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Abstract

This paper derives a general framework for collateral risk control determina-
tion in repurchase transactions or repos. The objective is to treat consistently
heterogeneous collateral so that the collateral taker has a similar risk exposure
whatever the collateral pledged. The framework measures the level of risk with
the probability of incurring a loss higher than a pre-specified level given two
well known parameters used to manage the intrinsic risk of collateral: marking
to market and haircuts. It allows for the analysis in a self contained closed
form of the way in which different relevant factors interact in the risk control of
collateral (e.g. marking to market frequency, level of volatility of interest rates,
time to capture and liquidity risk, probability of default of counterparty, etc.).
The framework, which combines the recent theoretical literature on credit and
interest risk, provides an alternative quantifiable and objective approach to the
existing more ad-hoc rule-based methods used in haircut determination.
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Non Technical Summary

This paper builds a general framework for risk control determination of collateral used in

repurchase agreements or repos. The goal in building this framework is that heterogenous

collateral should be treated in a consistent manner from a risk management point of view so

that the collateral taker has a similar risk exposure and similar economic impact whatever the

collateral pledged. In other words, the level of risk taken by the collateral taker should be

homogenous across different types of collateral (e.g. bonds or equities).

The framework measures the level of risk with the probability of incurring a loss higher than

a pre-specified level given two well-known parameters used to manage the intrinsic risk of

collateral. These two parameters commonly used in the financial industry are marking to

market (which helps reduce the level of loss by revaluing more or less frequently the

collateral using market prices) and haircuts (which help reduce the level of loss by reducing

the collateral value by a certain percentage).  Given specified values for marking to market

and haircut the framework presented is able to provide a probability of incurring a loss higher

than allowed. Similarly, if the collateral taker fixes a level for the probability of incurring a

loss higher than a prespecified level (i.e. its risk appetite) and a marking to market policy, the

framework is able to provide a haircut level consistent with the probability of loss specified.

The framework developed in this paper builds on recent results in the financial economics

literature in the area of credit and interest risk modelling. We rely on the so-called reduced

form approach to model credit risk in which the counterparty entering the repurchase

transaction defaults in an exogenous manner. In other words, the counterparty might default

due to a variety of reasons that are independent from the specific repurchase transaction

considered. The collateral asset value is assumed to change following the evolution of an

interest rate model in the case of fixed income assets and a geometric brownian motion in the

case of equity. This structure allows, compared to other methods presented in the literature,

the derivation of a closed form solution for the measurement of the probability of incurring a

loss higher than allowed given a marking to market and a haircut policy.

The framework allows for the analysis in a self-contained closed form solution of the way in

which different relevant factors interact in the risk control of collateral and it confirms many

practical intuitions. For example, it supports the perception that a higher haircut level should

be required to cover for riskier collateral and that market to market frequency and haircuts are

substitutes. In addition, the higher the probability of default of the counterparty and the level

of volatility of interest rates affect directly the haircut. The time to capture or the time span

needed before actual liquidation of the assets also affects positively the level of risk. Liquidity
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risk or the risk of incurring a loss in the liquidation due to illiquidity of the assets is also

studied. A model for endogenous liquidity risk or the liquidity risk induced by one’s owns

action (e.g. through the sell of a large position) is introduced in the framework. Although the

modeling of liquidity risk is far from settled in the literature, the framework is able to support

the intuition that higher liquidity risk would aggravate the probability of loss. In this sense,

the framework could be used as an objective basis to understand and quantify the relationship

between a number of factors and the level of haircuts which is important not only for

practitioners and academics but also for regulators.

Current industry practice still relies on ad-hoc rule based methods to establish the level of risk

controls such as haircuts. On the whole, despite recent advances in the financial modeling of

risks and incipient research in the area of risk control of collateral, the discussion on the

precise level of risk mitigation achieved by accepting collateral is still rather vague. In

addition, haircut levels used by market agents have been generally set without a consistent

approach. We hope that this paper would stir further interest in an area that has been subject

to still little research but whose importance is key in today’s financial markets.
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1 Introduction

A very important type of credit transaction in financial markets is the so-called
repurchase transaction or repo. In this type of operation, an agent buys or
sells eligible assets (i.e. collateral) against cash under repurchase agreements.
According to the 2002 ISMA European repo market survey, the estimated total
value of the outstanding repo business in Europe is equivalent to EUR 3.3
trillion.

The so-called collateral leg of the transaction plays a crucial role in this
type of operations. The collateral leg is intended to mitigate the credit risk or
default risk of the counterparty borrowing the cash. In case of default of the
counterparty, the collateral taker can make good any loss by selling the collateral
received. When the collateral considered is default-risk free (but not market-risk
free, as with government bonds), collateralization is a way to transform credit
risk (or risk of default) into market risk (more studied in the literature and
easier to handle) as the default risky counterparty provides a default-risk free
asset to guarantee its position. Even when the collateral itself can be defaultable
(as in corporate bonds, OTC derivatives or loans), the credit risk is strongly
mitigated.

The goal of this paper is to establish a general framework that would help the
treatment of heterogenous collateral in a consistent manner from a risk manage-
ment point of view in the context of repurchase transactions. Common practices
have appeared to manage the intrinsic risk of collateral: marking to market1

(which helps reduce the level of loss by revaluing more or less frequently the
collateral using market prices) and haircuts2 (which help reduce the risk of loss
in case the counterparty defaults). In this paper, we consider both techniques in
the establishment of the risk control determination framework with the aim of
guaranteeing to the collateral taker a similar risk exposure and similar economic
impact whatever the type of collateral pledged.

We use the vast theoretical literature on credit risk and on interest rate risk
to provide a solution to our problem of defining a consistent framework to col-
lateral risk control policies. Two approaches to modelling credit risk currently
dominate financial economics: structural form and reduced-form approaches.
The structural form approach extends the Merton (1974) option-based frame-
work and models credit risk as a short position in a put option (and in practice
this relies on the microeconomics of the firm’s solvency situation). Reduced-
form approaches, as settled by Madan and Unal (98), Jarrow et al. (97) and

1Marking to market refers to the practice of a periodical monitoring of the value of the
collateral . If the difference between the collateral and the value of the notional amount (value
of the loan) is smaller than a determined trigger level, the counterparty will be required to add
some additional collateral. If the opposite happens, the amount of collateral can be decreased.

2 Increases in collateral required depend on collateral type. For example, equities may
be valued at 60% of their market value for collateral purposes, hence implying a haircut on
their value of 40%. Haircuts would typically be smallest for short maturity government
bonds, increase for longer maturity bonds, and be larger for corporate bonds and equities.
The relationship that these haircuts should have from one to the other is what this paper
investigates.
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Duffie and Singleton (99) consider an exogenous stochastic default, modelled
traditionally by a jump process with stochastic intensity. Default is defined
as the first jump of the default process (see Cossin and Pirotte (2000) for an
overview of the credit risk literature and Cossin and Hricko (2000) for applica-
tion to collateral policies of commercial banks).

While the finance academic literature has focused on the issue of pricing
credit and interest risk quite extensively, little research exists on the impact of
collateral on credit risk exposures and collateral haircut determination models.
Margrabe (1978) mentions the similarity between an exchange option and a
margin account and provides the pricing for a very simple marking-to-market.
Stulz and Johnson (1985) study the impact of collateralisation on the pricing
of secured debt using contingent claim analysis. More recently, Jokivuolle and
Peura (2000) present a model of collateral haircut determination for bank loans.
Their model is geared to providing adequate loan-to-value ratios, which is sim-
ilar to the concept of haircut, using an structural credit risk approach. In a
related research, Cossin and Hricko (2000), present a methodology for haircut
determination also using a structural approach but with the final objective of
pricing a credit risk instrument backed with collateral. Notwithstanding this
research, current industry practice still relies on ad-hoc rule-based methods to
establish the level of haircuts (see Cossin and Pirotte 2001 for a typical haircut
schedule of a major bank). As Jokivuolle and Peura (2000) put it, ”on the
whole, we find the discussion on collateral haircuts and loan to value ratios up
to date rather vague in many respects”. For example, the precise degree of
risk mitigation pursued by taking collateral is typically not defined and haircut
levels used by market participants have been generally set without a consistent
approach. The aim of this paper is to participate in clarifying this existing the-
oretical gap by providing a general framework that would incorporate the main
relevant factors affecting the determination of haircuts in a quantifiable and ob-
jective manner using recent general results in the financial economics literature
in the area of credit and interest risk modelling.

