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Abstract

How does the need to preserve government debt sustainability affect the optimal
monetary and fiscal policy response to a liquidity trap? To provide an answer, we
employ a small stochastic New Keynesian model with a zero bound on nominal inter-
est rates and characterize optimal time-consistent stabilization policies. We focus on
two policy tools, the short-term nominal interest rate and debt-financed government
spending. The optimal policy response to a liquidity trap critically depends on the
prevailing debt burden. In our model, while the optimal amount of government spend-
ing is decreasing in the level of outstanding government debt, future monetary policy
is becoming more accommodative, triggering a change in private sector expectations
that helps to dampen the fall in output and inflation at the outset of the liquidity trap.

JEL Classification: E31, E52, E62, E63, D11

Keywords: Monetary and fiscal policy, Deficit spending, Discretion, Zero nominal
interest rate bound, New Keynesian model
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Non-technical summary

Confronted with the biggest global economic crisis since decades, policymakers around the

world engaged in a combination of monetary and fiscal stabilization policies to fight what has

been dubbed the Great Recession. Central banks lowered nominal interest rates to unprece-

dented low levels and many governments launched fiscal stimulus programs to counteract

the economic turmoil. As a consequence, many major industrialized countries experienced

protracted increases in government debt-to-GDP ratios.

New Keynesian model-based characterizations of optimal monetary and fiscal policies in a

liquidity trap, which we define as a situation in which the zero nominal interest rate bound

is binding, however, typically omit government debt from the analysis. The standard ap-

proach assumes instead that government purchases are completely financed by lump-sum

taxes. This raises important questions about the appropriate stance of monetary and fiscal

policy: Should policymakers adhere to fiscal stimulus in the face of a zero lower bound event

if the level of government debt is already above its long-run target or do high debt bur-

dens require a contractionary fiscal policy response? Likewise, how does the need to ensure

debt sustainability act upon the effectiveness of monetary policy? In terms of model-based

characterizations of optimal policies at the zero lower bound, is the conventional omission of

government debt innocuous or do our normative prescriptions change when we account for

the fact that lump-sum taxes in general do not adjust one-to-one with other fiscal variables?

We address these questions in a stylized variant of the New Keynesian model calibrated

to the U.S. economy. The model features nominal rigidities and monopolistic competition,

but abstracts from an explicit consideration of the financial sector. Importantly, the model

accounts for the fact that nominal interest rates cannot fall below zero, and explicitly in-

corporates government debt. We assume that monetary and fiscal policy is coordinated

by a benevolent policymaker who seeks to maximize household welfare. As a consequence,

the analysis abstracts from moral hazard problems that could arise between distinct policy

authorities. Monetary policy is conducted by setting the short-term nominal interest rate,

and the set of fiscal policy instruments consists of government spending and the supply of

government bonds. We assume that the policymaker cannot credibly commit to particular

future policy actions. Instead, the policymaker reassesses his policy response each period;

this policy is marked time-consistent. Earlier research has shown that it is the absence of a

commitment technology which renders the lower bound on nominal interest rates detrimen-

tal to household welfare and where a combination of monetary and fiscal policy measures is

needed to protect the economy from falling into a deflationary spiral.

In our model, the presence of government debt makes the optimal time-consistent policy his-
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tory dependent, that is, the future path of the policy instruments depends on today’s level

of government debt. We show, first, that the optimal amount of government spending is a

decreasing function of the outstanding government debt level. Second, as long as the zero

lower bound is not binding, the nominal interest rate is decreasing in the level of outstanding

government debt. When the zero lower bound becomes binding, the real interest rate in the

model keeps declining as a function of the debt level. Third, output and inflation are both

increasing in the debt level, irrespective of whether the zero bound is binding or not.

How the model economy responds to a liquidity trap thus critically depends on the prevailing

government debt level. If, for instance, the level of outstanding government debt is above

its long-run level, then the optimal policy mix will prescribe at most a small government

spending stimulus, followed by a spending reversal, and a prolonged period of expansionary

monetary policy. In this case, the policymaker creates expectations of a subsequent increase

in inflation and output that help to dampen the economic turmoil at the outset of the liq-

uidity trap. If, on the other hand, the public debt level is considerably below its long-run

sustainable level, government spending is used forcefully to stimulate aggregate demand,

when the model economy falls into a liquidity trap. In this situation, however, the policy-

maker does not keep nominal interest rates low long enough to generate a transitory increase

in output and inflation above target. Absent the expansionary expectations effects of the

high debt scenario, the low debt scenario exhibits larger drops in output and inflation.
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1 Introduction

