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Abstract

Forecasts from dynamic factor models potentially benefit from refining the data set by elim-

inating uninformative series. The paper proposes to use prediction weights as provided by the

factor model itself for this purpose. Monte Carlo simulations and an empirical application to

short-term forecasts of euro area, German, and French GDP growth from unbalanced monthly

data suggest that both prediction weights and Least Angle Regressions result in improved

nowcasts. Overall, prediction weights provide yet more robust results.
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Non-technical summary

Dynamic factor models have emerged as a widely used tool for obtaining short-term forecasts of

economic activity and inflation. These models are usually applied to large data sets that consist

of a wide range of different series, as suggested by standard considerations from statistical theory.

Recentl studies have argued that forecasts may be improved by focusing on a limited set of highly

informative series. Methods to select appropriate informative data sets are based on so-called

stepwise regression, which builds an informative data set by an iterative procedure. Starting

with the series with the highest information content, at each step another series (the one with

the highest additional information gain in forecasting) is added to the data set. It is well-known

that this procedure becomes highly ineffi cient, once the number of series increases. To enhance

robustness, constrained versions have been proposed, the most prominent among them Least

Angle Regressions (LARS).

Another way to increase robustness is to use the factor model itself for estimating the information

content of individual series from their weights in the factor model prediction. In this paper, I

provide two pieces of evidence, which suggest that factor model prediction weights are a useful

alternative to LARS. First, a simulation exercise confirms that both methods are suitable for

selecting data sets that result in more effi cient predictions. However, factor model prediction

weights are more successful than LARS in identifying the appropriate series and deliver more

effi cient predictions. Moreover LARS shows some tendency of over-fitting, as predictions suggest

gains that only partly carry over to other samples.

Second, I apply both methods to the forecasting of quarterly GDP growth from large unbalanced

monthly data sets from a dynamic factor model. I use monthly data sets of about 70 series for the

euro area, Germany, and France over the period of 1991 to 2007. I find that variable selections

from either method improve forecasts of the euro area and German GDP with small data sets

of about 10 to 30 series, but not so for France. Overall, again, prediction weights provide more

robust variable selections and give rise to smaller prediction errors than LARS.
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1 Introduction

Dynamic factor models have emerged as a widely used tool for obtaining nowcasts and short-

term forecasts of economic activity and inflation (e.g. Stock and Watson, 2002a; Gianonne et al.,

2008). From asymptotic considerations, these models are usually applied to large data sets that

consist of a wide range of different series. It has been questioned though that increasing the sheer

number of series in the data set would necessarily improve forecast performance. Boivin and Ng

(2006) have identified conditions, under which enlarging the data set may actually worsen the

precision of factor estimates. Bai and Ng (2008) have proposed Least Angle Regressions (LARS)

and related methods to identify effi cient sets of predictors in dynamic factor models. These two

studies, along with Schumacher (2010), Caggiano et al. (2011), Alvarez et al. (2012), and Bessec

(2013) also present empirical applications that demonstrate gains from using smaller data sets in

predictions from dynamic factor models.

In this paper, I propose the use of prediction weights that are obtained from the factor model

itself as an alternative method for selecting an effi cient set of predictors. As with any linear

model, the factor model prediction for a certain target variable can be written as a weighted

linear combination of current and lagged values of the predictors. I investigate, whether forecast

effi ciency can be improved by retaining only predictors with high weights.

Basically, the method parallels stepwise regression, but with the difference that a factor structure

is imposed on the data. In its forward selection variant, stepwise regression builds up a set

of predictors for a certain target variable by an iterative procedure. At each step, it adds the

series with the highest marginal predictive gain to the set of series from the previous step. It is

well-known that this procedure becomes highly ineffi cient, once the number of series increases.

To overcome the dimensionality problem, constrained versions have been proposed, among them

LARS and LASSO (Efron et al., 2004), the latter being used by Bai and Ng (2008) to select

predictors in factor model forecasts of inflation. Another way to deal with high dimensionality

is to use the factor model itself for estimating the marginal predictive gains of individual series.

This amounts to calculating their weights in the factor model prediction.
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I provide two pieces of evidence, which suggest that factor model prediction weights are a useful

alternative to LARS. First, a Monte-Carlo simulation exercise confirms that both methods are

suitable for selecting data sets that result in more effi cient predictions. However, factor model

prediction weights are more successful than LARS in identifying the appropriate series. Conse-

quently, they also tend to deliver better out-of-sample predictions. LARS, in turn, shows some

tendency of overfitting, as pre-sample predictions suggest gains that only partly carry over to the

out-of-sample case.

Second, I apply both methods to the now- and forecasting of quarterly GDP growth from large

unbalanced monthly data sets. I use the dynamic factor model by Doz et al. (2011), which employs

a state-space framework and therefore copes with unbalanced data and mixed frequencies in an

effi cient way. It has been shown to perform well under these conditions (Giannone et al., 2008;

Rünstler et al., 2009; Angelini et al., 2011). As pointed out by Bańbura and Rünstler (2011),

prediction weights of individual series can be obtained from an extension of the Kalman filter.

LARS is less suited for dealing with unbalancedness and must be applied to quarterly aggregates

of monthly data.

I use monthly data sets for the euro area, Germany, and France over the period of 1991 to 2014.

Each data set contains about 70 series. I obtain variable selections from a pre-sample and evaluate

their performance from a pseudo real-time forecast exercise. I find that variable selections of 10 to

30 series from either method improve nowcasts of euro area GDP. Results for Germany and France

are more mixed. Selections from factor model prediction weights provide moderate but consistent

gains, while pre-sample LARS selections sometimes suggest gains that revert into losses in out-of-

sample predictions. Overall, for nowcasts factor model predicition weights tend to provide more

robust variable selections than LARS. Gains for next-quarter forecasts are generally very small.

The paper is organised as follows. Section 2 reviews the basic concepts. Section 3 discusses

variable selection in the context of the dynamic factor model by Doz et al. (2011) with unbalanced

and mixed-frequency data. Section 4 conducts the Monte Carlo study to investigate the gains

from using prediction weights and LARS. Section 5 presents the empirical application. Section 6

concludes the paper.
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2 Variable selection in factor models

Consider the dynamic factor model

xt = Λft + ξt, ξt ∼ N(0,Σξ). (1)

The model relates the n × 1 vector of series xt = (x1t, . . . , xnt)
′ to r × 1 vector of common

factors ft = (f1t, . . . , frt)
′ from matrix Λ of factor loadings and to n × 1 vector of idiosyncratic

components ξt = (ξ1t, . . . , ξnt)
′ with covariance matrix Σξ. It holds r << n. Common factors ft

and idiosyncratic components ξt are assumed to follow certain stochastic processes, which will be

specified below.

The purpose of the model is to estimate (and possibly predict) ft from data xt, t = 1, . . . , T , and

subsequently to predict a scalar target series yt from the equation

yt = β′ft + εt, εt ∼ N(0, σ2ε), (2)

with r× 1 vector β = (β1, . . . , βr)
′. Residual εt is assume to be identically independently distrib-

uted and to be independent of ξt.

As [n;T ] → ∞, the factor space of dimension r can be consistently estimated by principal com-

ponents under various conditions, which include (i) appropriate assumptions on the stationarity

and weak time dependence of ft and ξt; (ii) a rank condition on Λ precluding non-trivial factor

loadings; (iii) suffi ciently weak cross-sectional dependence between ft and ξt; and (iv) suffi ciently

weak cross-sectional dependence among the elements of vector ξt (Stock and Watson, 2002b; Bai

and Ng, 2002).

Specifically, under condition (iv), the non-diagonal elements of Σξ should turn suffi ciently small

as n tends to infinity (e.g. Bai and Ng, 2002). Boivin and Ng (2006) argue that this is likely

to be violated in macro-economic data sets, as some correlation among idiosyncratic components

would remain. They further show that, in finite samples, forecast precision would not necessarily

increase with the number of series if Σξ is non-diagonal. Under certain circumstances, e.g. with
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heteroscedasticity in idiosyncratic components, or in case that some elements of ft are irrelevant

for predicting yt, predictions may therefore be improved from removing uninformative series.

