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Abstract - The extension of GARCH models to the multivariate setting has been
fraught with difficulties. In this paper, we suggest to work with univariate portfolio
GARCH models. We show how the multivariate dimension of the portfolio
allocation problem may be recovered from the univariate approach. The main tool
we use is the “variance sensitivity analysis”, which measures the change in the
portfolio variance as a consequence of an infinitesimal change in the portfolio
allocation. We derive the sensitivity of the univariate portfolio GARCH variance to
the portfolio weights, by analytically computing the derivatives of the estimated
GARCH variance with respect to these weights. We suggest a new and simple
method to estimate full variance-covariance matrices of portfolio assets. An
application to real data portfolios shows how to implement our methodology and
compares its performance against that of selected popular alternatives.

JEL classification: C32, C53, G15

Keywords: Risk Management, Sensitivity Analysis, Dynamic Correlations, GARCH
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Non technical summary

Estimation of large multivariate volatility models is essential for risk management
purposes. Such estimation, however, is notoriously challenging, mainly due to the fact
that the number of parameters that need to be estimated increases exponentially, as one
leaves the univariate domain. This paper suggests to look at the multivariate problem
from a different perspective. We work with univariate portfolio models, and develop
tools to recover the multivariate dimension that is lost in the univariate estimation. This
is accomplished by recognising that the estimated univariate portfolio variance is a
function of the weights of the assets that form the portfolio. By taking the derivatives of
the variance with respect to these weights, it is possible to obtain information about the
local behaviour (around the portfolio weights) of the estimated variance.

Our sensitivity measure has many interesting practical applications. To start with,
risk managers might use our sensitivity analysis to test whether their actual portfolio has
minimum variance. Indeed, the minimum variance portfolio will be characterised by
having all first derivatives with respect to the portfolio weights equal to zero. The
sensitivity analysis could also be used to evaluate the impact that each individual (or
group of) asset has on the portfolio variance. This would help risk managers to find out
what the major sources of risk are, or allow them to evaluate the impact on the portfolio
variance of a certain transaction. A third application, proposed in this paper, is a new
and simple method to estimate full variance-covariance matrices of portfolio assets.
This is accomplished by exploiting the analytical relationship among variances,
covariances and the variance derivatives with respect to the portfolio weights.

We illustrate the functioning and the performance of our methodology with two
empirical applications. In the first one, we estimate the variance sensitivity for a
portfolio of two assets. We document how this sensitivity has been changing over time
and stress its implications for risk management. We also compute the second
derivative of the estimated variance with respect to the portfolio weights. We argue that
this measure gives an indication of the diversification opportunities at any given point in
time: the higher this second derivative, the greater the gains (in terms of variance
reduction) from a proper diversification strategy. In the second application, we
implement the suggested methodology to estimate full variance-covariance matrices.
We test the model with a sample of 10 stocks, taken from the Dow Jones index. We

evaluate the performance of our methodology against that of popular alternatives.
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1. INTRODUCTION

Estimates of volatilities and correlations are used for pricing, asset allocation, risk
management and hedging purposes. In today’s fast changing financial world, it is
essential that these measures are easy to understand and to implement. Since their
introduction by Engle (1982), ARCH models have been used extensively both in
academia and by practitioners to estimate the volatility of financial variables. Many
papers have been written on the subject, extending the original ARCH model in many
directions. The multivariate extension, however, has been met with many difficulties,
mainly due to the fact that the number of parameters that need to be estimated increases
exponentially, as one leaves the univariate domain.

This paper suggests to look at the multivariate problem from a different
perspective. The key idea is to work with univariate portfolio models, and to develop
tools to recover the multivariate dimension that is lost in the univariate estimation. This
is accomplished by recognising that the estimated univariate portfolio variance is a
function of the weights of the assets that form the portfolio. By taking the derivatives of
the variance with respect to these weights, it is possible to obtain information about the
local behaviour (around the portfolio weights) of the estimated variance.

Estimation of large multivariate GARCH models is notoriously challenging,
requiring strong assumptions to make such estimation feasible. For instance, the most
general multivariate GARCH model, the GARCH(1,1) vec representation introduced by
Engle and Kroner (1995), requires the estimation of 21 parameters to obtain the
variance-covariance matrix of just two assets. When the assets are five, there are 465

parameters to estimate and with ten assets the number of parameters raises to 6105!
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Moreover, restrictions need to be imposed on the variance-covariance matrix to ensure
its positive definiteness. It is easy to argue that the high level of parameterisation and
the assumptions on the structure of the variance-covariance matrix are likely to increase
the dangers of misspecification and poor performance of the model.