New Keynesian characterizations of optimal time-consistent monetary and fiscal policies in a

liquidity trap typically omit government debt from the analysis, assuming that government

purchases are financed by lump-sum taxes (e.g. Werning, 2011; Schmidt, 2013; Nakata,

2013).1 At the same time, the protracted increase in government debt-to-GDP ratios in the

course of the recent global financial crisis in major industrialized countries raises important

questions about the appropriate stance of monetary and fiscal policy. Should policymakers

adhere to fiscal stimulus in the face of a zero lower bound event if the level of government

debt is already above its long-run target? How does the need to ensure debt sustainability

act upon the effectiveness of monetary policy? In terms of model-based characterizations of

optimal policies at the zero lower bound, is the conventional omission of government debt

innocuous or do our normative prescriptions change when we account for the fact that lump-

sum taxes in general do not adjust one-to-one with other fiscal variables?

We address these questions in a stylized stochastic New Keynesian model with a zero

bound on nominal interest rates that accounts for government debt in the form of non-

state-contingent, one-period, nominal government bonds as a means of financing government

spending. Economic uncertainty arises from the presence of a demand shock. The benevo-

lent government controls the short-term nominal interest rate and the level of government

spending, and decides about the supply of government bonds. Hence, in the economy that

we consider the central bank and the fiscal authority coordinate their policy measures. We

focus on time-consistent policy regimes since it is the absence of a commitment device that

renders the zero lower bound detrimental for stabilization policy.2 Households appreciate

private consumption as well as the provision of public goods and dislike labor. In the base-

line model, we assign only a very limited role to tax policy. First, private consumption and

household labor income are taxed at constant rates, providing revenues to the government.

Second, lump-sum taxes are used to finance a constant wage subsidy to ensure that the

distortions arising from monopolistic competition in the goods market and from the other

taxes are eliminated in the non-stochastic steady state. However, we also present results for

the case where the policymaker sets the labor tax rate optimally.3

We solve the model using a projection method and then explore how government debt af-

fects optimal policies and stabilization outcomes when the zero bound on nominal interest

1We use the term liquidity trap to describe an environment characterized by a binding zero nominal
interest rate bound constraint.

2For a characterization of optimal monetary policy under commitment see e.g. Eggertsson and Woodford
(2003), Jung, Teranishi, and Watanabe (2005), Adam and Billi (2006) and Nakov (2008).

3For a characterization of optimal unconventional fiscal policy at the zero bound, i.e. the use of various
tax instruments, see Correia, Farhi, Nicolini, and Teles (2013).
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rates becomes occasionally binding. The presence of government debt makes the optimal

time-consistent policy in the model history dependent, that is, the future path of the policy

instruments depends on today’s level of government debt. We show, that, first, for a given

realization of the demand shock, government spending is decreasing in the level of outstand-

ing government debt, i.e. the fiscal stance becomes more contractionary when government

debt rises. Second, as long as the zero lower bound is not binding, the nominal interest rate

is decreasing in the level of government debt. Real interest rates keep declining as a function

of the debt level even if the zero bound on the nominal rate is binding. Third, output and

inflation are both increasing in beginning-of-period debt, irrespective of whether the zero

bound is binding or not.

How the model economy responds to a liquidity trap thus critically depends on the pre-

vailing government debt level. If, for instance, the level of outstanding government debt is

high relative to its steady state, then the optimal policy mix will prescribe at most a small

government spending stimulus, followed by a spending reversal, and a prolonged period of

expansionary monetary policy. The policymaker creates valid expectations of a subsequent

boost in inflation and output above target that help to dampen the economic turmoil at the

outset of the liquidity trap. If, on the other hand, the public debt level is low relative to its

steady state, government spending is used forcefully to stimulate aggregate demand, when

the economy falls into a liquidity trap. In this situation, however, the zero bound episode

is not followed by a transitory upswing in output and inflation. Absent the expansionary

expectations effects of the high debt scenario, the low debt scenario exhibits larger drops in

output and inflation.

