with
the same asymptotic out-of-sample PMSE. These conditions rule out for example the AIC, but
include criteria of the type proposed by Sin and White (1996). In contrast, in the case of the
SOOS method of ranking forecast models by their simulated recursive PMSE the penalty term
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is implicit. We showed that this implicit penalty term under standard assumptions converges to
zero at the same rate as the AIC. This result implies that the SOOS method will assign positive
probability to forecast models that are overparameterized relative to the true model or - in the
absence of the true model - the best approximating model.

This inconsistency of SOOS model selection does not affect the out-of-sample forecast ac-
curacy in the limit, because the parameter estimation uncertainty vanishes asymptotically. It
does, however, inflate the finite-sample accuracy of out-of-sample forecasts. We quantified this
finite-sample effect by simulation for some empirically plausible forecast settings and showed
that indeed the SOOS method tends to select less accurate forecast models than the IC method.
We also found that even in cases when the best forecast model is not the most parsimonious
model and both methods are consistent as a result, the SIC method typically implies a lower
out-of-sample PMSE in finite samples.

Although the IC method compares favorably to the SOOS method in many finite-sample
situations, this result cannot be generalized. We characterized conditions under which the SOOS
method may select more accurate forecast models in small samples. One possible reason for a
reversal of the ranking is that, whenever it is possible to underfit relative to the asymptotically
best approximating model, there will be a bias-variance trade-off in small samples. Since the
nature of the bias-variance trade-off will depend on the set of models under consideration, on
the DGP and on the sample size, there can be no generally applicable ranking of the IC method
and SOOS method. A second reason is that even in the absence of a bias-variance trade-off,
when the data are persistent, spurious correlation may arise in small samples that allow more
accurate predictions than using the true model. These anomalies can be shown to disappear, as
predicted by theory, as the sample size increases.

We also compared the finite-sample performance of the IC and the SOOS method under
an alternative asymptotic thought experiment due to Rissanen (1986) and Wei (1992). Under
their assumptions the SOOS method remains consistent for nested model comparisons, whereas
the SOOS method is inconsistent for both nested and nonnested model comparisons under our
assumptions. Although it appears impossible to choose between these alternative asymptotic
results on a priori grounds, we showed that our asymptotic results tend to provide better finite-
sample approximations than the asymptotic results of Rissanen.

A common concern is that information criteria may be misleading when the forecasting
environment changes over time (e.g., Stock (1999), p. 24). Our theoretical analysis revealed
that in the presence of unmodeled structural change the IC method is indeed inadmissible, in
the sense that it may select models with strictly higher out-of-sample PMSE than the best
approximating model. We showed, however, that the same result also holds for the SOOS
method. The failure of both methods is driven by the fact that - in the presence of parameter
instability - the loss function of the forecaster differs from the loss functions implicit in the
choice of model selection method. Moreover, we demonstrated that even in cases, in which both
methods remain asymptotically justified, they have a tendency to overparameterize relative to
the best approximating model. Our analysis also shows that there is no presumption that the
SOOS method is more reliable than the IC method in the presence of unmodeled structural
change.

Notwithstanding these theoretical problems, there is no obvious alternative to the use of the
IC and SOOS methods for forecast model selection. An important task for future research will

ECB « Working Paper No 214 « February 2003 37



be the systematic investigation of the extent to which inadmissible methods of forecast model
selection are robust to unmodeled structural change in practice. What remains to be seen is
just how pervasive situations are, in which the inadmissibility of the IC and SOOS method
arises, and to what extent the performance of the two criteria is affected by these problems
in practice. Some preliminary simulation evidence in section 3 suggested that deterministic
structural change has no systematic effect on the relative performance in finite samples of the
IC method and the SOOS method. This result casts doubt on the perception that the SOOS
method provides at least partial protection against parameter instability, but much more work
is needed for a final verdict.