On the other hand, the advantage of fitting variance models directly to the time
series of portfolio returns is that they indirectly incorporate any time varying correlation
among the assets. This makes it possible to estimate parsimonious models that
summarise the relevant characteristics of the assets entering the portfolio. This is done,
for example, by McNeil and Frey (2000) to calculate the Value at Risk of the portfolio.
The drawback of this approach, however, is that the multivariate dimension of the
portfolio allocation problem is lost. Given the estimated variance of a portfolio, a risk
manager would be unable to determine how this variance changes as the portfolio
composition evolves or to isolate the main sources of risk. It is not clear how to address
these issues in an univariate framework. In the following pages, we suggest the use of
sensitivity measures to overcome this problem.

Recently, measures of sensitivity to the weights of the portfolio allocation have
been proposed for Value at Risk (VaR) models. Garman (1996) suggested to compute
the derivative of the VaR with respect to the individual components of the portfolio, to
assess the potential impact of a trade on a firm’s VaR. Gourieroux, Laurent and Scaillet
(2000) study the theoretical implication of this exercise on different VaR models. The
same type of question can be asked with respect to the variance of a portfolio. When a
full variance-covariance matrix is available, this is a straightforward exercise. But when

univariate portfolio variances are estimated it is not obvious how to proceed.
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The main contribution of this paper is to show how to perform variance sensitivity
analysis in the context of univariate GARCH models. We derive the sensitivity of the
univariate portfolio GARCH variance to the portfolio weights, by analytically
computing the derivatives of the estimated GARCH variance with respect to these
weights. It is important to recognise that not only the portfolio returns, but also the
estimated parameters of the GARCH model are function of the weights. We show how a
simple application of the Implicit Function Theorem to the first order conditions of the
log-likelihood maximisation problem can be used to overcome this obstacle.

Our sensitivity measure has many interesting practical applications. To start with,
risk managers might use the GARCH sensitivity analysis to test whether their actual
portfolio has minimum variance. Indeed, the minimum variance portfolio will be
characterised by having all first derivatives with respect to the portfolio weights equal to
zero. The GARCH sensitivity analysis could also be used to evaluate the impact that
each individual (or group of) asset has on the portfolio variance. This would help risk
managers to find out what the major sources of risk are, or allow them to evaluate the
impact on the portfolio variance of a certain transaction. A third application, proposed
in this paper, is a new and simple method to estimate full variance-covariance matrices
of portfolio assets. This is accomplished by exploiting the analytical relationship among
variances, covariances and the variance derivatives with respect to the portfolio weights.
We show how a multivariate problem with (n+1) assets collapses in (rn+1)n/2 univariate
problems analytically connected.

The plan of the paper is the following. The next section illustrates our

methodology. Section 3 shows how to employ GARCH sensitivity analysis to estimate
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full variance-covariance matrices. Section 4 contains an empirical application and

section 5 concludes.

2. SENSITIVITY ANALYSIS

In this section, we show how to compute the derivative of the univariate GARCH
portfolio variance with respect to the portfolio weights. Changing the portfolio weights
changes the time series of portfolio returns, and thus changes the information set used in
the estimation of the univariate GARCH model. As a consequence, the estimated
variance is function of the portfolio weights, both through the vector of portfolio returns
and through the estimated parameters (which obviously depend on the time series of
portfolio returns used in estimation). Differentiation of the portfolio returns with respect
to the portfolio weights is straightforward. To differentiate the estimated parameters we
appeal to the Implicit Function Theorem. The idea is that, since the estimated
parameters must satisfy the first order conditions of the log-likelihood maximisation
problem, if certain continuity conditions are satisfied, the first-order conditions define
an implicit function between the estimated parameters and the portfolio weights.

Let y; be the return of the portfolio P composed by n+1 assets and let y;; be the i"

asset return, for = 1,...,T and i = 1,...,n+1. Indicating the weight of asset i by a;, the

n+l
portfolio return at time 7 1s y, = Y,a;y,; . Note that since the weights a; have to sum to
i=1

n
one, we can write one weight as a function of the others, a,,; =1-Yaq; .
i=1
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Assume that y, is modelled as a zero-mean' process with a GARCH(p,q)

conditional variance A;:

(1) Yt :\/Egt & Q, ~(0,1)
(2) h,=z,°0

where z, =(1,y,z_l,_..,y,z_q,h,_l,...,ht_p)’, 01=(ao,al,...,aq,ﬁl,...,,Bp)’ and m = p+g+1. The

mxl1 mx

information set of this model i1s Q, ={a,y,;.....y; .41}, Where a denotes the n-vector of

portfolio weights.> Note that the information set includes the time series of the
individual assets returns and that a change in the vector of portfolio weights implies a
change in the information set. Therefore, to assess the potential impact of a trade on the
estimated variance, one would have to re-estimate the whole model, given that a and
hence the information set has changed. The problem is that such a procedure would
quickly become cumbersome and impractical, as the number of assets increases.

The potential effect of any change in the portfolio weights on the estimated
variance could be evaluated by simply computing the first derivative of the variance
with respect to the weights. A positive derivative would indicate that the change will

increase the variance of the portfolio and vice versa for a negative derivative. Let

h, =26 be the estimated variance, where a hat (*) above a variable denotes that the

variable is evaluated at the estimated parameter. In computing the derivative of 4, one

! The zero-mean assumption is made only for the sake of simplicity and implies no loss of generality.