The ability to issue government debt allows the policymaker to influence private sector expec-

tations without engaging in time-inconsistent policies. As emphasized by Krugman (1998)

and Eggertsson and Woodford (2003), during zero lower bound episodes, expectations about

future output and inflation can have considerable effects on contemporaneous stabilization

outcomes. We demonstrate the powerfulness of government debt-induced history dependence

by comparing optimal discretionary policies and stabilization outcomes for a liquidity trap

scenario in our baseline economy with those in the conventional model setup that features

zero government debt and lump-sum taxes that adjust each period to balance the govern-

ment budget.

Our paper is closely related to work by Eggertsson (2006), who first showed that the accu-

mulation of government debt allows a discretionary policymaker to influence expectations

about the path of monetary policy after the liquidity trap. Our paper differs from this earlier

work in several respects. First, the fiscal instrument considered by Eggertsson is a lump-sum

tax. In his model, the policymaker lowers lump-sum taxes when the zero bound is binding
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in order to increase government debt. Tax collection costs make it credible that the increase

in government debt will not be solely undone by future tax increases. There is no immediate

trade-off for fiscal policy in a liquidity trap between stimulating the economy and stabilizing

government debt. In our paper, the liquidity trap shock reduces the tax base, which may

force the policymaker to tighten fiscal policy while the zero lower bound is binding. Second,

in Eggertsson’s model, the economy starts in a liquidity trap state and returns to the nor-

mal state with a constant probability in each subsequent period, where it will stay forever.

Instead, in our model, the zero nominal interest rate bound is an occasionally binding con-

straint. We show that the outstanding amount of government debt prior to the zero bound

event critically affects stabilization policies and outcomes in the liquidity trap. For instance,

if government debt is low relative to its steady state, then the policymaker may refrain from

lowering the nominal interest rate all the way to zero, which exacerbates the fall in output

and inflation. Finally, we show, that, unlike in Eggertsson (2006), the optimal discretionary

policy is not necessarily associated with a transitory rise in output and inflation above target

after the liquidity trap.

The paper can also be related to studies that investigate optimal monetary and fiscal policy

under commitment at the zero lower bound and account for the presence of government debt.

Eggertsson and Woodford (2006) determine the optimal nominal interest rate and tax pol-

icy mix. Nakata (2011) characterizes the optimal plan for distortionary taxes, government

spending and the short-term nominal interest rate.

Finally, several studies have characterized optimal monetary and fiscal policy in New Key-

nesian models that account for the presence of government debt but abstract from the zero

bound on nominal interest rates. Wren-Lewis and Leith (2007) and Vines and Stehn (2007)

characterize the optimal policy mix under discretion, whereas Schmitt-Grohe and Uribe

(2004) and Adam (2011) analyse optimal commitment policies.

The remainder of the paper is organized as follows. Section 2 presents the model economy.

Section 3 specifies the policy problem. Section 4 presents numerical results. Finally, Section

5 concludes.

2 The model

We consider a small monetary business cycle model with nominal rigidities and monopolistic

competition. The economy is inhabited by a continuum of identical households of measure

one, a final good producer, a continuum of intermediate-goods-producing firms of measure

one, and a benevolent policymaker. Following Woodford (2003), the model is treated as a

cashless limiting economy. Time is discrete and indexed by t.
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2.1 Households and firms

The representative household obtains utility from a private consumption good Ct and the

provision of a public consumption good Gt, and dislikes labor Nt (i) ,∀i ∈ [0, 1]. Expected

lifetime utility of the household reads

E0

∞∑
t=0

βt

(
u (Ct) + g (Gt)−

∫ 1

0

ν (Nt(i)) di

)
, (1)

where Et is the rational expectations operator conditional on information in period t and

β ∈ (0, 1) is the discount factor. The functions u (·) and g (·) are increasing and concave in

their arguments, and ν (·) is increasing and convex in its argument.

The household enters period t with a degenerate portfolio of non-state-contingent, one-

period, nominal government bonds Bt−1, paying the household Bt−1/Pt units in terms

of the final consumption good. For simplicity, we assume that one-period government

bonds are the only assets traded in the economy. The household supplies Nt (i) units

of labor to the producer of intermediate good i and earns total after-tax labor income∫ 1

0

(
1− τN

)
Wt (i)Nt (i) di, where Wt (i) denotes the nominal wage rate payed by firm i

and τN is the constant labor income tax rate. Furthermore, the household receives dividend

payments PtΨt from intermediate-goods-producing firms, which are owned by the household.