Boivin and Ng (2006) and Caggiano et al. (2011) present empirical applications, where forecasts

are improved by simple removing the series with the highest cross correlations in idiosyncratic

components. In search for more sophisticated selection criteria, Bai and Ng (2008) proposed Least

Angle Regressions (LARS) and several variants (LASSO and elastic net algorithms) to select series

in factor model forecasts for U.S. inflation. They report considerable gains in precision over a range

of specifications. Schumacher (2010) and Bessec (2013) confirm these findings for German and

French GDP, respectively. With the exception of Bessec (2013), these studies inspect in-sample

forecasts, i.e. perform variable selection within the forecast evaluation sample. The studies use

diffusion indices (Stock and Watson, 2002a).1

LARS is a constrained variant of stepwise forward selection to predict yt from equation

yt = β′xL,st + εL,st , εL,st ∼ N(0, σ2ε,s), (3)

where xL,st denotes a certain subset of series xt of size s. Starting with empty set x
L,0
t , at each

step s, one series is added to xL,s−1t in order to obtain xL,st . As with the standard approach,

this is the series with the highest marginal predictive gain on top of predictions based on xL,s−1t ,

i.e. the highest correlation with residual εL,s−1t . To increase the robustness of forward selection,

LARS adjusts coeffi cients β in equation (3) after each step. This is done by increasing the

coeffi cients in their joint least squares direction until another predictor (not yet contained in xL,st )

displays as much correlation with the residual as the series contained in xL,st . The process stops

at k = min(T, n− 1), and results in a set of selections L =
{
xL,st

}k
s=1
.

The purpose of coeffi cient shrinkage in LARS is to overcome the dimensionality problem that

emerges with a high number of predictors and results in highly ineffi cient selections. Another way

to deal with high dimensionality is using the factor model itself for approximating the marginal

1Similarly, Barhoumi et al. (2010) and Alvarez et al. (2012) find that forecasts from small data sets that consist
only of aggregate indicators outperform those from larger data sets with a high number of sectoral indicators.
Taking a different perspective, Alvarez et al. (2012) and Poncela and Ruiz (2015) show that similar issues arise
with the precision of factor estimates.
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predictive gains of the individual series. The latter can be obtained from the weights of the

individual series in the factor model predictions.

The principle is easily illustrated for a static factor model, with factors being estimated by prin-

cipal components. Series xit are assumed to be standardized to mean zero and variance one.

Consider variable selection xw,st and let (1/T )
∑T

t=1 x
w,s
t (xw,st )

′
= VsDsV

′
s be the eigenvalue de-

composition of its empirical covariance matrix with eigenvectors Vs. Given the number of factors

r, it holds f̂ (s)t = V ′s,rx
w,s
t , where Vs,r denotes the matrix containing the first r columns of Vs.

The prediction of yt is then found with

yw,st|t = β̂
′
sV
′
s,rx

w,s
t = (ωs0)

′ xw,st , (4)

where β̂ is estimated from a regression of yt on f̂
(s)
t as from equation (2) and ωs0 is s×1 the vector

of prediction weights. These weights represent the marginal predictive gains of the elements of

xw,st from projecting of yt on ft.

For a factor model, stepwise backward elimination seems a natural approach. Starting with the

entire set of series xw,nt = xt at each step s = n, . . . , 1, the factor model is re-estimated based on

series xw,st and the series with the lowest weight from xw,st is removed to obtain selection xw,s−1t .

This process results in a set of selections W = {xw,st }
n
s=1.

In contrast to most of the earlier literature, I use an out-of-sample forecast design in this paper.

I obtain variable selections from a pre-sample and determine the optimal selection size, i.e. find

those selections in L and W that minimize the root mean squared error (RMSE) of predictions.

This comes closer to application in real time and may reveal issues related to overfitting and

spurious selections. Given the heuristic nature of variable selection, the two methods would

in general result in different selections and the optimal selection sizes may differ. I therefore

determine the optimal selection size separately for each method.

One difference between factor model prediction weights and LARS is that the former would select

predictors with high commonality, while LARS would avoid strongly correlated predictors. To

see this, consider a group of highly correlated predictors within xt. From principcal components

analysis, all elements of the group would attain similar factor loadings and therefore similar model
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prediction weights. With LARS, by contrast, if one element of the group gets included in set xL,st ,

the new residual will have a low correlation with the remaining elements of this group (Bai and

Ng, 2008). Hence, the latter would no longer be selected. Overall, LARS is therefore likely to

result in a more diverse final set of predictors than prediction weights. Arguably, as regards the

estimation of factors, the intuition of stepwise regression is not consistent with the selection of

optimal variables. It may be therefore more desirable to select variables with high commonality.

3 Prediction weights from a dynamic factor model

This section discusses prediction weights in the context of the dynamic factor model by Doz et

al. (2011). The model is given by equation (1) together with the law of motion

ft+1 =

p∑
l=1

Ψlft−l+1 +Bηt, ηt ∼ N(0, Iq). (5)

Common factors ft are driven by q-dimensional white noise ηt with r× q matrix B, where q ≤ r.

The stochastic process for ft is assumed to be stationary. Further, the idiosyncratic component

ξt is modelled from multivariate white noise with diagonal covariance matrix Σξ. 2

In the empirical application, I will use the factor model to predict quarterly GDP growth from

monthly data xt. To handle these mixed frequencies, I follow Harvey (1989: 309ff) and introduce

monthly GDP growth yt as a latent variable (see also e.g. Mariano and Murasawa, 2010; Angelini

et al., 2011). yt is assumed to be related to factors ft by equation

yt = µ+ β′ft + εt εt ∼ N(0, σ2ε). (6)

This is supplemented with log-linear aggregation rules to relate yt to observed quarterly GDP

growth, yQt . For this purpose, another latent variable Qt is defined at monthly frequency such

that it corresponds to yQt in the 3
rd month of the respective quarter, t = 3k. Aggregation rules

2Data xt load only on current values of factors. However, the representation of Doz et al. (2011) can be derived
from a version of a general DFM with q dynamic factors where xt loads on current and lagged values (see Stock
and Watson, 1995).
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can then be expressed as

y
(3)
t = yt + yt−1 + yt−2 (7)

Qt =
1

3
(y
(3)
t + y

(3)
t−1 + y

(3)
t−2)

yQ3k = Q3k, k = 1, 2, ..., bT/3c .

where y(3)t represents 3-month growth rates of monthly GDP, i.e. growth rates vis-a-vis the same

month of the previous quarter. In application, yQt is treated as missing in months 1 and 2 of the

quarter, but added to observation vector zt in month 3.

Equations (1), (5), (6), and the aggregation rules can be cast in a single state space form with

state vector αt = (ft, . . . , ft−p+1, yt, yt−1, y
(3)
t , Qt). The state space form is given in annex 1.

zt = Wtαt + ut ut ∼ N(0,Σu) (8)

αt+1 = Ttαt + vt, vt ∼ N(0,Σv)

The Kalman filter and associated smoothing algorithms (see e.g. Durbin and Koopman, 2001)

provide minimum mean square linear (MMSE) estimates at+h|t = E [αt+h|Zt] of the state vector

and their covariance Pt+h|h for information set Zt and any h > −t.

Estimation of the model parameters is described in Giannone et al. (2008). Briefly, estimates

of factor loadings Λ and initial estimates of factors ft are obtained from principal components.

The latter are used to estimate Ψl in equation (5) from OLS. A further application of principal

components to the residual covariance matrix of the VAR then gives matrix B. Parameters β

and σ2ε are estimated from a quarterly version of equation (6), again using the initial estimates of

factors ft with appropriate adjustments (see Angelini et al., 2011).

I will use information criteria to obtain the model specifications. Specifically, r, p, and q are found

at the various stages of the estimation process from criterion PCP2 in Bai and Ng (2002), the

Akaike information criterion (AIC), and criterion 2 in Bai and Ng (2007), respectively.3

3Jungbacker et al. (2011) and Banbura and Modugno (2014) present maximum likelihood methods to estimate
the model, possibly with missing data. They report gains in forecast precision to be limited. Given the high
number of estimates in my experiments, with recursive estimation in a variable selection loop, I stick to the less
time-consuming two-step estimator.
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As pointed out by Bańbura and Rünstler (2011), prediction weights for yQt can be obtained from

an extension of the Kalman filter and smoother due to Harvey and Koopman (2003). For any

infomation set Zt, the extension provides the weights of individual observations in estimates at+h|t
of the state vector, h > −t. As yQt is an element of the state vector, this allows predictions y

Q
t+h|t

to be expressed as

yQt+h|t =
t−1∑
l=0

ω′l,t(h)zt−l . (9)

with weights ωl,t(h). Clearly, weights depend on both the forecast horizon h and the information

set Zt. In recursive forecast evaluation exercises it is therefore important to define information

sets such that the Kalman filter and smoothing algorithms approach their steady state and the

time index on weights can be dropped. This holds for pseudo real-time data sets Zt as defined

below in section 5.

