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Abstract

When banks choose similar investment strategies, the �nancial

system becomes vulnerable to common shocks. Banks decide about

their investment strategy ex-ante based on a private belief about the

state of the world and a social belief formed from observing the ac-

tions of peers. When the social belief is strong and the �nancial

network is fragmented, banks follow their peers and their investment

strategies synchronize. This e�ect is stronger for less informative pri-

vate signals. For endogenously formed interbank networks, however,

less informative signals lead to higher network density and less syn-

chronization. It is shown that the former e�ect dominates the latter.

Keywords: social learning, endogenous �nancial networks, multi-

agent simulations, systemic risk

JEL Classi�cation: G21, C73, D53, D85
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Non-technical Summary

In order to derive optimal investment strategies, banks gather information

from a private signal and a social signal obtained by observing peers. With

all this information available, how could it be that so many banks chose an

investment strategy which was at odds with the current state of the world

in the run-up to the �nancial crisis? This paper develops a simple model of

banking behavior in which banks ex-ante coordinate their investment strat-

egy on a joint action that is not necessarily matching the state of the world.

The model exhibits two states of the world and banks choose one of two in-

vestment strategies. They receive a positive utility if their action (i.e. their

investment strategy) matches the state of the world and nothing otherwise.

Banks receive both private signals about the state of the world and observe

the actions of other banks to which they are connected via mutual lines of

credit.

I obtain three results. First, with an exogenously given network structure, I

show the existence of a contagious regime in which all banks ex-ante choose

an investment strategy that makes them susceptible to an ex-post com-

mon shock. Contagious synchronization on a state non-matching action

exists for interim levels of interconnectedness only, which relates two dis-

tinct sources of systemic risk: common shocks and interbank market freezes.

When there is heightened ex-ante uncertainty about the state of the world

there exists a higher probability that the strategies of all banks become

synchronized, making them vulnerable to a common shock. This e�ect is

larger when banks are less interconnected, i.e. when interbank markets dry

up. I analyze the impact of di�erent network topologies on the existence of

the contagious regime, showing that the existence of the contagious regime

depends on the properties of the network irrespective of the network type.

I also show that a contagious regime occurs even when some agents are

signi�cantly better informed than others.
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Second, I characterize the pairwise stable equilibrium network structures

when banks endogenously choose their counterparties and receive a highly

informative signal. When banks receive more informative signals about the

underlying state of the world they put less value on liquidity coinsurance

and more on the threat of ex-post contagion via counterparty risk. The

resulting network density decreases with the informativeness of the signal

structure. The model presented in this paper thus provides an additional

explanation for the persistence of interbank markets in the face of height-

ened uncertainty.

Third, I investigate the full model with social learning and endogenous net-

work formation and show that the size of the contagious regime is reduced

with increasing signal informativeness. This implies that the size of the

contagious regime is more reduced through increased informativeness than

increased through the reduction in network density that follows from in-

creasing informativeness.
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1 Introduction

When a large number of �nancial intermediaries choose the same invest-

ment strategy (i.e. their portfolios are very similar) the �nancial system as

a whole becomes vulnerable to ex-post common shocks.1 A case at hand

is the �nancial crisis of 2007/2008 when many banks invested in mortgage

backed securities in anticipation that the underlying mortgages, many of

which being US subprime mortgages, would not simultaneously depreciate

in value. Fatally, this assumption turned out to be incorrect, and systemic

risk ensued. How could so many banks choose the �wrong�, i.e. non-optimal

given the state of the world, investment strategy, although they carefully

monitor both economic fundamentals and the actions of other banks?

This paper presents a model in which �nancial intermediaries herd ex-ante

and synchronize their investment strategy on a state non-matching strat-

egy despite informative private signals about the state of the world. In a

countable number of time-steps n agents representing �nancial intermedi-

aries (banks for short) choose one of two actions. There are two states of the

world which are revealed at every point in time with a certain probability p.

A bank's action is either state-matching, in which case the bank receives a

positive payo� if the state is revealed, or it is state-non-matching in which

case the bank receives zero. Banks are connected to a set of peers in a

�nancial network of mutual lines of credit resembling the interbank market.

They receive a private signal about the state of the world and observe the

previous strategies of their peers (but not of other banks). Based on both

observations, they form a belief about the state of the world and choose

their action accordingly.

The model presented in this paper is in essence a simple model of Bayesian

learning in social networks but deviates from the existing literature (e.g.

1Common shocks are a form of systemic risk in the broad sense of See Bandt et al.
(2009).
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Gale and Kariv (2003), Acemoglu et al. (2011)) along two dimensions. First,

instead of observing the actions of one peer at a time, each time adjusting

their strategy accordingly, I assume that agents average over their peers'

actions in the previous period.2 The underlying assumption is that banks

cannot adjust their actions (i.e. their investment strategy) as fast as they

receive information from their peers and thus have to aggregate over poten-

tially large amounts of information.3 Second, I allow banks to endogenously

choose their set of peers in an extension of the baseline model. Here the

underlying assumption is that banks have limited resources and do not

monitor the actions of all other banks, but only from a strategically chosen

subset. They receive utility from being interconnected through a learning

e�ect. Banks trade-o� bene�ts from this coinsurance with a potential coun-

terparty risk from peers choosing a state non-matching action (i.e. ex-post

interbank contagion), being short on liquidity to rebalance their portfolio

and thus drawing on the credit line.4 Finally, banks su�er larger losses when

they chose a state non-matching action and the �nancial network is more

densely interconnected through an ampli�cation e�ect occuring e.g. when

many agents rebalance their portfolios simultaneously, thereby triggering a

�re-sale. The resulting endogenous network structure is pairwise stable in

the sense of Jackson and Wollinsky (1996). The model is implemented as

an agent-based model (ABM) of the �nancial system.

I obtain three results. First, in the limiting case with a �xed and exoge-

nously given network structure, I show the existence of a contagious regime

in which all banks ex-ante coordinate on a state non-matching action (i.e.

they choose an investment strategy that performs badly when the state of

2Contagious synchronization on a state non-matching action occurs before the state
of the world is revealed and is thus an ex-ante form of contagion.

3This assumption renders the agents boundedly rational, albeit mildly so, as for ex-
ample DeMarzo et al. (2003) argue.

4This simple setting introduces counterparty risk since a bank that chose a state
non-matching action draws on a mutual line of credit, reducing liquidity available at
the peer which increases the potential for a liquidity shortage if the peer chose a state
non-matching action as well.
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the world is revealed). In a fully connected network there is no contagious

synchronization on a state non-matching action, since signals are informa-

tive and every bank observes the actions of every other bank, which on

average will be state matching. In a network that is not fully connected

there is a chance that a bank i is connected to a set of peers Ki that chose

a state-non-matching action on average. As there is only social learning in

the model, the social belief of bank i might exceed the private belief and

bank i chooses a state non-matching action in the next time step. This

increases the chance that another bank now has a neighborhood in which

a majority of banks chose a state-non-matching action, and the process is

repeated until �nally all banks chose a state-non-matching action.5 This

iterative process is the driving force of bank behaviour in the contagious

regime. The probability of entering a contagious regime is smaller for net-

works that are more connected.

This result is of particular interest for policy makers as it relates two sources

of (ex-post) systemic risk: common shocks and interbank market freezes.

When there is heightened ex-ante uncertainty about the state of the world

there exists a higher probability that the strategies of all banks become

synchronized, making them vulnerable to a common shock. This e�ect is

larger when banks are less interconnected, i.e. when interbank markets dry

up. Caballero (2012) documents a higher correlation amongst various asset

classes in the world in the aftermath of the Lehman insolvency, i.e. during

times of heightened uncertainty. This can be understood by a synchroniza-

tion of bank's investment strategies for which the model provides a simple

rationale.