The household uses her labor income, dividend income and the government’s debt repayment

to finance purchases of the private consumption good at price
(
1 + τC

)
Pt where τ

C is the

constant consumption tax rate, to pay lump-sum taxes PtTt, and to buy newly issued gov-

ernment bonds at price 1/ (1 + it), where it ≥ 0 is the one-period, riskless, nominal interest

rate. The flow budget constraint reads

(
1 + τC

)
PtCt +

Bt

1 + it
≤
∫ 1

0

(
1− τN

)
Wt(i)Nt(i)di+Bt−1 − PtTt +Ψt. (2)

The representative household maximizes her expected lifetime utility (1) by choosing state-

contingent plans {Ct > 0, Nt (i) > 0, Bt}∞t=0 subject to (2) and a no-Ponzi game condition

lim
j→∞

Et

((
t+j∏
k=0

1

1 + ik

)
Bt+j

)
≥ 0.

The final consumption good is produced under perfect competition using the following

technology

Yt =

(∫ 1

0

Yt (i)
θ−1
θ di

) θ
θ−1

,
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where θ > 1 and Yt (i) denotes the intermediate input i. Total demand for the final good

consists of household and government demand

Yt = Ct +Gt.

The market for intermediate goods features monopolistic competition. Expenditure mini-

mization by the producer of the final good results in the following demand for intermediate

good i

Yt (i) =

(
Pt (i)

Pt

)−θ

Yt, (3)

where Pt (i) denotes the price charged by firm i and Pt =
(∫ 1

0
Pt (i)

1−θ di
) 1

1−θ
represents the

price for the final consumption good. Intermediate goods are produced using labor

Yt (i) = Nt (i) .

There is no capital. Intermediate-goods firms face price rigidities à la Calvo (1983). In each

period, a fraction 1− α of firms is allowed to change prices, whereas the remaining fraction

α ∈ (0, 1) of firms keep their price constant at previous period’s level. Each intermediate-

goods firm i that is allowed to reset prices in period t maximizes its expected discounted

profits:

max
Pt(i)

∞∑
j=0

EtQt,t+jα
jYt+j(i) [Pt(i)− (1− τ)Wt+j(i)] ,

subject to (3). The parameter τ denotes a constant employment subsidy that eliminates

the distortions arising from monopolistic competition and distortionary taxes in the non-

stochastic steady state and Qt,t+j = βj U
′(Ct+j)/Pt+j

U ′(Ct)/Pt
is the stochastic discount factor between

period t and t+ j.

2.2 The government

The government issues non-state-contingent, one-period, nominal government bonds and

levies lump-sum taxes, labor income taxes and consumption taxes to finance public spending

and the provision of a constant wage subsidy τ , and to service the debt incurred from the

previous period. We assume that the government can credibly promise to repay its debt

each period. The flow budget constraint reads

PtGt + τ

∫ 1

0

Wt (i)Nt (i) di+Bt−1 =
Bt

1 + it
+ PtTt + τCPtCt + τN

∫ 1

0

Wt(i)Nt(i)di.
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In real terms

Gt + τ

∫ 1

0

wt (i)Nt (i) di+ bt−1π
−1
t =

bt
1 + it

+ Tt + τCCt + τN
∫ 1

0

wt(i)Nt(i)di,

where bt = Bt/Pt, πt = Pt/Pt−1, and wt(i) = Wt(i)/Pt.

Assumption 1 Lump-sum taxes are used to finance the wage subsidy. Beyond that, a con-

stant amount of (possibly negative) lump-sum tax revenues TG is available to finance gov-

ernment spending and to service public debt

Tt = TG + τ

∫ 1

0

wt (i)Nt (i) di.

We can then simplify the budget constraint

Gt + bt−1π
−1
t =

bt
1 + it

+ TG + τCCt + τN
∫ 1

0

wt(i)Nt(i)di. (4)

2.3 Equilibrium

An equilibrium consists of paths {Ct, Nt (i) , Yt (i) , Yt, Bt, Gt, it, Pt (i) , Pt,Wt (i)}∞t=0, given an

initial level of government debt B−1 and identical initial goods prices P−1 (i) ∀i, such that

(i) {Ct, Nt (i) , Bt}∞t=0 solves the household optimization problem given prices and policies,

(ii){Pt (i)}∞t=0 solves the optimization problem of producer i, (iii) the government budget

constraint and the zero lower bound on the nominal interest rate it ≥ 0 are satisfied, and

(iv) the goods market, the labor market, and the government bond market clear.

