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Abstract - The extension of GARCH models to the multivariate setting has been
fraught with difficulties. In this paper, we suggest to work with univariate portfolio
GARCH models. We show how the multivariate dimension of the portfolio
allocation problem may be recovered from the univariate approach. The main tool
we use is the “variance sensitivity analysis”, which measures the change in the
portfolio variance as a consequence of an infinitesimal change in the portfolio
allocation. We derive the sensitivity of the univariate portfolio GARCH variance to
the portfolio weights, by analytically computing the derivatives of the estimated
GARCH variance with respect to these weights. We suggest a new and simple
method to estimate full variance-covariance matrices of portfolio assets. An
application to real data portfolios shows how to implement our methodology and
compares its performance against that of selected popular alternatives.

JEL classification: C32, C53, G15

Keywords: Risk Management, Sensitivity Analysis, Dynamic Correlations, GARCH
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Non technical summary

Estimation of large multivariate volatility models is essential for risk management

purposes. Such estimation, however, is notoriously challenging, mainly due to the fact

that the number of parameters that need to be estimated increases exponentially, as one

leaves the univariate domain. This paper suggests to look at the multivariate problem

from a different perspective. We work with univariate portfolio models, and develop

tools to recover the multivariate dimension that is lost in the univariate estimation. This

is accomplished by recognising that the estimated univariate portfolio variance is a

function of the weights of the assets that form the portfolio. By taking the derivatives of

the variance with respect to these weights, it is possible to obtain information about the

local behaviour (around the portfolio weights) of the estimated variance.

Our sensitivity measure has many interesting practical applications. To start with,

risk managers might use our sensitivity analysis to test whether their actual portfolio has

minimum variance. Indeed, the minimum variance portfolio will be characterised by

having all first derivatives with respect to the portfolio weights equal to zero. The

sensitivity analysis could also be used to evaluate the impact that each individual (or

group of) asset has on the portfolio variance. This would help risk managers to find out

what the major sources of risk are, or allow them to evaluate the impact on the portfolio

variance of a certain transaction. A third application, proposed in this paper, is a new

and simple method to estimate full variance-covariance matrices of portfolio assets.

This is accomplished by exploiting the analytical relationship among variances,

covariances and the variance derivatives with respect to the portfolio weights.

We illustrate the functioning and the performance of our methodology with two

empirical applications. In the first one, we estimate the variance sensitivity for a

portfolio of two assets. We document how this sensitivity has been changing over time

and stress its implications for risk management. We also compute the second

derivative of the estimated variance with respect to the portfolio weights. We argue that

this measure gives an indication of the diversification opportunities at any given point in

time: the higher this second derivative, the greater the gains (in terms of variance

reduction) from a proper diversification strategy. In the second application, we

implement the suggested methodology to estimate full variance-covariance matrices.

We test the model with a sample of 10 stocks, taken from the Dow Jones index. We

evaluate the performance of our methodology against that of popular alternatives.
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1. INTRODUCTION

Estimates of volatilities and correlations are used for pricing, asset allocation, risk

management and hedging purposes. In today’s fast changing financial world, it is

essential that these measures are easy to understand and to implement. Since their

introduction by Engle (1982), ARCH models have been used extensively both in

academia and by practitioners to estimate the volatility of financial variables. Many

papers have been written on the subject, extending the original ARCH model in many

directions. The multivariate extension, however, has been met with many difficulties,

mainly due to the fact that the number of parameters that need to be estimated increases

exponentially, as one leaves the univariate domain.

This paper suggests to look at the multivariate problem from a different

perspective. The key idea is to work with univariate portfolio models, and to develop

tools to recover the multivariate dimension that is lost in the univariate estimation. This

is accomplished by recognising that the estimated univariate portfolio variance is a

function of the weights of the assets that form the portfolio. By taking the derivatives of

the variance with respect to these weights, it is possible to obtain information about the

local behaviour (around the portfolio weights) of the estimated variance.

Estimation of large multivariate GARCH models is notoriously challenging,

requiring strong assumptions to make such estimation feasible. For instance, the most

general multivariate GARCH model, the GARCH(1,1) vec representation introduced by

Engle and Kroner (1995), requires the estimation of 21 parameters to obtain the

variance-covariance matrix of just two assets. When the assets are five, there are 465

parameters to estimate and with ten assets the number of parameters raises to 6105!



���������	
���
��������������������������� "

Moreover, restrictions need to be imposed on the variance-covariance matrix to ensure

its positive definiteness. It is easy to argue that the high level of parameterisation and

the assumptions on the structure of the variance-covariance matrix are likely to increase

the dangers of misspecification and poor performance of the model.

On the other hand, the advantage of fitting variance models directly to the time

series of portfolio returns is that they indirectly incorporate any time varying correlation

among the assets. This makes it possible to estimate parsimonious models that

summarise the relevant characteristics of the assets entering the portfolio. This is done,

for example, by McNeil and Frey (2000) to calculate the Value at Risk of the portfolio.

The drawback of this approach, however, is that the multivariate dimension of the

portfolio allocation problem is lost. Given the estimated variance of a portfolio, a risk

manager would be unable to determine how this variance changes as the portfolio

composition evolves or to isolate the main sources of risk. It is not clear how to address

these issues in an univariate framework. In the following pages, we suggest the use of

sensitivity measures to overcome this problem.