Two extensions of the main result are discussed. First, I analyze the impact

of di�erent network topologies on the existence of the contagious regime,

5Such informational cascades are a well-documented empirical phenomenon. See, for
example, Alevy et al. (2007), Bernhardt et al. (2006), Chang et al. (2000), and Chiang
and Zheng (2010).
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showing that the existence of the contagious regime depends on the prop-

erties of the network (i.e. shortest average path-length) rather than on the

type (i.e. random, scale-free, small-world). Second, I show that a conta-

gious regime occurs even when some agents are signi�cantly better informed

than others.

Second, turning to the extension of endogenously chosen networks, when

banks receive highly informative signals I characterize the pairwise stable

equilibrium network structures. When banks receive more informative sig-

nals about the underlying state of the world, they put less value on liquidity

coinsurance and more on the threat of contagion through counterparty risk.

The resulting network density decreases with the informativeness of the

signal structure. This result is of particular interest when applied to the

�nancial crisis of 2007/2008. Although there is a substantial body of the-

oretical literature on interbank market freezes (see e.g. Acharya and Skeie

(2011), Gale and Yorulmazer (2013), Acharya et al. (2011)), the empirical

evidence is mixed. Acharya and Merrouche (2013) provide evidence of liq-

uidity hoarding by large settlement banks in the UK on the day after the

Lehman insolvency. Afonso et al. (2011), however, analyze the US overnight

interbank market and show that while the market was stressed in the after-

math of the Lehman insolvency (i.e. loan terms become more sensitive to

borrower characteristics), it did not freeze. Gabrieli and Georg (2013) ob-

tain similar results for the euroarea, showing that interbank markets did not

freeze, but banks were shortening the maturity of their interbank exposures.

The model presented in this paper provides an additional explanation for

the persistence of interbank markets in the face of heightened uncertainty.

Third, I investigate the full model with social learning and endogenous net-

work formation and show that the size of the contagious regime is reduced

with increasing signal informativeness. This implies that the size of the

contagious regime is more reduced through increased informativeness than
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increased through the reduction in network density that follows from in-

creasing informativeness.

This paper relates to three strands of literatures. First, and foremost, the

paper develops a �nancial multi-agent simulation in which agents learn

through endogenously formed interconnections. This is in contrast with ex-

isting multi-agent models of the �nancial system, which include Nier et al.

(2007) and Iori et al. (2006) who take a �xed network and static balance

sheet structure.6 Slight deviations from these models can be found, for

example, in Bluhm et al. (2013), Ladley (2013), and Georg (2013) who

employ di�erent equilibrium concepts. While Bluhm et al. (2013) uses a

tatonnement process to obtain an equilibrium interest rate on the interbank

market, Georg (2013) uses a rationing model and introduces a central bank

to enable rationed banks to access central bank facilities. Ladley (2013)

uses a genetic algorithm to �nd equilibrium values for bank balance sheets.

The main contribution this paper makes is to develop a su�ciently simple

model of a �nancial system with a clear notion of equilibrium that allows

to be implemented on a computer and tested against analytically tractable

special cases.

Second, this paper relates to the literature on endogenous network for-

mation pioneered by Jackson and Wollinsky (1996) and Bala and Goyal

(2000). The paper in this literature closest to mine is Castiglionesi and

Navarro (2011). The authors study the formation of endogenous networks

in a banking network with microfounded banking behaviour. Unlike Cas-

tiglionesi and Navarro (2011), however, my model uses a simpli�ed model

of social learning to describe the behaviour of banks. This allows the intro-

duction of informational spillovers from one bank to another, a mechanism

6Closely related is the literature on �nancial networks. See, for example, Allen and
Gale (2000), and Freixas et al. (2000) for an early model of �nancial networks and Allen
and Babus (2009) for a more recent survey. The vast majority of models in this literature
considers a �xed network structure only (see, amongst various others, Gai and Kapadia
(2010), Gai et al. (2011), Battiston et al. (2012), Haldane and May (2011)).
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not present in the work of Castiglionesi and Navarro (2011). Other papers

in this literature include Babus (2011), Castiglionesi and Wagner (2013),

Babus and Kondor (2013), and Cohen-Cole et al. (2012).

Finally, the Bayesian learning part of the model is closely related to the

literature on Bayesian learning in social networks. Acemoglu et al. (2011)

study a model of sequential learning in a social network where each agent re-

ceives a private signal about the state of the world and observe past actions

of their neighbors. Acemoglu et al. (2011) show that asymptotic learning

(i.e. choosing the state-matching action with probability 1) occurs when

private beliefs are unbounded. My model, by contrast, considers endoge-

nously formed networks and arbitrary neighborhoods (while Acemoglu et al.

(2011) consider neighborhoods of the type Ki ⊆ {1, 2, . . . , i−1}). Other re-

lated papers in this literature include Banerjee (1992), Bikhchandani et al.

(1992), Bala and Goyal (1998), and Gale and Kariv (2003).

The remainder of this paper is organized as follows. The next section dis-

cusses a fairly general way to describe agent-based models and derives a

measure for the quality of a hypothesis that is tested in an ABM. Section

3 develops the baseline model and presents the results in the limiting case

of an exogenous network structure. Section 4 generalizes the model with

exogenous network structure and presents the results for equilibrium net-

work structures and the joint model with uninformative private signals and

endogenous network formation. Section (5) concludes.

2 Interpreting Agent-Based Models

Before presenting the model and the main results of this paper, and al-

though this is not a paper about the foundations of agent-based models, it

is instructive to have a closer look at the key elements that can be found in

any agent-based model. This section gives a rather broad and abstract def-
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inition of an agent-based model and develops a practical criterion to assess

the validity of a hypothesis that is tested using an agent-based model.

Agents represent either individuals (e.g. humans) or organizational units

(e.g. �rms, banks, households, or governments) that can be subsumed in

a meaningful manner. An agent ai is a collection of a set of externally

observable actions xi ∈ X i, externally non-observable (internal) variables

vi ∈ V i, exogenously given parameters pi ∈ P i, and an information set I i

which contains all information available to the agent. Each agent has a set

of neighboring agents whose actions she can observe. The information set

thus captures the structure of interactions amongst agents captured in a

network structure g. Internal variables and parameters de�ne the state s =

{vi, pi ∀i} ∈ S of the world at each point in time t. Agents receive a reward

from their actions in a given state of the world which is captured in a reward

function Ri. The decision agents take is determined by a policy function

πi which the agent evaluates given an information set I i and an action xi

to obtain a reward ri. Agent-based models capture model dynamics in the

form of a transition function which describes how the current state of the

system changes given the agents' actions.

De�nition 1 An agent-based model (ABM) with i = 1, . . . , N agents ai is

a partially observable Markov decision process consisting of: (i) A space S

of states s; (ii) An action space for each agent i, {X1, . . . , Xi, . . . , XN}; (iii)

A transition function: M : S ×X1 × . . .×XN 7→ [0, 1] such that:

∫
S′
M(s,x, s′)ds′ = P (st+1 ∈ S ′|st = s and xt = x),

denotes the probability that the vector xt of actions of all agents at time

t leads to a transition in state space from st to st+1 ∈ S ′ is some region

in S such that S ′ ⊂ S; (iv) A reward function for each agent i: Ri :

S×A1× ...×AN 7→ R; (v) A policy function πi : S̃i×A1× ...×AN 7→ [0, 1],

where S̃i is the subspace of S observable by agent i, i.e. s̃i = F (s|I it), where
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F maps the state vector s to the observable state vector of agent i s̃i given

the information set Ii,t available to agent i:

πi(s̃i, a) = P (at,i = ai|s̃t = s̃ and atl = al ∀l 6= k).

An agent-based model is denoted as Γ = (S, {Ai} ,M, {Ri} , {πi} , {Ii}).

The agent's optimization can be computationally intensive and even in-

tractable for Markov decision processes with many agents. Usually, agent-

based models are implemented on a computer and solved explicitly in a

simulation, which can be de�ned as:

De�nition 2 An implementation of an ABM is a collection of computer-

executable code which contains all elements of an ABM given in De�nition

1 and nothing more. A simulation is an ABM together with a set of initial

values {xi0, vi0, pi0, g0} implemented on a computer. The result of a simulation

using the parameter set p is the state λ(T ; p) obtained at the end of the

simulation at t = T .