2.4 Log-linear approximation

The optimization problems of households and firms are standard, we therefore refrain from

presenting optimality conditions and directly continue with a log-linear approximation of the

resulting behavioral constraints around the non-stochastic steady state with zero inflation

π̂t = κ
(
Ŷt − ΓĜt

)
+ βEtπ̂t+1 (5)

Ŷt = Ĝt + EtŶt+1 − EtĜt+1 −
1

σ
(it − Etπ̂t+1 − r∗) + dt. (6)

Hat variables denote percentage deviations from the deterministic steady state. Government

spending is expressed as a share of steady state output, Ĝt =
Gt−G

Y
. The parameter r∗ = 1

β
−1

denotes the steady state real interest rate, and σ ≡ −u′′(C)
u′(C)

Y represents the elasticity of the
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marginal utility of private consumption with respect to total output evaluated in the steady

state. The parameters κ and Γ are functions of structural parameters

κ =
(1− α)(1− αβ)

α(1 + ηθ)
(σ + η), Γ =

σ

σ + η
,

where η > 0 denotes the inverse of the labor supply elasticity, α ∈ (0, 1) represents the

share of firms that are unable to change their price in a given period, and θ > 1 is the price

elasticity of demand for intermediate goods. We assume that the economy is subject to an

exogenous demand shock dt that follows a stationary autoregressive process

dt = ρdt−1 + ϵt, (7)

where ϵt is a i.i.d. N(0, σ
2
ϵ ) innovation, and ρ ∈ [0, 1).

Finally, the log-linearized government budget constraint (4) reads4

b̂t =
1

β

{
b̂t−1 −

b

Y
π̂t +

(
1 + τC +

1 + τC

1− τN
τNσ

)
Ĝt −

(
τC +

1 + τC

1− τN
τN (1 + σ + η)

)
Ŷt

}

+
b

Y
(it − r∗) , (8)

where b̂t =
bt−b
Y

.

3 The policy problem

The benevolent policymaker aims to maximize expected lifetime utility (1) of the representa-

tive household. We conduct a linear-quadratic approximation to household welfare to obtain

a quadratic policy objective function.5 Each period t, the policymaker minimizes the loss

function from period t onwards, taking the decision rules of the private sector and future

governments as given. We focus on stationary Markov-perfect equilibria, where the vector

of state variables consists of the demand shock and beginning-of-period government debt,

st = (dt, b̂t−1). The Bellman equation reads

V (st) = min
{π̂t,Ŷt,Ĝt,it,b̂t}

[
1

2

(
π̂2
t + λ

(
Ŷt − ΓĜt

)2
+ λGĜ

2
t

)
+ βEtV (st+1)

]
4In the deterministic steady state

(
1 + τC

)
G
Y + (1− β) b

Y = TG

Y + τC + 1+τC

1−τN τN .
5See Schmidt (2013) for the details of the derivation. We ensure that the non-stochastic steady state of the

flexible-price equilibrium is efficient by choosing the constant wage subsidy such that it offsets the distortions

arising from monopolistic competition and taxes in the non-stochastic steady state, τ = 1− θ−1
θ

1−τN

1+τC .
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subject to

π̂t = βEtπ̂(st+1) + κ
(
Ŷt − ΓĜt

)
Ŷt = Ĝt + EtŶ (st+1)− EtĜ(st+1)−

1

σ
(it − Etπ̂(st+1)− r∗) + dt

b̂t =
1

β

{
b̂t−1 −

b

Y
π̂t +

(
1 + τC +

1 + τC

1− τN
τNσ

)
Ĝt −

(
τC +

1 + τC

1− τN
τN (1 + σ + η)

)
Ŷt

}
+
b

Y
(it − r∗)

it ≥ 0,

and the law of motion for the demand shock (7). The functions π̂(st+1), Ŷ (st+1) and Ĝ(st+1)

represent the inflation rate, output and government spending that the policymaker expects

to be realized in period t + 1 in equilibrium, contingent on the realization of the demand

shock dt+1. The relative weights λ and λG in the policymaker’s objective function depend

on the structural parameters

λ =
κ

θ
, λG = λΓ

(
1− Γ +

ω

σ

)
,

where ω ≡ −g′′(G)
g′(G)

Y is the elasticity of the marginal utility of public consumption with

respect to total output.