There are several other interesting extensions of the analysis presented in this paper. One
extension would involve a study of environments in which the number of forecast models under
consideration increases with the sample size.  Another useful extension would be to allow
for nearly integrated predictors. A third extension would focus on multi-step ahead prediction.
Finally, we note that our results have narrowly focused on the evaluation of point forecasts under
quadratic loss. Although quadratic loss functions are widely used in empirical work, it may be
of interest to explore other loss functions for point forecasts. In addition, the use of prediction
intervals or predictive densities has recently gained in popularity (see, e.g., Christoffersen 1998,
Diebold, Gunther and Tay 1998). Thus, alternative metrics may be employed in judging methods
of forecast model selection.
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Appendix: Proofs

Proof of Theorem 1. It follows from Assumption 1 that

T
Zyt*al't = %Z(ytfa{)xt
= = T

& — o) TZ 2,2, (& — ap)

T
= 01 o+ Z Y — ajry)? 0%,0 + O, (T h). (13)

'ﬂlw

T
E Yy — agr)z (G — ap)

and
T
g — %) = 020+TZ — Bh2t)* — 030+ Op(T7). (14)

Thus the desired results follow from (13), (14) and Assumption 2.

Proof of Theorem 2. Under Assumption 4, 0} = o2, and 03 = 035. Thus, Theorem 2 follows
from the proof of Theorem 4 below with suitable changes of notation.

Proof of Theorem 8. Parts (a)—(d) follow from the proof of Theorem 1.

Proof of Theorem 4. Parts (c) and (d) follow from the consistency of 675 and 655. To prove
parts (a) and (b), we will use a modified version of Theorem 2.3 and Lemma 2.1 of Wei (1992).

Theorem 5. In addition to Assumption 3, suppose that (i) e; = hy+ny; (i) limgp_ 00 (1/7T) Zthl T X =
I where I is a positive definite matrix; (iii) limp_o(1/7) Zle zizjh? =¥ where ¥ is a positive
semi-definite matrix; (iv) limy_,o(1/7) ZtT Lzt = ol and (v) ZtT:RH T Y chen Jt =
O(X gy (4T e /1)2h3) where Ty = (1/t) S20_; w4x}). Then

T
lim Z 07 el Jt = o2dim(zy) + tr(D71D). (15)

T— o0
t=R+1

If we assume further that (vi) limg o 2(6r—1 — 8) = 0, then

> =Y iy + [In(T/R)][odim(z;) + tr(T'T)](1 + o(1)). (16)
t=R+1 t=1

The proof of Theorem 5 is analogous to the proof of Theorem 2.3 of Wei (1992) with his
Lemma 2.1 replaced by Lemma 1:

Lemma 1. In addition to Assumption 3, suppose that (i) & = hy+ny; (ii) limp o0 (1/7) Zthl Tex) =
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I' where T' is a positive definite matrix; and (iii) limy_..o(1/7") Zthl zixihi =Y where ¥ is a
positive semi-definite matrix. Then

T
. -1 2 _ -1
Jim tglxtrt zie? = —In(n)tr(D1Y). (17)

To conserve space, we omit the proof of Theorem 5, but present the proof of our Lemma 1.
Proof of Lemma 1. Let € be an arbitrary positive number. Since

(1-ez Tz <2T7'z<(1-e2T ' for Ve (18)
for sufficiently large T (see equation 2.18 of Wei, 1992), it follows that

T T T
(1—¢) Z oD ae? Jt < Z o0 e Jt < (1—e) Z D ae? (19)
t=R+1 t=R+1 t=R+1

Since € can be made arbitrarily small, we obtain

T T
limy oo Y il tmel ft=limp oo > 24T e} /L. (20)
t=R+1 t=R+1

Let S; = (1/¢t) Zgzl zyxje?. Then limy_., S; = 3. It follows from applications of summation

by parts, the Toeplitz lemma (Hall and Heyde, 1980, p.31) and the definition of Euler’s constant
that

Z oD e/t = tr(D71S7) —tr(D71SR) + Z tr(T18) /(14 t)
t=R+1 t=R+1
= (In(T) — In(R))tr(T718) + o(1). (21)

(see equation 2.20 of Wei (1992) for the first equality). Thus the desired result follows from (20)
and (21).

Following the proof of Theorem 4.1.1 of Wei (1992) with his Theorem 2.3 replaced by our
Theorem 5, one can show that, for example, for model 1:

T T R
> ap =Y a(T) =Y 47 (R) + In(T/R)[dim(a)of + tr(T ' £1)] + 0, (1) (22)
t=R+1 t=1 t=1

where 4:(S) are the OLS residuals from regressing y: — o}_,2¢ on z, based on the first S
observations. After dividing both sides by (T'— R) and taking logs, it follows that

T a2 SR 42 n
In(6%5) =1In (Zt—lutm Lz t(R)>+1 (T/F) [dim(a) +tr(T7'S1)] + 0, (1), (23)

T-R T-R
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When the models are nested and are correctly specified, we obtain the expression

111((32 ) —1In (ZZ_I ’&%(T) — Zf:l ’ll?(R)) 4 ln(T/R) lel(Oé) + 0p (1) , (24)

R T-R T-R
from which the results for parts (a) and (b) follow.