Recently, measures of sensitivity to the weights of the portfolio allocation have

been proposed for Value at Risk (VaR) models. Garman (1996) suggested to compute

the derivative of the VaR with respect to the individual components of the portfolio, to

assess the potential impact of a trade on a firm’s VaR. Gourieroux, Laurent and Scaillet

(2000) study the theoretical implication of this exercise on different VaR models. The

same type of question can be asked with respect to the variance of a portfolio. When a

full variance-covariance matrix is available, this is a straightforward exercise. But when

univariate portfolio variances are estimated it is not obvious how to proceed.
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The main contribution of this paper is to show how to perform variance sensitivity

analysis in the context of univariate GARCH models. We derive the sensitivity of the

univariate portfolio GARCH variance to the portfolio weights, by analytically

computing the derivatives of the estimated GARCH variance with respect to these

weights. It is important to recognise that not only the portfolio returns, but also the

estimated parameters of the GARCH model are function of the weights. We show how a

simple application of the Implicit Function Theorem to the first order conditions of the

log-likelihood maximisation problem can be used to overcome this obstacle.

Our sensitivity measure has many interesting practical applications. To start with,

risk managers might use the GARCH sensitivity analysis to test whether their actual

portfolio has minimum variance. Indeed, the minimum variance portfolio will be

characterised by having all first derivatives with respect to the portfolio weights equal to

zero. The GARCH sensitivity analysis could also be used to evaluate the impact that

each individual (or group of) asset has on the portfolio variance. This would help risk

managers to find out what the major sources of risk are, or allow them to evaluate the

impact on the portfolio variance of a certain transaction. A third application, proposed

in this paper, is a new and simple method to estimate full variance-covariance matrices

of portfolio assets. This is accomplished by exploiting the analytical relationship among

variances, covariances and the variance derivatives with respect to the portfolio weights.

We show how a multivariate problem with (n+1) assets collapses in (n+1)n/2 univariate

problems analytically connected.

The plan of the paper is the following. The next section illustrates our

methodology. Section 3 shows how to employ GARCH sensitivity analysis to estimate
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full variance-covariance matrices. Section 4 contains an empirical application and

section 5 concludes.

2. SENSITIVITY ANALYSIS

In this section, we show how to compute the derivative of the univariate GARCH

portfolio variance with respect to the portfolio weights. Changing the portfolio weights

changes the time series of portfolio returns, and thus changes the information set used in

the estimation of the univariate GARCH model. As a consequence, the estimated

variance is function of the portfolio weights, both through the vector of portfolio returns

and through the estimated parameters (which obviously depend on the time series of

portfolio returns used in estimation). Differentiation of the portfolio returns with respect

to the portfolio weights is straightforward. To differentiate the estimated parameters we

appeal to the Implicit Function Theorem. The idea is that, since the estimated

parameters must satisfy the first order conditions of the log-likelihood maximisation

problem, if certain continuity conditions are satisfied, the first-order conditions define

an implicit function between the estimated parameters and the portfolio weights.

Let yt be the return of the portfolio P composed by n+1 assets and let yt,i be the ith

asset return, for t = 1,...,T and i = 1,...,n+1. Indicating the weight of asset i by ai, the

portfolio return at time t is ∑
+

=
=

1

1
,

n

i
itit yay . Note that since the weights ai have to sum to

one, we can write one weight as a function of the others, ∑
=

+ −=
n

i
in aa

1
1 1 .
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Assume that yt is modelled as a zero-mean1 process with a GARCH(p,q)

conditional variance ht:

(1) ttt hy ε= )1,0(~| tt Ωε

(2) θ’tt zh =

where )’,...,,,...,,1( 1
22

1
1

pttqtt
mx

t hhyyz −−−−= , )’,...,,,...,,( 110
1

pq
mx

ββαααθ =  and m = p+q+1. The

information set of this model is },...,,{ 1,1, +=Ω nttt yya , where a denotes the n-vector of

portfolio weights.2 Note that the information set includes the time series of the

individual assets returns and that a change in the vector of portfolio weights implies a

change in the information set. Therefore, to assess the potential impact of a trade on the

estimated variance, one would have to re-estimate the whole model, given that a and

hence the information set has changed. The problem is that such a procedure would

quickly become cumbersome and impractical, as the number of assets increases.

The potential effect of any change in the portfolio weights on the estimated

variance could be evaluated by simply computing the first derivative of the variance

with respect to the weights. A positive derivative would indicate that the change will

increase the variance of the portfolio and vice versa for a negative derivative. Let

θ̂ˆˆ
tt zh =  be the estimated variance, where a hat (^) above a variable denotes that the

variable is evaluated at the estimated parameter. In computing the derivative of tĥ  one

                                                          
1 The zero-mean assumption is made only for the sake of simplicity and implies no loss of generality.

2 The (n+1)-th weight is given by 1 minus the sum of the other weights. The corresponding (n+1)-th asset
is the pivotal asset against which the sensitivity analysis is performed. By changing the pivotal asset, one
obtains different sensitivity measures. Computing these sensitivity measures for each single asset of the
portfolio, it is possible to compute a matrix of sensitivities analogous to the variance-covariance matrix.
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must recognise that not only the vector tẑ , but also the vector of estimated coefficients

θ̂  depends on a. By the chain rule, the derivative of tĥ  with respect to a is given by:

(3) 
11

1

ˆ
'ˆˆ'ˆˆ

mx
t

nxm
mx

nxm

t

nx

t z
aa

z

a

h

∂
∂+

∂
∂=

∂
∂ θθ

To achieve a clearer picture of the local behaviour of the estimated variance with

respect to the portfolio allocation, one could determine its degree of convexity by

computing the second derivative:

(4) 
mxn

t

nxmmnxn
nxn

n
mx

t

nxnmnmxn
nxn

n
mx

nxnm

t

nxn

t

a

z

a
Iz

aa
I

aa

z

aa

h

’

ˆ'ˆ
2)ˆ(

'

'ˆ
)ˆ(

'

'ˆ

'

ˆ

1

2

1

22

∂
∂

∂
∂+⊗

∂∂
∂+⊗

∂∂
∂

=
∂∂

∂ θθθ

where ⊗ denotes the Kronecker product.