The first-order conditions read

λGĜt +

(
1

β
+ (1− Γ)

b

Y
σ +

1

β
(1− Γ) τC − 1

β
Γ
1 + τC

1− τN
τN
)
Φb

t − (1− Γ)Φzlb
t = 0 (9)

EtΦ
b(st+1)− Ω1tΦ

b
t + Ω2tπ̂t − Ω3tΦ

zlb
t = 0(10)

Φzlb
t it = 0(11)

Φzlb
t ≥ 0(12)

it ≥ 0(13)
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as well as the New Keynesian Phillips curve, the dynamic IS curve and the government

budget constraint, where

Φzlb
t ≡

(
b

Y

(
σ +

κ

β

)
+

1

β

(
τC +

1 + τC

1− τN
τN (1 + σ + η)

))
Φb

t −
(
κπ̂t + λ

(
Ŷt − ΓĜt

))
Ω1t ≡ 1− σ

b

Y

(
∂EtŶ (st+1)

∂b̂t
− ∂EtĜ(st+1)

∂b̂t

)

Ω2t ≡ β
∂Etπ̂(st+1)

∂b̂t

Ω3t ≡ ∂EtŶ (st+1)

∂b̂t
− ∂EtĜ(st+1)

∂b̂t
+

1

σ

∂Etπ̂(st+1)

∂b̂t
.

The variable Φb
t is the multiplier associated with the government budget constraint and

Φzlb
t represents the (normalized) multiplier associated with the zero lower bound constraint.

Solving condition (9) for government spending, we get

Ĝt =
1

λG

[
(1− Γ)Φzlb

t −
(
1

β
+ (1− Γ)

b

Y
σ +

1

β
(1− Γ) τC − 1

β
Γ
1 + τC

1− τN
τN
)
Φb

t

]
. (14)

Assumption 2 The parameters satisfy
(
1 + Γ + τC

)
τN ≤ 1 + (1− Γ) τC .

This assumption is sufficient to ensure that the coefficient on Φb
t in (14) is negative.

Note, first, that the second term in equation (14) would vanish if we assumed that government

spending is financed by lump-sum taxes. In this case, government spending would only be

used as a stabilization tool if the zero lower bound were binding, and the fiscal policy stance

during zero bound events would be unequivocally expansionary, see Schmidt (2013).

In the model with government debt, however, public spending may have to deviate from its

steady state level even if the economy is away from the zero lower bound so that Φzlb
t = 0.

Intuitively, whenever monetary policy is unable to stabilize government debt as well as

inflation and output simultaneously, government spending will be used as an additional

stabilization tool.

Furthermore, from (14) it is not clear whether fiscal policy in a liquidity trap should be

expansionary, Ĝt > 0, or contractionary, Ĝt < 0. Specifically, if Φb
t > 0, the zero bound

multiplier and the government budget constraint multiplier have opposite implications for

the sign of the fiscal policy response. As we will show below, stabilization outcomes and

policies in a liquidity trap critically depend on the amount of outstanding government debt

when hitting the zero bound.
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4 Numerical results

In this section, we characterize the optimal time-consistent policy mix numerically. The

policy functions are approximated using a projection method with finite elements. The

procedure is described in the Appendix. The baseline calibration is presented in Table 1,

where the period length is one quarter. The steady state real interest rate and the law of

motion of the demand shock are calibrated based on U.S. data for 1983 to 2010. We set

the ratio of government spending to total output in the deterministic steady state equal

to 0.2. The labor income tax rate is set to 0.3 and the consumption tax rate to 0.1, as

in Denes, Eggertsson, and Gilbukh (2013). In the baseline, the steady state government

debt to annualized output ratio is set to 0.5 but we also consider lower and higher values

in the sensitivity analysis. All other structural parameters assume standard values from the

literature.

Table 1: Calibration
Parameter Value Interpretation
r∗ 2.6/4 Steady state natural real rate of interest (in %)
β 0.9950 Discount factor
G/Y 0.2 Steady state share of government spending in total output
τN 0.3 Labor income tax rate
τC 0.1 Private consumption tax rate
b/ (4Y ) 0.5 Steady state government debt to output ratio
α 0.66 Share of firms per period that keep prices unchanged
θ 7.66 Price elasticity of demand in the steady state
η 1 Inverse of labor supply elasticity
σ 0.5/(1−G/Y ) Elasticity of marginal utility of private consumption w.r.t. total output
ω 0.5/(G/Y ) Elasticity of marginal utility of public consumption w.r.t. total output
κ 0.0333 Slope parameter in New Keynesian Phillips curve
ρ 0.77 AR-coefficient demand shock
σϵ 0.72 Standard deviation demand shock innovation (in %)
λ 0.0043 Loss function weight I
λG 0.0077 Loss function weight II