2 The (n+1)-th weight is given by 1 minus the sum of the other weights. The corresponding (n+1)-th asset
is the pivotal asset against which the sensitivity analysis is performed. By changing the pivotal asset, one
obtains different sensitivity measures. Computing these sensitivity measures for each single asset of the
portfolio, it is possible to compute a matrix of sensitivities analogous to the variance-covariance matrix.
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must recognise that not only the vector z,, but also the vector of estimated coefficients

6 depends on a. By the chain rule, the derivative of i, with respect to a is given by:

Iy _ 9% 0 96 2,
da da mx1 da
nx1 nxm nxm

€)

mx1

To achieve a clearer picture of the local behaviour of the estimated variance with
respect to the portfolio allocation, one could determine its degree of convexity by

computing the second derivative:

27 24 R 2 Av Av z
4) O 9% o1 w20 (s @ )220 %
dada' dada' mxl ,, 0ada' i n da da’

nxn nxnm nmxn nxnm mnxn nxm mxn

where ® denotes the Kronecker product.

A) 2 A’
To evaluate (3) and (4), we need to compute 88_0 and aa—ae , the other terms being
a aod

easily obtained. We compute these derivatives by applying the Implicit Function
Theorem to the first order conditions of the log-likelihood maximisation problem.
Assuming that the standardised residuals are normally distributed,’ the first order

conditions for model (1)-(2) are:

? If the variance equation is assumed to be correctly specified, Bollerslev and Wooldridge (1992) showed
that the vector of unknown parameters 8 can be consistently estimated by maximizing the normal log-
likelihood.
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T—l I alt(é) _
5 99

) 0

where /,(0)=-1in(h,)-1y7h;! is the time # component of the log-likelihood function

ignoring constants. The following theorem derives the analytical expressions for aa—e
a

026

d .
an dada’

N T 327 (9 . T 327 (H .
Theorem 1 — Let g =7" Zw and Ig, =T"" TGN Ipgp 1is mon-
=1 80 89’ t=1 80 aa’
singular, then:
6 _ -y
(6) 5, - Uee) "(a,)
a mxm mxn
%6 d + 1r L 19 -
(7 =~{[=—op) ' Tas +(pp) ' 5 —(Ug)l}  fork=1...n
daday, day, day

mxn

Proof - Since the score is continuous and differentiable both in @ and 6, if I, is

non singular it is possible to apply the implicit function theorem to the first order

conditions. The result follows. -

Both I, and I4, can be easily derived analytically, although the algebra might be

messy. One may wonder how it is possible to compute the sensitivity of GARCH
variances from the simple series of portfolio returns. In fact, formulae (6)-(7) and
theorem 1 make use not only of portfolio returns, but also of the returns of the

individual assets entering the information set. We illustrate this point with a simple
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example. Let y, =ay,; +(1-a)y,,, where a and (1-a) are the weights associated to assets
1 and 2, respectively. Suppose that an ARCH(1) model is estimated, so that the

parametric form of the estimated variance is 4, =é?2 ,.* Then one can show that:

5 r o2 2
®) Lo =h “[yic1yi e = Yi2) 4295 vic1 (Vim11 = Vi-12)]

Hence, both formula (3) and theorem 1 exploit not only the information contained

in {y,}’_,, but also that contained in the individual series { Vil I, and { yt,z}trz1 .

3. SENSITIVITY ANALYSIS CORRELATIONS

In this section, we show how the GARCH sensitivity results can be used to obtain an
estimate of the variance-covariance matrix. We first discuss some of the most popular
existing models, and then introduce our sensitivity-based method that we call
Sensitivity Analysis Correlation (SAC).

The multivariate GARCH model, initially proposed by Bollerslev, Engle and
Wooldridge (1988), can, in principle, be estimated efficiently by maximum likelihood.
However, the number of parameters to be estimated can be very large, requiring very
large data sets and exceptional computing capacity. To make the estimation feasible it is
necessary to impose often arbitrary restrictions. We refer to Bollerslev, Engle and
Nelson (1994) for a detailed survey. For the purpose of this paper, we restrict our

attention to three selected popular alternatives, against which the performance of our

* We left out the constant for the sake of simplicity.
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methodology will be evaluated: the Dynamic Conditional Correlation (DCC), the
Orthogonal GARCH (OGARCH) and the Exponentially Weighted Moving Average
(EWMA).