In this paper the framework presented focuses on the level of risk taken by the
collateral taker with the aim of making it homogenous across different collateral.
Based on the collateral haircuts and predetermined loss level, we derive the
probability of incurring a loss higher than allowed. Accordingly, if the collateral
taker fixes its risk exposure, which is related to its risk appetite, the required
haircut can be extracted. We rely on the reduced form literature as opposed
to the approaches followed by Cossin and Hricko (2000) and Jokivuolle and
Peura (2000) which are based on structural form methods. In our framework,
default is determined exogenously while marking-to-market is also introduced
and margin calls are derived endogenously by the evolution of the underlying
used as collateral. This feature makes the problem easier to be generalised
and to obtain a closed form solution for the case of single collateral when the
interest rate is assumed to follow affine type processes. In addition to the
marking-to-market policy, other realistic features are taken into account like
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time to capture3 and liquidity effects. We also study the case where there
exists correlation between interest rate and the probabilities of default of the
counterparty. The framework confirms many practical intuitions, such as the
direct impact on the haircut level required to cover for riskier collateral and
supports the intuition that the frequency of marking to market and collateral
are substitutes. In this sense, the framework could be used as an objective
basis to understand the relationship between a number of factors and the level
of haircuts which is important not only for practioners and academics but also
for regulators.

We proceed as follows: In section 2, we describe the basic set up, where
marking to market policy is specified as well as the basic problem. In part 3
the single collateral model is developed. Section 4 presents some extensions
for realistic implementation: liquidity effects, time to capture, other types of
collateral (equities, loans), stochastic default processes, positive trigger levels
and alternative interest rate models. In section 5 we conclude.

2 The Set-Up

We start with a simple set-up. There is a repurchase transaction contract be-
tween the collateral taker and one counterparty. The counterparty borrows
cash (the underlying) from the collateral taker. For simplicity of presentation,
we assume that no interest is bearing on the cash borrowed. The extension to
a constant interest rate bearing is straightforward.4 The collateral taker asks
the counterparty for αt units of a bond B(t, T ) as collateral. We assume that
the time to maturity of the collateral is greater than the expiration date of the
contract between the collateral taker and the counterparty. For every collateral
pledged, there exists a haircut h. We will assume a K periods contract, where
margin calls can happenK times (for example, over a period of two weeks, there
could be 14 daily margin calls, or 10 if they can happen only on business days).
We treat the general case with constant time intervals between possible mar-
gin calls (no week ends) but provide in appendix the solution for non constant
time intervals, thus accounting for periods in which collaterals can not be called
(such as during week ends). In this set up we will consider 0 as a trigger level
for the margin call (i.e., as soon as the value of the collateral diverges from the
underlying value, there is a margin call in order to reestablish equivalency). In
the extensions developed underneath, the trigger level will be set to a constant

3With time to capture we refer to the period between a default declaration and when the

collateral can be sold by the central bank. Some adjustments are needed due to the existence

of market risk in this period.
4 In practice, the underlying may not be constant indeed, and it would bear the interest

which is set at the beginning and distributed evenly. Denote the interest rate for the operation

is R, so the value of the underlying at t will be

Ut = U0e
Rt

Replacing the constant underlying value with the above in all equations underneath would

provide the result.
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d.
At the end of period k (k = 1, 2, ...,K) we face three situations:

1. The underlying U0 is smaller than the level of the adjusted collateral
(taking the haircut in consideration), i.e. U0 < αk−1B(tk, T )(1 − h),
where αk−1 is the amount of collateral at the beginning of period k. In
this situation, the counterparty will receive an extra amount of collateral
back such that U0 = αkB(tk, T )(1− h). The contract continues.

2. The underlying U0 is larger than the level of the adjusted collateral, i.e.
U0 > αk−1B(tk, T )(1 − h). In this situation, a margin call happens and
the counterparty will be required to deposit more collateral such that
U0 = αkB(tk, T )(1 − h). On the other hand, there exists the exogenous
probability that the counterparty defaults in period k. If the counterparty
does not default during period k, it will post the extra collateral and the
contract continues.

3. In the case where the margin call happens and the counterparty is required
to deposit more collateral, if the counterparty defaults in this period, it
will not be able to fulfil the requirement, and the collateral taker will have
a maximum loss of (U0 − αk−1B(tk, T )) . The contract will stop and enter
into a liquidation process.

The collateral taker is interested in the third situation when the loss is larger
than a predetermined level L = lU0, i.e. U0 − αk−1B(tk, T ) > lU0. In other
words, the collateral taker is interested in the joint event X ∩ Y, where X is
that, at the end of period k, the collateral’s value is lower than (1− l)U0, and
Y is that the counterparty defaults in period k. Event X mainly reflects market
risk, and event Y the credit risk of the counterparty. The total probability
of X ∩ Y happening in the life of the contract is a measure of the risk the
collateral taker would take, which is determined by the collateral taker’s risk
appetite. Meanwhile, the total probability is related to the haircut attached to
the collateral, so the collateral taker can adjust the haircut h to manage the
risk.

In this set-up, we will first compute the haircut necessary for one single
collateral, a default-free zero coupon bond B(t, T ), to protect for a given level
of risk. Once the haircuts are calculated, the set-up could be extrapolated to
take into account collateral portfolios consisting of n default-free zero coupon
bonds. This paper, however, only deals with the single collateral model and
leaves the collateral portfolio model for future research.

3 Single Collateral Model

To start with, we assume that the interest rate follows a Vasicek process as de-
fined originally in Vasicek (1977). We examine the possibility of other processes
truly leading interest rates later. The widely used Vasicek model has the ad-
vantage over some alternatives (such as Cox-Ingersoll-Ross (1985), thereafter
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CIR) to be able to represent any possible term structure. Its main limitation
consists in its possibly allowing for negative interest rates, something CIR does
not. The Vasicek model is of course very extensively used in the theoretical lit-
erature (most of the credit risk literature with stochastic interest rates uses that
model, see for example Shimko and alii (1993),Longstaff and Schwartz (1995))
as well as in practice. We have as in Vasicek (1977):

drt = a(b− rt)dt+ σrdWt (1)

where the interest rate follows a mean reverting process. a is the speed of
mean reversion, b the long run or equilibrium value that the rate reverts to in
the long run with a speed of a, σr is the instantaneous volatility and dW is the
increment of a Wiener process,

Equivalently, the interest rate can be written:

rt = r0e
−at + b(1− e−at) + e−atσr

∫
t

0

eaudWu (2)

Denote Bt the price of the bond with maturity T at time t. When the short
rate rt follows Vasicek(1977), Bt is written as

Bt = emt−ntrt (3)

where both mt and nt are deterministic functions of time t :

nt =
1− e−a(T−t)

a
(4)

mt =
(nt − T + t)(a2b−

σ
2

r

2 )

a2
−

σ2
r
n2
t

4a
(5)

Therefore, expressing the bond in its logarithmic form and substituting the
value of rt we found previously, we obtain

lnBt = mt − nt[b+ (r0 − b)e−at + e−atσr

∫
t

0

eaudWu] (6)

Therefore

xt = lnBt ∼ N(mt − nt[b+ (r0 − b)e−at], n2
t
e−2atσ2

r

∫
t

0

e2audu) (7)

Simplifying we obtain:

xt = lnBt ∼ N(mt − nt[b+ (r0 − b)e−at],
n2
t
σ2
r

2a
(1− e−2at)) (8)

The life of the contract is divided into K marking to market periods with
interval τ . At the beginning of period k(k = 1, 2, ...,K), the collateral is read-
justed such that
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U0 = (1− h)αk−1Bk−1 (9)

αk−1 =
U0

(1− h)Bk−1

(10)

where αk−1 is the quantity of bond collateral required at the end of period k−
1. We use Bk−1 to indicate the value at the beginning of period k (immediately
after collateral readjustment at the end of period k−1) of a bond with maturity
at T .