Parameters can be distinguished into model parameters (e.g. a state of

nature, denoted θ) and simulation parameters (e.g. the duration T ). Using

this terminology, a hypothesis that can be tested using an agent-based model

is a statement about the result of a simulation:

De�nition 3 A hypothesis of an agent-based model Γ is a result of a sim-

ulation λH(T ; p). A parameter-independent hypothesis does not explicitly

depend on the parameter set: λH(T ; p) = λH(T ).

One crucial di�erence between analytical results and the result of an ABM

simulation is that simulation results depend on initial values and parame-

ters. Therefore, a simple single measure is needed to quantify the generality

and validity of a hypothesis. One such measure is the goodness of a hypoth-

esis, de�ned as:
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De�nition 4 The goodness g of a hypothesis λH tested with an ABM Γ is

de�ned as:

g(λH ; Γ) = 1−
∫ (

λH(T ; p)− λ(T ; p)
)2

dp∫
dp

(1)

where the integral is taken over the entire parameter space (which can be

high-dimensional) and each initial value is understood to be a parameter. A

goodness value of 1 indicates that the result of the ABM exactly yields the

hypothesis for the entire parameter space. Lower goodness indicates that

the ABM gives less support to the hypothesis (i.e. the hypothesis is less

valid in a smaller parameter space). An agent-based model yields a strong

result if it validates a parameter-independent hypothesis with a goodness

g ≈ 1. Two short example illustrate these de�nitions.

Cournot competition. A simple game that can be formulated as an

agent-based model is the Cournot competition game. Two �rms indexed by

i have to decide their production quantity qi given a utility function:

Ui(q1, q2) = p

(∑
j

qj

)
qi − c(qi),

where p(·) and c(·) are the pricing and cost functions respectively. The

best response of agent i to the quantity decision of agent −i is given by

the reaction function which is obtained from maximising agent i's utility,

ri(q−i) = qi. A Nash equilibrium is given when r1(q2) = q1 and r2(q1) = q2

simultaneously. Given certain regularity conditions the Nash equilibrium

can be found iteratively, i.e. �rms respond optimally to their competitors

choice in the previous time step. In this setting we have:

qit+1 = ri(q−it).

This can be understood as an ABM with a completely observable state

space using the following de�nitions. The vector of state spaces at time t

is given by: st = (q1t−1, q2t−1). The action of agent i is given by Ait = qit.
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The transition function is simply the identity mapping of actions to states;

i.e. the state vector at time t+ 1 is simply the action vector at time t. The

reward function is given by ui. The policy function is given by response

function: πi = ri(qit−1).

Foreign exchange trading. Chakrabarti (2000) develops an agent-based

model of the foreign exchange market focussing on the endogenous formation

of the bid-ask spread o�ered by dealers in this market. The model repro-

duces a U-shaped pattern of the bid-ask spread throughout the day - a well

documented empirical feature of this market. In Chakrabarti's model deal-

ers estimate the total aggregate demand for a particular currency through

stochastic order arrival. Dealers are risk averse utility maximisers and may

also request quotes from other dealers to learn about their bid-ask spread.

Chakrabarti (2000) deduces a functional form for the optimal bid-ask spread

as a function of current inventory levels and the estimated mean and vari-

ance of the end of day price of the currency.

The model of Chakrabarti (2000) can be formulated in the language of Def-

inition 1 as follows. The state vector is s = (Q, p̂, var(p)), where Q is the

vector of dealer inventories, p̂ is the vector of the end of day price as es-

timated by the dealers and var(p) is the vector of variances of the end of

day price as estimated by the dealers. The action vector is a = (ak, bk∀k),

where ak and bk are the ask and bid prices of agent k respectively. The

policy function πk is given by the expressions Chakrabarti (2000) derived to

compute the optimal bid and ask prices. The transition functionM speci�es

the stochastic order arrival to the dealers and the dealers' belief updating

mechanism. Thereby it determines how the state vector evolves from t to

t+ 1 given the dealers' bid and ask decisions.

Chakrabarti (2000) tests whether his model reproduces the empirically ob-

served U-shaped pattern of the bid-ask spread - the hypothesis λH . He
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explores the validity of λH by sweeping the parameter space for a total of

729 di�erent parameter combinations and �nds that the hypothesis holds

in a large part of parameter space.

3 Contagious Herding with Fixed Network Struc-

ture

This section develops a baseline model of �nancial intermediaries that re-

ceive a private signal about an underlying state of the world and observe

the previous actions of their peers upon which they decide on an optimal

investment strategy. The key assumption in this section is that a �nancial

intermediary can only observe an exogenously �xed fraction of his peers

which is given in a constant network structure g. Section 3.1 develops the

model, Section 3.2 presents the key result of contagious herding, and Section

3.3 discusses a number of extensions to the baseline model. The assumption

of a �xed network structure is relaxed in Section 4 where a simple rationale

for an endogenous network formation model is introduced.

3.1 Model Description and Timeline

There is a countable number of dates t = 0, 1, . . . , T and a �xed number i =

1, . . . , N of agents Ai which represent �nancial institutions and are called

banks for short.7 There are three model parameters θ, λ, and ρ which are

identical for all agents i. By a slight abuse of notation the model parameter

θ is sometimes called the state of the world and I assume that it can take

two values θ ∈ {0, 1}. I refer to the states θ = 1 as good and θ = 0 as bad.

The probability that the world is in state θ is denoted as P(θ). At each

point in time t bank i chooses one of two investment strategies xit ∈ {0, 1}

which yields a positive return if the state of the world is revealed and is

matched by the investment strategy chosen, and nothing otherwise. Agents

7I employ a broad notion of �nancial institutions that encompasses commercial banks,
investment banks, money market funds, and hedge funds.
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take an action by choosing an investment strategy. Taking an action and

switching between actions is costless. The utility of bank i from investing

is given as:

ui(xi, θ) =

 1 if xi = θ

0 else
(2)

The state of the world is unknown ex-ante and revealed with probability

ρ ∈ [0, 1] at each point in time t. Once the state is revealed, it can change

with probability λ ∈ [0, 1] and if not stated otherwise, λ = 1
2
is assumed

which ensures that information about the current state does not reveal in-

formation about the future state.8 This setup captures a situation where

the state of the world, good or bad, is revealed less often (e.g. quarterly)

than banks take investment decisions (e.g. daily). In an alternative setup

the state of the world is �xed throughout and an agent collects information

and takes an irreversible decision at time t, but receives a payo� that is

discounted by a factor e−κt. Both formulations incentivize agents to take a

decision in �nite time instead of collecting information until all uncertainty

is eliminated.

Banks can form interconnections in the form of mutual lines of credit. The

set of banks is denoted N = {1, 2, . . . , n} and the set of banks to which bank

i is directly connected is denoted Ki ⊆ N . Bank i thus has ki = |Ki| direct

connections called neighbors. This implements the notion of a network of

banks g which is de�ned as the set of banks together with a set of unordered

pairs of banks called (undirected) links L = ∪ni=1{(i, j) : j ∈ Ki}. A link is

undirected since lines of credit are mutual and captured in the symmetric

adjacency matrix g of the network. Whenever a bank i and j have a link,

the corresponding entry gij = 1, otherwise gij = 0. When there is no risk

of confusion in notation, the network g is identi�ed by its adjacency matrix

g. For the remainder of this section, I assume that the network structure

8One interpretation is that the system starts from t = 0 again once the state of the
world is revealed.
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is exogenously �xed and does not change over time. I assume that banks

monitor each other continuously when granting a credit line and thus ob-

serve their respective actions.