Proof of Proposition 1.
Let
yr = et —bep1

where 6 # 0. Then the autoregressive coefficients of an AR(p) model in population are given by

-1

1462 —0 0 0

—0 1+ 62 0 0
0 —0 0 0 (25)

. . 0

0 —0 1462 0

All we need to show is that the last component of (25) is different from 0. The last component
of (25) is different from 0 if and only if the (p,1) component of the inverse of

1+62 -0 0

-6 1462 0

A= 0 —0 0
0 -6 14062

is different from zero. Let B = A~! and suppose that b,; = 0. Let A = [a} a4 --- a}]' and
B = [by by --- b,]. By definition AB = I. Thus, it follows from a,b; = 0 that b,_1 1 = 0.
Then it follows from a,—1b; = 0 that b,_21 = 0. Repeating this procedure, we obtain b;; =0
for ¢ = 1,2,...,p. However, a;b; = 0. This is a contradiction because a1b; must be one. Thus
b1 cannot be zero, which means that the last component of (25) must be different from zero.
Therefore, if p > ¢ then the AR(p) model is a better-approximating model than the AR(q)

model.
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Table 1. Nested Forecast Model Comparison: Two Models
Overfitting Relative to Best Model Possible

Application: Forecasting Based on Economic Fundamentals

(a) True Model Included Among Competitors

SIC SO0S True Model SOOS/SIC
T P(True Model) RPMSE  P(True Model) RPMSE  RPMSE  RPMSE-Loss

in Percent in Percent in Percent
50 97.6 0.221 65.4 0.223 0.221 0.9
100 98.8 0.221 66.0 0.221 0.221 0.3
150 99.3 0.221 66.4 0.221 0.221 0.1
200 99.4 0.221 65.3 0.221 0.221 0.1
300 99.6 0.221 65.5 0.221 0.221 0.1
400 99.9 0.221 64.9 0.221 0.221 0.0
500 99.9 0.221 64.9 0.221 0.221 0.1
1000 99.9 0.221 65.3 0.221 0.221 0.1

(b) True Model Not Included Among Competitors
SIC S0O0S Best Model SOOS/SIC
T P(Best Model) RPMSE P(Best Model) RPMSE RPMSE RPM S E-Loss

in Percent in Percent in Percent
50 95.8 0.222 63.7 0.222 0.221 0.3
100 97.7 0.221 64.2 0.221 0.221 0.1
150 98.4 0.221 64.6 0.221 0.221 0.0
200 98.7 0.221 63.4 0.221 0.221 0.1
300 99.1 0.221 63.1 0.221 0.221 0.1
400 99.5 0.221 62.8 0.221 0.221 0.0
500 99.5 0.221 63.0 0.221 0.221 0.1
1000 99.7 0.221 63.1 0.221 0.221 0.1

SOURCE: Based on 5000 trials. R=0.9T.
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Table 2. Nested Forecast Model Comparison: Two Models
Underfitting Relative to Best Model Possible

Application: Forecasting Based on Economic Fundamentals

(a) True Model Included Among Competitors

SIC SO0S True Model SOOS/SIC
T P(True Model) RPMSE  P(True Model) RPMSE RPMSE RPMSE-Loss

in Percent in Percent in Percent
50 100.0 0.072 83.6 0.076 0.072 5.0
100 100.0 0.071 92.3 0.073 0.071 3.4
150 100.0 0.070 95.7 0.072 0.070 2.3
200 100.0 0.070 97.9 0.071 0.070 1.0
300 100.0 0.070 99.6 0.070 0.070 0.1
400 100.0 0.070 99.9 0.070 0.070 0.1
500 100.0 0.070 100.0 0.070 0.070 0.1
1000 100.0 0.070 100.0 0.070 0.070 0

(b) Best Model Strongly Correlated with True Model

SIC SO0S Best Model SOOS/SIC
T P(Best Model) RPMSE P(Best Model) RPMSE RPMSE RPMSE-Loss

in Percent in Percent in Percent
50 99.9 0.084 76.9 0.087 0.084 4.0
100 100.0 0.084 84.7 0.087 0.084 3.4
150 100.0 0.084 89.8 0.087 0.084 2.9
200 100.0 0.084 92.7 0.086 0.084 2.0
300 100.0 0.084 96.8 0.085 0.084 1.4
400 100.0 0.084 98.4 0.085 0.084 0.9
500 100.0 0.084 99.2 0.084 0.084 0.3
1000 100.0 0.084 100.0 0.084 0.084 0.0