4.1 Optimal time-consistent policy in a liquidity trap

We begin our discussion of the optimal time-consistent policy with an experiment where

the occurrence of a large negative demand shock pushes the economy for several quarters

into a liquidity trap. Figure 1 shows impulse responses of output, inflation, government

spending, the nominal interest rate, government debt and the real interest rate to a negative

demand shock of −3 unconditional standard deviations when the economy is initially in the

risky steady state. The realized paths in the absence of any further shocks are represented

by solid lines, the expected paths as of period 0 are represented by dashed lines and blue-

13



shaded areas represent confidence intervals.6 The demand shock materializing in period 0

Figure 1: Impulse responses to a negative demand shock

0 2 4 6 8 10 12
−4

−2

0

2
Output

0 2 4 6 8 10 12
−1

−0.5

0

0.5

1
Inflation rate

0 2 4 6 8 10 12
−2

−1

0

1

2

3
Government spending

0 2 4 6 8 10 12

0

2

4

6
Nominal interest rate

0 2 4 6 8 10 12
−2

0

2

4

quarters

Government debt

0 2 4 6 8 10 12
−6

−4

−2

0

2

4

6

quarters

Real interest rate
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output in percentage point deviations from the respective steady state ratio.

drives the natural real rate of interest r∗t = r∗ + σdt (dotted line) into negative territory and

forces the policymaker to lower the short-term nominal interest rate to zero where it stays

for several periods. The economy starts to contract, both output and inflation drop below

their target levels, and the reduction in the tax base leads to an increase in government

debt. The fiscal policy response is first expansionary, contributing to the accumulation

of government debt, but turns slightly contractionary before the zero bound episode ends.

Figure 2 decomposes the response of government spending into the response of the zero

6Expected paths and confidence intervals are constructed based on 10000 stochastic simulations.
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lower bound multiplier component (dashed line) and the response of the budget constraint

multiplier component (dashed-dotted line) as in equation (14). Initially, both components

Figure 2: Decomposition of government spending response
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t (dashed-dotted line) to a demand shock of

−3 unconditional standard deviations.

exhibit a positive sign, which means that Φzlb
t > 0 and Φb

t < 0. The negative budget

constraint multiplier implies that it would have been desirable from a welfare perspective

if the government had entered the period with a somewhat higher debt level. However,

in subsequent periods when the government debt burden has become more elevated the

budget constraint multiplier component switches signs, turning from positive to negative,

and government spending declines below its pre-shock level. Coming back to Figure 1, while

the increased debt burden narrows the room for expansionary fiscal policy, it facilitates the

implementation of an expansionary monetary policy stimulus. Once the natural real rate

has reentered positive territory, the nominal interest rate remains transitorily below the

level that would be warranted by output and inflation stabilization considerations alone in

order to contribute to the stabilization of government debt. As a consequence, the economy

experiences a small transitory upswing in output and inflation above target. Importantly,
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private agents attach positive probabilities to positive future realizations of output and

inflation and (correctly) expect both variables to move temporarily above their target levels,

which attenuates the drop at the outset of the zero bound event.

4.2 Equilibrium responses to government debt

To provide a more general characterization of the optimal time-consistent policy and how

it is affected by outstanding government debt, Figure 3 displays equilibrium responses to

beginning-of-period government debt. We consider two alternative realizations of the demand

shock, d = 0 (solid line) and d = −3 unconditional standard deviations (dashed line). For

Figure 3: Equilibrium responses to previous period’s government debt
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steady state output in percentage point deviations from the respective steady state ratio.

both values of d, the optimal amount of government spending is decreasing in the public debt
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burden. Thus, if beginning-of-period government debt is high, the fiscal policy response to a

liquidity trap becomes considerably muted. At the same time, inflation and output are both

increasing in the level of outstanding public debt. Monetary policy turns out to be crucial to

understand this result. The higher the level of government debt incurred from the previous

period the lower the nominal interest rate, as long as the zero lower bound is not binding. In

other words, under the optimal policy mix, monetary policy bears part of the responsibility

to stabilize government debt. Moreover, the real interest rate keeps decreasing in the level

of outstanding debt even if the zero nominal interest rate bound is binding, reflecting the

positive effect of government debt on expected future inflation. Intuitively, if monetary

policy is unable to lower the current nominal interest rate further, because the zero bound is

binding, future monetary policy will have to stabilize government debt, thereby stimulating

future output and inflation. If, on the contrary, the level of outstanding government debt is

low relative to the steady state, when a large negative demand shock hits the economy, then

the policymaker may even refrain from lowering the nominal interest rate immediately all

the way to zero. In this case, the positive interest rate serves to bring government debt back

to its long-run sustainable level. While the government spending stimulus in such states is

particularly large, the decline in output and inflation is more pronounced than in states with

higher levels of outstanding government debt.