In this section, the network g is exogenously �xed throughout the simula-

tion. In t = 0 there is no previous decision of agents. Thus, each bank

decides on its action in autarky. Banks receive a signal about the state

of the world and form a private belief upon which they decide about their

investment strategy xit=0. The private signal received at time t is denoted

sit ∈ S where S is a Euclidean space. Signals are independently generated

according to a probability measure Fθ that depends on the state of the world

θ. The signal structure of the model is thus given by (F0,F1). I assume that

F0 and F1 are not identical and absolutely continuous with respect to each

other. Throughout this paper I will assume that F0 and F1 represent Gaus-

sian distributions with mean and variance (µ0, σ0) and (µ1, σ1) respectively.

In t = 1, . . . bank i again receives a signal sit but now also observes the

t − 1 actions xjt−1 of its neighbors j ∈ Ki. On average every 1/ρ periods

the state of the world is revealed and banks realize their utility. The model

outlined in this section is implemented in a multi-agent simulation where

banks are the agents. Date t = 0 in the model timeline is the initializa-

tion period. Subsequent dates t = 1, . . . , T are the update steps which are

repeated until the state of the world is being revealed in state T . Once

the state is revealed, returns are realized and measured. In the simulation

results discussed in Section 3.2 the state of the world was revealed only at

the end of the simulation and only after the system has reached a steady

state in which agents do not change their actions any more.9

Banks form a private belief at time t based on their privately observed signal

9In practice this is ensured by having many more update steps than it takes the system
to reach a steady state.
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sit and a social belief based on the observed actions xjt−1 their neighboring

banks took in the previous period. The �rst time banks choose an action

is a special case of the update step with no previous decisions being taken.

The information set I it of a bank i at time t is given by the private signal

sit, the set of banks connected to bank i in t− 1, Ki
t−1, and the actions xjt−1

of connected banks j ∈ Ki
t−1. Formally:

I it =
{
sit, K

i
t−1, x

j
t−1∀j ∈ Ki

t−1
}

(3)

The set of all possible information sets of bank i is denoted by I i. A strat-

egy for bank i selects an action for each possible information set. Formally,

a strategy for bank i is a mapping σi : I i → xi = {0, 1}. The notation

σ−i = {σ1, . . . , σi−1, σi+1, σn} is used to denote the strategies of all banks

other than i.

Using this nomenclature it is possible to de�ne an equilibrium of the game

of social learning with exogenously �xed network structure described in this

section:

De�nition 5 A strategy pro�le σ = {σi}i∈1,...,n is a pure strategy equilib-

rium of this game of social learning for a bank i's investment if σi maximizes

the expected pay-o� of bank i given the strategies of all other banks σ−i.

For every strategy pro�le σ the expected pay-o� of bank i from action

xi = σi(I i) is denoted Pσ(xi = θ|I i). Thus for any equilibrium σ, bank i

chooses action xi according to:

xi = σi(I i) ∈ arg max
y

P(y,σ−i∗)(y = θ|I i) , y ∈ {0, 1} (4)

(see Acemoglu et al. (2011)). In their setting, each agent i receives a private

signal and observes the actions of a set of neighbors which, by construction,

chose their actions before agent i. Agent i then decides on an optimal action.

The authors show that there exists a pure strategy perfect Bayesian equi-
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librium inductively. Their result carries over to the present setting where

each bank receives a private signal and averages over the previous actions

of a �xed set of neighbors. The equilibrium is still a Bayesian equilibrium

because the averaging over neighbors' actions e�ectively replaces the entire

neighborhood by a single representative agent.10

The action chosen by bank i carries over from Acemoglu et al. (2011) simi-

larly to the existence of a pure strategy equilibrium and yields:

Proposition 1 Let σ be an equilibrium of the single bank investment game

and let I it ∈ I i be the information set of bank i at time t. Then the strategy

decision of bank i, xit = σi(I it) satis�es

xi =

 1, if Pσ(θ = 1|sit) + Pσ(θ = 1|xjt−1, j ∈ Ki
t−1) > xt

0, if Pσ(θ = 1|sit) + Pσ(θ = 1|xjt−1, j ∈ Ki
t−1) < xt

(5)

and xi ∈ {0, 1} otherwise.

where the �rst term on the left-hand side of Equation 5 is the private belief,

the second term is the social belief, and where xt is a threshold that has to

satisfy two conditions: (i) In the case with no social learning (Ki
t−1 = ∅), the

threshold should reduce to the simple Bayesian threshold xiB = 1
2
in which

the agent will select action xi = 1 whenever it is more likely that the state

of the world is θ = 1 and zero otherwise; and (ii) With social learning the

threshold should depend on the number of neighboring signals, i.e. the size

of the neighborhood kit−1 = |Ki
t−1|. The underlying assumption is that the

agent will place a higher weight on the social belief when the neighborhood

is larger. A simple function that satis�es both requirements is given by:

xt =
1

2

(
1 +

kit−1
(n− 1)

)
(6)

and yields x ∈ [1
2
, 1]. Other functional forms are possible, and in particular

in the standard model of social learning as employed for example in Gale

10The action taken by this agent is not a binary action, however. Formally xi
t−1 ∈ [0, 1].
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and Kariv (2003), and Acemoglu et al. (2011), each agent observes the ac-

tion of only one neighbor at a time and the threshold does not account for

the relative size of the neighborhood. In this case the threshold is simply

given by xt = 1.

The private belief of bank i is denoted pi = P(θ = 1|si) and can be obtained

using Bayes' rule. It is given as:

pi =

(
1 +

dF0

dF1

(sit)

)−1
=

(
1 +

f0(s
i
t)

f1(sit)

)−1
(7)

where f0 and f1 are the densities of F0 and F1 respectively. Bank i is

assumed to form a social belief by simply averaging over the actions of all

neighbors j ∈ Ki
t−1:

Pσ(θ = 1|Ki
t , x

j, j ∈ Ki
t−1) = 1/kit−1

∑
j∈Ki

t−1

xjt−1 (8)

which implies that the bank will choose xi = 1 whenever the sum of private

and social belief exceeds the threshold x.

Averaging over the actions of neighbors is a special case of DeGroot (1974)

who introduces a model where a population of N agents is endowed with

initial opinions p(0). Agents are connected to each other but with varying

levels of trust, i.e. their interconnectedness is captured in a weighted di-

rected n × n matrix T . A vector of beliefs p is updated such that p(t) =

Tp(t − 1) = T tp(0). DeMarzo et al. (2003) point out that this process

is a boundedly rational approximation of a much more complicated infer-

ence problem where agents keep track of each bit of information to avoid a

persuasion bias (e�ectively double-counting the same piece of information).

Therefore, the model this paper develops is also boundedly rational.11

11This bounded rationality can be motivated analogously to DeMarzo et al. (2003) who
argue that the amount of information agents have to keep track of increases exponentially
with the number of agents and increasing time, making it computationally impossible to
process all available information.
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The model in this section can be formulated as an agent-based model using

De�nition (1). Banks are the agents ai who can choose one of two actions

xi ∈ {0, 1} yielding the action space X i. The internal variables are given

by the private and social belief of agent i, i.e. vi = {pi,Pσ(θ = 1|Ki
t , x

j, j ∈

Ki
t−1)} and the only exogenously given parameter is the state of the world

θ which is identical for all agents i. The internal variables and exogenous

parameter together form the state space S. Each agent has an information

set I i given by Equation (3). The reward function Ri is given by the utility

(2) of agent i and the policy function πi by the strategy given in Equation

(5). The network structure g is encompassed in the information set. The

transition function speci�es how the private and social beliefs of each agent

are updated given the actions of all agents and the state of the system, i.e.

Equations (7) and (8).12 When the network structure is exogenously �xed,

this ABM is denoted as Γexo.