(c) Best Model Weakly Correlated with True Model

SIC SO0S Best Model SOOS/SIC
T  P(Best Model) RPMSE P(Best Model) RPMSE  RPMSE  RPMSE-Loss

in Percent in Percent in Percent
50 90.2 0.131 59.1 0.121 0.131 -7.7
100 94.5 0.137 61.4 0.130 0.136 -5.1
150 97.5 0.137 64.3 0.134 0.137 -2.5
200 99.1 0.138 67.3 0.137 0.138 -0.7
300 99.6 0.138 70.7 0.138 0.138 0.4
400 99.9 0.138 73.7 0.139 0.138 1.1
500 100.0 0.138 75.7 0.140 0.138 1.5
1000 100.0 0.138 84.4 0.140 0.138 1.2

SOURCE: Based on 5000 trials. R=0.9T.
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Table 3. Nonnested Forecast Model Comparison: Two Models

Application: Forecasting Based on Economic Fundamentals

(a) True Model Included Among Competitors

SIC SOOS True Model SOOS/SIC
T P(True Model) RPMSE  P(True Model) RPMSE RPMSE RPMSE-Loss

in Percent in Percent in Percent
50 99.9 0.072 85.7 0.076 0.072 5.6
100 100.0 0.071 94.1 0.073 0.071 3.2
150 100.0 0.070 97.4 0.071 0.070 1.0
200 100.0 0.070 98.5 0.071 0.070 0.6
300 100.0 0.070 99.6 0.070 0.070 0.2
400 100.0 0.070 99.8 0.070 0.070 0.1
500 100.0 0.070 100.0 0.070 0.070 0.0
1000 100.0 0.070 100.0 0.070 0.070 0

(b) Best Model Strongly Correlated with True Model

SIC SO0OS Best Model SOOS/SIC
T P(Best Model) RPMSE P(Best Model) RPMSE RPMSE RPMSE-Loss

in Percent in Percent in Percent
50 98.9 0.084 78.9 0.088 0.084 4.3
100 100.0 0.084 87.4 0.087 0.084 3.3
150 100.0 0.084 91.1 0.086 0.084 2.6
200 100.0 0.084 93.6 0.086 0.084 2.2
300 100.0 0.084 97.0 0.085 0.084 1.4
400 100.0 0.084 98.3 0.085 0.084 0.9
500 100.0 0.084 99.1 0.084 0.084 0.4
1000 100.0 0.084 99.9 0.084 0.084 0.0

(c) Best Model Weakly Correlated with True Model

SIC SO0S Best Model SO0S/SIC
T P(Best Model) RPMSE P(Best Model) RPMSE RPMSE RPMSE-Loss

in Percent in Percent in Percent
50 74.9 0.131 59.8 0.124 0.131 -5.6
100 86.7 0.138 63.9 0.134 0.136 -3.0
150 92.5 0.138 67.1 0.136 0.137 -1.5
200 96.3 0.138 69.6 0.137 0.138 -0.6
300 99.0 0.138 72.6 0.139 0.138 0.8
400 99.7 0.138 75.2 0.140 0.138 1.2
500 99.9 0.138 77.1 0.140 0.138 1.2
1000 100.0 0.138 84.6 0.140 0.138 1.1

SOURCE: Based on 5000 trials. R=0.9T.
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Table 4. Nonnested Forecast Model Comparison: Ten Models

Application: Forecasting Based on Economic Fundamentals

(a) True Model Included Among Competitors

SIC SO0S True Model SOOS/SIC
T P(True Model) RPMSE  P(True Model) RPMSE RPMSE RPMSE-Loss
in Percent in Percent in Percent
50 99.1 0.073 57.4 0.083 0.072 13.7
100 100.0 0.072 79.4 0.078 0.072 8.7
150 100.0 0.071 89.5 0.074 0.071 4.0
200 100.0 0.071 94.7 0.073 0.071 2.1
300 100.0 0.071 98.7 0.071 0.071 0.5
400 100.0 0.071 99.6 0.071 0.071 0.2
500 100.0 0.071 99.8 0.071 0.071 0.0
1000 100.0 0.071 100.0 0.071 0.071 0