Since the Kalman filtering and smoothing algorithms provide MMSE estimates, weights ωi,l(h)

are a measure of the marginal predictive gain in yQt+h|t that arises from adding observation xi,t−l to

the information set. In the below exercise, I will consider cumulative weights ω(h) =
∑k

l=0 ωl(h)

as a measure of the predictive content of series xi,t for y
Q
t+h|t, where k is chosen suffi ciently large.

4

To obtain selections from LARS, the monthly data must be aggregated to quarterly frequency, xQt .

LARS selections for predictions yQt+h|t can then be obtained from static regressions of quarterly

GDP growth yQt on x
Q
t−h as from equation (3), h = 0, 1, . . ..

4 A Monte Carlo simulation

This section conducts a Monte Carlo study to investigate the gains from the two variable selection

methods. The simulation design is a variant of simulation 1 in Boivin and Ng (2006). I use the

dynamic factor model described in section 3, but I abstract from mixed frequency issues and

assume that yt is observable.
4 In application, weights ωl(h) decay quickly unless factors ft are highly persistent. The choice of k is therefore

not critical. Cumulative weights do not measure the predictive gain of a series across all lags precisely. Such
measure could be obtained from Pt+h|h to find the loss in forecast precision when eliminating series j from the
data (Giannone et al., 2008). However, this becomes computationally very expensive in a stepwise approach as it
requires O(n2) runs of the Kalman filter and smoother.
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The data are generated from the equations

xt = λft + ξt, ξt ∼ N(0,Σξ),

ft = ψft−1 + ηt, ηt ∼ N(0, σ2η),

yt = β′ft + εt, εt ∼ N(0, σ2ε).

I assume a single latent factor ft, which is modelled as a first-order autoregressive process with

σ2η = 1 − ψ2 such that var(fi,t) = 1. The n × 1 vector of series xt = (x1t, . . . , xnt)
′ and the

scalar target series yt are defined as in equations (1) and (2), while idiosyncratic component ξt is

assumed to be multivariate white noise with covariance matrix Σξ.

Factor loadings λ = (λ1, . . . , λn)′ are assumed to differ across series. They are drawn from a beta

distribution B(a, b) over support (0, 1). I will consider various values of a and b to inspect the

role of dispersion and skewness of factor loadings on the success of variable selection methods.

Heterogenous factor loadings translate into heteroscedasticity in idiosyncratic components, as

series xit are standardised to var(xi,t) = 1, which implies var(ξi,t) = 1− λ2i .

Further, I allow for non-zero cross correlations among idiosyncratic components ξit. I simply

set corr(ξit, ξjt) = ρ for all i, j = 1, . . . , n, i 6= j. The elements ij of covariance matrix Σξ are

therefore given by

Σξ,ij =

 1− λ2i for i = j

ρ
√(

1− λ2i
) (

1− λ2j
)

otherwise

The parameters of forecasting equation (2) for yt are kept fixed with β = 0.75 and σ2ε = 1 − β2,

which implies var(yt) = 1.

As discussed in section 2, once ρ > 0, forecast performance may be improved from using a limited

set of variables. With the above simulation design, because the correlations among idiosyncratic

components are assumed to be identical across all series, the information content of series xi,t

for estimating ft depends only on its factor loading λi. Hence, the best selections would simply

consist of the series with highest factor loadings.

The simulations aim at assessing the usefulness of LARS and factor model prediction weights for

obtaining predictions yt+h|t,, h ≥ 0. I use an out-of-sample forecast design. I take 500 draws of
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of length T = 180, which amounts to 15 years of monthly data. The number of series is set to

n = 100. For each draw
{
ft,J , ξt,J , εt,J , λJ

}
I obtain {xt,J , yt,J} and proceed as follows:

1. I split draw J into two subsamples 1 and 2 of length T1 = T2 = 90.

2. From the pre-sample (sub-sample 1), I obtain variable selections of sizes s = 1, . . . , n.

Denote withWJ =
{
xw,st,J

}n
s=1

and LJ =
{
xL,st,J

}k
s=1

the sets of selections according to factor

model prediction weights and LARS, respectively, as described in section 3. For obtaining

prediction weights, I either keep the number of factors fixed at the true value of r = 1 or

estimate r from information criterion PCP2 in Bai and Ng (2002).

I further determine the optimal number of series for either selection method from a minimum

RMSE criterion. I choose the selection xw,st,J in WJ , which gives the minimum root mean

squared error (RMSE) of predictions ŷw,st,J in sub-sample 1. I proceed equivalently for LJ .5

3. For all selections xw,st,J and x
L,s
t,J , I estimate the parameters of the dynamic factor model from

sub-sample 1. I then obtain predictions ŷw,st+h|t,J and ŷ
L,s
t+h|t,J for y

J
t over both subsamples.

Table 1 shows the findings for the case of a static factor model, ψ = 0. The table reports the

average RMSE of pre-sample and out-of-sample predictions, the number of series chosen by the

in-sample RMSE criterion, and the precentage of correct classification. Denote with x∗,st,J the

s × 1 vector of series with the highest s factor loadings among xt,J . The percentage of correct

classifications is given by the share of elements of x∗,st,J contained in selections x
w,s
t,J and xL,st,J ,

respectively.

The following conclusions emerge from Table 1. First, for ρ = 0, prediction weights and LARS

choose 54 and 20 series, respectively, as opposed to the optimal choice of 100. The smaller

selections result in some small losses in out-of-sample predictions, as to be expected.

Second, once ρ > 0, both selection methods results in improved out-of-sample predictions. For

some of the simulations, these gains are of considerable size. While losses against predictions

based on the full set of series may occur, they are always minor. The optimal selections are

5For LARS I use code by Karl Skoglund (http://www.cad.zju.edu.cn/home/dengcai/Data/code/lars.m).
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generally small: with one exception, the in-sample RMSE criterion chooses less than 20 series.

Optimal selections from prediction weights are somewhat larger than those from LARS.

Third, factor model prediction weights consistently outperform LARS. They provide a lower out-

of-sample RMSE, although often only by a small margin, and the percentage of correctly classified

series is considerably higher. Whereas the share of correctly classified series amounts to about 0.7

to 0.8 in prediction weight selections, it is less than 0.5 in LARS selections. The overlap among

the selections turns out to be moderate. In general, the share of series that are contained in both

selections is in between 0.5 and 0.6, depending on the sizes of the selections.6

Perhaps more important, LARS shows some tendency of overfitting. For prediction weights,

the gains indicated by in-sample predictions largely carry over to the out-of-sample case. The

comparatively large pre-sample gains from LARS selections, however, turn out to be spurious,

as gains in out-of-sample predictions are much smaller. This is most apparent for the case of

ρ = 0, where applying either variable selection method results in a slight deterioration of the out-

of-sample RMSE, as suggested by asymptotic theory. The pre-sample RMSE suggests however

considerable gains from LARS selections.

Fourth, as to the role of ρ and (a, b), higher values of ρ and and skewed distributions of factor

loadings with a high share of uninformative series give rise to larger gains from variable selection.

Beta distribution B(a, b) is symmetric for a = b with mean 0.5 and its dispersion declines with

higher a and b. The case of a = 1, b = 3 amounts a to left-skewed distribution with mean 0.25,

implying a high share of series with low factor loadings, while the opposite case of a = 3, b = 1

gives a right-skewed distribution with mean 0.75. The gains from variable selection raise with

high dispersion and with a left-skewed distribution.