The Dynamic Conditional Correlation model has been recently proposed by Engle
(2000) and Engle and Sheppard (2001). This can be seen as a generalisation of the
Constant Conditional Correlation model, originally proposed by Bollerslev (1990). In
the DCC model, conditional correlations are directly parameterised, rather than assumed
constant. Engle (2000) shows that the estimation of the multivariate model can be
drastically simplified, by using a two-step procedure. First the univariate GARCH
models are estimated for each of the assets. Then the conditional correlation
specification is fitted to the standardised residuals obtained in the first step. There are
two drawbacks with this approach. First, no heterogeneous distributions across
correlations is allowed (being the long run correlations set equal to sample correlations).
Second, the same pair of parameters is estimated for all the correlations considered
(implying that all correlations have the same degree of persistence).

Alexander and Chibumba (1995) propose the Orthogonal GARCH model, based
on a principal component GARCH methodology. First, they construct unconditionally
uncorrelated factors, which are linear combinations of the original returns. Then they fit
univariate GARCH models to the principal components. Under the assumption that the
conditional variance-covariance matrix of the principal component series is diagonal
(i.e. conditional correlations are set to zero), it is possible to recover the original assets’
variance-covariance matrix, through a fixed mapping matrix. A sufficiently long sample
is needed not to encounter significant variability of this matrix, which might also be

sensible to different calibration procedures.
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The last method we consider is the EWMA, popularised by RiskMetrics. With this
method the variance-covariance matrix at time ¢ is simply computed as a convex
combination of the variance-covariance matrix in the previous period, 7-1, and the
matrix of squared and cross-product lagged returns. The weight is usually set equal to
0.94 or 0.97.

Let’s see now how the sensitivity results of the previous section can be used to
estimate full variance-covariance matrices. Consider, for the sake of simplicity, two
assets (4 and B), which enter the portfolio P, with weights a and (1-a). In general, the

variance of the portfolio can be expressed as a weighted sum of the variances of the
individual assets and the covariances: h'“ =ah, 4 +(1—a)?h, 5 +2a(1-a)h, 45, Where
A h, 4, h, p denote portfolio and assets 4 and B variances, and 4, 45 is the covariance

between 4 and B (here all the terms denote population values). Differentiating with

respect to a, we have:

PV

) E

= 2ah, 4 —2(1-a)h, g +2(1-2a)h, 45

Consider now the two degenerate portfolios P;, composed entirely by asset 4, and
Py, with only asset B, which correspond, respectively, to a = 1 and a = 0. Solving for

h, 45 WE get two equivalent expressions for the covariance:

on) an”
(10) hiap = h g =% —=" and by ap =g + 23—
oa da
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Note that 4" =4, , and h{”) =4, 5. An obvious estimator for the covariance is the

one that replaces the right-hand side variables of the above expressions with their

estimated values. #, 4 and h, 5 can be computed by fitting univariate GARCH models,

while the derivatives are given in equation (3) and can be easily computed from the
estimates of the individual assets univariate GARCH. Note that model (1)-(2) implies

that the information set of the individual asset GARCH models is Q, ={a,y, 4,5}, SO

that, for example, square lagged returns of both assets could be used in the univariate

estimation.’

This procedure gives two different estimates of the covariance, 4}, and 2%),,

where the superscripts (1) and (0) refer to the two expressions in (10). To combine these
two estimates in order to have an estimated correlation that is bounded by -1 and 1, we
appropriately rescale both the dependent and regressor variables and run the following

modified logistic regression:

) H©
(11) Yt,4Vt,B = A B, B t,AB " t,AB )te,

LA (b g, s
it 5 Jidig b thng

. 1— e Pix
The functional form A(B,x)=——
1+

v 1s bounded between —1 and 1 over its
e

entire domain. The estimated time-varying correlation coefficient p, is given by the

YU TR0
fitted value of the above regression. That is, if we let %, = LS B —

B —== — and
’ \/ht,Aht,B \/ht,Aht,B

> Of course, a continuum of alternatives could be obtained from (9), by choosing ae (-e,00). This strategy,
however, would require not only the estimation of the two degenerate portfolio variances, #, 4 and 4, 5, but

also of ht(“) . As the number of assets increases, this method would quickly become impractical.
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denote with f3,, B, and J; the non-linear least squares estimators of equation (11), we

_ehiE . . . .
have p, =le7. Given the choice of the functional form, the estimated correlation
1+e P

coefficient will be guaranteed to lie in the interval (-1,1).

This estimation procedure easily generalises to the case of an (n+1)-assets
portfolio. Since in the (n+1)-assets case there are (n+1)n/2 distinct covariance terms,
one would have to run this same number of logistic regressions, in addition to (n+1)
univariate GARCH models. The main drawback when leaving the bivariate domain is
that the mere fact that correlations are bounded between -1 and 1 does not guarantee any
more a positive definite variance-covariance matrix. Whether this is a relevant problem

is mainly an empirical question.