At the end of period k, before rebalancing, the collateral taker’s loss is de-
termined by the difference between the underlying and the collateral

lossk = U0 − αk−1Bk = U0 −
U0

1− h

Bk

Bk−1

(11)

In order to calculate the corresponding haircut to apply, we need to compute
the probability that the loss exceeds a predetermined level L. We also define
the loss level as a function of the underlying, or L = lU0. L or equivalently
l defines the level of risk the collateral taker is willing to take. The model
will give an equivalency between the level of risk taken, the probability that
the losses exceed that level of risk and the collateral haircut chosen, so that the
bank can choose any one variable and obtain the two others. Hence, looking at
two bonds, the collateral taker will be able to establish their respective haircut
so that the risk exposure taken with either bond is the same. It will thus not
favor one bond versus another in terms of risk exposure as it may do with adhoc
haircut schedules.

To establish this framework, we calculate the probability that the actual loss
exceeds the predetermined level L.

We thus start from L � lossk which can be rewritten:

L � U0 −
U0

1− h

Bk

Bk−1

⇐⇒
Bk

Bk−1

� (1− l)(1− h) (12)

where we know, as shown above, that

Bk = emk−nkrk (13)

Bk−1 = emk−1−nk−1 rk−1

Therefore

ln

(
Bk

Bk−1

)
= (mk −mk−1)− (nkrk − nk−1rk−1) (14)

Or equivalently, expressing rk in terms of rk−1
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ln

(
Bk

Bk−1

)
= (mk −mk−1)− nkb(1− e−aτ ) + (15)

(−nke
−aτ + nk−1)rk−1 − nkσre

−akτ

∫ kτ

(k−1)τ

eaudWu

From equation (2), we know that rk−1 can be written as

rk−1 = b+ e−a(k−1)τ (r0 − b) + σr(
1− e−2a(k−1)τ

2a
)
1

2 z1 (16)

where

z1 =

∫ (k−1)τ

0 eaudWu

(
∫ (k−1)τ

0
e2audu)

1

2

∼ N(0, 1) (17)

On the other hand, we also know that

−

∫ kτ

(k−1)τ

eaudWu = (

∫ kτ

(k−1)τ

e2audu)
1

2 z2 where z2 ∼ N(0, 1) (18)

Therefore substituting into ln
(

Bk

Bk−1

)
we obtain

x = ln

(
Bk

Bk−1

)
= µk + σ1kz1 + σ2kz2 (19)

where

µk = (mk −mk−1) +
1− e−aτ

a
(be−a(T−kτ) + e−a(k−1)τ (r0 − b))

σ1k =
1− e−aτ

a
σr(

1− e−2a(k−1)τ

2a
)
1

2 (20)

σ2k = nkσr(
1− e−2aτ

2a
)
1

2

Define a new random variable z:

z =
σ1k

σk
z1 +

σ2k

σk
z2 (21)

where

σk =
√
σ2
1k + σ2

2k (22)

Since z1 and z2 are independent standard normal random variables, it can
be shown that z is also a standard normal random variable. Hence

x ∼ N(µ
k
, σ2

k
) (23)
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Then, the probability that lossk is larger than the predetermined value L is:

Pr ob(lossk > L) = P (0 ≤
Bk

Bk−1

≤ (1− l)(1− h)) (24)

= P (−∞ ≤ ln
Bk

Bk−1

≤ ln((1− l)(1− h))

= N(
ln((1− l)(1− h))− µk

σk
)

If Q represents the annualised probability of default, then τQ would repre-
sent the probability of default in each period. As expressed earlier, this prob-
ability of default is exogenous and therefore assumed independent of a margin
call or a loss level. This assumption (a typical reduced form model assumption)
appears better than the alternative, which would make the probability of default
dependent on the margin call. The later assumption (typical of structural form
models) would imply that the credit operation contract and the value of the
collateral alone would push the counterparty to default (and would assume that
the position is large enough to force the counterparty to default). However, the
position taken in this approach is that the cash taker (a company or individual)
might default for a wider variety of reasons which might be totally unrelated
to the specific contract considered (e.g. a company might experience liquidity
problems and file for bankruptcy). At the beginning of period k, the probability
that the counterparty has not defaulted is (1− τQ)k−1. The probability of the
counterparty defaulting and the collateral taker incurring a loss larger than L

in period k (i.e. the probability of a joint event) will be

P (k) = N(
ln((1− l)(1− h))− µk

σk
)τQ (25)

Taking into account that the counterparty can only default once, the prob-
ability of incurring a loss larger than L in period k becomes

(1− τQ)k−1P (k) (26)

Hence, the total probability of incurring a loss larger than L withK marking
to market periods will be:

P (loss > L) = P (1) + (1− τQ)P (2) + ...(1− τQ)K−1P (K) (27)

=
K∑

k=1

(1− τQ)k−1P (k)

If the collateral taker fixes L and Pr(loss > L),the required haircut can be
recovered from the above formula.

For example, a collateral taker may decide, in a certain interest environment,
to protect itself against a loss of more than 5% with counterparties that have
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an average probability of default of one percent. It can use this framework

to obtain the haircut that corresponds to this risk appetite for a collateral of a

government bond of maturity 3 years. It can also calculate how much an increase

in haircut should go with a collateral of maturity 10 years in order to obtain the

same risk exposure. It can thus propose a consistent haircut schedule so that

whatever the maturity of the bond proposed as collateral, the risk exposure of

the bank remains the same.

Proposition 1 For l big enough, given a fixed collateral haircut, the longer the

maturity of the bond used as collateral, the higher is the probability of incurring

a loss larger than L. To obtain the same probability of incurring a loss larger

than L, longer term bonds require higher haircuts.

Proof. See Appendix
As we expect, the model shows that, other things being equal, increasing the

haircut will decrease the probability of incurring a large loss, and that the longer
the maturity of the bond used as collateral, the higher the haircut required in
order to have the same probability of incurring the loss.

This result is well understood by practitioners. It is classical to have hair-
cut schedules designed so that longer term bonds face higher haircuts than
shorter term bonds. Interestingly, the methodology here gives precisely the
extra amount of haircut required for extra maturity in a rational way. It also
gives the sensitivity of the haircut level to other parameters, such as the interest
rate environment (level and volatility of the interest rate), the frequency of the
marking to markets (which reflect the control environment of the process) as
well as the probability of default (which reflects the quality of the counterparties
considered).

The following section gives simple numerical examples of these sensitivities.

3.0.1 Example

Consider the following benchmark5 case for the values of the main parameters
in our model

b a r0 T h Q σr
0.05 0.25 0.04 10 0.01 0.01 0.04

With these values we compute what is the total probability of a loss of
5% (l = 5%) for the collateral taker in a contract of 10 years with a single
bond pledged as a collateral. In other words, starting with a value of 100 for
the underlying (cash provided to the counterparty), what is the probability of
having a loss of 5, when the collateral pledged is a government bond of maturity
1 year and of initial value of 100/99% = 101.01. We study the case of daily,

5We take as a benchmark typical parameters reported in the literature. These values should
be only interpreted as an example since they are not the result of a calibration procedure.
Similar values can be found in Neftci (2000) for instance.
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weekly and monthly possible marking to markets with possible margin calls.
The results give low probabilities that will need to be modified (and increased)
by the introduction of realistic features such as time to capture, liquidity effects,
etc. These are introduced in the following sections. Nonetheless, the numbers
are instructive to look at for a first understanding of what drives risk exposures
with collateral in place. Classical market risk factors (the interest rate variables
here), credit risk factors (the probability of default here, which is extended to a
stochastic default process in a later extension) and elements of collateral policy
such as the haircut schedule all drive probabilities of losses. We obtain the
following probabilities

Time Probability
Daily 3.26858×10−18

Weekly 1.01347×10−5

Monthly 6.1385×10−4

With these results as a benchmark, we analyze what is the effect of changing
the values of the different parameters of the models. We choose very extreme
cases to make differences more obvious.

Changes in T, maturity of the bond held as collateral

T Daily Weekly Monthly
1.5 0. 0. 1.33392×10−9

20 7.14632×10−6 2.41159×10−5 7.9913×10−4

As expected, the longer the time to maturity of the bond, the higher the
probability of having losses. The usual practice of asking for higher haircuts for
longer maturity bonds is thus justified. The mismatch between the maturity
of the bond and the maturity of the loan agreed has a strong impact on the
probability of losses.