To evaluate (3) and (4), we need to compute 
a∂

∂ ’θ̂  and 
’

’ˆ2

aa∂∂
∂ θ , the other terms being

easily obtained. We compute these derivatives by applying the Implicit Function

Theorem to the first order conditions of the log-likelihood maximisation problem.

Assuming that the standardised residuals are normally distributed,3 the first order

conditions for model (1)-(2) are:

                                                          
3 If the variance equation is assumed to be correctly specified, Bollerslev and Wooldridge (1992) showed
that the vector of unknown parameters θ  can be consistently estimated by maximizing the normal log-
likelihood.
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(5) ∑
=

− =
∂

∂T

t

tlT
1

1 0
)ˆ(

θ
θ

where 12
2
1

2
1 )ln()( −−−= tttt hyhl θ  is the time t component of the log-likelihood function

ignoring constants. The following theorem derives the analytical expressions for 
a∂

∂ ’θ̂

and 
’

’ˆ2

aa∂∂
∂ θ .

Theorem 1 – Let ∑
=

−
∂∂

∂
≡

T

t

tlTI
1

2
1

’ 

)ˆ(ˆ
θθ
θ

θθ  and ∑
=

−
∂∂

∂
≡

T

t

t
a a

l
TI

1

2
1

’ 

)ˆ(ˆ
θ

θ
θ . If θθÎ  is non-

singular, then:

(6) 
mxn

a
mxm

mxn

II
a

)ˆ()ˆ(
ˆ

1
θθθ

θ −−=
∂
∂

(7) )]}ˆ()ˆ(ˆ)ˆ({[
ˆ

11
2

a
k

a
k

mxn
k

I
a

III
aaa θθθθθθ

θ
∂

∂+
∂

∂−=
∂∂

∂ −−       for k = 1,…, n

Proof - Since the score is continuous and differentiable both in a and θ , if θθÎ  is

non singular it is possible to apply the implicit function theorem to the first order

conditions. The result follows.

Both θθÎ  and aIθ̂  can be easily derived analytically, although the algebra might be

messy. One may wonder how it is possible to compute the sensitivity of GARCH

variances from the simple series of portfolio returns. In fact, formulae (6)-(7) and

theorem 1 make use not only of portfolio returns, but also of the returns of the

individual assets entering the information set. We illustrate this point with a simple
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example. Let 2,1, )1( ttt yaayy −+= , where a and (1-a) are the weights associated to assets

1 and 2, respectively. Suppose that an ARCH(1) model is estimated, so that the

parametric form of the estimated variance is 2
1

ˆˆ
−= tt yh θ .4 Then one can show that:

(8) )](2)([ˆˆ
2,11,11

2
2,1,

2
1

2
−−−−

− −+−≡ ttttttttta yyyyyyyyhIθ

Hence, both formula (3) and theorem 1 exploit not only the information contained

in T
tty 1}{ = , but also that contained in the individual series T

tty 11, }{ =  and T
tty 12, }{ = .

3. SENSITIVITY ANALYSIS CORRELATIONS

In this section, we show how the GARCH sensitivity results can be used to obtain an

estimate of the variance-covariance matrix. We first discuss some of the most popular

existing models, and then introduce our sensitivity-based method that we call

Sensitivity Analysis Correlation (SAC).

The multivariate GARCH model, initially proposed by Bollerslev, Engle and

Wooldridge (1988), can, in principle, be estimated efficiently by maximum likelihood.

However, the number of parameters to be estimated can be very large, requiring very

large data sets and exceptional computing capacity. To make the estimation feasible it is

necessary to impose often arbitrary restrictions. We refer to Bollerslev, Engle and

Nelson (1994) for a detailed survey. For the purpose of this paper, we restrict our

attention to three selected popular alternatives, against which the performance of our

                                                          
4 We left out the constant for the sake of simplicity.
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methodology will be evaluated: the Dynamic Conditional Correlation (DCC), the

Orthogonal GARCH (OGARCH) and the Exponentially Weighted Moving Average

(EWMA).

The Dynamic Conditional Correlation model has been recently proposed by Engle

(2000) and Engle and Sheppard (2001). This can be seen as a generalisation of the

Constant Conditional Correlation model, originally proposed by Bollerslev (1990). In

the DCC model, conditional correlations are directly parameterised, rather than assumed

constant. Engle (2000) shows that the estimation of the multivariate model can be

drastically simplified, by using a two-step procedure. First the univariate GARCH

models are estimated for each of the assets. Then the conditional correlation

specification is fitted to the standardised residuals obtained in the first step. There are

two drawbacks with this approach. First, no heterogeneous distributions across

correlations is allowed (being the long run correlations set equal to sample correlations).

Second, the same pair of parameters is estimated for all the correlations considered

(implying that all correlations have the same degree of persistence).