3.2 Contagious Herding

Before discussing the full model I build some intuition about the results in

useful benchmark cases. Using 6 - 7, an agent i will choose action xit = 1,

whenever Equation 5 yields:

(
1 +

f0(s
i
t)

f1(sit)

)−1
+

1

kit−1

∑
j∈Ki

t−1

xjt−1 >
1

2

(
1 +

kit−1
(n− 1)

)
(9)

First, consider the (hypothetical) case of a completely uninformative private

signal, i.e. f0(s
i
t) = f1(s

i
t). The above equation simpli�es to:

1

kit−1

∑
j∈Ki

t−1

xjt−1 >
1

2

(
kit−1

(n− 1)

)
⇔ 2(n− 1)

∑
j∈Ki

t−1

xj > (kit−1)
2 (10)

12This ABM is implemented according to De�nition 2 using the programming language
python. The source code can be found in the supplementary material for this paper at
http://www.co-georg.de/.
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For a maximally connected agent kit = (n− 1) this implies that 2
∑

j x
j
t−1 >

(n − 1) from which it follows that agent i chooses xit = 1 whenever more

than half of the agents chose xjt−1 = 1 in the previous period. A fully con-

nected network with fully uninformative private signals where more than

half of the agents selects action xit = 1 at any point in time t (e.g. for an

exogenous reason or out of pure chance) will thus yield a long-run equilib-

rium in which xi = 1 ∀i (and similarly if a majority ever selects xit = 0).

The long-run equilibrium of the system is thus determined by the initial

conditions similarly to the DeGroot (1974) model. Equivalently, a mini-

mally connected agent i with kit−1 = 1 will follow his neighbor in whatever

decision the neighbor takes. To see this, consider a star network with n ≥ 3

nodes where k0 = 2 (the central node is indexed 0). For simplicity assume

x0t=0 = 1 and x1t=0 = . . . = xnt=0 = 0. In t = 1 the two spokes will follow the

central node, while the central node will follow the two spokes and x0t=1 = 0,

while x1t=1 = . . . = xnt=1 = 1 and the system always oscillates between those

two states, although the vast majority of agents chose a particular action

initially. The social belief does no longer carry information about the state

of the world, which shows that it's informativeness depends on the network

structure.

Second, consider the case of informative private signals. When the net-

work is fully connected, each bank observes the actions of all other banks

in the system. Since banks receive only their private signal in the initial-

ization step and since private signals are informative (even if only slightly

so), there will be more than half the banks in the system that choose a

state-matching action in t = 0 and the social signal is state-matching. In

the long-run, banks will thus choose a state-matching action whenever the

system is fully connected. If, on the other hand, the network is completely

empty, banks receive only their private signal at each update step. While

the signal is informative, there is no learning from previous signals in this

model. Thus, the probability of choosing a state-matching action in period
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t depends solely on the private belief in this period. The probability of �nd-

ing a system in which all banks chose a state-matching action will therefore

be higher for more informative signal structures (µ1 − µ0 � 0) than for

uninformative signal structures (µ1 − µ0 ≈ 0).

For interim levels of connectivity the system can enter a contagious regime

in which all banks choose a state-non-matching action. There exists posi-

tive probability that a bank i has a neighborhood Ki which contains more

banks that chose a state-non-matching action than banks that chose a state-

matching action. The e�ect can be large enough to o�set any private signal

bank i might receive. In this case, bank i decides to act on its social belief

instead of following its private belief. This contagious process continues in

the next period until �nally, after a number of update steps, a majority of

the �nancial system follows a misleading social belief instead of their (on

average correct) private beliefs. This phenomenon can be seen in Figure (1)

in Appendix (A) which shows the average action of all banks at t = 100 for

varying density of the exogenously �xed random network. The density δ(g)

of the network is de�ned as

δ(g) =
|g|

n(n− 1)
(11)

where |g| is the number of connections in the network given in Equation

(14). The density of the network is �xed exogenously and the network

is created accordingly.13 Each simulation was conducted with n = 50

agents and repeated 100 times. Three sets of model parameters for the

signal structure are chosen: a highly informative signal structure (µ0 =

0.25, µ1 = 0.75, σ2
{0,1} = 0.1), a less informative signal structure (µ0 =

0.4, µ1 = 0.6, σ2
{0,1} = 0.1), and a signal structure with very low informa-

tiveness (µ0 = 0.49, µ1 = 0.51, σ2
{0,1} = 0.1).

13The network generation algorithm is very simple: loop over all possible pairs of
neighbors in the network and draw a random number. If it is below the exogenously
de�ned network density, add the link to the network and do nothing otherwise. The
result of this procedure is a randomly connected network of the requested density.
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Figure (1) shows the existence of the contagious regime for low levels of

interconnectedness mentioned above. In the contagious regime false beliefs

about the state of the world can propagate through the network to all banks

in the system. The intuition behind this e�ect is that the network substi-

tutes a memory and provides banks with a means to receive a signal about

previous actions (albeit, of other banks). It can be seen from Figure (1) that

the contagious regime is larger for a less informative signal structure (i.e.

exists for a larger range of network densities) than for a more informative

signal structure.

In order to more rigorously test the initial result discussed above we formu-

late a null hypothesis which can be tested for robustness using the goodness

de�ned in De�nition (4):

Hypothesis 1 The model of bank behaviour with exogenously given network

structure presented in this section and given by Γexo always leads all agents

to coordinate on a state-matching action.

In accordance with the initial result, a simulation study using the goodness

of the hypothesis invalidates the null hypothesis, namely:

Result 1 The model of bank behaviour with exogenously given network struc-

ture presented in this section and given by the ABM Γexo exhibits a conta-

gious regime for interim levels of interconnectedness in which all agents

coordinate on a state-non-matching action.

Goodness as a function of network density for Γexo is shown in Figure 2

for θ = 0 and varying degrees of network density. The parameters are the

signal informativeness (i.e. the di�erence between the mean of F1 and F0),

as well as the signal variance σ2
{0,1}. Signal informativeness varies between

0.02 and 0.9 in 0.1 steps, and signal variance between 0.02 and 0.25 in 0.05

steps. Figure 2 shows that result 1 holds true and quanti�es the interim

range of network density to be smaller than 0.2. Each point is the result
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of 1000 simulations with 50 sweeps and N = 15 agents. The results hold

qualitatively when the number of agents is varied.

3.3 Extensions of the Baseline Model

After establishing the main result for the baseline model, this section presents

two interesting extensions that explore various aspects of agent heterogene-

ity. First, heterogeneity in terms of interconnectedness refers to the possibil-

ity that some agents are signi�cantly better connected and therefore observe

signi�cantly more actions of neighbors. Second, heterogeneity in terms of

informedness refers to the fact that some agents might receive signi�cantly

better private signals.

Di�erent Network Topologies. Interbank networks can exhibit a range

of possible network structures.14 Three types of networks can be distin-

guished: (i) Random networks where the probability that two nodes are

connected is independent of other characteristics of the node; (ii) Barabasi-

Albert (or scale-free) networks where the probability that a new node enter-

ing the system is connected to an existing node is proportional to the exist-

ing node's degree; (iii) Watts-Strogatz (or small-world) networks which are

essentially regular networks with a number of �shortcuts� between remote

parts of the network. Three parameters are useful to di�erentiate between

the di�erent types of networks: network density (number of links divided

by the number of possible links), shortest average path length (number of

links between two random nodes), and clustering (the probability that a

node's counterparties are counterparties of each other. In random networks

clustering and shortest average path length is proportional to the density

of the network. In Barabasi-Albert networks some nodes have substantially

higher clustering than the rest of the system, even for low values of network

density (and thus large shortest average path length). And Watts-Strogatz

14See Georg (2013) for an overview of empirical works on the interbank network struc-
ture and a comparison of their susceptibility to �nancial contagion.
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networks feature low shortest-average path lengths even for relatively high

values of clustering.

Figure 3 shows the results for the goodness of the hypothesis that banks co-

ordinate on a state-matching action for θ = 0 for various network topologies.