Changes in h, haircut on bond considered for collateral

h Daily Weekly Monthly
0.1 0. 2.59421×10−17 6.16681×10−7

0.001 2.75417×10−14 5.13204×10−11 9.25418×10−4

Also as expected, when the haircut is high , the probability of having a loss
decreases, while if the haircut is small, the probability increases. Haircuts are a
good way to reduce risk exposure. We provide hereby the exact impact of the
haircuts considered.

Changes in Q, probability of default of the counterparty

Q=prob of default Daily Weekly Monthly
0.01 3.16435×10−17 9.72023×10−5 5.89537×10−3

0.0001 3.27929×10−19 1.01774×10−6 6.16348×10−5



���������	
���
�������������������������� ��

The quality of the counterparty considered plays of course a large role on the
level of the haircuts that should be asked for. Most of the time, a collateral taker
will be required to establish a haircut schedule that is independent of the quality
of the counterparty. One approach will then be to set a haircut schedule linked
to the worst exposures, or to an average exposure. The methodology provides
for the level of exposure depending on the counterparties considered.

We next consider the impact of the interest rate environment. The volatility
of the interest rate process seems to have a particularly strong impact on the
haircut levels necessary (via the probability of losses).

Changes in r0, initial interest rate value

r0 Daily Weekly Monthly
0.01 3.54892×10−18 1.10399×10−5 1.87388×10−3

0.08 2.93061×10−18 9.03382×10−6 2.04854×10−5

When the initial interest rate decreases, then the probability of losses in-
creases. This can be explained by the fact that, if the initial interest rate is
very low (lower than the long term mean), there is a high probability that it
will increase. If the interest rate increases, the price of the bond will decrease,
therefore, the probability of incurring losses is higher. As noted inmore details
underneath though, the impact of the difference with the long term mean is not
analyzed separately here while it has a distinct effect as can be seen in equation
(25).

Changes in b, long term mean of interest rates

b Daily Weekly Monthly
0.1 3.22775×10−18 9.95571×10−6 6.00103×10−4

0.01 3.30184×10−18 1.02807×10−5 6.25082×10−4

We can observe that when the long term mean of the interest rate increases,
then the probability of losses decreases. Notice though that from the formula
(25) above (as both interest rate level and long term mean affect only the drift
µ
k
and not the other components of the probability of losses), the long term

means has an impact via its absolute level (but a rather minimal impact as it is
multiplied by an exponential of low value, especially for long maturity bonds)
and more importantly via the distance between the current interest rate and
the long term mean (as this is multiplied by a higher value). The two distinct
effects are not separated well in our sensitivity analysis as the interest rate is
fixed while the long term mean is modified.

Changes in a, speed of mean reversion

a Daily Weekly Monthly
0.1 9.36419×10−9 3.48408×10−4 1.87388× 10

−3

0.5 0. 7.1690910
−11 2.04854×10−5
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When the speed of convergence of the interest rate to its mean increases,
then the probability of losses decreases. It is interesting to see that the speed
of mean reversion has an important effect on the overall value of the probabilities
of losses. This is, with the volatility of the interest rate process, one of the main
drivers, as far as the interest rate environment is concerned, of the bank risk
exposure.

Changes in σr, volatility of the interest rate process

σ
r

Daily Weekly Monthly
0.015 0. 9.14667×10−19 1.613×10−5

0.05 5.0507×10−13 6.845×10−5 1.0111×10−3

Changes in the volatility of the interest rate is one of the most important
factors affecting the probability of loss. When the volatility increases, then the
probability of losses also increases. In the benchmark we considered a quite high
volatility (σ

r
= 0.04) in order to see more easily how the probabilities change

when we modify the different parameters.
While these numerical examples give us a first sense of what affects collateral

policies, much needs to be incorporated to make it more realistic. First and
foremost may be the fact that counterparties typically post several collaterals
(portfolios of collaterals) as pledged. This issue is considered next.

4 Extensions for Realistic Implementation

4.1 Introduction of time to capture and liquidity risk

When the counterparty defaults, the collateral taker has to wait some time for
the legal procedures to yield actual possession (and sale or liquidation) of the
collateral. We call this phenomenon the time to capture. Suppose the time to
capture is equal to δ marking to market intervals, i.e. δτ , and the counterparty
defaults during period k, so there is no rebalance at the end of period k. The
loss of the collateral taker will not depend on the value of the collateral at the
end of the kτ period, but on the value of collateral at the end of period (k+δ)τ .

On the other hand, one of the main concerns for the collateral taker will
be, in the case of default, of how much cash can be obtained if the collateral
position is liquidated. Unfortunately, this value is exposed to risk itself since it
is very likely that the difference between the initial market value and the value
realized after liquidation is greater than 0. This is what is called liquidity risk.

We can distinguish between exogenous liquidity risk (normally associated to
the difference between bid and ask), which is due to the characteristics of the
market and it is unaffected by the actions of any participant, and endogenous

liquidity risk which refers to how individual actions can affect the price. Some
collateral takers write in their books the bid price of the collateral, hence the
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exogenous liquidity risk disappears6 . For those cases, only endogenous liquidity
risk is taken into account. This risk consists in the possibility that the trades
move the market in an adverse direction. In case of large positions, it is possible
that the collateral taker sale would in itself affect the liquidity risk. The model
of endogenous liquidity risk is still an open question in the literature and it
is far from the scope of this paper to try and solve it. We will simply take
the liquidity risk as a percentage loss when the collaterals are liquidated, i.e.
liquidity loss is θ percent of the collateral value at the time of liquidation, which
can be different for each collateral.

At the beginning of period k, t = (k − 1)τ , we have

U0 = (1− h)αk−1Bk−1 (28)

then

αk−1 =
U0

(1− h)Bk−1

(29)

At t = (k + δ) τ the possible loss is equal to

Lossk = U0 − αk−1Bk+δ(1− θ) (30)

Or equivalently, by substituting αk−1

Lossk = U0 −

[
U0

1− h

Bk+δ

Bk−1

]
(1− θ) (31)

From the single collateral case, we know that

ln

(
Bk+δ

Bk−1

)
= µk,δ + σk,δz (32)

where

z ˜ N(0, 1)

µk,δ = (mk+δ −mk−1) +
1− e−a(δ+1)τ

a
(be−a(T−(k+δ)τ) + e−a(k−1)τ (r0 − b)) (33)

σk,δ =
√
σ21k,δ + σ22k,δ

σ1k,δ =
1− e−a(δ+1)τ

a
σr(

1− e−2a(k−1)τ

2a
)
1

2 (34)

σ2k,δ = nk+δσr(
1− e−2a(δ+1)τ

2a
)
1

2

Then, we have the following relationship between the predetermined maxi-
mum loss, L = lU0, and z.

6We have modeled in the appendix the case where exogenous liquidity risk does not disap-

pear for the banks that do not follow the policy of keeping in their books the bid price of the

collateral.
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lU0 ≤ lossk = U0 −

[
U0

1− h
eµk,δ+σk,δz

]
(1− θ) (35)

=⇒ z ≤
ln
(
(1−l)(1−h)

1−θ

)
− µk,δ

σk,δ
(36)

The probability of incurring a loss larger than L will be

P (k) = P (lossk ≥ L)τQ (37)

= N


 ln

(
(1−l)(1−h)

1−θ

)
− µk,δ

σk,δ


 τQ (38)

Therefore, the probability of incurring a loss larger than L in the life of
contract will be

P (loss ≥ L) =
K∑
k=1

(1− τQ)k−1P (k) (39)

It is not difficult to find that the similarity between this extension with the
original case. Introduction of liquidity risk θ is simply to replace (1− l) (1− h)

with (1−l)(1−h)
1−θ . In other words, the impact of liquidity risk θ is to adjust l or

h to corresponding smaller numbers l−θ
1−θ or h−θ

1−θ , consequently to increase the

probability of incurring a loss larger than L.
Introduction of time to capture δ is to replace µk and σk with µk,δ and σk,δ

accordingly. Since time to capture δ is always positive, it adds more uncertainty
and increase the probability of incurring a loss larger than L. When δ is large,
the uncertainty during time to capture will be larger than the uncertainty during
one marking to market interval, so that the risk due to the time to capture will
be an important part (possibly dominant part) of the overall risk.