Alexander and Chibumba (1995) propose the Orthogonal GARCH model, based

on a principal component GARCH methodology. First, they construct unconditionally

uncorrelated factors, which are linear combinations of the original returns. Then they fit

univariate GARCH models to the principal components. Under the assumption that the

conditional variance-covariance matrix of the principal component series is diagonal

(i.e. conditional correlations are set to zero), it is possible to recover the original assets’

variance-covariance matrix, through a fixed mapping matrix. A sufficiently long sample

is needed not to encounter significant variability of this matrix, which might also be

sensible to different calibration procedures.
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The last method we consider is the EWMA, popularised by RiskMetrics. With this

method the variance-covariance matrix at time t is simply computed as a convex

combination of the variance-covariance matrix in the previous period, t-1, and the

matrix of squared and cross-product lagged returns. The weight is usually set equal to

0.94 or 0.97.

Let’s see now how the sensitivity results of the previous section can be used to

estimate full variance-covariance matrices. Consider, for the sake of simplicity, two

assets (A and B), which enter the portfolio Pa with weights a and (1-a). In general, the

variance of the portfolio can be expressed as a weighted sum of the variances of the

individual assets and the covariances: ABtBtAt
a

t haahahah ,,
2

,
2)( )1(2)1( −+−+= , where

)(a
th , Ath , , Bth ,  denote portfolio and assets A and B variances, and ABth ,  is the covariance

between A and B (here all the terms denote population values). Differentiating with

respect to a, we have:

(9) ABtBtAt

a
t hahaah
a

h
,,,

)(

)21(2)1(22 −+−−=
∂

∂

Consider now the two degenerate portfolios P1, composed entirely by asset A, and

P0, with only asset B, which correspond, respectively, to a = 1 and a = 0. Solving for

ABth ,  we get two equivalent expressions for the covariance:

(10) 
a

h
hh t

AtABt ∂
∂

−=
)1(

2
1

,, and
a

h
hh t

BtABt ∂
∂

+=
)0(

2
1

,,
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Note that Att hh ,
)1( =  and Btt hh ,

)0( = . An obvious estimator for the covariance is the

one that replaces the right-hand side variables of the above expressions with their

estimated values. Ath ,  and Bth ,  can be computed by fitting univariate GARCH models,

while the derivatives are given in equation (3) and can be easily computed from the

estimates of the individual assets univariate GARCH. Note that model (1)-(2) implies

that the information set of the individual asset GARCH models is },,{ ,, BtAtt yya=Ω , so

that, for example, square lagged returns of both assets could be used in the univariate

estimation.5

This procedure gives two different estimates of the covariance, )1(
,

ˆ
ABth  and )0(

,
ˆ

ABth ,

where the superscripts (1) and (0) refer to the two expressions in (10). To combine these

two estimates in order to have an estimated correlation that is bounded by -1 and 1, we

appropriately rescale both the dependent and regressor variables and run the following

modified logistic regression:

(11) t

BtAt

ABt

BtAt

ABt

BtAt

BtAt

hh

h

hh

h

hh

yy
εβββ ++Λ= )

ˆˆ

ˆ

ˆˆ

ˆ
,(

ˆˆ
,,

)0(
,

3

,,

)1(
,

21

,,

,,

The functional form 
x

x

e

e
x

1

1

1
1

1
),( β

β
β −

−

+
−≡Λ  is bounded between –1 and 1 over its

entire domain. The estimated time-varying correlation coefficient tρ̂  is given by the

fitted value of the above regression. That is, if we let 
BtAt

ABt

BtAt

ABt
t

hh

h

hh

h
x

,,

)0(
,

3

,,

)1(
,

2
ˆˆ

ˆ
ˆ

ˆˆ

ˆ
ˆˆ ββ +≡  and

                                                          
5 Of course, a continuum of alternatives could be obtained from (9), by choosing a∈(-∞,∞). This strategy,
however, would require not only the estimation of the two degenerate portfolio variances, ht,A and ht,B, but

also of )(a
th . As the number of assets increases, this method would quickly become impractical.
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denote with 1β̂ , 2β̂  and 3β̂  the non-linear least squares estimators of equation (11), we

have 
tx

tx

t
e

e
ˆ1ˆ

ˆ1ˆ

1

1ˆ
β

β
ρ

−

−

+

−= . Given the choice of the functional form, the estimated correlation

coefficient will be guaranteed to lie in the interval (-1,1).

This estimation procedure easily generalises to the case of an (n+1)-assets

portfolio. Since in the (n+1)-assets case there are (n+1)n/2 distinct covariance terms,

one would have to run this same number of logistic regressions, in addition to (n+1)

univariate GARCH models. The main drawback when leaving the bivariate domain is

that the mere fact that correlations are bounded between -1 and 1 does not guarantee any

more a positive definite variance-covariance matrix. Whether this is a relevant problem

is mainly an empirical question.

4. EMPIRICAL APPLICATION

In this section, we implement our methodology on a selected sample of stocks. We first

estimate the sensitivity of GARCH variances on a two-stock portfolio, as described in

section 2. Then we estimate full variance-covariance matrices for a ten-stock portfolio

using the methodology outlined in section 3, and compare its performance to that of a

few popular alternatives (namely, Dynamic Conditional Correlation, orthogonal

GARCH and Exponentially Weighted Moving Average).
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4.1 Sensitivity of GARCH variance

We estimated the first and second derivatives of GARCH variances as described in

section 2, using a two-asset portfolio, composed by General Motors (GM) and IBM.

Daily data are taken from Bloomberg and run from 2 January 1992 through 11 March

2002.

We estimate univariate GARCH(1,1) models for 31 portfolios constructed from

these two assets, with the GM weight (a) ranging from –1 to 2, with increments of 0.1.

For each estimated GARCH model, we computed the first and second derivatives of the

estimated variance with respect to the weight a. In figure 1 we plot the estimated

variances on 11 March 2002 for the 31 portfolios as a function of the weight, together

with their first and second derivatives. Note that the variance corresponding to a = 0 is

the variance of IBM, while the variance corresponding to a = 1 is the variance of GM.