Fifth, for ρ > 0 the specific correlation structure of ξt in this exercise implies a single high

eigenvalue of Σξ and therefore the presence of one principal component in ξt. Once the number

of factors r is estimated, this is occasionally picked up as a second factor. It turns out, that

selection methods then act as an insurance against misspecification. The right hand lower panel

6Predictions based on based xw,st,J fall only marginally short of predictions based on x
∗,s
t,J , i.e. under the assumption

of perfect knowledge about the ranking of series.
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Factor persistence ψ 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Correlation (ρ) 0.0 0.1 0.1 0.1 0.3 0.3 0.3
a 4 2 4 8 2 4 8
b 4 2 4 8 2 4 8

Nr of factors (r) 1 1 1 1 1 1 1

Nr of series selected Weights 53.5 16.1 19.7 26.9 7.6 9.9 13.1
LARS 21.4 11.9 12.6 14.4 6.6 6.7 7.3

Correct classification Weights 0.88 0.88 0.82 0.75 0.86 0.79 0.69
LARS 0.35 0.36 0.38 0.37 0.45 0.45 0.41

RMSE pre‐sample All 0.66 0.70 0.72 0.74 0.78 0.80 0.82
Weights 0.66 0.67 0.69 0.71 0.69 0.72 0.75
LARS 0.59 0.63 0.64 0.64 0.67 0.70 0.72

RMSE out‐of‐sample All 0.68 0.71 0.74 0.75 0.79 0.82 0.83
Weights 0.68 0.69 0.71 0.74 0.70 0.74 0.78
LARS 0.69 0.70 0.73 0.75 0.72 0.76 0.80

Factor persistence ψ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Correlation (ρ) 0.1 0.3 0.1 0.3 0.3 0.3 0.3 0.3
a 1 1 3 3 2 4 1 3
b 3 3 1 1 2 4 3 1

Nr of factors (r) All 1 1 1 1 1.99 1.14 1.48 2.00
Weights 1 1 1 1 1.55 1.01 1.07 1.74
LARS 1 1 1 1 1.72 1.01 1.09 1.79

Nr of series selected Weights 12.7 6.8 26.3 13.9 33.5 19.1 13.9 29.7
LARS 10.3 6.2 11.9 8.0 22.7 12.5 10.2 16.3

Correct classification Weights 0.81 0.77 0.94 0.92 0.70 0.67 0.69 0.75
LARS 0.49 0.52 0.18 0.24 0.43 0.45 0.51 0.24

RMSE pre‐sample All 0.82 0.92 0.66 0.69 0.67 0.80 0.81 0.66
Weights 0.72 0.77 0.65 0.66 0.67 0.73 0.78 0.65
LARS 0.69 0.77 0.62 0.64 0.64 0.70 0.78 0.61

RMSE out‐of‐sample All 0.84 0.94 0.67 0.70 0.69 0.82 0.84 0.68
Weights 0.75 0.79 0.67 0.67 0.70 0.76 0.81 0.68
LARS 0.76 0.81 0.68 0.69 0.73 0.78 0.84 0.70

Table 1: Monte Carlo Simulations

Asymmetric distributions (r = 1) Number of factors estimated

Static factor model

Symmetric distributions (r = 1) 

the number of factors kept fixed at r = 1. The lower left‐hand panel shows results for asymmetric distributions with r = 1. The lower right hand panel shows

results where the number of factors is estimated from an information criterion (see main text). 

The table shows findings from Monte Carlo simulations for the static factor model (ψ=0). ρ is the correlation among idiosyncratic components, while a and

b are the parameters of the beta distribution, from which factor loadings  λ are drawn (see main text).  The table shows four statistics for both LARS and 

prediction weights: (i) the average number of series in the optimal selections (selections with minimum RMSE pre‐sample); (ii) the percentage of correct 

classifications, i.e. of series with highest factor loadings; (iii) the RMSE of the optimal selection in the pre‐sample;  column 'All' refers to the RMSE from all

100  series; and (iv) the out‐of‐sample RMSE of the optimal selection. The upper panel shows results for symmetric distributions of factor loadings  with
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Factor persistence ψ 0.5 0.5 0.5 0.5 0.8 0.8 0.8 0.8
Correlation (ρ) 0.1 0.1 0.3 0.3 0.1 0.1 0.3 0.3
a 4 8 4 8 4 8 4 8
b 4 8 4 8 4 8 4 8

Nr of factors (r) 1 1 1 1 1 1 1 1

Nr of series selected Weights 20.2 25.6 9.4 12.4 19.2 24.5 9.5 11.8
LARS 12.7 14.6 6.6 7.4 12.4 13.9 6.5 7.2

Correct classification Weights 0.82 0.74 0.79 0.68 0.81 0.71 0.78 0.65
LARS 0.38 0.36 0.45 0.40 0.37 0.35 0.44 0.40

RMSE pre‐sample All 0.72 0.74 0.81 0.82 0.72 0.74 0.80 0.82
Weights 0.69 0.71 0.72 0.76 0.69 0.71 0.72 0.76
LARS 0.64 0.64 0.70 0.72 0.64 0.64 0.70 0.72

RMSE out‐of‐sample All 0.74 0.75 0.82 0.83 0.74 0.75 0.82 0.83
Weights 0.71 0.74 0.74 0.78 0.71 0.74 0.74 0.78
LARS 0.73 0.75 0.76 0.79 0.72 0.75 0.76 0.79

Factor persistence ψ 0.5 0.5 0.5 0.5 0.8 0.8 0.8 0.8
Correlation (ρ) 0.1 0.1 0.3 0.3 0.1 0.1 0.3 0.3
a 4 8 4 8 4 8 4 8
b 4 8 4 8 4 8 4 8

Nr of factors (r) 1 1 1 1 1 1 1 1

Nr of series selected Weights 26.8 30.2 13.8 15.2 19.3 27.0 9.6 12.8
LARS 25.1 27.5 11.2 10.7 17.4 20.4 6.7 7.7

Correct classification Weights 0.83 0.75 0.79 0.69 0.82 0.74 0.78 0.67
LARS 0.47 0.44 0.47 0.42 0.43 0.41 0.46 0.40

RMSE pre‐sample All 0.93 0.94 0.96 0.96 0.82 0.83 0.89 0.89
Weights 0.92 0.93 0.93 0.94 0.79 0.80 0.81 0.85
LARS 0.92 0.93 0.94 0.94 0.79 0.80 0.82 0.84

RMSE out‐of‐sample All 0.95 0.95 0.97 0.98 0.84 0.85 0.91 0.91
Weights 0.94 0.95 0.95 0.96 0.81 0.83 0.84 0.87
LARS 0.95 0.95 0.96 0.96 0.82 0.84 0.85 0.88

Table 2: Monte Carlo Simulations

Dynamic factor model

See Table 1 for a description of the contents.

Static predictions (h = 0)

One‐step ahead predictions (h=1)
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of Table 1 shows simulation results, where the number of factors r is estimated from information

criterion PCP2 (Bai and Ng, 2002). For ρ = 0.1, the criterion chooses r = 1 in all cases and

gains from variable selection prevail. For ρ = 0.3, this still holds for some of the values of (a, b)

considered in the simulations. There arise yet two cases where r is estimated predominantly with

2. Predictions from r = 2 and the full data set then perform as well as the optimal predictions

from r = 1, while selection methods do not deliver further gains. In this case, hence, variable

selection acts to avoid the losses that would arise from choosing r = 1, i.e. lower as suggested by

the in-sample information criterion. Note that this pattern occurs for precisely those simulations,

where selection methods had delivered the largest gains under r = 1.

Finally, Table 2 shows that the above conclusions for the case of ψ = 0 straightforwardly carry

over to ψ > 0. Results are reported for both static predictions yt|t and one-step ahead forecasts

yt+1|t. For static predictions, the above findings remain almost unchanged for both ψ = 0.5 and

ψ = 0.8. For one-step ahead predictions, the gains from variable selection remain in case of highly

persistent factor dynamics (ψ = 0.8). However, for ψ = 0.5, gains decline considerably, as the

predictions become generally less informative.

5 Forecasting GDP growth from monthly data

This section presents a pseudo real-time exercise to obtain now- and forecasts of quarterly GDP

growth in the euro area, Germany, and France from large unbalanced monthly data sets. I obtain

variable selections based on factor model prediction weights and LARS from a pre-sample and

evaluate their performance from a pseudo real-time forecast exercise in the second part of the

sample.

The dynamic factor model by Doz et al. (2011) has been applied to predict quarterly GDP

growth from unbalanced monthly data for a number of countries, including the U.S. (Giannone

et al., 2008), the euro area (Angelini et al., 2011), and several euro area member states, such as

Germany and France (Rünstler et al., 2009; Marcellino and Schumacher, 2010; Schumacher, 2010;

Bessec, 2013). Rünstler et al. (2009) and Marcellino and Schumacher (2010) find the model to
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perform about as well as other versions of dynamic factor models, while Rünstler et al. (2009)

and Angelini et al. (2011) report that it is superior to pooled forecasts from single equations.