Random networks are created using ρ = {0.1, 0.2, 0.3, 0.4, 0.5}, Barabasi-

Albert networks with each new node being connected to k = {2, 3, 4, 5, 6, 7, 8, 9, 10}

others (Barabasi-Albert networks are constructed, starting with k initial

nodes and nodes being added until the network has N nodes), and Watts-

Strogatz networks (which are constructed from a regular graph in which

each node has m neighbors and the probability that a given link is attached

to a random node is p) for m = {2, 4, 8} and p = {0.05, 0.1, 0.2, 0.3, 0.5}.

The goodness of the hypothesis that banks choose a state-matching action

is lower for larger values of the shortest average path length for all types

of networks. While Barabasi-Albert networks are characterized by a small

number of very highly connected banks and a large number of less intercon-

nected banks, this does not improve the goodness of the hypothesis if the

average path-length is too large. Note that the drop in goodness occurs at

the same value of average shortest path-length suggesting that the e�ect is

independent of the exact network structure. Similarly, lower values of the

clustering coe�cient are associated with low values of goodness, however,

not identically for all network topologies.

Agent Heterogeneity. A simple way to capture agent heterogeneity is to

introduce two types of agents, informed and uninformed. Informed agents

have a much higher informativeness of their private signal (i.e. µ1−µ0 � 0)

than uninformed agents (i.e. µ1 − µ0 ≈ 0). Heterogeneity is introduced by

varying the probability that a fraction pinf is informed and (1− pinf) is un-

informed. Figure 4 shows the result of varying agent heterogeneity on the

goodness of the hypothesis that the model exhibits a contagious regime.
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The probability pinf is increased from 0 to 1 in 0.1 steps and the goodness is

computed for each value of pinf separately. Being informed corresponds to

mean signals of µinf0 = 0.25, µinf1 = 0.75, and
(
σ2
{0,1}

)inf
= 0.1 while being

uninformed corresponds to mean signals of µ!inf
0 = 0.49, µ!inf

1 = 0.51, and(
σ2
{0,1}

)!inf
= 0.1. I consider two cases, one where the network structure

would exhibit a contagious regime, i.e. where the density is 0.1 and one

where there is no contagious regime any more, i.e. where the density is 0.5.

In both cases the goodness does not change much as a function of the prob-

ability of an agent being informed. For the non-contagious network density,

almost no variation in goodness is observed, while the simulations with low

density show little variation in the goodness of the hypothesis. The spe-

cial case of only informed agents is also shown in Figure 1, con�rming that

the range of low network density (ρ ≈ 0.1) indeed exhibits the contagious

regime, even if some agents are more informed than others. The intuition is

simple, even well-informed agents will eventually act on their social signal

instead of their private signal if su�ciently many neighbors act uniformly.

4 Endogenous Network Formation

The assumption of an exogenously �xed network structure is rather restric-

tive for �nancial networks as studies of money market network structures

show (see, for example, Arciero et al. (2013), and Gabrieli and Georg (2013)

for an analysis of the European interbank market). This section therefore

relaxes this assumption and develops a simple model of endogenous network

formation in which banks mutually decide on which links to form.

A few modi�cations to the model with exogenous network structure are in

order, in particular the time-line is slightly modi�ed. In t = 0 there is no

endogenously formed link and each bank decides on its action in autarky.

Banks receive a signal about the state of the world and form a private be-

ECB Working Paper 1700, July 2014 26



lief upon which they decide about their investment strategy xi. In t = 1

and all subsequent periods banks receive their private signal and also ob-

serve the actions by all neighbors in the previous period. Based upon this

information, banks decide on their action. Once banks have chosen their

individual actions they agree on a new network of mutual lines of credit.

An equilibrium outcome for this game will be obtained by using the notion

of pairwise stability introduced by Jackson and Wollinsky (1996). In order

to utilize pairwise stability, a bank i's bene�ts and risks of being connected

to bank j have to be determined.

In this simple extension, I assume three motifs for banks to engage in inter-

bank lending. First, banks have a bene�t from forming a connection since

they receive additional information about the state of the world. However,

forming and maintaining a link is costly due to increased business operations

(e.g. infrastructure cost, cost of operating a trading and risk management

department). The net bene�t of establishing a link between banks i and j

is given as

αgij (12)

where α ∈ R is positive unless speci�ed otherwise. The bene�t of learning

a neighbor's action is thus assumed to outweigh the costs of establishing

and maintaining a link. As long as agents coordinate on a state-matching

action, learning a neighbor's action is additional and valuable information,

increasing the probability of selecting a state-matching action. In this case,

it is possible to compute the value from learning in a closed form. However,

agents do not know when their neighbors have selected a state non-matching

action. Thus, a closed form solution for α for all cases is infeasible. Ab-

sent any other motif, a positive α for all banks implies that the resulting

network structure will be perfectly connected, an observation at odds with

observed interbank network structures. Therefore, either α is stochastic

(positive for some, but not for all banks), or other motifs for interbank net-

work formation must be present. In this paper I follow the second approach.
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Second, when the state of the world is revealed a bank i that did not choose

the correct strategy (xi 6= θ) will incur a liquidity shortfall. This can be

motivated by the following argument. Assume the state of the world is a

bust and that bank i has chosen a strategy that yields a portfolio which

perfoms good in a boom, but badly in a bust. Once the state of the world

is revealed there is a probability of λ = 1/2 that the state of the world

changes and remains in the new state for (on average) 1/p periods. In

such a situation a bank that chose a non-state-matching action will su�er

liquidity out�ows as investors will try to put their money in banks with

better adjusted portfolio.15 A mutual line of credit between banks i and j

implies that bank i can draw upon liquidity from bank j and avoid costly

�re-sales. Thus, there exists a positive probability that bank j chose the

state-matching action and i can draw upon the mutual line of credit and

avoid a �re-sale whenever xi 6= θ. When bank i has a private belief of

pi = 1/2 it is, without additional information, completely uncertain about

the underlying state of the world and coinsurance will be most valuable. If

bank i is certain about the state θ of the world, it will not value coinsurance

at all. This is captured by introducing a value-function qi(pi) de�ned as:

qi(pi) =

 2pi for pi ≤ 1
2

2(1− pi) for pi ≥ 1
2

(13)

which can be used to de�ne the expected utility from coinsurance:

β1q
i(pi)gij (14)

where β1 ∈ R > 0.16

15The underlying assumption is that portfolios are more liquid when matching the
state of the world. Banks that chose the right strategy can then adjust their portfolio
more quickly to a (possible) new state of the world than banks that are stuck with an
illiquid, state-non-matching portfolio.

16One could argue that the value of additional links is declining in the total number of
links. Since banks average over all their neighboring links with equal weights, however,
each link carries equal value.
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While the upside from mutual lines of credit is liquidity coinsurance, the

downside is counterparty risk which arises whenever a bank i chose a state-

matching strategy and is connected to a bank j which chose a non-state-

matching strategy.17 Counterparty risk leads to losses due to contagious

defaults. The intuition is similar to that of Equation (4): whenever bank i

assumes to be right about the state of the world there is a risk that bank j is

not right in which case i will incur a loss due to contagion. This is captured

by assuming that the expected loss form counterparty risk is given as:

− β2
(
1− qi(pi)

)
gij (15)

where β2 ∈ R > 0.18 For simplicity I assume β1 = β2 in which case the

bene�t from coinsurance and the expected loss from counterparty risk sum

up to:

β(2qi(pi)− 1)gij (16)

which has a natural interpretation. When bank i is certain about the state

of the world, it will fear contagion more than the bene�t from coinsurance

and Equation (4) is negative. While, on the other hand, the bene�t from

coinsurance will outweigh the potential loss from counterparty risk when-

ever bank i is uncertain about the state of the world.

Finally, to capture ampli�cation e�ects from �nancial fragility I assume that

banks su�er an expected loss of:

− γ|g|qi(pi)gij (17)

17In Castiglionesi and Navarro (2011) both liquidity coinsurance and counterparty risk
is considered in a microfounded model of banking behaviour.