4. EMPIRICAL APPLICATION

In this section, we implement our methodology on a selected sample of stocks. We first
estimate the sensitivity of GARCH variances on a two-stock portfolio, as described in
section 2. Then we estimate full variance-covariance matrices for a ten-stock portfolio
using the methodology outlined in section 3, and compare its performance to that of a
few popular alternatives (namely, Dynamic Conditional Correlation, orthogonal

GARCH and Exponentially Weighted Moving Average).
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4.1 Sensitivity of GARCH variance

We estimated the first and second derivatives of GARCH variances as described in
section 2, using a two-asset portfolio, composed by General Motors (GM) and IBM.
Daily data are taken from Bloomberg and run from 2 January 1992 through 11 March
2002.

We estimate univariate GARCH(1,1) models for 31 portfolios constructed from
these two assets, with the GM weight (@) ranging from —1 to 2, with increments of 0.1.
For each estimated GARCH model, we computed the first and second derivatives of the
estimated variance with respect to the weight a. In figure 1 we plot the estimated
variances on 11 March 2002 for the 31 portfolios as a function of the weight, together
with their first and second derivatives. Note that the variance corresponding to a = 0 is
the variance of IBM, while the variance corresponding to a = 1 is the variance of GM.
The portfolios with a weight greater than 1 or less than 0 are short on IBM or GM,
respectively. The estimated variance plotted in figure 1 is a parabolic and convex
function of the portfolio weights a, suggesting that diversification produces significant
gains in terms of risk reduction. If the true variance-covariance matrix was available and
one computes the portfolio variances as a weighted sum of the individual asset
variances and their covariance, this function would be exactly a parabola. The fact that
fitting univariate GARCH models to the time series of portfolios produces results very
close to those one would expect in theory, indicates that these univariate GARCH
models provide a reasonable approximation of the true (but unknown) model. This
intuition is confirmed by the shape of the first and second derivatives. If the function

were truly a parabola, than the first derivative would be a straight positively sloped line
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and the second derivative a flat line. The plots in figure 1 show that both the first and
second derivatives are very close to their theoretical shape.

In figure 2, we report the time series of the first derivatives of the estimated
variance, % , for the two degenerate portfolios, i.e. for IBM (a = 0) and GM (a = 1).
a

The picture indicates by how much the variance would decrease or increase over time, if
one diversifies away from the portfolios composed of only GM or IBM asset. Similar
pictures can be drawn for any portfolio weight, thus giving the risk manager a precise
indication about the consequences in terms of risk of changing the composition of the
current portfolio.

A second interesting feature of figure 2 is that the first derivative is always
positive for GM and almost always negative for IBM. This implies that the minimum
variance portfolio during the period considered in this analysis was formed by a convex
combination of these two assets. The fact that for a few days towards the end of the
sample both first derivatives were positive signals that during those days the risk
manager would have had to short GM to construct the minimum variance portfolio.

Figure 2 provides also an insight about the major sources of risk of a portfolio.
Indeed, the greater (in absolute value) the first derivative, the greater will be the risk
reduction following a portfolio reallocation. Figure 2 shows that the first derivative of
the portfolio containing only the IBM asset is much higher on average (in absolute
value) than the first derivative corresponding to the GM portfolio.® This implies that
during the 1990’s an investor could achieve greater variance reduction by diversifying

away from the portfolio with only IBM (the “new economy” stock), than from the GM

% The average first derivative for IBM is —1.495 and for GM is 1.22. That is, the variance sensitivity of the
portfolio containing only IBM was about 20% higher than that of the GM portfolio.
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b

portfolio (the “old economy” stock). In the case of a portfolio with more than two
assets, one could compute the variance sensitivity corresponding to each asset and gain
in this way an insight about the major sources of risk of the portfolio. In order to reduce
the risk, the risk manager should sell the assets with highest first derivative and buy
those with the lowest one.

In figure 3 we report the time series of the second derivatives, for the two
degenerate portfolios, GM and IBM. In theory, for a correctly specified model, the
second derivative should not depend on the portfolio composition, as it should be a flat
line. As expected, the two graphs in figure 3 are very similar, obtaining once again
evidence that portfolio univariate GARCH models provide a good approximation of the
true variance.

The second derivative, being the slope of the first derivative, tells the risk
manager by how much the variance sensitivity will change after a change in the
portfolio allocation. The greater the magnitude of the second derivative, the greater will
be the change in the variance sensitivity, implying that a smaller portfolio reallocation
will be necessary to achieve a given size of variance reduction. Figure 3 shows that in
the last couple of years portfolio reallocations had much greater impact on the variance
than during the 90’s. The average of the second derivative was 2.36 between 1992 and
1999, and rose to 3.38 from 1999 to 2002. In other words, these results show that the
concavity of the portfolio variance (as a function of the weight @) has increased
dramatically over the past few years, for GM and IBM. This has obvious important

consequences for managing the risk of a portfolio composed by these two assets.
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4.2 Variance-Covariance Estimation

In this subsection we implement the methodology described in section 3 to estimate full
variance-covariance matrices. We tested our methodology on a sample of 10 stocks,
with the same time span as before, i.e. from 2 January 1992 through 11 March 2002.
The stocks are part of the Dow Jones index and were classified in two groups: 1) old
economy and 2) new economy. In the first group we put Boeing, Coca Cola, General
Electrics, General Motors and Mc Donald. In the second group we have Hewlett
Packard, Intel, IBM, Microsoft and 3M.