I use monthly data sets for the euro area, Germany, and France of each about 70 series. All data

start in January 1991. They were downloaded on 26, Sep 2014. The choice of series is based

on Angelini et al. (2011) and includes data on economic activity (such as industrial production,

trade, employment), the European Commission business and consumer surveys, financial markets,

and the international environment. The series are transformed to monthly rates of change and

standardised to mean zero and variance one. Further, they are cleaned from outliers. The series

are listed in annex A together with their publication lags and the data transformations used.7

5.1 Forecast design

The forecast design follows Angelini et al. (2011) and aims at replicating the real-time application

of the factor model as closely as possible.

First, I account for the timing of data releases. Real-time data sets typically contain missing

observations at the end of the sample due to publication lags. Survey and financial market data,

for instance, are available right at the end of the respective month, while data on economic activity

are usually published with a delay of 6 to 8 weeks. Giannone et al. (2008) and Bańbura and

Rünstler (2011) report that differences in the timing of data releases among individual series have

large effects on their marginal predictive gains.

I therefore follow those studies in applying so-called pseudo-real time data sets Zt, which employ

the final data release, but replicate the publication lags from the end of the sample in the earlier

periods. Let z′t = (x′t, y
Q
t ) and denote with Zt the information set in period t. Consider the

original data set ZT as downloaded in period T . Data set Zt, on which the forecast in period

t is based, is obtained by eliminating observation xi,t−l, l ≥ 0, if and only if observation xi,T−l

is missing in ZT , i = 1, . . . , n. Quarterly GDP growth is treated in an equivalent way. Kalman

7Outliers are defined as observations that deviate by more than twice the interquintile distance from the me-
dian. The interquintile distance is defined as the difference between the 80% and 20% quantiles of the empirical
distribution. For principal components, outliers are replaced with the median, for Kalman filtering they are set as
missing.
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filtering and smoothing handles unbalanced data sets in an effi cient way. The rows in equation

(8) corresponding to missing observations in zt are simply skipped when applying the respective

recursions (Durbin and Koopman, 2001:92f).

Second, I inspect six predictions for GDP growth in a certain quarter, which are obtained in

consecutive months. I start in the 1st month of the previous quarter and stop in the 3rd month

of the current quarter, 6 weeks before the flash estimate of GDP is released. To predict GDP

growth in the 2nd quarter, for instance, the 1st prediction is run in January and the final (6th)

one in July. Note that predictions 4 to 6 amount to nowcasting the current quarter.

Third, I inspect out-of sample predictions. I obtain the variable selections and corresponding

factor model specifications from a pre-sample and run a forecast exercise with recursive parameter

estimation on the remainder. I proceed as follows:

1. I obtain selections {xw,st }
n
s=1 and

{
xL,st

}k
s=1

from the pre-sample ranging until 2000 Q4

using stepwise elimination as described in section 2.1. I use different selections for now-

and next-quarter forecasts. Prediction weight selections are based on mid-quarter weights,

i.e. weights from prediction 5 for nowcasts (predictions 4 − 6) and 2 for the next-quarter

forecasts (predictions 1− 3), respectively.

While factor model prediction weights account for publication lags, a standard application

of LARS would ignore them. Bessec (2013) argues that LARS selections can be improved by

accounting for publication lags. She proposes to start with unbalanced data and to forecast

the missing observations from univariate methods. I follow a proposal by Altissimo et al.

(2010) instead and shift the monthly series prior to aggregation.

That is, with series xi,t being subject to a publication lag of l months, I define x
#
i,t = xi,t−l.

I run LARS with quarterly GDP growth being regressed on quarterly aggregates x#Qi,t at

either lag 0 for nowcasts or 1 next-quarter predictions.

For all selections, model specifications are obtained from the information criteria set out

in section 3. The model is re-specified at each selection step under the restriction that the

dimensionality of the model shrinks with the number of series. That is, e.g., for prediction
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weights I obtain specifications (rw,s, pw,s, qw,s) related to selection xw,st under the restrictions

rw,s ≤ rw,s+1, pw,s ≤ pw,s+1, and qw,s ≤ qw,s+1 for s < n.

2. I obtain now- and next-quarter forecasts of GDP growth for the period starting with 2001

Q1 based on the variable selections as from step 1. These forecasts employ pseudo real-time

data sets Zt and recursive parameter estimates.

The financial crisis requires some special consideration in the choice of the evaluation sample.

It not only implies extremely large forecast errors in 2008 and 2009, but may also constitute

a structural break in economic activity in the euro area. The evaluation of variable selection

methods may therefore be more safely based on the pre-crisis period. On the other hand,

the performance of the models after the crisis is certainly of interest.

I therefore evaluate the forecasts separately for two samples, a pre-crisis sample from 2001

Q1 to 2007 Q4 and a post-crisis sample ranging from 2010 Q1 to 2014 Q2.

5.2 Results

The factor model specifications chosen by the information criteria are similar across data sets.

For the euro area and German full data, the number of factors is estimated with r = 3, while p

and q are estimated with 2. For the various selections, estimates of r remain at 3, while estimates

of p and q shrink as the number of series declines. For France, r and q shrink from 3 to 1, while

p stays at 3. For all countries, the average cross correlation among idiosyncratic components is

slightly below 0.2. Idiosyncratic components are subject to considerable heteroscedasticity.

Table 3 shows the RMSE of predictions for the sequence of 6 predictions described above. The

numbers are averaged over predictions 1 − 3 (next-quarter) and 4 − 6 (nowcasts). The RMSE

is shown relative to the naive forecast, which is the sample mean of GDP growth.8 Note that

variable selection with LARS stops at s = 30, as it is limited by the number of observations.

Starting with predictions from the full data set, for the pre-sample and the pre-crisis evaluation

sample, the factor model predictions in general improve upon the naive forecast and a first-order

8The calculation of naive and AR(1) forecasts takes account of the timing of the publication dates of the GDP
flash estimates. Forecasts are based on recursive estimates.
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autoregression for GDP (AR(1)). The small gains against the AR(1) in the euro area pre-crisis

nowcasts fall somewhat short of the findings reported by Angelini et al. (2011), obtained from a

shorter sample. The results for Germany and France are largely in line with earlier studies (e.g.

Rünstler et al., 2009; Schumacher, 2010; Barhoumi et al., 2010). For the post-crisis sample, the

performance of the factor model worsens for the euro area and France, with predictions being

outperformed by the AR(1).

The ranking of the series according to the selections from nowcasts are shown in Tables A.1 to A.3

in the annex. Selections from prediction weights are less heterogenous than those from LARS and

there is very little overlap among the two. For the euro area, prediction weight selections contain

the main items of business surveys (confidence indicators and order books), together with equity

price indices, the euro area real effective exchange rate, and raw materials prices. For Germany

and France, business, consumer and construction survey items are prominent. Conversely, LARS

puts more weight on hard data, such as items of industrial production, and items of construction

and retail trade surveys. As discussed in section 2, LARS also tends to select a more diverse set

of series.

I turn to the performance of variable selections. For the euro area, both methods improve pre-

dictions 4 − 6 (nowcasts), but have little effect on predictions 1 − 3 (next-quarter forecasts).

Prediction weight and LARS selections of 10− 15 and 20− 30 series, respectively, perform best,

with gains of about 15% compared to the full data set. Conversely, for predictions 1− 3 there are

no gains from either method, with small selections of 20 series or less giving rise to sizeable losses.

Crucially, these patterns are properly detected in the pre-sample. In real-time application, both

methods would therefore have chosen the correct selections.

Results are more mixed for Germany and France. For Germany, the pre-sample indicates moderate

gains of less than 10% in nowcasts from small selections of 10 − 15 series from either method.

For factor model prediction weights, these gains carry over to the pre-crisis sample and vanish in

the post-crisis one. The application of LARS selections would however result in losses in either

sample. The same applies to LARS selections for next-quarter predictions, although the gains

indicated in the pre-sample are very small.
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For France, the pre-sample indicates gains from both selection methods over the entire horizon.

Small gains from factor model prediction weights arise for selections of 40 − 60. Again, these

gains carry over to both evaluation samples. The gains from LARS selections are sizeable in the

pre-sample. In evaluation samples however, they realize only in the post-crisis samples, whereas

in the pre-crisis sample LARS selections give rise to losses at all horizons.