We thus have derived the first important extension of the model, integrating
the realistic features of a time to capture and liquidity effect.

4.2 Examples

In this section, we analyze the effect of introducing time to capture and liquidity
effects in a single collateral context.

Consider the following benchmark case for the values of the main parameters
in our model

b a r0 T h Q σ loss Time to capture liquidity

0.05 0.25 0.04 10 0.01 0.01 0.015 0.05 1 month 0.03
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These values imply that the collateral will not be captured before a month
after the event of default. This may be due to legal constraints that will make
it impossible to liquidate the collateral before or special characteristic of the
financial asset used as collateral which may require a long analysis period by
the prospective buyers (e.g. asset backed securities with special covenants).
This problem is combined with the liquidity issue, in which a loss of 3% of value
of the bonds occurs at liquidation, in case of a thin market.

We first have a look to the effect of different marking to market intervals:

Marking to Market Daily Weekly Monthly
2.10434×10−3 2.22007×10−3 2.66116×10−3

We can observe that with the introduction of the time to capture and the
liquidity effect, the probabilities of loss have increased considerably. We further
analyze the effects of changing the time to capture interval and the liquidity
level under a daily marking to market set up.

Time to capture

Time to capture Prob of loss
2 weeks 1.35211×10−3

2 months 2.65833×10−3

The probability of loss increases when we increase the time to capture in-
terval. This is due to the fact that we face more uncertainty about the price of
the collateral at the moment of the liquidation.

Liquidity

Liquidity Prob of loss
0 1.25153×10−3

0.02 9.91587×10−3

As expected, the probability of loss has increased when we increase the liq-
uidity loss level. Clearly, some instruments (such as loans) will face strong
liquidity problems. Our methodology thus allows to differentiate between in-
struments for which liquidity is good and instruments for which liquidity is poor.
The haircut can thus be set to compensate for that problem.

4.3 Further Extensions

4.3.1 Other instruments as collateral: Equity

In this section we introduce the use of equities as collateral.
As classical since Black and Scholes(1973), we assume the stock price St

follows

dSt

St

= µ
t
dt+ σtdWt (40)
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or equivalently

St = Sue

∫
t

u
(µ

s
−

1

2
σ2
s
)ds+

∫
t

u
σsdWs , ∀ u < t (41)

where µt and σt are deterministic and bounded functions of time t. It can
be shown that

ln

(
St

Su

)
∼ N(

∫ t

u

(µs −
1

2
σ2s)ds,

∫ t

u

σ2sds) (42)

Following the same methodology we have used until now, and assuming K

marking to market periods with interval τ , at the end of period k − 1 (k =
1, 2, ...,K),

U0 = (1− h)αk−1Sk−1 (43)

αk−1 =
U0

(1− h)Sk−1
(44)

where as before αk−1 is the quantity of equity collateral required at the end
of period k−1. At the end of period k, before rebalancing, the loss is determined
as:

lossk = U0 − αk−1Sk = U0 −
U0

(1− h)

Sk

Sk−1
(45)

Therefore, applying the same methodology we used for the bond collateral
case we obtain:

Pr ob(lossk > L) = P (0 ≤
Sk

Sk−1
≤ (1− l)(1− h))

= P (−∞ ≤ ln
Sk

Sk−1
≤ ln((1− l)(1− h)) (46)

= N


 ln((1− l)(1− h))−

∫ kτ
(k−1)τ

(µs −
1
2σ

2
s)ds√∫ kτ

(k−1)τ σ
2
sds




The total probability of incurring a loss can be easily derived from the above
formula using the methodology described in previous sections.

4.3.2 Poisson process for default of the counterparty

For simplicity, we have assumed for the time being a constant probability of
default for the counterparty considered. This is a simplification of reality
as default probabilities are not constant, but rather stochastic. We use the
classical formalization of reduced form models (see Jarrow and Turnbull (1995),
Madan and Unal (1998), Duffie and Singleton (1999)). The structure of the
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problem remains the same as above. Difficulties arise when the default process
is correlated to the interest rate.

Assume there exists a jump process J(t) with intensity process λ(t). Default
occurs at the first jump time of J(t). If default happens at τ , this implies by
definition

τ := inf {t ≥ 0 | J(t) = 1} (47)

The probability of no default event occurring between time t and T is given
by

P [J(T )− J(t) = 0] = e−
∫
T

t
λ(s)ds (48)

This implies that the distribution of the default time is given by

P [τ ≤ T ] = 1− e−
∫
T

0
λ(s)ds (49)

and its density

f(t) = λ(t)e−
∫
t

0
λ(s)ds (50)

Assume that the default intensity is determined as follows:

λt = λo
t
+ φrt (51)

where λot is a stochastic variable that follows a mean-reverting diffusion
process:

dλ
o

t = aλ(bλ − λ
o

t )dt+ σλdW
λ

t (52)

Recall that default-free interest rate rt follows

drt = a(b− rt)dt+ σrdWt (53)

Here Wλ
t
and Wt are two independent Brownian motion, so {λo

t
, 0 ≤ t ≤ T}

and {rt, 0 ≤ t ≤ T} are two independent stochastic processes. φ can be consid-
ered as a constant. Notice that the empirical literature tends to show a negative
correlation between interest rate and intensity of default (see for example Duf-
fee (98)). Given this model, we can compute as done in the other set-ups the
probability of having a loss larger than lU0 in period k. The calculations are
provided in Appendix.

4.3.3 Introduction of non-zero trigger level

In practice, margin calls are not effected as soon as there is a difference in value
between the underlying and the adjusted collateral (after haircut). A certain
level of difference is allowed (1% in the case of the EuroSystem) to avoid having
too frequent calls.

When the trigger level is zero, the collateral portfolio is revalued and ad-
justed at each marking-to-market to keep the same weights of its components.
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Meanwhile, the new value of the collateral portfolio, adjusted after haircuts, is
equal to that of the underlying. In the case of non-zero trigger levels, the col-
lateral portfolio is revalued but not always adjusted at each marking to market
period. When the value of the collateral portfolio, adjusted after haircuts, is
inside a narrow range centered in the value of the underlying, no adjustment is
required, and the same collateral portfolio will be kept to the next margin call.
Otherwise, the collateral will be adjusted to keep its weights of components and
its value, adjusted after haircuts, equal to that of the underlying.

It is very difficult to model the non-zero trigger level precisely because it
strongly depends on the specific trajectory. We study the approximation rep-
resented by two boundaries, first in the case of a single collateral and then in
the case of a collateral portfolio. Denote d the trigger level. At the beginning
of period k,

(1− d)U0 ≤ (1− h)αk−1Bk−1 ≤ (1 + d)U0

So,

(1− d)U0
(1− h)Bk−1

≤ αk−1 ≤
(1 + d)U0

(1− h)Bk−1

At the end of period k,

U0 −
(1 + d)U0
1− h

Bk

Bk−1
≤ Lossk = U0 − αk−1Bk ≤ U0 −

(1− d)U0
1− h

Bk

Bk−1

Equivalently,

(1− l) (1− h)

1 + d
≤

Bk

Bk−1
≤

(1− l) (1− h)

1− d

Following the similar process, we will have

P (loss > L) =
K∑

k=1

(1− τQ)k−1P (k)

with

N(
ln

[
(1−l)(1−h)

1+d

]
− µ

k

σk
)τQ ≤ P (k) ≤ N(

ln
[
(1−l)(1−h)

1−d

]
− µ

k

σk
)τQ

We thus obtain an approximation of haircuts required (or risk exposures)
depending on the trigger level considered.
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4.4 Alternative interest rate model

In order to check the assumption of interest rate following a Vasicek type of
process, we decide to try other interest rate model specifications. Concretely,
we analyze the differences if we assume a CIR process for interest rate with
our model. Unfortunately, we are not able to derive closed form solutions for
the case of CIR, therefore, simulation methods are used. While Monte Carlo
simulations allow for more flexibility in the modelling (with the possibility of
using other interest rate models and more complex features), they do not allow
for the use and speed of calculations of the analytical formulas derived above,
nor do they allow for general results analysis and sensitivities as those provided
above.