18Counterparty risk in interbank markets can lead banks to cut lending and eventu-
ally even to money market freezes. For theoretical contributions see Rochet and Tirole
(1996), and Heider et al. (2009), and Acharya and Bisin (2013). Empirically the role
of counterparty risk in market freezes has been analyzed for example by Afonso et al.
(2011).
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where γ ∈ R > 0.19 The term will increase with the total number of

connections in the �nancial system, given as

|g| =
∑
i,j

gij (18)

This ampli�cation e�ect captures a situation where a number liquidity con-

straint banks are forced to sell assets in a �re-sale. In essence, it captures

a non-linear downward-sloping demand for assets similar to Cifuentes et al.

(2005). I will analyze the equilibrium network structures that are obtained

from these three motifs below.

Bank i's utility from forming a connection with bank j is thus given as:

ui(gij = 1) = α + β
(
2qi(pi)− 1

)
− γ|g|qi(pi) (19)

The utility bank i receives from being interconnected is

ui(g) =
∑
j∈Ki

ui(gij = 1) (20)

and the utility of the whole network u(g) is u(g) =
∑

i u
i(g).

An update step consists of agents chosing an optimal strategy based on

their private and social beliefs, and a network formation process. Follow-

ing Jackson and Wollinsky (1996) an equilibrium of the network formation

process can be characterized using the notion of pairwise stability.

De�nition 6 A network de�ned by an adjacency matrix g is called pairwise

stable if

(i) For all banks i and j directly connected by a link, lij ∈ L: ui(g) ≥

ui(g − lij) and uj(g) ≥ uj(g − lij)
19Korinek (2011) shows how such ampli�cation e�ects can arise in a framework of

�nancial fragility.
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(ii) For all banks i and j not directly connected by a link, lij 3 L: ui(g +

lij) < ui(g) and uj(g + lij) < uj(g)

where the notation g+ lij denotes the network g with the added link lij and

g − lij the network with the link lij removed.

The notion of a pairwise stable equilibrium describes a situation where two

banks that both obtain positive utility from establishing a mutual link will

do so, and all others will not. This cooperative notion of equilibrium is only

one possibility, however. Bala and Goyal (2000) develop an equilibrium

concept based on non-cooperative network formation where the cost of a

link is borne by one of the banks only. Recently, Acemoglu et al. (2013)

and Gofman (2013) extend the approach by Eisenberg and Noe (2001) to

describe the formation of networks. Analysing the impact of such alternative

network formation concepts are beyond the scope of the present paper,

however.

4.1 The Structure of Endogenous Networks

While Section 3.2 considered the special case of a �xed network structure

and not highly informative signal, this section does the converse. It de-

scribes a situation in which each bank receives a highly informative private

signal about the underlying state of the world and forms links endogenously.

This is achieved by using µ0 = 0.25, µ1 = 0.75, and σ2
{0,1} = 0.05. I further-

more assume that there exist i = 1, . . . , n ex-ante identical banks, i.e. there

is no agent heterogeneity. The network structure is formed endogenously

depending on the three parameters α, β, and γ in Equation (15). Each

parameter captures a di�erent motive to form or sever an interbank link:

α ∈ [0, 1] describes the utility that is obtained through enhanced learning;

β ∈ [0, 1] is the coinsurance-counterparty risk trade-o� term capturing the

fact that banks who do not have a very informative private signal about the

state of the world prefer to form connections to reap the bene�ts of coin-
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surance (while banks with a very informative private signal prefer to not

form a link to avoid counterparty risk); and γ accounting for ampli�cation

e�ects in the form of, for example, �re-sales.

Two trivial results can be readily observed. First, if β = γ = 0.0, any pos-

itive value of α leads to a complete network, while α = 0 yields an empty

network. And second, for α = β = 0.0, any value of γ yields an empty net-

work (recall that a link is only formed if both agents obtain positive utility

from the formation of the link).

For α = γ = 0.0 and β > 0.0 bank i's utility from establishing a link is given

as β (2qi(pi)− 1) and thus positive whenever qi(pi) > 1/2. This happens if

pi ∈ (1/4, 3/4).20 For very uninformative signal structures (µ1 − µ0 ≈ 0)

agents almost never receive a su�ciently strong private signal so they would

�nd it optimal to not form a link. The resulting network structure is that

of a complete network. For very informative signal structures (µ1−µ0 ≈ 1)

agents are almost always certain about the state of the world from just using

their private signal and will �nd it thus almost never bene�cial to establish a

link. The resulting network is empty. The network density will be between

those two extremes for interim ranges of informativeness. This intuition is

con�rmed by Figure (5) which was obtained by measuring the equilibrium

network density (i.e. the network structure in t = 20) for di�erent levels of

signal informativeness (µ1 − µ0 ∈ [0.02, 1.0]). Each simulation consists of

n = 20 agents and was repeated 500 times. The network density shown in

Figure (5) is the average network density over all 500 simulations.

Another interesting limiting case is obtained whenever there is a positive

utility from (α > 0) learning but negative utility from ampli�cation e�ects

(γ > 0). Banks receive a constant utility from learning, while the disutility

from ampli�cation e�ects grows with the number of links in the network.

20This follows immediately from the de�nition of qi in Equation (9).
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Once the number of links is too large, no further links are added. The

resulting network structure is that of a star which is characterized by (i)

small average shortest path length l ' 2; (ii) density δ = 1/n; and (iii) a

clustering coe�cient of zero. The average shortest path length is de�ned

as:

l(i, j) =
∑
i,j

d(i, j)

n(n− 1)
(21)

where the sum runs over all nodes i, j and where d(i, j) is the length of the

shortest path from i to j. The clustering coe�cient c(g) is de�ned via the

local clustering coe�cient ci of bank i:

ci =
|
{
ljk, j, k ∈ Ki, ljk ∈ L

}
|

ki(ki − 1)
(22)

as:

c =
1

n

∑
i

ci (23)

Intuitively, the local clustering coe�cient of a bank i is the probability that

two neighbors of i are connected.

Figures (6) and (7) show the three network measures as a function of the

ampli�cation parameter γ ∈ [0, 1] with �xed learning parameter α = 0.01.

Each point is the result of 500 simulations with n = 20 agents. For a perfect

star with n nodes, l ' 2, c = 0.0, and δ = 1/n. For the uninformative signal

structure µ0 = 0.4, µ1 = 0.6 shown in Figure (6) a star-like network is ob-

tained for γ > 0.3. For the informative signal structure µ0 = 0.25, µ1 = 0.75

shown in Figure (7) a star-like network is much less pronounced and the re-

sulting network will be a mixture of a star and a random network.

From the discussion above it can be seen that the equilibrium network

outcomes are a superposition of the limiting cases. The trade-o� between

coinsurance and counterparty risk (as a result from signal informativeness)

controls the overall network density. The trade-o� between learning and
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ampli�cation controls how star-like the equilibrium network will be. This

can be summarized as follows:

Result 2 The density of the pairwise stable equilibrium network that is

obtained in the pure coinsurance-counterparty risk case (α = γ = 0, β > 0)

decreases with the informativeness of the signal structure. The pairwise

stable equilibrium network that is obtained with positive utility from learning

in the presence of ampli�cation e�ects (α > 0, γ > 0, β = 0) is star-like.

4.2 Learning and Endogenous Network Formation

Section (3.2) shows the existence of a contagious regime for varying signal

informativeness and low network density. In this regime there is a positive

probability that banks synchronize on a state-non-matching action. The

contagious regime is larger when the signal structure is less informative. At

the same time, however, Section (4.1) shows that the density of an endoge-

nously formed network is large for low signal informativeness since banks

will put more emphasis on the liquidity coinsurance character of mutual

lines of credit. This raises the question which of the two e�ects will prevail

when they are both present in a model with learning and endogenous net-

work formation.