These findings are summarized in Fig. 1, which compares the RMSEs from the full data set

with those of the factor model prediction weight and LARS selections that are found to give the

smallest RMSE in the pre-sample. Generally, prediction weights appear more robust than LARS

selections. They give rise to modest, but stable gains in nowcasts over a range of selection sizes

and the pre-sample gives largely correct signals on appropriate selections. While some selections

might give rise to losses in next-quarter predictions, these are properly detected in the pre-sample.

LARS selections fare equally well for the euro area, but give more mixed results for Germany and

France. In particular, the pre-sample gives wrong signals for out-of sample predictions in Germany

over the entire horizon, and the pre-crisis sample in France.9

The above conclusions withstand various robustness checks. First, I used fixed model specifica-

tions, i.e. applied the specification (r, p, q) as obtained from the full data set to all variable

selections. Second, I inspected whether the selections obtained from nowcasts (i.e. prediction 5)

may help in improving next-quarter predictions. Third, I used LARS selections derived from the

original data xi,t instead of shifted data x
#
i,t as described in section 5.1. These modifications had

overall small effects on the results. As one exception, LARS selections for German next-quarter

predictions were found to be uninformative in the pre-sample, which avoids the losses in the

corresponding predictions in evaluation samples.

9 I do not present tests for forecast accuracy, as they are computationally very costly. The tests give rise to
non-standard test distributions, because the individual selections are nested in the full data set, which requires
bootstrap techniques. While Hubrich and West (2010) provide a test statistic for nested models that uses standard
distributions, the test is not applicable as the (one-sided) alternative hypothesis goes in the wrong direction: the
test examines whether adding data to a minimal model would help in reducing forecast errors.
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Naive AR(1) All
60 50 40 30 20 15 10 30 20 15 10

Pre‐sample (1991 Q1 ‐ 2000 Q4)

4‐6 0.488 0.93 0.91 0.79 0.84 0.87 0.82 0.81 0.76 0.77 0.81 0.86 0.88 0.89
1‐3 0.488 0.99 0.80 0.80 0.80 0.80 0.81 0.84 0.87 0.90 0.88 0.92 0.93 0.99
1‐7 0.488 0.96 0.86 0.80 0.82 0.83 0.81 0.83 0.82 0.83 0.85 0.89 0.90 0.94

Pre‐crisis (2001 Q1 ‐ 2007 Q4)

4‐6 0.339 0.86 0.86 0.85 0.75 0.75 0.75 0.77 0.77 0.78 0.77 0.85 0.82 0.85
1‐3 0.344 0.96 0.79 0.79 0.80 0.80 0.81 0.85 0.82 0.84 0.86 0.94 0.94 0.94
1‐7 0.342 0.91 0.82 0.82 0.77 0.78 0.78 0.81 0.80 0.81 0.82 0.90 0.88 0.90

Post‐crisis (2010 Q1 ‐ 2014 Q2)

4‐6 0.441 0.76 1.01 0.99 0.88 0.87 0.83 0.79 0.80 0.76 0.82 0.64 0.65 0.72
1‐3 0.444 0.85 0.89 0.92 0.91 0.92 0.95 0.95 0.96 0.97 0.83 0.92 0.92 0.93
1‐7 0.442 0.80 0.95 0.96 0.89 0.89 0.89 0.87 0.88 0.86 0.83 0.78 0.79 0.82

Naive AR(1) All
60 50 40 30 20 15 10 30 20 15 10

Pre‐sample (1991 Q1 ‐ 2000 Q4)

4‐6 0.712 1.00 0.95 0.95 0.93 0.96 1.10 0.95 0.92 0.92 0.95 0.95 0.94 0.86
1‐3 0.712 1.00 0.93 0.91 0.92 0.91 0.92 0.92 0.91 0.92 0.90 0.91 0.91 0.92
1‐6 0.712 1.00 0.94 0.93 0.92 0.94 1.01 0.94 0.92 0.92 0.93 0.94 0.94 0.89

Pre‐crisis (2001 Q1 ‐ 2007 Q4)

4‐6 0.565 1.00 0.89 0.89 0.89 0.90 0.89 0.89 0.84 0.84 0.95 0.89 0.90 0.92
1‐3 0.569 1.00 0.91 0.91 0.91 0.91 0.92 0.92 0.91 0.91 0.97 0.97 0.97 0.96
1‐6 0.567 1.00 0.90 0.90 0.90 0.91 0.90 0.91 0.88 0.88 0.96 0.93 0.94 0.94

Post‐crisis (2010 Q1 ‐ 2014 Q2)

4‐6 0.633 0.96 0.82 0.83 0.77 0.89 0.83 0.83 0.81 0.81 0.86 0.86 0.87 0.89
1‐3 0.635 0.97 0.88 0.86 0.86 0.85 0.85 0.85 0.91 0.95 1.00 1.02 1.03 0.99
1‐6 0.634 0.97 0.85 0.85 0.81 0.87 0.84 0.84 0.86 0.88 0.93 0.94 0.95 0.94

Naive AR(1) All
60 50 40 30 20 15 10 30 20 15 10

Pre‐sample (1991 Q1 ‐ 2000 Q4)

4‐6 0.446 0.80 0.82 0.80 0.80 0.80 0.83 0.83 0.84 0.83 0.73 0.76 0.76 0.79
1‐3 0.446 0.91 0.81 0.82 0.82 0.81 0.82 0.88 0.97 1.05 0.77 0.76 0.76 0.76
1‐6 0.446 0.85 0.82 0.81 0.81 0.80 0.83 0.86 0.90 0.94 0.75 0.80 0.80 0.83

Pre‐crisis (2001 Q1 ‐ 2007 Q4)

4‐6 0.339 1.00 0.80 0.75 0.72 0.76 0.76 0.77 0.78 0.80 0.87 0.93 0.94 0.98
1‐3 0.342 0.98 0.87 0.83 0.84 0.85 0.86 0.91 0.90 0.97 0.90 0.91 0.93 0.94
1‐6 0.340 0.99 0.84 0.79 0.78 0.80 0.81 0.84 0.84 0.89 0.89 0.92 0.94 0.96

Post‐crisis (2010 Q1 ‐ 2014 Q2)

4‐6 0.388 1.00 1.02 0.90 0.89 1.03 1.04 1.07 1.07 1.05 0.83 0.81 0.81 0.77
1‐3 0.389 0.95 1.08 1.02 0.98 0.99 0.99 1.37 1.26 0.90 0.96 0.93 0.92 0.91
1‐6 0.389 0.98 1.05 0.96 0.94 1.01 1.02 1.22 1.17 0.98 0.90 0.87 0.87 0.84

          Column 1 shows the RMSE of the naive forecast, based on a random walk with drift. The remaining columns show the  RMSE relative to the
          naive forecast for an autoregressive  model (AR(1)), the factor model with the full set of series (All),  and various selections of different sizes
          from prediction weights and from LARS.  The individual rows show  the relative average RMSE over predictions 1 to 3 (next‐quarter forecasts)
          4 to 6 (nowcasts), and 1 to 6 (overall average), respectively. Results are shown for three separate sub‐samples, i.e. the pre‐sample, used for
          variable selection, and pre‐ and post‐crisis evaluation samples. 
 
     

France

LARS

Table 3: Forecasting performance of selections

Euro area

LARS

Germany

LARS

Prediction weights

Prediction weights

Prediction weights
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Figure 1 shows the out‐of‐sample root mean squared error (vertical axes) of predictions 1 to 6 (horizontal axis) from the optimal selections. ALL refers to predictions based

on all series, whereas FPW and LARS refer to selections from factor model prediction weights and LARS, respectively. The optimal selections have been determined from 

the pre‐sample. The left‐hand and right‐hand panels show the RMSE in the pre‐ and post‐crisis evaluation samples, respectively. For the euro area predictions 1 to 3, the 

optimal selection is given by  the full set of series (ALL).

Figure 1: RMSE from best pre‐sample selections
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6 Conclusions

The paper has inspected the effi ciency gains from variable selection in predictions from a dynamic

factor model. I have compared two methods for this purpose, i.e. Least Angle Regressions (LARS)

and factor model prediction weights.