CIR assumes the following process for the interest rate:

drt = a′(b′ − rt)dt+ σ′r
√
rtdWt (54)

At time t, the price of the bond can be found as:

Bt(T ) = At(T )e
−n′

t
(T )rt (55)

where

n′t(T ) =
2(eγ(T−t) − 1)

(γ + a′)(eγ(T−t) − 1) + 2γ
(56)

At(T ) =

[
2γe(a

′+γ)(T−t)/2

(γ + a′)(eγ(T−t) − 1) + 2γ

]2a′b′/σ′2

r

(57)

with

γ =
√
a′2 + 2σ′2r (58)

In order to compare the results of Vasicek model with the CIR model, we dis-
cretize the process followed by the interest rate and we simulate the randomness
introduced by the Brownian Motion.

To check the error we are making with simulations, we also simulate the
Vasicek process and compare it with the real values as obtained from the an-
alytical results given above. We obtain an acceptable accuracy7 (around 2%
relative difference between theoretical Vasicek and simulated Vasicek results)
with a time step of five times per day and a number of repetitions equal to
1000. We use these parameters in order to perform our CIR simulations.

However, before carrying out our study, we must consider a case where the
parameters of Vasicek and CIR are compatible. For that we use the parameters
specified in Chan et.al. (1992) where different interest rate models are estimated

7We measure the accuracy as the difference between the real value and the simulated value.

We repeat the simulation 10 times. In each simulation the time step is of five times per day

and the number of repetitions equals to 1000. Taking the average of the errors in every set of

simulations we found that this is around 2%.
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for the same period (from June 1964 to December 1989). The parameters found
in the estimation (and the ones we use in our simulations) are:

Vasicek CIR
a 0.1779 0.2339
b 0.0867 0.080803
σ 0.02 0.08544

(59)

Based on this parameters, we study the differences between Vasicek and CIR
models for different values of the haircut level, the level of loss accepted and the
initial interest rate. The results follow in the table bellow:

• r0 = 0.08

Vasicek case

h = 0.05 h = 0.01 h = 0.005 h = 0.001
l = 0.001 1.27159×10−5 2.53348×10−4 3.18439×10−4 3.74778×10−4

l = 0.01 4.95089×10−6 1.56547×10−4 2.07011×10−4 2.53348×10−4

l = 0.05 1.6815×10−6 4.95089×10−6 8.48165×10−6 1.27159×10−6

l = 0.1 2.87072×10−13 1.79085×10−9 4.43444×10−9 8.90452×10−9

CIR case

h = 0.05 h = 0.01 h = 0.005 h = 0.001
l = 0.001 1.74088×10−5 2.34474×10−4 2.93948×10−4 3.56502×10−4

l = 0.01 1.04118×10−5 1.45685×10−4 1.88916×10−4 2.29979×10−4

l = 0.05 4.16424×10−7 1.0995×10−5 1.49098×10−5 1.84918×10−5

l = 0.1 0 0 8.32847×10−8 3.33194×10−7

The numbers indicate the probabilities values under Vasicek model and CIR
model.

We observe that for the standard case ( l = 0.01 and h = 0.01) the differences
between both models are rather small. We can then conclude that the utiliza-
tion of the extensively used Vasicek model is not a drastic restriction although
interest rate modeling may matter in some cases.
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5 Conclusions

We have derived how a collateral taker should build collateral policies (and
notably haircut schedules) for the collateral policy to be consistent. We thus
provide for the framework a collateral taker should follow in order to treat differ-
ent collaterals consistently. The exercise reveals itself to be quite complex when
one aims at taking into account in the modeling the muldimensional complex-
ity of real use: the presence of time to capture, of liquidity effects, of different
classes of collateral, etc. In deriving the structure of consistent collateral poli-
cies, we also have obtained a number of results. The longer the maturity of the
instrument considered, the higher the haircuts that should be effected. Mark-
ing to market intervals, interest rate dynamics, credit risk of the counterparty
all interact in the determination of haircut schedules. The framework could be
used as an objective basis to understand the relationship between these fac-
tors (liquidity effects, credit risk of counterparty, time to capture, trigger levels,
stochastic default processes, alternative interest rate models) and the level of
haircuts. We hope that the framework presented here could trigger renovated
interest in an area that has been subject of little research to date but whose
importance is key in today’s financial markets.

While we have derived how a consistent collateral policy should be con-
structed, we do not provide for what is the level of collateral policy that should
be chosen. This will be decided by strategic and political factors as well as
agency and other issues that can only be treated in a general equilibrium frame-
work to provide full answers. In addition, the proposed framework for single
collateral could be extrapolated to portfolio of collateral in future research to
analyse the possible risk reduction gains that could be obtained and determine
the corresponding haircut levels. Much research thus remains to be done to ob-
tain what would be the optimal collateral policy for a collateral taker. Ideally,
future research would combine the framework of collateral risk control deter-
mination as obtained here with optimality issues linked to auctioning problems
and game theoretical agency and asymmetry of information issues to obtain a
rational collateral policy. To achieve this goal, researchers will have to combine
game theory with continuous time finance, a challenge that some researchers
are currently aiming for.
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6 Appendices:

6.1 Appendix 1: Proof of proposition 1

We will proof in this section that bearing same risk, a collateral formed with
a long term maturity bond requires a higher haircut than a collateral formed
with a short term maturity bond.

Let

P (lossk ≥ lU0) = N(
ln((1− l)(1− h))− µk

σk
) = f(T, h) (60)

where

µ
k

= (mk −mk−1) +
1− e−aτ

a
(be−a(T−kτ) + e−a(k−1)τ (r0 − b))

σk =
√
σ2
1k + σ2

2k (61)

σ1k =
1− e−aτ

a
σr(

1− e−2a(k−1)τ

2a
)
1

2

σ2k = nkσr(
1− e−2aτ

2a
)
1

2

Taking partial derivatives of function f with respect to h and T we obtain:

∂f

∂h
= n(

ln((1− l)(1− h))− µk
σk

)
(−1)

1− h

1

σk
(62)

∂f

∂T
= n(

ln((1− l)(1− h))− µk
σk

)
−

∂µ
k

∂T
σk − (ln((1− l)(1− h))− µk)

∂σk
∂T

σ2
k

(63)

where n(.) is the standard normal density function while N(.) is the standard
normal cumulative density function. We can already observe that ∂f

∂h
< 0.

Continuing with the computations

∂µk
∂T

=
∂mk

∂T
−

∂mk−1

∂T
+

1− e−aτ

a
be−a(T−kτ)(−a) (64)

Remembering the expressions for mk and nk

mk =
(nk(T )− T + kτ)(a2b−

σ2
r

2 )

a2
−

σ2
rn

2
k

4a

nk =
1− e−a(T−kτ)

a

Computing the partial derivatives of nk and mk we obtain:
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∂nk

∂T
=

1

a
(−e−a(T−kτ))(−a) = e−a(T−kτ) (65)

∂mk

∂T
=

(a2b−
σ
2

r

2 )

a2
(e−a(T−kτ) − 1)−

σ2r
4a

2nke
−a(T−kτ) (66)

= −abnk +
σ2r
2
n2
k

Therefore,

∂µ
k

∂T
= −abnk +

σ2
r

2
n2k + abnk−1 −

σ2
r

2
n2k−1 (67)

−b(1− e−aτ )e−a(T−kτ)

Note that

nk(T )− nk−1(T ) =
−e−a(T−kτ) + e−a(T−kτ+τ)

a
(68)

=
−e−a(T−kτ)

a
(1− e−aτ )

n2
k
− n2

k−1 = (nk + nk−1)(nk − nk−1) (69)

=
−e−a(T−kτ)

a
(1− e−aτ )

2− e−a(T−kτ) − e−a(T−kτ+τ)

a

Hence,

∂µk
∂T

= be−a(T−kτ)(1− e−aτ ) +
σ2r
2
(n2

k
− n2

k−1) (70)

−b(1− e−aτ )e−a(T−kτ)

=
σ2r
2
(n2k − n2k−1)

∂σk

∂T
=

σ2k√
σ21k + σ22k

∂nk

∂T
σr(

1− e−2aτ

2a
)
1

2 (71)