The portfolios with a weight greater than 1 or less than 0 are short on IBM or GM,

respectively. The estimated variance plotted in figure 1 is a parabolic and convex

function of the portfolio weights a, suggesting that diversification produces significant

gains in terms of risk reduction. If the true variance-covariance matrix was available and

one computes the portfolio variances as a weighted sum of the individual asset

variances and their covariance, this function would be exactly a parabola. The fact that

fitting univariate GARCH models to the time series of portfolios produces results very

close to those one would expect in theory, indicates that these univariate GARCH

models provide a reasonable approximation of the true (but unknown) model. This

intuition is confirmed by the shape of the first and second derivatives. If the function

were truly a parabola, than the first derivative would be a straight positively sloped line



���������	
���
��������������������������� ��

and the second derivative a flat line. The plots in figure 1 show that both the first and

second derivatives are very close to their theoretical shape.

In figure 2, we report the time series of the first derivatives of the estimated

variance, 
a

aht

∂
∂ )(ˆ

, for the two degenerate portfolios, i.e. for IBM (a = 0) and GM (a = 1).

The picture indicates by how much the variance would decrease or increase over time, if

one diversifies away from the portfolios composed of only GM or IBM asset. Similar

pictures can be drawn for any portfolio weight, thus giving the risk manager a precise

indication about the consequences in terms of risk of changing the composition of the

current portfolio.

A second interesting feature of figure 2 is that the first derivative is always

positive for GM and almost always negative for IBM. This implies that the minimum

variance portfolio during the period considered in this analysis was formed by a convex

combination of these two assets. The fact that for a few days towards the end of the

sample both first derivatives were positive signals that during those days the risk

manager would have had to short GM to construct the minimum variance portfolio.

Figure 2 provides also an insight about the major sources of risk of a portfolio.

Indeed, the greater (in absolute value) the first derivative, the greater will be the risk

reduction following a portfolio reallocation. Figure 2 shows that the first derivative of

the portfolio containing only the IBM asset is much higher on average (in absolute

value) than the first derivative corresponding to the GM portfolio.6 This implies that

during the 1990’s an investor could achieve greater variance reduction by diversifying

away from the portfolio with only IBM (the “new economy” stock), than from the GM

                                                          
6 The average first derivative for IBM is –1.495 and for GM is 1.22. That is, the variance sensitivity of the
portfolio containing only IBM was about 20% higher than that of the GM portfolio.
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portfolio (the “old economy” stock). In the case of a portfolio with more than two

assets, one could compute the variance sensitivity corresponding to each asset and gain

in this way an insight about the major sources of risk of the portfolio. In order to reduce

the risk, the risk manager should sell the assets with highest first derivative and buy

those with the lowest one.

In figure 3 we report the time series of the second derivatives, for the two

degenerate portfolios, GM and IBM. In theory, for a correctly specified model, the

second derivative should not depend on the portfolio composition, as it should be a flat

line. As expected, the two graphs in figure 3 are very similar, obtaining once again

evidence that portfolio univariate GARCH models provide a good approximation of the

true variance.

The second derivative, being the slope of the first derivative, tells the risk

manager by how much the variance sensitivity will change after a change in the

portfolio allocation. The greater the magnitude of the second derivative, the greater will

be the change in the variance sensitivity, implying that a smaller portfolio reallocation

will be necessary to achieve a given size of variance reduction. Figure 3 shows that in

the last couple of years portfolio reallocations had much greater impact on the variance

than during the 90’s. The average of the second derivative was 2.36 between 1992 and

1999, and rose to 3.38 from 1999 to 2002. In other words, these results show that the

concavity of the portfolio variance (as a function of the weight a) has increased

dramatically over the past few years, for GM and IBM. This has obvious important

consequences for managing the risk of a portfolio composed by these two assets.
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4.2 Variance-Covariance Estimation

In this subsection we implement the methodology described in section 3 to estimate full

variance-covariance matrices. We tested our methodology on a sample of 10 stocks,

with the same time span as before, i.e. from 2 January 1992 through 11 March 2002.

The stocks are part of the Dow Jones index and were classified in two groups: 1) old

economy and 2) new economy. In the first group we put Boeing, Coca Cola, General

Electrics, General Motors and Mc Donald. In the second group we have Hewlett

Packard, Intel, IBM, Microsoft and 3M.

Table 1 reports some summary statistics. Both the mean and the median of the

returns (expressed in percentage points) are practically zero. The standard deviations for

the two groups of stocks signals that the new economy group has been on average more

volatile than the old economy group. The only exception is 3M, which has the lowest

standard deviation of all the 10 stocks. The Jarque-Bera test overwhelmingly rejects the

normality assumption for all the stock returns in the sample. This is also confirmed by

the very high kurtosis.

In table 2 we report the sample correlations of the returns. The average correlation

for the old economy stocks is 0.25 and for the new economy stocks is 0.28. The average

correlation across the two groups of stocks is 0.21. The highest correlation is the one

between Intel and Microsoft (0.54), while the lowest is that between Intel and Coca

Cola (0.10).

We implemented four different multivariate methodologies to estimate the

variance-covariance matrix: 1) Dynamic Conditional Correlation (DCC), 2) Orthogonal

GARCH (OGARCH), 3) Exponentially Weighted Moving Average (EWMA), and 4)
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Sensitivity Analysis Correlation (SAC). The decay coefficient for the EWMA was set

equal to 0.94.