Table 1 reports some summary statistics. Both the mean and the median of the
returns (expressed in percentage points) are practically zero. The standard deviations for
the two groups of stocks signals that the new economy group has been on average more
volatile than the old economy group. The only exception is 3M, which has the lowest
standard deviation of all the 10 stocks. The Jarque-Bera test overwhelmingly rejects the
normality assumption for all the stock returns in the sample. This is also confirmed by
the very high kurtosis.

In table 2 we report the sample correlations of the returns. The average correlation
for the old economy stocks is 0.25 and for the new economy stocks is 0.28. The average
correlation across the two groups of stocks is 0.21. The highest correlation is the one
between Intel and Microsoft (0.54), while the lowest is that between Intel and Coca
Cola (0.10).

We implemented four different multivariate methodologies to estimate the
variance-covariance matrix: 1) Dynamic Conditional Correlation (DCC), 2) Orthogonal

GARCH (OGARCH), 3) Exponentially Weighted Moving Average (EWMA), and 4)
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Sensitivity Analysis Correlation (SAC). The decay coefficient for the EWMA was set
equal to 0.94.

In figure 4 we plot the estimated correlation between GM and IBM, according to
the four different models. The general pattern is very similar, with correlations
oscillating around 0.2, increasing between 1998 and 2000 and towards the end of the
sample. However, the DCC correlation appears to be much less volatile than the others,
while EWMA correlation is the most volatile. In figure 5 we report the variance of the
portfolio composed by 60% of group 1 stocks and 40% of group 2 stocks (stocks within
the same group are given the same weight). Here again the estimated variances seem to
follow very similar patterns, with spikes around 1998 and towards the end of the
sample. In this graph, however, DCC and SAC variances are very similar, providing
more conservative estimates of the variance than OGARCH and EWMA.

Following Granger and Newbold (1986), Andersen and Bollerslev (1998) and
Andersen et al. (2002), and as originally suggested by Mincer and Zarnowitz (1969), we
evaluate the performance of the different models by projecting the absolute values of

portfolio returns on a constant and the alternative volatility estimates:

(12) | i E by +byy ki +byhf +e,

where n/! and 4P represent the estimated variance of two competing models. Estimate

A is efficient if byp = b, = 0 and b; = 1. Alternatively, one could look at the R? of the
regression. The higher the variation explained by the model estimate, the better the

model. As originally pointed out by Andersen and Bollerslev (1998), |y, | is a very

noisy proxy for the true volatility. Thus one should not expect very high R* from these
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regressions. A more precise measure of volatility is given by the realised volatility, as
suggested by Andersen et al. (2002). However, the implementation of this measure
requires the availability of high frequency data and is beyond the scope of this paper.

We report the results of the regressions (12) in table 3. We constructed six
different portfolios by giving different weights to the two groups of stocks. These
weights ranged from 0 (corresponding to a portfolio with only new economy stocks) to
1 (old economy portfolio), with increments of 0.2. All the stocks within the same group
were given the same weight. For each of these six portfolios we ran 7 different
regressions. First we projected the absolute values of portfolio returns on a constant and
only one estimated volatility. Then we projected them on a constant, the SAC estimated
volatility and each of the alternative estimates. In the table, below each coefficient we
report in italic the z-statistics, computed using White heteroscedasticity robust standard
errors.

The results reported in the table show that DCC and SAC models clearly
dominate the other two. The DCC model produced the highest R* for the first two
portfolios, while the R* of the SAC model was the highest in the remaining four
portfolios. These results are confirmed by looking at the coefficients of the estimated
regression. For OGARCH and EWMA we always strongly reject the null hypothesis Hy:
by = 1. The coefficients associated to DCC and SAC are much closer to 1 and for half of
the portfolios we cannot reject H, at the 1% confidence level. Finally, the pair
comparisons also indicate the clear superiority of SAC relative to OGARCH and
EWMA, while the comparison between SAC and DCC appears to confirm those from
the R*, with the DCC dominating for the first two portfolios, and SAC outperforming

DCC in the rest of the cases.

ECB «Working Paper No 194 ¢« November 2002 23



5. CONCLUSIONS

Fitting variance models directly to the time series of portfolio returns has many
advantages, such as the possibility of estimating parsimonious models and
computational tractability. The problem of this strategy is that the multivariate
dimension of the portfolio allocation is lost. This paper suggested a strategy to
overcome this problem, working within a GARCH framework. We assessed the
potential impact of a trade on the estimated variance by computing the sensitivity of the
estimated variance with respect to the weight of the asset involved in the trade. This
sensitivity measure is simply the derivative of the estimated variance with respect to the
portfolio weights. As a by-product of this analysis, we proposed a new and simple
method to estimate full variance-covariance matrices, which exploits the analytical
relationship among variances, covariances and sensitivity measures.