Against earlier studies by Bai and Ng (2008), Schumacher (2010) and Caggianio et al. (2011),

which performed variable selection in the evaluation sample, this paper inspects the success of

variable selection from a pre-sample. The results still confirm the earlier findings that variable

selection methods tend to improve the effi ciency of predictions. However, gains are moderate

and should not be taken for granted. First, both the Monte Carlo simulations and the empirical

findings indicate that such gains are small, at best, for one-step ahead forecasts. Second, the

Monte Carlo simulations suggest that the relationship between the specification of the factor

model and the success of variable selection is not straightforward.

For these reasons, variable selection methods should, first of all, be robust against avoiding poten-

tial losses in forecast precision in an out-of-sample context. The evidence presented in this paper

suggests that factor model prediction weights perform better than LARS in this respect. In the

Monte Carlo simulations they were better in identifying informative series and provided smaller

out-of-sample forecast errors. LARS, in turn, showed signs of overfitting: pre-sample forecasts

suggested gains that did not necessarily carry over to the out-of-sample case. Similarly, in the em-

pirical application, pre-sample selections from LARS occasionally gave wrong signals that resulted

in losses in out-of-sample predictions, whereas prediction weights provided consistent gains.

In the context of a dynamic factor model, factor model prediction weights obviously provide a

model-consistent means of variable selection. One question for future research is whether they

are useful for the pre-screening of variables also in the context of other forecasting methods.
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State space form

The transition equation of the model described in section 3.1 with p = 1 is given by


Ir 0 0 0 0
−β′ 1 0 0 0

0 0 1 0 0
0 −1 −1 1 0
0 0 0 − 1

3 1




ft+1
yt+1
yt

y
(3)
t+1

Qt+1

 =


0
µ
0
0
0

+


Ψ1 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 Ξt




ft
yt
yt−1

y
(3)
t

Qt

+


Bηt
εt+1

0
0
0


where Ir denotes the r× r identity matrix. Temporal aggregation rules are implemented in a recursive way

from

Qt = Ξt−1Qt−1 +
1

3
y
(3)
t ,

where Ξt−1 = 0 in the 1st month and Ξt−1 = 1 otherwise (see Harvey, 1989: 309ff). As a result, the

required identities hold in the 3rd month of the quarter, with yQt = Qt.

The equation is to be pre-multiplied by the inverse of the left-hand matrix to achieve the standard state

space form.

The observation equation is given by

[
xt
yQt

]
=

[
Λ 0 0 0 0
0 0 0 0 1

]
ft
yt
yt−1

y
(3)
t

Qt

+

[
ξt
0

]

The second row, related to yQt , is skipped in months 1 and 2 of the quarter.
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No.                             Series
Publi-

cation  lag 
(months)

Trans-
formation 

code

Ranking 
prediction 

weights

Ranking 
LARS

1 Index of notional stock - Money M1 1 2 40
2 Index of notional stock - Money M2 1 2 37 30
3 Index of notional stock - Money M3 1 2 48
4 Index of Loans 1 2 24
5 ECB Nominal effective exch. rate 0 2 5 17
6 ECB Real effective exch. rate CPI deflated 0 2 4 15
7 ECB Real effective exch. rate producer prices deflated 0 2
8 Exch. rate: USD/EUR 0 2 60
9 Exch. rate: GBP/EUR 0 2

10 Exch. rate: YEN/EUR 0 2 12
11 World market prices of raw materials in Euro, total, HWWA 2 2 13
12 World market prices of raw materials in Euro, total, excl energy, HWWA 2 2 6 13
13 World market prices, crude oil, USD, HWWA 0 2 32
14 Gold price, USD, fine ounce 0 2 35 19
15 Brent Crude, 1 month fwd, USD/BBL converted in euro 0 2 27
16 Retail trade, except of motor vehicles and motorcycles  2 2 14
17 IP-Total industry  2 2 20 3
18 IP-Total Industry (excl construction)  2 2 18 2
19 IP-Manufacturing  2 2 17
20 IP-Construction  2 2 57
21 IP-Total Industry excl construction and MIG Energy  2 2 54
22 IP-Energy 2 2
23 IP-MIG Capital Goods Industry  2 2 59
24 IP-MIG Durable Consumer Goods Industry  2 2 31
25 IP-MIG Energy  2 2
26 IP-MIG Intermediate Goods Industry  2 2 16
27 IP-MIG Non-durable Consumer Goods Industry  2 2 58 26
28 IP-Manufacture of basic metals  2 2 4
29 IP-Manufacture of chemicals and chemical products  2 2 55 8
30 IP-Manufacture of electrical machinery and apparatus  2 2 21 5
31 IP-Manufacture of machinery and equipment 2 2
32 IP-Manufacture of pulp, paper and paper products  2 2 28
33 IP-Manufacture of rubber and plastic products  2 2 19 20
34 Industry Survey: Industrial Confidence Indicator  1 1 3
35 Industry Survey: Production trend observed in recent months  1 1 14
36 Industry Survey: Assessment of order-book levels  1 1 2
37 Industry Survey: Assessment of export order-book levels  1 1 1
38 Industry Survey: Assessment of stocks of finished products  1 1 10
39 Industry Survey: Production expectations for the months ahead  1 1 9
40 Industry Survey: Employment expectations for the months ahead  1 1 11
41 Industry Survey: Selling price expectations for the months ahead  1 1 15
42 Consumer Survey: Consumer Confidence Indicator  1 1 24 23
43 Consumer Survey: General economic situation over last 12 months  1 1 22
44 Consumer Survey: General economic situation over next 12 months  1 1 23 21
45 Consumer Survey: Price trends over last 12 months  1 1 36 11
46 Consumer Survey: Price trends over next 12 months  1 1 53 28
47 Consumer Survey: Unemployment expectations over next 12 months  1 1 25 22
48 Construction Survey: Construction Confidence Indicator  1 1 39
49 Construction Survey: Trend of activity compared with preceding months  1 1 44 29
50 Construction Survey: Assessment of order books  1 1 43 27
51 Construction Survey: Employment expectations for the months ahead  1 1 38 9
52 Construction Survey: Selling price expectations for the months ahead  1 1 50 1
53 Retail Trade Survey: Retail Confidence Indicator  1 1 47
54 Retail Trade Survey: Present business situation  1 1 52 10
55 Retail Trade Survey: Assessment of stocks  1 1
56 Retail Trade Survey: Expected business situation  1 1 49
57 Retail Trade Survey: Employment expectations  1 1 41 7
58 New passenger car registrations 1 2 33 12
59 Eurostoxx 500 0 2 8
60 Eurostoxx 325 0 2 7
61 US S&P 500 composite index 0 2 16
62 US, Dow Jones, industrial average 0 2 56
63 US, Treasury Bill rate, 3-month 0 1 34 25
64 US Treasury notes & bonds yield, 10 years 0 1 26
65 Money M2 in the U.S. 1 2 6
66 US, Unemployment rate 1 1 42
67 US, IP total excl construction 1 2 45
68 US, Employment, civilian 1 2 46
69 US, Production expectations in manufacturing 1 1 29
70 US, Consumer expectations index 0 1 30
71 10-year government bond yield 0 1 51 18

Transformation code:                 1 = monthly difference,   2 = monthly growth rate

Rankings:                                       Ranking of series in stepwise selection (1 = added first / eliminated last)

Table A.1: Data Euro Area
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No.                             Series
Publi-

cation  lag 
(months)

Trans-
formation 

code

Ranking 
prediction 

weights

Ranking 
LARS

1 Index of notional stock - Money M1 1 2 36 17
2 Index of notional stock - Money M2 1 2 54
3 Index of notional stock - Money M3 1 2 31
4 Index of Loans 1 2 58 11
5 ECB Nominal effective exch. rate 1 2 28
6 ECB Real effective exch. rate CPI deflated 1 2 56
7 ECB Real effective exch. rate producer prices deflated 1 2 55
8 Exch. rate: USD/EUR 1 2 50
9 Exch. rate: GBP/EUR 1 2 24