=
σ2k

σk
e−a(T−kτ)σr(

1− e−2aτ

2a
)
1

2

Notice that
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∂σk

∂T
> 0 (72)

∂µk
∂T

< 0

Define loss lU0 such that P (lossk ≥ lU0) is small (say, smaller than 5%)

such that
ln((1−l)(1−h))−µ

k

σk
< 0. Then, we have that

∂f

∂T
= n(

ln((1− l)(1− h))− µk
σk

)
1

σk

[
−(

∂µk
∂T

+
(ln((1− l)(1− h))− µk

σk
)
∂σk

∂T
)

]

∂f

∂T
> 0 (73)

We can express the total variation in the probability of having a loss as:

dP =
∂f

∂T
dT +

∂f

∂h
dh (74)

For the same probability (i.e., total variation is equal to 0), we have

dP =
∂f

∂T
dT +

∂f

∂h
dh = 0 =⇒ (75)

dh

dT
= −

∂f
∂T
∂f
∂h

Since we have shown that ∂f
∂T

> 0 and ∂f
∂h

< 0, we have dh
dT

> 0 which implies
that h2 > h1 ⇔ T2 > T1 for a fixed level of probability of loss, i.e. for the same
level of probability of loss, the bond with longer time to maturity requires a
higher haircut than the bond with shorter time to maturity.(Q.E.D.)

6.2 Appendix 2: Exogenous liquidity risk

Concerning the liquidity risk, we can distinguish between endogenous liquidity

risk, which refers how individual actions can affect the price, and exogenous

liquidity risk which is due to the characteristics of the market and it is unaffected
by the actions of any participant.

In the paper we have developed the concept of endogenous liquidity risk.
This risk consists in the possibility that the trades move the market in an
adverse direction. We consider this risk when the size of the position overcomes
the quote depth, where quote depth is defined as the volume of the asset available
at the market maker’s quoted price (bid or ask). In very liquid assets, the level of
quote depth is very high which implies that the majority of the transactions will
not pass this level and hence will not face this risk. In a very simple approach,
we have modeled this risk as a constant that decreases the value of the bond.
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On the other hand, exogenous liquidity risk is common to all the participants
in the market. It is normally related to the difference between bid and ask. In
very liquid securities, this difference will be very small, and therefore this risk
is also small.

In this appendix we want to add the concept of exogenous liquidity risk since
it is relevant for all kind of transactions, no matter their size. Moreover, the
data needed to quantify this exogenous liquidity risk is normally available.

To introduce the exogenous liquidity risk, we will follow basically the method-
ology developed by Bangia et al. (98) adapting it to our model. The mentioned
paper assumes that the cost of liquidity is based on a certain average spread
plus a multiple of the spread volatility, to cover most of the spread situations.
Concretely, the cost of exogenous liquidity is

1

2

[
Bt(S + aσ̃)

]
(76)

where Bt is today’s mid-price for the bond pledge as collateral, S is the
average relative spread (relative spread is defined as Ask−Bid

Mid
), σ̃ is the volatility

of the relative spread and a is a scaling factor such that we achieve roughly
the desired probability coverage. All the parameters taking part to determine
the cost of exogenous liquidity are observable except a which depends on the
distribution function of the relative spread. Hence, it would be no difficult to
incorporate this risk into our model.

By equation (11) we knew that the loss was determined as

lossk = U0 − αk−1Bk (T )

With the introduction of liquidity risk, this possible loss must increase as
follows:

lossk = U0 − αk−1Bk (T ) + αk−1
1

2

[
Bk (T ) (S + aσ̃)

]
(77)

We again have to check whether the lossk is greater or equal to the prede-
termined value L, i.e.

L � U0 −

Bk (T )

Bk−1(T )

U0

(1− h)

[
1−

1

2
(S + aσ̃)

]
⇐⇒ (78)

Bk (T )

Bk−1 (T )
� (1− l)

(1− h)[
1− 1

2
(S + aσ̃)

]
We can realize that the exogenous liquidity risk is introduced as a linear

combination of U0, which simplifies notably the computations. Let

(1− h)[
1− 1

2
(S + aσ̃)

] = (1− h
′) (79)

Then,
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Bk (T )

Bk−1 (T )
� (1− l)(1− h′) (80)

which is very similar to expression (12). Therefore, we can use the results
derived earlier, this is, the probability of incurring in a big loss larger than L in
period k will be now:

P (k) = N(
ln((1− l)(1− h′))− µ

k

σk
)τQ (81)

where

h′ = 1−
(1− h)[

1− 1

2
(S + aσ̃)

] (82)

In the same way we can extend the result to the case of a collateral formed
with a portfolio of bonds. At t = kτ the possible loss will be equal to:

Lossk = U0−

{
αk−1Bk(T1)

[
1−

1

2
(S1 + aσ̃1)

]
+ qαk−1Bk(T2)

[
1−

1

2
(S2 + aσ̃2)

]}
(83)

or equivalently

Lossk = U0 −

Bk(T1) + q′Bk(T2)

(1− h′
1
)Bk−1(T1) + (1− h′

2
)qBk−1(T2)

U0 (84)

where

1− h′
1

=
1− h1[

1− 1

2
(S1 + aσ̃1)

] (85)

1− h′2 =
1− h2[

1− 1

2
(S1 + aσ̃1)

]
q′ = q

[
1− 1

2
(S2 + aσ̃2)

][
1− 1

2
(S1 + aσ̃1)

]
and follow same methodology as we did.

6.3 Appendix 3: Non-Constant Marking to Market

In this part we will introduce the case where marking to market period is not
constant. The reason to think about this possibility comes from the observation
in real world. For instance, we can observe a weekend effect, i.e. although
the marking to market is daily, during the weekend there are not margin calls,
therefore, the marking to market period is not constant anymore. This new case
does not affect our theoretical derivation, however, the effect on the probability
of loss can be considerable.
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Consider that the life of the contract can be divided in K periods tk (k =
1, 2, ...K) where the interval τk is not fixed (τk = tk − tk−1 is not constant).
Then, the possible loss at time tk can be written as:

lossk = U0 − α
k−1

B
k

(86)

or equivalently

lossk = U0 −
U0

(1− h)

Bk

B
k−1

(87)

we know that

ln(
Bk

Bk−1
) = µk + σkz (88)

where

z ˜ N(0, 1)

µk = (mk −mk−1) +
1− e−a(tk−tk−1)

a
(be−a(T−tk) + e−atk−1(r0 − b))

σk =
√
σ21k + σ22k (89)

σ1k =
1− e−a(tk−tk−1)

a
σr(

1− e−2atk−1

2a
)
1

2

σ2k = nkσr(
1− e−2a(tk−tk−1)

2a
)
1

2

Then, we have the following relationship between the determined maximum
loss, L = lU0, and z.

lU0 ≤ lossk = U0 −
U0

1− h
eµk+σkz

=⇒ z ≤
ln((1− l)(1− h))− µk

σk
(90)

Then,

P (lossk ≥ L) = N

(
ln((1− l)(1− h))− µk

σk

)

The result is very similar to the case with constant marking to market.

6.4 Appendix 4: Default Following a Poisson Process

P (k) = Pr(Xk ∩ Yk) = Pr (Xk) · Pr(Yk |Xk) (92)

where
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Xk = {
Bk (T )

Bk−1 (T )
≤ (1− l) (1− h)} (93)

Yk = {(k − 1)τ < ι ≤ kτ} (94)

where Pr (Xk) has been already computed before. From (48), we compute
the conditional probability at time 0,

Pr(Yk |Xk) = Pr(k − 1)τ < ι ≤ kτ |Xk)

= Pr(τ > (k − 1)τ |Xk)− Pr(τ > kτ |Xk)

= E0(e
−

∫ (k−1)τ
0 λ(s)ds − e−

∫
kτ

0
λ(s)ds |Xk)

= E0(e
−

∫ (k−1)τ
0 λ(s)ds |Xk)−E0(e

−

∫
kτ

0
λ(s)ds |Xk)

Notice that, in the first term, e−
∫ (k−1)τ
0 λ(s)ds has nothing to do with Xk

because e−
∫ (k−1)τ
0 λ(s)ds and Xk happen at different times. So,

E0(e
−

∫ (k−1)τ
0 λ(s)ds |Xk) = E0(e

−

∫ (k−1)τ
0 λ(s)ds)

= E0(e
−

∫ (k−1)τ
0 (λo

s
+φrs)ds)

= E0(e
−

∫ (k−1)τ
0 λo

s
ds) ·E0(e

−

∫ (k−1)τ
0 φrsds)

On the other hand, E0(e
−

∫ (k−1)τ
0 λo

s
ds) is similar to the pricing formula of

a zero coupon bond maturing at time tk−1. According to the Feynman-Kac

theorem, E0(e
−

∫ (k−1)τ
0 λo

s
ds) is the solution of a partial differential equation.