We illustrated the functioning and the performance of our methodology with two
empirical applications. In the first one, we estimated the variance sensitivity for a
portfolio of two assets. We documented how this sensitivity has been changing over
time and stressed its implications for risk management. We also computed the second
derivative of the estimated variance with respect to the portfolio weights. We argued
that this measure gives an indication of the diversification opportunities at any given
point in time: the higher this second derivative, the greater the gains (in terms of
variance reduction) from a proper diversification strategy.

In the second application, we implemented the suggested methodology (which we
call the Sensitivity Analysis Correlation (SAC) model) to estimate full variance-
covariance matrices. We tested the model with a sample of 10 stocks, taken from the

Dow Jones index. We evaluated the performance of our methodology against that of
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popular alternatives, including the Dynamic Conditional Correlation (DCC), the
Orthogonal GARCH and the Exponentially Weighted Moving Average models. Our
tests suggest that the performance of the proposed method is comparable with the DCC

model, and superior to that of the other two models.
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Figure 1 — Plot of estimated variance, first and second derivative on 11 March 2002, for 31 portfolios
constructed from GM and IBM. On the horizontal axis there is the portfolio weight for GM, which ranges
from —1 to 2, with increments of 0.1. The variance is computed by re-estimating a GARCH(1,1) model
for each of the 31 portfolios. The first and second derivatives are computed analytically, as described in
section 2.
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Figure 2 — Plot of variance sensitivities for the two degenerate portfolios GM and IBM. The variance
sensitivity indicates by how much the variance would increase or decrease over time, if one increases the
weight of GM in the portfolio. In the case the portfolio is composed of only GM, buying an extra share of
GM and going short of IBM would increase the overall portfolio variance (upper line). Vice versa,
diversifying away from a portfolio composed of only IBM stocks would decrease the variance (bottom
line).
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Second derivative of GM
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Figure 3 — Plot of the estimated second derivatives, computed from the degenerate GM portfolio (upper
graph) and the degenerate IBM portfolio (lower graph). Under correct model specification, the second
derivative should not depend on the portfolio weight. Hence the two graphs should be exactly the same.
The striking similarity among these two graphs confirms the results obtained in figure 1, i.e. that
GARCH(1,1) model provides a reasonable approximation of the variance process.
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Figure 4 — Plot of estimated correlations between GM and IBM, according to four different models
applied to the full sample of 10 stocks. The plotted correlations have a very similar pattern, although DCC
correlation seems to be less volatile and EWMA correlation more volatile than the others.
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Figure 5 — Plot of estimated variances for the portfolio composed by 60% of old economy stocks and
40% of new economy stocks. The overall patterns are very similar, although DCC and SAC estimated

variances are much lower than the others.
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Table 1 — Summary statistics for the 10 stocks used in the analysis. The stocks were divided into two
groups, an old economy group and a new economy one. The standard deviation of the new economy
stocks is significantly higher than that for the old economy group. The high kurtosis and Jarque-Bera
statistic indicate that the normality assumption is rejected for all the stocks in the sample.

BA GE GM KO MCD | INTC HWP IBM MMM MSFT

Mean 0.01 0.03 0.02 0.01 0.02 0.05 0.02 0.03 0.02 0.04
Median 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00
Maximum 4.78 5.10 3.22 4.07 4.48 7.96 6.93 5.37 4.56 7.76
Minimum -8.42 490 -631 -481 -4.67 | -10.81 -8.99 -7.34 -4.38 -7.36
Std. Dev. 0.88 0.73 0.88 0.74 0.74 1.24 1.20 0.94 0.69 1.02
Skewness -0.68  -0.04 -0.08 0.00 0.07 -0.29  -0.19  -0.01 0.10 -0.10
Kurtosis 1238 691 4.97 6.23 6.20 7.69 8.29 8.68 6.50 7.28

Jarque-Bera | 9621 1639 416 1114 1094 | 2392 3008 3451 1312 1965
Probability 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 2 — Sample correlations for the 10 stocks used in the analysis. The average correlation for the old
economy stocks is 0.25, for the new economy stocks is 0.28 and across the two groups is 0.21. The
highest correlation in the sample is the one between Intel and Microsoft (0.54). The lowest correlation is
that between Intel and Coca Cola (0.10).