(b) Best Model Strongly Correlated with True Model

SIC SOOS Best Model SO0S/SIC
T P(Best Model) RPMSE P(Best Model) RPMSE RPMSE RPM SE-Loss

in Percent in Percent in Percent
50 94.1 0.086 48.0 0.092 0.085 6.0
100 99.8 0.085 66.6 0.092 0.085 7.7
150 100.0 0.085 78.3 0.090 0.085 5.6
200 100.0 0.085 85.1 0.089 0.085 4.7
300 100.0 0.085 93.0 0.087 0.085 2.3
400 100.0 0.085 96.5 0.086 0.085 1.2
500 100.0 0.085 97.8 0.086 0.085 1.0
1000 100.0 0.085 99.8 0.085 0.085 0.1

(c) Best Model Weakly Correlated with True Model

SIC SO0S Best Model SO0S/SIC
T P(Best Model) RPMSE P(Best Model) RPMSE RPMSE RPMSE-Loss
in Percent in Percent in Percent
50 40.8 0.132 22.2 0.113 0.133 -14.4
100 60.0 0.141 31.8 0.126 0.137 -10.9
150 74.4 0.140 39.9 0.131 0.137 -6.3
200 83.0 0.140 46.0 0.134 0.137 -4.0
300 93.9 0.138 55.2 0.137 0.137 -0.6
400 97.5 0.138 61.3 0.139 0.137 0.8
500 99.2 0.138 66.1 0.139 0.138 0.7
1000 100.0 0.137 79.0 0.140 0.137 1.8

SOURCE: Based on 5000 trials. R=0.9T.
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Table 5. Both Nested and Nonnested Forecast Model Comparisons: Ten

Models

Overfitting Relative to Best Model Possible

Application: Forecasting Based on Economic Fundamentals

(a) True Model Included Among Competitors

SIC S00S True Model SO0S/SIC
T P(True Model) RPMSE  P(True Model) RPMSE RPMSFE RPMSE-Loss

in Percent in Percent in Percent
50 88.2 0.228 20.7 0.235 0.223 3.0
100 93.6 0.225 20.3 0.228 0.223 1.7
150 96.1 0.224 18.0 0.226 0.223 1.2
200 96.6 0.223 18.1 0.226 0.223 1.0
300 98.0 0.223 18.0 0.225 0.223 0.6
400 98.5 0.236 17.7 0.224 0.223 0.5
500 98.9 0.223 17.9 0.224 0.223 0.5
1000 99.5 0.223 18.4 0.224 0.223 0.2

(b) True Model Not Included Among Competitors
SIC SO0OS Best Model SOOS/SIC
T  P(Best Model) RPMSE P(Best Model) RPMSE  RPMSE  RPMSE-Loss

in Percent in Percent in Percent
50 81.4 0.229 19.0 0.233 0.223 1.9
100 88.7 0.225 18.4 0.228 0.223 1.1
150 92.7 0.224 16.5 0.226 0.223 0.8
200 93.5 0.223 16.6 0.225 0.223 0.8
300 95.4 0.223 16.5 0.225 0.223 0.5
400 96.6 0.223 16.7 0.224 0.223 0.3
500 97.5 0.223 16.8 0.224 0.223 0.4
1000 98.5 0.223 17.1 0.224 0.223 0.2

SOURCE: Based on 5000 trials. R=0.9T.
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Table 6. Both Nested and Nonnested Forecast Models: Ten Models
Underfitting Relative to Best Model Possible

Application: Forecasting Based on Economic Fundamentals

(a) True Model Included Among Competitors

SIC SO0S True Model SOOS/SIC
T P(True Model) RPMSE  P(True Model) RPMSE RPMSE RPMSE-Loss
in Percent in Percent in Percent
50 99.3 0.073 53.7 0.082 0.072 13.3
100 100.0 0.072 77.6 0.078 0.072 8.7
150 100.0 0.071 88.4 0.074 0.071 4.4
200 100.0 0.071 94.3 0.073 0.071 2.2
300 100.0 0.071 98.6 0.071 0.071 0.4
400 100.0 0.071 99.5 0.071 0.071 0.2
500 100.0 0.071 99.8 0.071 0.071 0.0
1000 100.0 0.071 100.0 0.071 0.071 0