To address this question, Figure (8) shows the total utility of agents in the

system as a function of signal informativeness. Total utility U is de�ned as

the sum of two terms:

U =
∑
i

[
ui(xi, θ) + ui(g)

]
(24)

where the �rst term is the individual utility bank i receives from choosing a

state-matching action and the second term is the the utility bank i receives

from being interconnected ui(g) =
∑

j∈Ki ui(gij = 1). Each point in the

�gure is the average utility from 500 simulations with n = 20 agents and

has been measured at the end of each simulation in t = 20. The individual
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utility will always be in the range ui(xi, θ) ∈ [0.0, n] and the relation be-

tween individual utility and utility from interconnectedness is controlled by

the parameter β. Larger values of β imply relatively larger values of utility

from interconnectedness.

Figure (8) shows the trade-o� between social learning in the contagious

regime and liquidity coinsurance. For very uninformative signals (µ1−µ0 '

0) synchronization on state-non-matching actions in the contagious regime

exists for larger ranges of network densities and the only utility obtained

stems from being interconnected. As signal informativeness increases, the

size of the contagious regime gets smaller but at the same time the network

density is reduced which increases the chance of being in the contagious

regime. The e�ect from the reduction of the size of the contagious regime,

however, is stronger than the the e�ect from reduced network density, as

can be seen from Figure (8) for varying strengths of β. The total utility,

however, is reduced proportional to the reduction in network density.

This leads to:

Result 3 In the full model with social learning and endogenous network

formation an increasing informativeness of the signal structure the reduc-

tion in the size of the contagious regime outweighs the reduction in network

density. Unless the signal informativeness is extremely low banks synchro-

nize their strategies on state-matching actions.

5 Conclusion

This paper develops a model of ex-ante contagious synchronization of bank's

investment strategies. Banks are connected via mutual lines of credit and

endogenously choose an optimal network structure. They receive a pri-

vate signal about the state of the world and observe the strategies of their

counterparties. Three aspects determine the equilibrium network structure:
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(i) the bene�t from learning the signal of counterparties; (ii) a trade-o�

between coinsurance and counterparty risk: banks with more informative

private signal have less incentives to form a link since the coinsurance mo-

tif is dominated by counterparty risk; and (iii) the threat of ampli�cation

e�ects when a bank chooses a state-non-matching action.

Three results are obtained. First, I show the existence of a contagious

regime in which banks synchronize their investment strategy on a state-

non-matching action. This regime is larger for less informative signals and

exists in incomplete networks, irrespective of the network type and also

for heterogenously informed agents. When a bank is connected to a set

of counterparties that on average selected a state-non-matching action the

social signal can outweigh the private signal and the synchronization on a

state-non-matching action becomes contagious. Second, I characterize the

equilibrium interbank network structures obtained. For more informative

private signals the network structure becomes sparser since banks fear coun-

terparty risk. For stronger ampli�cation e�ects star-like networks emerge

and the equilibrium interbank network structures obtained in the full model

resemble real-world interbank networks. Third, I show that for low signal

informativeness the contagious regime still exists, i.e. that the e�ect from

contagious synchronization outweighs the e�ect from increased network con-

nectivity.

The model has a number of interesting extensions. One example is the

case with two di�erent regions that can feature di�ering states of the world.

Such an application could capture a situation in which banks in two coun-

tries (one in a boom, the other in a bust) can engage in interbank lending

within the country and across borders. This would provide an interesting

model for the current situation within the Eurozone. The model so far fea-

tures social learning but not individual learning. Another possible extension

would be to introduce individual learning and characterize the conditions
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under which the contagious regime exists. Finally, the model can be ap-

plied to real-world interbank network and balance sheet data to test for the

interplay of contagious synchronization and endogenous network structure.

One drawback of the model is that there is no closed-form analytical solution

for the bene�t a bank obtains through learning from a peer. This bene�t

will depend on whether or not a neighboring bank chose a state matching

on state non-macthing action in the previous period. In the former case, the

bene�t will be positive, while in the latter case it will be negative. Agents

have ex ante no way of knowing what action a neighboring bank selected

until the state of the world is reveiled ex post. Finding such a closed-form

solution is beyond the scope of the present paper which focuses on the

application in an agent-based model, but would provide a fruitful exercise

for future research.
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Figure 1: Average actions of agents in t = 100 for θ = 0, varying network
densities, and di�erent signal structures: (i) high informativeness, µ0 =
0.25, µ1 = 0.75, σ2

{0,1} = 0.1; and (ii) low informativeness, µ0 = 0.4, µ1 =

0.6, σ2
{0,1} = 0.1; (iii) very low informativeness, µ0 = 0.49, µ1 = 0.51, σ2

{0,1}.
Each point is the average of 100 simulations with n = 50 agents.
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Figure 2: Goodness of the hypothesis that agents coordinate on a state-
matching action for varying network densities for θ = 0. Signal distance
(µ1− µ0) has been varied between 0.02 and 0.9 in 0.1 steps and signal vari-
ance between 0.02 and 0.25 in 0.05 steps. For each point, 1000 simulations
with 50 sweeps and 15 agents were performed. Goodness computed via the
mean of actions is given by the solid line, while dashed lines indicate the
goodness result for mean ± one standard deviation.

ECB Working Paper 1700, July 2014 44



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

g
o
o
d
n
e
s
s

Random

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.2  0.25  0.3  0.35  0.4  0.45  0.5  0.55

g
o
o
d
n
e
s
s

Barabasi-Albert

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

g
o
o
d
n
e
s
s

network density

Watts-Strogatz

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5

Random

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4  1.5  1.6  1.7  1.8  1.9  2

Barabasi-Albert

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4  1.6  1.8  2  2.2  2.4  2.6  2.8

shortest average path length

Watts-Strogatz

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

Random

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.35  0.4  0.45  0.5  0.55  0.6  0.65  0.7  0.75  0.8  0.85

Barabasi-Albert

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5  0.55

clustering

Watts-Strogatz

Figure 3: Goodness of the hypothesis that agents coordinate on a state-
matching action for di�erent network topologies and θ =. Signal distance
(µ1− µ0) has been varied between 0.02 and 0.9 in 0.1 steps and signal vari-
ance between 0.02 and 0.25 in 0.05 steps. For each point, 1000 simulations
with 50 sweeps and 15 agents were performed. Goodness computed via the
mean of actions is given by the solid line, while dashed lines indicate the
goodness result for mean ± one standard deviation. Top row: random net-
works; Center row: Barabasi-Albert networks; Bottom row: Watts-Strogatz
networks; Left column: network density; Middle column: average shortest
path length; Right column: clustering.
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Figure 4: Goodness of the hypothesis that agents coordinate on a state-
matching action for di�erent network topologies and θ = 0. Signal distance
(µ1− µ0) has been varied between 0.02 and 0.9 in 0.1 steps and signal vari-
ance between 0.02 and 0.25 in 0.05 steps. For each point, 1000 simulations
with 50 sweeps and 15 agents were performed. Goodness computed via the
mean of actions is given by the solid line, while dashed lines indicate the
goodness result for mean ± one standard deviation. Goodness is shown for
varying probabilities of agent informedness.
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Figure 5: Average equilibrium network density as a function of signal infor-
mativeness (µ1 − µ0) for α = γ = 0.0, β = 0.1. Each point is the average of
500 simulations with n = 20 agents and σ2

{0,1} = 0.1.
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with n = 20 agents and µ0 = 0.4, µ1 = 0.6, σ2

{0,1} = 0.1.
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Figure 7: Network density, average clustering coe�cient, and average short-
est path length for varying ampli�cation parameter γ ∈ [0.0, 1.0] and �xed
learning parameter α = 0.01. Each point is the average of 500 simulations
with n = 20 agents and µ0 = 0.25, µ1 = 0.75, σ2

{0,1} = 0.1.
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Figure 8: Total utility (individual + network) as a function of signal infor-
mativeness (µ1−µ0) for α = γ = 0.0, β = {0.02, 0.1, 0.4}. Each point is the
average of 500 simulations with n = 20 agents and σ2

{0,1} = 0.1.
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