BA GE GM KO MCD INTC HWP IBM MMM MSFT

BA 1.00
GE 0.32 1.00
GM 0.20 0.33 1.00
KO 0.19 0.33 0.14 1.00
MCD 0.17 0.29 0.17 0.29 1.00
INTC 0.19 0.31 0.26 0.10 0.14 1.00
HWP 0.17 0.30 0.22 0.12 0.16 0.44 1.00
IBM 0.17 0.31 0.21 0.11 0.17 0.39 0.40 1.00
MMM 0.26 0.34 0.27 0.24 0.17 0.18 0.16 0.17 1.00
MSFT 0.19 0.35 0.25 0.16 0.15 0.54 0.38 0.34 0.14 1.00
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Table 3 — Output of the regression |y, |= b, +bnﬂ;tA +b21ﬂ;t3 +¢, for six different portfolios. The

portfolios are constructed using weights for the group of old economy stocks that range from 0 to 1, with
increments of 0.2. For each portfolio we highlighted the best performing model (among the four
alternatives considered) according to the R* criterion. Below each coefficient, we report in italic the t-
statistics, computed using White hetereoscedasticity consistent standard errors. When the null hypothesis
of by=0, b1= by=1 is rejected at the 1% confidence level, we format the corresponding coefficients in bold.

Weight = 0 b0 bl b2 R2
DCC -0.1143 0.9410 0.0879
-2.1079 0.6994
OGARCH 0.0790 0.6611 0.0813
1.9845 5.3578
EWMA 0.1259 0.6030 0.0828
3.7106 7.1685
SAC -0.0381 0.8367 0.0874
-0.8043 2.1819
SAC+DCC -0.0880 0.3697 0.5359 0.0887
-1.4879 2.0161 13132
SAC+OGARCH -0.0256 0.5648 0.2523 0.0900
-0.5382 2.8455 5.8707
SAC+EWMA -0.0672 1.0050 -0.1271 0.0876
-0.9981 -0.0169 5.1803
Weight = 0.2 b0 bl b2 R2
DCC -0.1050 0.9460 0.0869
-2.2700 0.6510
OGARCH 0.0798 0.6400 0.0815
2.3000 5.6900
EWMA 0.1130 0.5940 0.0815
3.9000 7.4600
SAC -0.0296 0.8330 0.0865
0.7340 2.2600
SAC+DCC -0.0780 0.3770 0.5290 0.0878
-1.5500 2.1400 1.4400
SAC+OGARCH -0.0106 0.5670 0.2310 0.0883
-0.2610 2.4400 5.1000
SAC+EWMA -0.0659 1.0700 -0.1800 0.0867
-1.1300 -0.2440 5.2300
Weight =0.4 b0 bl b2 R2
DCC -0.0899 0.9350 0.0853
2.2700 0.8070
OGARCH 0.0730 0.6320 0.0836
2.4000 5.8600
EWMA 0.1040 0.5830 0.0811
4.1400 7.7800
SAC -0.0211 0.8270 0.0860
206110 2.3900
SAC+DCC -0.0564 0.4810 0.4040 0.0868
-1.3400 1.8700 1.9500
SAC+OGARCH 0.0041 0.5250 0.2490 0.0874
0.1200 2.2200 4.0600
SAC+EWMA -0.0624 1.1400 -0.2270 0.0864
-1.2000 -0.4100 5.0000
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Table 3 continued

Weight = 0.6 b0 bl b2 R2
DCC -0.0632 0.8910 0.0823
-1.8200 1.4100
OGARCH 0.0630 0.6340 0.0833
2.2400 5.7500
EWMA 0.1010 0.5670 0.0799
4.3800 8.0300
SAC -0.0101 0.8090 0.0842
-0.3220 2.6300
SAC+DCC -0.0308 0.5720 0.2720 0.0846
-0.8830 1.5600 2.5200
SAC+OGARCH 0.0148 0.4630 0.2840 0.0855
0.5190 2.4300 3.5900
SAC+EWMA -0.0565 1.1900 -0.2750 0.0847
-1.1400 -0.4990 4.5800
Weight = 0.8 b0 bl b2 R2
DCC -0.0327 0.8270 0.0792
-1.0200 2.3400
OGARCH 0.0496 0.6530 0.0796
1.7600 5.2600
EWMA 0.1000 0.5580 0.0790
4.4500 8.0700
SAC -0.0032 0.7920 0.0823
-0.1050 2.8100
SAC+DCC -0.0104 0.6730 0.1300 0.0824
-0.3390 1.1200 3.0200
SAC+OGARCH 0.0068 0.5150 0.2470 0.0836
0.2320 2.8100 4.7200
SAC+EWMA -0.0412 1.1100 -0.2300 0.0826
-0.7840 -0.2600 3.9000
Weight =1 b0 bl b2 R2
DCC -0.0007 0.7570 0.0728
-0.0227 3.4000
OGARCH 0.0432 0.6680 0.0708
1.4500 4.9300
EWMA 0.1090 0.5450 0.0729
4.5900 8.1800
SAC 0.0081 0.7620 0.0744
0.2470 3.1700
SAC+DCC 0.0022 0.5540 0.2140 0.0746
0.0689 1.3900 2.6300
SAC+OGARCH 0.0056 0.4920 0.2670 0.0764
0.1710 3.5300 5.7500
SAC+EWMA 0.0107 0.7410 0.0150 0.0744
0.1790 0.5790 2.9400
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