(b) Best Model Strongly Correlated with True Model

SIC SO0S Best Model SOOS/SIC
T P(Best Model) RPMSE P(Best Model) RPMSE RPMSE RPMSE-Loss

in Percent in Percent in Percent
50 94.6 0.086 44.2 0.091 0.085 5.2
100 99.8 0.085 64.2 0.092 0.085 7.8
150 100.0 0.085 76.7 0.090 0.085 6.0
200 100.0 0.085 84.3 0.090 0.085 5.5
300 100.0 0.085 92.6 0.087 0.085 2.4
400 100.0 0.085 96.4 0.086 0.085 1.4
500 100.0 0.085 97.7 0.086 0.085 1.0
1000 100.0 0.085 99.8 0.085 0.085 0.1

(c) Best Model Weakly Correlated with True Model

SIC SO0S Best Model SOOS/SIC
T P(Best Model) RPMSE P(Best Model) RPMSE RPMSE RPMSE-Loss

in Percent in Percent in Percent
50 42.3 0.132 20.4 0.110 0.133 -16.3
100 61.4 0.141 29.8 0.125 0.137 -11.5
150 75.9 0.140 37.8 0.130 0.137 -6.9
200 84.0 0.140 44.0 0.133 0.137 -4.5
300 94.3 0.138 53.4 0.137 0.137 -0.7
400 97.7 0.137 59.7 0.139 0.137 1.2
500 99.3 0.138 64.8 0.139 0.138 0.7
1000 100.0 0.137 78.0 0.140 0.137 1.9

SOURCE: Based on 5000 trials. R=0.9T.
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Table 7. Both Nested and Nonnested Forecast Models: Nine Models

Application: Lag Order Selection for Autoregression

(a) AR(1) DGP: True Model Included Among Competitors

SIC SO0OS True Model SOOS/SIC
T P(True Model) RPMSE  P(True Model) RPMSE RPMSE RPMSE-Loss

in Percent in Percent in Percent
50 91.9 0.071 27.5 0.076 0.071 6.2
100 95.6 0.070 32.7 0.072 0.070 3.6
150 97.2 0.070 34.9 0.071 0.070 2.4
200 97.6 0.070 35.7 0.071 0.070 1.8
300 98.2 0.070 36.7 0.070 0.070 0.7
400 98.5 0.070 36.4 0.070 0.070 0.6
500 98.6 0.070 37.1 0.070 0.069 0.4
1000 99.0 0.069 36.0 0.069 0.069 0.0

(b) AR(4) DGP: True Model Included Among Competitors

SIC SO0S True Model SO0S/SIC
T  P(True Model) RPMSE P(True Model) RPMSE  RPMSE  RPMSE-Loss

in Percent in Percent in Percent
50 46.9 0.078 19.5 0.080 0.075 2.2
100 82.1 0.074 24.3 0.076 0.073 3.5
150 94.5 0.072 27.3 0.074 0.072 2.8
200 97.1 0.072 29.4 0.073 0.072 2.2
300 98.0 0.072 33.6 0.073 0.072 1.7
400 98.5 0.071 36.0 0.072 0.071 1.1
500 98.5 0.071 37.6 0.072 0.071 1.2
1000 99.4 0.071 41.8 0.071 0.071 0.6

(c) ARMA(1,1) DGP: True Model Not Included Among Competitors

SIC SOOS Best Model SO0S/SIC
T P(Best Model) RPMSE  P(Best Model) RPMSE RPMSE RPM SE-Loss

in Percent in Percent in Percent
50 0 0.074 11.1 0.078 0.080 5.3
100 0 0.072 10.9 0.074 0.074 2.3
150 0 0.072 11.2 0.073 0.073 1.0
200 0 0.072 10.5 0.072 0.072 0.6
300 0 0.071 10.4 0.071 0.072 0.4
400 0 0.071 10.3 0.071 0.071 0.1
500 0 0.071 10.3 0.071 0.071 0.3
1000 0 0.071 10.1 0.071 0.071 0.2

SOURCE: Based on 5000 trials. R=0.9T.
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Table 8. Nested Forecast Model Comparison: Two Models
Restricted Model Subject to Structural Change

Application: Forecasting Based on Economic Fundamentals

(a) True Model Included Among Competitors

SOOS/SIC RPM SE-Loss in Percent
T No Shift Intercept Shift Variance Shift Slope Shift