In figure 4 we plot the estimated correlation between GM and IBM, according to

the four different models.  The general pattern is very similar, with correlations

oscillating around 0.2, increasing between 1998 and 2000 and towards the end of the

sample. However, the DCC correlation appears to be much less volatile than the others,

while EWMA correlation is the most volatile. In figure 5 we report the variance of the

portfolio composed by 60% of group 1 stocks and 40% of group 2 stocks (stocks within

the same group are given the same weight). Here again the estimated variances seem to

follow very similar patterns, with spikes around 1998 and towards the end of the

sample. In this graph, however, DCC and SAC variances are very similar, providing

more conservative estimates of the variance than OGARCH and EWMA.

Following Granger and Newbold (1986), Andersen and Bollerslev (1998) and

Andersen et al. (2002), and as originally suggested by Mincer and Zarnowitz (1969), we

evaluate the performance of the different models by projecting the absolute values of

portfolio returns on a constant and the alternative volatility estimates:

(12) t
B
t

A
tt hbhbby ε+++= ˆˆ|| 210

where A
tĥ  and B

tĥ  represent the estimated variance of two competing models. Estimate

A is efficient if b0 = b2 = 0 and b1 = 1. Alternatively, one could look at the R2 of the

regression. The higher the variation explained by the model estimate, the better the

model. As originally pointed out by Andersen and Bollerslev (1998), || ty  is a very

noisy proxy for the true volatility. Thus one should not expect very high R2 from these



���������	
���
��������������������������� ��

regressions. A more precise measure of volatility is given by the realised volatility, as

suggested by Andersen et al. (2002). However, the implementation of this measure

requires the availability of high frequency data and is beyond the scope of this paper.

We report the results of the regressions (12) in table 3. We constructed six

different portfolios by giving different weights to the two groups of stocks. These

weights ranged from 0 (corresponding to a portfolio with only new economy stocks) to

1 (old economy portfolio), with increments of 0.2. All the stocks within the same group

were given the same weight. For each of these six portfolios we ran 7 different

regressions. First we projected the absolute values of portfolio returns on a constant and

only one estimated volatility. Then we projected them on a constant, the SAC estimated

volatility and each of the alternative estimates. In the table, below each coefficient we

report in italic the t-statistics, computed using White heteroscedasticity robust standard

errors.

The results reported in the table show that DCC and SAC models clearly

dominate the other two. The DCC model produced the highest R2 for the first two

portfolios, while the R2 of the SAC model was the highest in the remaining four

portfolios. These results are confirmed by looking at the coefficients of the estimated

regression. For OGARCH and EWMA we always strongly reject the null hypothesis H0:

b1 = 1. The coefficients associated to DCC and SAC are much closer to 1 and for half of

the portfolios we cannot reject H0 at the 1% confidence level. Finally, the pair

comparisons also indicate the clear superiority of SAC relative to OGARCH and

EWMA, while the comparison between SAC and DCC appears to confirm those from

the R2, with the DCC dominating for the first two portfolios, and SAC outperforming

DCC in the rest of the cases.
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5. CONCLUSIONS

Fitting variance models directly to the time series of portfolio returns has many

advantages, such as the possibility of estimating parsimonious models and

computational tractability. The problem of this strategy is that the multivariate

dimension of the portfolio allocation is lost. This paper suggested a strategy to

overcome this problem, working within a GARCH framework. We assessed the

potential impact of a trade on the estimated variance by computing the sensitivity of the

estimated variance with respect to the weight of the asset involved in the trade. This

sensitivity measure is simply the derivative of the estimated variance with respect to the

portfolio weights. As a by-product of this analysis, we proposed a new and simple

method to estimate full variance-covariance matrices, which exploits the analytical

relationship among variances, covariances and sensitivity measures.

We illustrated the functioning and the performance of our methodology with two

empirical applications. In the first one, we estimated the variance sensitivity for a

portfolio of two assets. We documented how this sensitivity has been changing over

time and stressed its implications for risk management. We also computed the second

derivative of the estimated variance with respect to the portfolio weights. We argued

that this measure gives an indication of the diversification opportunities at any given

point in time: the higher this second derivative, the greater the gains (in terms of

variance reduction) from a proper diversification strategy.

In the second application, we implemented the suggested methodology (which we

call the Sensitivity Analysis Correlation (SAC) model) to estimate full variance-

covariance matrices. We tested the model with a sample of 10 stocks, taken from the

Dow Jones index. We evaluated the performance of our methodology against that of
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popular alternatives, including the Dynamic Conditional Correlation (DCC), the

Orthogonal GARCH and the Exponentially Weighted Moving Average models. Our

tests suggest that the performance of the proposed method is comparable with the DCC

model, and superior to that of the other two models.

REFERENCES

Andersen, T.G. and T. Bollerslev (1997), “Answering the Skeptics: Yes, Standard
Volatility Models do Provide Accurate Forecasts”, Journal of Empirical Finance, 4:
115-158.

Andersen, T., Bollerslev, T., Diebold, F.X. and Labys, P. (2002) , "Modeling and
Forecasting Realized Volatility," Manuscript, Departments of Economics, Northwestern
University, Duke University and University of Pennsylvania.

Alexander, C. and A.M. Chibumba (1995), “Multivariate Orthogonal Factor Garch”,
University of Sussex Discussion Papers in Mathematics.

Bollerslev, T. (1990), “Modelling the Coherence in Short-Run Nominal Exchange
Rates: A Multivariate Generalized ARCH Approach”, Review of Economics and
Statistics, 72: 498-505.