E0(e
−

∫ (k−1)τ
0 λo

s
ds) = emλ(0,(k−1)τ)−nλ(0,(k−1)τ)λ

0
0 (95)

where

nλ(t, T ) =
1− e−aλ(T−t)

aλ
(96)

m
λ
(t, T ) =

(n
λ
(t, T )− T + t)(a2

λ
b
λ
−

σ
2

λ

2 )

a2
λ

−
σ2
λ
n2
λ
(t, T )

4a
λ

(97)

From (53), we have

d (φrt) = a′(b′ − φrt)dt+ σ′

rdWt (98)

where

a′ = a (99)

b′ = bφ (100)

σ′

r = φσr (101)
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Similarly,

E0(e
−

∫ (k−1)τ
0 φrsds) = em

′(0,(k−1)τ)−n′(0,(k−1)τ)φr0 (102)

where

n′(t, T ) =
1− e−a

′(T−t)

a′
(103)

m′(t, T ) =
(n′(t, T )− T + t)(a′2b′ −

σ′2
r

2 )

a′2
−

σ′2
r
n′2(t, T )

4a′
(104)

Therefore,

E0(e
−

∫ (k−1)τ
0 λ(s)ds |Xk) = emλ(0,(k−1)τ)−nλ(0,(k−1)τ)λ00 ·em

′(0,(k−1)τ)−n′(0,(k−1)τ)φr0

(105)
Since λot is independent of default-free interest rate,

E0(e
−

∫
kτ

0
λ(s)ds |Xk) = E0(e

−

∫
kτ

0
λo
s
ds) · E0(e

−

∫
kτ

0
φrsds |Xk)

Again we have,

E0(e
−

∫
kτ

0
λo
s
ds) = emλ(0,kτ)−nλ(0,kτ)λ

0
0 (106)

Define a savings account

B(t) = e
∫
t

0
rsds (107)

Under risk-neutral probability measure, the relative price B(t,T )
B(t) is a mar-

tingale, and follows

d

(
B(t, kτ)

B(t)

)
=
B(t, kτ)

B(t)
(−σrn(t, kτ))dWt (108)

So

B(kτ, kτ)

B(kτ)
=
B(0, kτ)

B(0)
exp(

∫ kτ

0

−σrn(t, kτ)dWs −
1

2

∫ kτ

0

(−σrn(t, kτ))
2
ds)

(109)
Since B(0) = 1, B(tk, tk) = 1,

1

B(kτ)B(0, kτ)
= exp(

∫ kτ

0

−σrn(t, kτ)dWs −
1

2

∫ kτ

0

(−σrn(t, kτ))
2
ds) (110)

1

B(kτ)φB(0, kτ)φ
= exp(

∫ kτ

0

−φσrn(s, kτ)dWs −
1

2

∫ kτ

0

φ (−σrn(s, kτ))
2
ds)

= ξ (kτ) exp(
1

2

∫ kτ

0

φ(φ− 1)σ2rn
2(s, kτ)ds)
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where

ξ (kτ) = exp(

∫
kτ

0

−φσrn(s, kτ)dWs −
1

2

∫ kτ

0

(−φσrn(s, kτ))
2
ds) (111)

Hence, we have

E0(e
−

∫
kτ

0
φrsds |Xk) =

1

Pr(Xk)
E0(e

−

∫
kτ

0
φrsds1Xk

)

=
B(0, kτ)φ

Pr(Xk)
E0(

1

B(kτ)φB(0, kτ)φ
1Xk

)

=
B(0, kτ)φ

Pr(Xk)
E0(ξ (kτ)1Xk

) exp(
1

2

∫ kτ

0

φ(φ− 1)σ2
rn

2(s, kτ)ds)

It can be shown that

B(0, kτ)φ exp(
1

2

∫ kτ

0

φ(φ− 1)σ2
rn

2(s, kτ)ds) = em
′(0,kτ)−n′(0,kτ)φr0 (112)

m′ (0, tk) and n′ (0, tk) are defined in (103) and (104).
Define a new probability measure P tk :

P kτ (A) = E(ξ (kτ)1Xk
), ∀A ∈ Fkτ (113)

Under P tk ,

W kτ
t =Wt + φσr

∫ t

0

n(s, kτ)ds (114)

is a Brownian motion. The default-free interest rate under the new proba-
bility measure follows:

drt = a(b−
φσ2

r

a
n(t, kτ)− rt)dt+ σrdW

kτ
t (115)

Similarly,

E0(ξ (kτ)1Xk
) = Pkτ (Xk) = N(

ln(1− l)(1− h)/ (1− θ)− µ′

k

σ′

k

)

where
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µ′

k = (m(kτ + δ, T )−mk−1(T )) +
1− e−a(τk+δ)

a
(be−a(T−kτ−δ) + e−a(k−1)τ (r0 − b))

−n (kτ + δ, T )
(
η (kτ + δ, tk + δ)− η ((k − 1)τ , kτ + δ) e−a(τk+δ

)

σ′k =

√(
1− e−a(τk+δ)

a
σr

)2

(
1− e−2a(k−1)τ

2a
) + (n(kτ + δ, T )σr)

2
(
1− e−2a(τk+δ)

2a
)

η (s, t) =
φσ2r
a2

[
1

2
e−a(t−s)(1− e−2as)− (1− e−as)

]
(117)

where δ is time to capture, and θ is the percentage representing liquidity.
Hence,

E0(e
−

∫
kτ

0
λ(s)ds |Xk) = emλ(0,kτ)−nλ(0,kτ)λ

0

0 · em
′(0,kτ)−n′(0,kτ)φr0 ·

Pkτ (Xk)

Pr(Xk)
(118)

Pr(Yk |Xk) = emλ(0,(k−1)τ)−nλ(0,(k−1)τ)λ
0

0 · em
′(0,(k−1)τ)−n′(0,tk−1)φr0(119)

−emλ(0,kτ)−nλ(0,kτ)λ
0
0 · em

′(0,kτ)−n′(0,kτ)φr0 ·
Pkτ (Xk)

Pr(Xk)

When φ = 0, there is no correlation between the interest rate and the inten-
sity of default, therefore we have

Pr(Yk |Xk) = emλ(0,(k−1)τ)−nλ(0,(k−1)τ)λ
0
0 − emλ(0,kτ)−nλ(0,kτ)λ

0
0 (120)

The simplest case is that the intensity of the default process is a constant λ,
in that case, Pr(Yk |Xk) can be written as:

Pr(Yk |Xk) = E0(e
−

∫ (k−1)τ
0 λ(s)ds |Xk)−E0(e

−

∫
kτ

0
λ(s)ds |Xk)

= e−λ(k−1)τ (1− e−λkτ ) (121)

Denote the probability that default will happen within one year,

Q = 1− e−λ (122)

Then

Pr(Yk |Xk) = (1−Q)ι1+ι2+...+ιk−1(1− (1−Q)kι)

≈
k−1∏
i=1

(1−Qιi) ·Qιk (123)
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(123) is a very good approximation for high frequent marking to market.
Finally we have that the total probability of having a loss larger than L is:

P =

∑
P (k) (124)

where

P (k) = e
mλ(0,(k−1)τ)−nλ(0,(k−1)τ)λ0

0
· e

m′(0,(k−1)τ)−n′(0,(k−1)τ)φr0
· Pr(Xk)(125)

−e
mλ(0,kτ)−nλ(0,kτ)λ

0

0
· e

m′(0,kτ)−n′(0,kτ)φr0
· P

kτ (Xk)
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