50 0.9 6.3 0.9 -
100 0.3 2.9 0.3 -
150 0.1 1.6 0.1 -
200 0.1 0.7 0.1 -
300 0.1 0.1 0.1 -
400 0.0 0.1 0.0 -
500 0.1 0.0 0.1 -
1000 0.1 0.0 0.0 -

(b) True Model Not Included Among Competitors

SOO0S/SIC RPMSE-Loss in Percent
T No Shift Intercept Shift Variance Shift Slope Shift

50 0.3 6.4 0.3 0.9
100 0.1 3.3 0.1 0.3
150 0.0 1.9 0.0 0.1
200 0.1 1.0 0.1 0.1
300 0.1 0.3 0.1 0.1
400 0.0 0.2 0.0 0.0
500 0.1 0.0 0.1 0.1
1000 0.1 0.0 0.0 0.1

SOURCE: Based on 5000 trials. R=0.9T.
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Table 9. Nested Forecast Model Comparison: Two Models
Unrestricted Model Subject to Structural Change

Application: Forecasting Based on Economic Fundamentals

(a) True Model Included Among Competitors

SOOS/SIC RPM SE-Loss in Percent
T No Shift Intercept Shift Variance Shift Slope Shift

50 5.0 0 4.9 5.7
100 3.4 0 2.9 3.9
150 2.3 0 1.4 3.1
200 1.0 0 0.4 1.4
300 0.1 0 0.3 0.5
400 0.1 0 0.1 0.2
500 0.1 0 0.0 0.1
1000 0 0 0.0 0.0

(b) Best Model Strongly Correlated with True Model

SOOS/SIC RPM SE-Loss in Percent
T No Shift Intercept Shift Variance Shift Slope Shift

50 4.0 0 4.2 2.7
100 3.4 0 3.1 3.6
150 2.9 0 1.9 2.9
200 2.0 0 1.7 2.3
300 1.4 0 0.7 1.3
400 0.9 0 0.3 0.7
500 0.3 0 0.0 0.4
1000 0.0 0 0.0 0.4

(c) Best Model Weakly Correlated with True Model

SOOS/SIC RPM SE-Loss in Percent
T No Shift Intercept Shift Variance Shift Slope Shift

50 =77 0.2 -8.9 -5.6
100 -5.1 0.1 -6.1 -2.5
150 -2.5 0.2 -4.1 -0.5
200 -0.7 0.3 -2.5 0.2
300 0.4 0.0 -0.8 0.1
400 1.1 0.0 -0.2 1.1
500 1.5 0.0 0.2 0.7
1000 1.2 0.0 0.3 0.6

SOURCE: Based on 5000 trials. R=0.9T.
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Table 10. Nonnested Forecast Model Comparison: Two Models
True Model Subject to Structural Change

Application: Forecasting Based on Economic Fundamentals

(a) True Model Included Among Competitors

SOOS/SIC RPM SE-Loss in Percent
T No Shift Intercept Shift Variance Shift Slope Shift

50 5.6 5.2 4.6 5.6
100 3.2 2.6 2.6 3.2
150 1.0 1.4 1.3 1.8
200 0.6 1.0 0.9 1.2
300 0.2 0.2 0.4 0.5
400 0.1 0.1 0.1 0.2
500 0.0 0.0 0.0 0.1
1000 0 0.0 0.0 0.0

(b) Best Model Strongly Correlated with True Model

SOOS/SIC RPMSE-Loss in Percent
T No Shift Intercept Shift Variance Shift Slope Shift

50 4.3 4.3 3.6 3.1
100 3.3 3.3 3.2 3.4
150 2.6 2.6 1.9 2.6
200 2.2 2.2 1.7 2.1
300 1.4 1.4 0.7 1.3
400 0.9 1.1 0.3 0.7
500 0.4 -1.5 0.0 0.4
1000 0.0 -0.3 0.0 0.4

(c) Best Model Weakly Correlated with True Model

SOOS/SIC RPM SE-Loss in Percent
T No Shift Intercept Shift Variance Shift Slope Shift

50 -5.6 -5.6 -5.0 -4.4
100 -3.0 -3.0 -4.0 -1.8
150 -1.5 -1.5 -2.6 -0.1
200 -0.6 -0.6 -1.4 0.2
300 0.8 0.8 -0.1 0.7
400 1.2 0.9 0.3 0.9
500 1.2 -3.5 0.3 0.7
1000 1.1 -0.7 0.4 0.6

SOURCE: Based on 5000 trials. R=0.9T.
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