Bollerslev, T., R.F. Engle and D. Nelson (1994), ARCH Models, Ch. 49 in R.F. Engle
and D.L. McFadden eds., Handbook of Econometrics, iv Elsevier.

Bollerslev, T., R.F. Engle and J.M. Wooldridge (1988), “A Capital-Asset Pricing Model
with Time Varying Covariances”, Journal of Political Economy, 96: 116-131.

Bollerslev, T. and J. Wooldridge (1992), “Quasi-Maximum Likelihood Estimation and
Inference in Dynamic Models with Time Varying Covariances, Econometric Reviews
11: 143-172.

Engle, R.F. (1982), “Autoregressive Conditional Heteroscedasticity with Estimates of
the Variance of United Kingdom Inflation”, Econometrica, 50: 987-1007.

Engle, R.F. (2000), “Dynamic Conditional Correlation - A Simple Class of Multivariate
GARCH Models”, UCSD Discussion Paper.

Engle, R.F. and K. F. Kroner (1995), “Multivariate Simultaneous Generalized ARCH”,
Econometric Theory, 11: 122-150.



���������	
���
�����������������������������

Engle, R.F. and K. Sheppard (2001), “Theoretical and Empirical Properties of Dynamic
Conditional Correlation Multivariate GARCH”, UCSD Discussion Paper 2001-15.

Gourieroux, C., J.P. Laurent and O. Scaillet (2000), “Sensitivity Analysis of Values at
Risk”, Journal of Empirical Finance, 7: 225-245.

Garman M. (1996), “Improving on VaR”, Risk, 9: 61-63.

Granger, C. and P. Newbold (1986), Forecasting Economic Time Series, Academic
Press, San Diego, Second Edition.

McNeil, A.J. and R. Frey (2000), “Estimation of tail related risk measures for
heteroskedastic financial time series: an extreme value approach”, Journal of Empirical
Finance, 7: 271-300.

Mincer, J. and V. Zarnowitz (1969), “The evaluation of economic forecasts”, in
Economic Forecasts and Expectations (J. Mincer, ed.), New York: National Bureau of
Economic Research.

West, K., H.J. Edison and D. Cho (1992), “A Utility Based Comparison of Some
Models of Exchange Rate Volatility”, Journal of International Economics, 35: 23-45.



���������	
���
��������������������������� �"

-1 -0.5 0 0.5 1 1.5 2
-4

-3

-2

-1

0

1

2

3

4

5
Variance, f irst and second derivatives at time T

Figure 1 – Plot of estimated variance, first and second derivative on 11 March 2002, for 31 portfolios
constructed from GM and IBM. On the horizontal axis there is the portfolio weight for GM, which ranges
from –1 to 2, with increments of 0.1. The variance is computed by re-estimating a GARCH(1,1) model
for each of the 31 portfolios. The first and second derivatives are computed analytically, as described in
section 2.
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Figure 2 – Plot of variance sensitivities for the two degenerate portfolios GM and IBM. The variance
sensitivity indicates by how much the variance would increase or decrease over time, if one increases the
weight of GM in the portfolio. In the case the portfolio is composed of only GM, buying an extra share of
GM and going short of IBM would increase the overall portfolio variance (upper line). Vice versa,
diversifying away from a portfolio composed of only IBM stocks would decrease the variance (bottom
line).
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Figure 3 – Plot of the estimated second derivatives, computed from the degenerate GM portfolio (upper
graph) and the degenerate IBM portfolio (lower graph). Under correct model specification, the second
derivative should not depend on the portfolio weight. Hence the two graphs should be exactly the same.
The striking similarity among these two graphs confirms the results obtained in figure 1, i.e. that
GARCH(1,1) model provides a reasonable approximation of the variance process.
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Figure 4 – Plot of estimated correlations between GM and IBM, according to four different models
applied to the full sample of 10 stocks. The plotted correlations have a very similar pattern, although DCC
correlation seems to be less volatile and EWMA correlation more volatile than the others.
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Figure 5 – Plot of estimated variances for the portfolio composed by 60% of old economy stocks and
40% of new economy stocks. The overall patterns are very similar, although DCC and SAC estimated
variances are much lower than the others.
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Table 1 – Summary statistics for the 10 stocks used in the analysis. The stocks were divided into two
groups, an old economy group and a new economy one. The standard deviation of the new economy
stocks is significantly higher than that for the old economy group. The high kurtosis and Jarque-Bera
statistic indicate that the normality assumption is rejected for all the stocks in the sample.

BA GE GM KO MCD INTC HWP IBM MMM MSFT
Mean 0.01 0.03 0.02 0.01 0.02 0.05 0.02 0.03 0.02 0.04

Median 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00
Maximum 4.78 5.10 3.22 4.07 4.48 7.96 6.93 5.37 4.56 7.76
Minimum -8.42 -4.90 -6.31 -4.81 -4.67 -10.81 -8.99 -7.34 -4.38 -7.36
Std. Dev. 0.88 0.73 0.88 0.74 0.74 1.24 1.20 0.94 0.69 1.02
Skewness -0.68 -0.04 -0.08 0.00 0.07 -0.29 -0.19 -0.01 0.10 -0.10
Kurtosis 12.38 6.91 4.97 6.23 6.20 7.69 8.29 8.68 6.50 7.28

Jarque-Bera 9621 1639 416 1114 1094 2392 3008 3451 1312 1965
Probability 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 2 – Sample correlations for the 10 stocks used in the analysis. The average correlation for the old
economy stocks is 0.25, for the new economy stocks is 0.28 and across the two groups is 0.21. The
highest correlation in the sample is the one between Intel and Microsoft (0.54). The lowest correlation is
that between Intel and Coca Cola (0.10).