10 Exch. rate: YEN/EUR 1 2
11 World market prices of raw materials in Euro, total, HWWA 2 2 32
12 World market prices of raw materials in Euro, total, excl energy, HWWA 2 2 30 24
13 World market prices, crude oil, USD, HWWA 1 2 42
14 Gold price, USD, fine ounce 1 2 28 6
15 Brent Crude, 1 month fwd, USD/BBL converted in euro 0 2 34 27
16 IP-Total industry  2 2 16
17 IP-Total Industry (excl construction)  2 2 20
18 IP-Manufacturing  2 2 33
19 IP-Construction  2 2 46 9
20 IP-Total Industry excl construction and MIG Energy  2 2 17
21 IP-Energy 2 2
22 IP-MIG Capital Goods Industry  2 2 15
23 IP-MIG Durable Consumer Goods Industry  2 2 40 13
24 IP-MIG Energy  2 2 60 25
25 IP-MIG Intermediate Goods Industry  2 2 38
26 IP-MIG Non-durable Consumer Goods Industry  2 2 59 4
27 IP-Manufacture of basic metals  2 2 41 2
28 IP-Manufacture of chemicals and chemical products  2 2 47 21
29 IP-Manufacture of electrical machinery and apparatus  2 2 45 12
30 IP-Manufacture of machinery and equipment 2 2
31 IP-Manufacture of pulp, paper and paper products  2 2
32 IP-Manufacture of rubber and plastic products  2 2 37
33 Industry Survey: Industrial Confidence Indicator  1 1 6
34 Industry Survey: Production trend observed in recent months  1 1 25
35 Industry Survey: Assessment of order-book levels  1 1 8
36 Industry Survey: Assessment of export order-book levels  1 1 13
37 Industry Survey: Assessment of stocks of finished products  1 1 10 26
38 Industry Survey: Production expectations for the months ahead  1 1 18
39 Industry Survey: Employment expectations for the months ahead  1 1 53 3
40 Industry Survey: Selling price expectations for the months ahead  1 1 22
41 Consumer Survey: Consumer Confidence Indicator  1 1 5
42 Consumer Survey: General economic situation over last 12 months  1 1 4
43 Consumer Survey: General economic situation over next 12 months  1 1 3
44 Consumer Survey: Price trends over last 12 months  1 1 23
45 Consumer Survey: Price trends over next 12 months  1 1 11 16
46 Consumer Survey: Unemployment expectations over next 12 months  1 1 2
47 Construction Survey: Construction Confidence Indicator  1 1 7
48 Construction Survey: Trend of activity compared with preceding months  1 1 15
49 Construction Survey: Assessment of order books  1 1 1 20
50 Construction Survey: Employment expectations for the months ahead  1 1 9 7
51 Construction Survey: Selling price expectations for the months ahead  1 1 12 1
52 Retail Trade Survey: Retail Confidence Indicator  1 1
53 Retail Trade Survey: Present business situation  1 1 35
54 Retail Trade Survey: Assessment of stocks  1 1 43
55 Retail Trade Survey: Expected business situation  1 1 26 8
56 Retail Trade Survey: Employment expectations  1 1 10
57 New passenger car registrations 1 2 14 22
58 Index of Employment, Construction 3 2 30
59 Index of Employment, Manufacturing 3 2
60 Eurostoxx 500 0 2 19 14
61 Eurostoxx 325 0 2 18
62 US S&P 500 composite index 0 2 39
63 US, Dow Jones, industrial average 1 2 21
64 US, Treasury Bill rate, 3-month 1 1 57
65 US Treasury notes & bonds yield, 10 years 1 1 48
66 Money M2 in the U.S. 1 2 44 19
67 US, Unemployment rate 1 1 51
68 US, IP total excl construction 1 2
69 US, Employment, civilian 1 2 49 5
70 US, Production expectations in manufacturing 1 1 27 23
71 US, Consumer expectations index 0 1 52
72 10-year government bond yield 1 1 29 29

Transformation code:                 1 = monthly difference,   2 = monthly growth rate

Rankings:                                       Ranking of series in stepwise selection (1 = added first / eliminated last)

Table A.2: Data Germany
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No.                             Series
Publi-

cation  lag 
(months)

Trans-
formation 

code

Ranking 
prediction 

weights

Ranking 
LARS

1 Index of notional stock - Money M1 1 2 49
2 Index of notional stock - Money M2 1 2 45
3 Index of notional stock - Money M3 1 2 34
4 Index of Loans 1 2 8
5 ECB Nominal effective exch. rate 1 2 30
6 ECB Real effective exch. rate CPI deflated 1 2 29
7 ECB Real effective exch. rate producer prices deflated 1 2 52
8 Exch. rate: USD/EUR 1 2 16
9 Exch. rate: GBP/EUR 1 2 27 19

10 Exch. rate: YEN/EUR 1 2 22
11 World market prices of raw materials in Euro, total, HWWA 2 2 21
12 World market prices of raw materials in Euro, total, excl energy, HWWA 2 2 48
13 World market prices, crude oil, USD, HWWA 1 2 59
14 Gold price, USD, fine ounce 1 2 28 12
15 Brent Crude, 1 month fwd, USD/BBL converted in euro 0 2 32
16 IP-Total industry  2 2 21 6
17 IP-Total Industry (excl construction)  2 2 22 2
18 IP-Manufacturing  2 2 20
19 IP-Construction  2 2 41
20 IP-Total Industry excl construction and MIG Energy  2 2 50
21 IP-Energy 2 2 11
22 IP-MIG Capital Goods Industry  2 2 51 4
23 IP-MIG Durable Consumer Goods Industry  2 2 55
24 IP-MIG Energy  2 2
25 IP-MIG Intermediate Goods Industry  2 2 19
26 IP-MIG Non-durable Consumer Goods Industry  2 2 44 23
27 IP-Manufacture of basic metals  2 2 43
28 IP-Manufacture of chemicals and chemical products  2 2 42
29 IP-Manufacture of electrical machinery and apparatus  2 2 53 26
30 IP-Manufacture of machinery and equipment 2 2 38 17
31 IP-Manufacture of pulp, paper and paper products  2 2 37
32 IP-Manufacture of rubber and plastic products  2 2 23 7
33 Industry Survey: Industrial Confidence Indicator  1 1 5
34 Industry Survey: Production trend observed in recent months  1 1 7
35 Industry Survey: Assessment of order-book levels  1 1 6
36 Industry Survey: Assessment of export order-book levels  1 1 12
37 Industry Survey: Assessment of stocks of finished products  1 1 15 28
38 Industry Survey: Production expectations for the months ahead  1 1 14
39 Industry Survey: Employment expectations for the months ahead  1 1 36 9
40 Industry Survey: Selling price expectations for the months ahead  1 1 16
41 Consumer Survey: Consumer Confidence Indicator  1 1 9
42 Consumer Survey: General economic situation over last 12 months  1 1 8 30
43 Consumer Survey: General economic situation over next 12 months  1 1 10
44 Consumer Survey: Price trends over last 12 months  1 1 14
45 Consumer Survey: Price trends over next 12 months  1 1 20
46 Consumer Survey: Unemployment expectations over next 12 months  1 1 11
47 Construction Survey: Construction Confidence Indicator  1 1 4 1
48 Construction Survey: Trend of activity compared with preceding months  1 1 3
49 Construction Survey: Assessment of order books  1 1 2 3
50 Construction Survey: Employment expectations for the months ahead  1 1 1
51 Construction Survey: Selling price expectations for the months ahead  1 1 13 13
52 Retail Trade Survey: Retail Confidence Indicator  1 1 18
53 Retail Trade Survey: Present business situation  1 1 17
54 Retail Trade Survey: Assessment of stocks  1 1 27
55 Retail Trade Survey: Expected business situation  1 1 24 25
56 Retail Trade Survey: Employment expectations  1 1
57 New passenger car registrations 1 2 54 10
58 Unemployment rate, total 2 1 33 29
59 US, Dow Jones, industrial average 1 2 58
60 US, Treasury Bill rate, 3-month 1 1 39
61 US Treasury notes & bonds yield, 10 years 1 1 31 15
62 Money M2 in the U.S. 1 2 56 5
63 US, Unemployment rate 1 1 47 24
64 US, IP total excl construction 1 2 40
65 US, Employment, civilian 1 2 46
66 US, Production expectations in manufacturing 1 1
67 US, Consumer expectations index 0 1 25 18
68 Eurostoxx 500 1 2 60
69 Eurostoxx 325 1 2 26
70 US S&P 500 composite index 1 2 57
71 10-year government bond yield 1 1 35

Transformation code:                 1 = monthly difference,   2 = monthly growth rate

Rankings:                                       Ranking of series in stepwise selection (1 = added first / eliminated last)

Table A.3: Data France
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