BA GE GM KO MCD INTC HWP IBM MMM MSFT
BA 1.00
GE 0.32 1.00
GM 0.20 0.33 1.00
KO 0.19 0.33 0.14 1.00

MCD 0.17 0.29 0.17 0.29 1.00
INTC 0.19 0.31 0.26 0.10 0.14 1.00
HWP 0.17 0.30 0.22 0.12 0.16 0.44 1.00
IBM 0.17 0.31 0.21 0.11 0.17 0.39 0.40 1.00

MMM 0.26 0.34 0.27 0.24 0.17 0.18 0.16 0.17 1.00
MSFT 0.19 0.35 0.25 0.16 0.15 0.54 0.38 0.34 0.14 1.00
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Table 3 – Output of the regression t
B
t

A
tt hbhbby ε+++= ˆˆ|| 210  for six different portfolios. The

portfolios are constructed using weights for the group of old economy stocks that range from 0 to 1, with
increments of 0.2. For each portfolio we highlighted the best performing model (among the four
alternatives considered) according to the R2 criterion. Below each coefficient, we report in italic the t-
statistics, computed using White hetereoscedasticity consistent standard errors. When the null hypothesis
of b0=0, b1= b2=1 is rejected at the 1% confidence level, we format the corresponding coefficients in bold.

Weight = 0 b0 b1 b2 R2
DCC -0.1143 0.9410 0.0879

-2.1079 0.6994
OGARCH 0.0790 0.6611 0.0813

1.9845 5.3578
EWMA 0.1259 0.6030 0.0828

3.7106 7.1685
SAC -0.0381 0.8367 0.0874

-0.8043 2.1819
SAC+DCC -0.0880 0.3697 0.5359 0.0887

-1.4879 2.0161 1.3132
SAC+OGARCH -0.0256 0.5648 0.2523 0.0900

-0.5382 2.8455 5.8707
SAC+EWMA -0.0672 1.0050 -0.1271 0.0876

-0.9981 -0.0169 5.1803

Weight = 0.2 b0 b1 b2 R2
DCC -0.1050 0.9460 0.0869

-2.2700 0.6510
OGARCH 0.0798 0.6400 0.0815

2.3000 5.6900
EWMA 0.1130 0.5940 0.0815

3.9000 7.4600
SAC -0.0296 0.8330 0.0865

-0.7340 2.2600
SAC+DCC -0.0780 0.3770 0.5290 0.0878

-1.5500 2.1400 1.4400
SAC+OGARCH -0.0106 0.5670 0.2310 0.0883

-0.2610 2.4400 5.1000
SAC+EWMA -0.0659 1.0700 -0.1800 0.0867

-1.1300 -0.2440 5.2300

Weight = 0.4 b0 b1 b2 R2
DCC -0.0899 0.9350 0.0853

-2.2700 0.8070
OGARCH 0.0730 0.6320 0.0836

2.4000 5.8600
EWMA 0.1040 0.5830 0.0811

4.1400 7.7800
SAC -0.0211 0.8270 0.0860

-0.6110 2.3900
SAC+DCC -0.0564 0.4810 0.4040 0.0868

-1.3400 1.8700 1.9500
SAC+OGARCH 0.0041 0.5250 0.2490 0.0874

0.1200 2.2200 4.0600
SAC+EWMA -0.0624 1.1400 -0.2270 0.0864

-1.2000 -0.4100 5.0000
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Table 3 continued

Weight = 0.6 b0 b1 b2 R2
DCC -0.0632 0.8910 0.0823

-1.8200 1.4100
OGARCH 0.0630 0.6340 0.0833

2.2400 5.7500
EWMA 0.1010 0.5670 0.0799

4.3800 8.0300
SAC -0.0101 0.8090 0.0842

-0.3220 2.6300
SAC+DCC -0.0308 0.5720 0.2720 0.0846

-0.8830 1.5600 2.5200
SAC+OGARCH 0.0148 0.4630 0.2840 0.0855

0.5190 2.4300 3.5900
SAC+EWMA -0.0565 1.1900 -0.2750 0.0847

-1.1400 -0.4990 4.5800

Weight = 0.8 b0 b1 b2 R2
DCC -0.0327 0.8270 0.0792

-1.0200 2.3400
OGARCH 0.0496 0.6530 0.0796

1.7600 5.2600
EWMA 0.1000 0.5580 0.0790

4.4500 8.0700
SAC -0.0032 0.7920 0.0823

-0.1050 2.8100
SAC+DCC -0.0104 0.6730 0.1300 0.0824

-0.3390 1.1200 3.0200
SAC+OGARCH 0.0068 0.5150 0.2470 0.0836

0.2320 2.8100 4.7200
SAC+EWMA -0.0412 1.1100 -0.2300 0.0826

-0.7840 -0.2600 3.9000

Weight = 1 b0 b1 b2 R2
DCC -0.0007 0.7570 0.0728

-0.0227 3.4000
OGARCH 0.0432 0.6680 0.0708

1.4500 4.9300
EWMA 0.1090 0.5450 0.0729

4.5900 8.1800
SAC 0.0081 0.7620 0.0744

0.2470 3.1700
SAC+DCC 0.0022 0.5540 0.2140 0.0746

0.0689 1.3900 2.6300
SAC+OGARCH 0.0056 0.4920 0.2670 0.0764

0.1710 3.5300 5.7500
SAC+EWMA 0.0107 0.7410 0.0150 0.0744

0.1790 0.5790 2.9400
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