4.3 Comparison to the case without government debt

In the previous parts, we have characterized the optimal time-consistent policy mix in the

presence of government debt. We now compare this optimal policy mix to the one in an

economy where government debt is zero, distortionary taxes are zero as well, and lump-sum

taxes are free to adjust each period to balance the budget. Figures 4 and 5 show impulse

responses to a negative demand shock for the two economies.7 The policymaker in the model

without government debt engages in a more pronounced fiscal stimulus and implements a

lower nominal interest rate path than his counterpart in the economy with government debt.

Nevertheless, the drop in output and inflation turns out to be considerably larger. The

comparison shows how powerful history dependence is in affecting stabilization outcomes

by shaping private sector expectations. In the economy without government debt, agents

anticipate that the policymaker will never allow inflation to rise above target, which is

reflected in the corresponding confidence intervals. In contrast, agents in the model with

government debt anticipate that if current conditions got worse so that government debt

7For the comparison we set σ = 3−1/(1−G/Y ) and ω = 3−1/(G/Y ), since the model without government
debt cannot be solved for the baseline calibration. The effect of this change in parameter values is addressed
in the sensitivity analysis which can be found in the Appendix.
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Figure 4: Impulse responses with and without government debt
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Notes: Impulse responses to a −3 unconditional standard deviation demand shock for the economy with

positive government debt (left) and for an economy with zero government debt (right). Realized path (solid

line), path expected in period 0 (dashed line), 50%, 75% and 90% confidence intervals (shaded areas), natural

real rate of interest (dotted line). Inflation and interest rates are expressed in annualized terms. Government

spending is expressed as a share of steady state output in percentage point deviations from steady state.

increased, future monetary policy would respond to today’s economic conditions by becoming

more accommodative than would be warranted by future inflation and output gap dynamics

alone. Hence, they attach positive probabilities to above-target future output and inflation,

and the expected real interest rate path lies below its counterpart in the model without

government debt.

4.4 Labor income tax as additional policy instrument

In this section, we relax the assumption of a constant labor income tax rate, endowing the

policymaker with an additional fiscal instrument. The modified Bellman equation then reads
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Figure 5: Impulse responses with and without government debt
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Notes: Impulse responses to a −3 unconditional standard deviation demand shock for the economy with

positive government debt (left) and for an economy with zero government debt (right). Realized path (solid

line), path expected in period 0 (dashed line), 50%, 75% and 90% confidence intervals (shaded areas).

Inflation and interest rates are expressed in annualized terms. Government debt is expressed as a share of

annualized steady state output in percentage point deviations from steady state.

as follows:

V (st) = min
{π̂t,Ŷt,Ĝt,it,b̂t,τ̂Nt }

(
1

2

(
π̂2
t + λ

(
Ŷt − ΓĜt

)2
+ λGĜ

2
t

)
+ βEtV (st+1)

)
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subject to

π̂t = βEtπ̂(st+1) + κ

(
Ŷt − ΓĜt +

(σ + η)−1

1− τN
τ̂Nt

)
Ŷt = Ĝt + EtŶ (st+1)− EtĜ(st+1)−

1

σ
(it − Etπ̂(st+1)− r∗) + dt

b̂t =
1

β

(
b̂t−1 −

b

Y
π̂t +

(
1 + τC +

1 + τC

1− τN
τNσ

)
Ĝt −

(
τC +

1 + τC

1− τN
τN (1 + σ + η)

)
Ŷt

− 1 + τC

(1− τN)2
τ̂Nt

)
+
b

Y
(it − r∗)

it ≥ 0,

and the law of motion for the demand shock (7), where τ̂Nt = τNt − τN . All parameters

are defined as before. The first-order optimality conditions are provided in the Appendix.

Figure 6 displays impulse responses to a negative demand shock that drives the economy

into a liquidity trap8. Upon occurrence of the shock, the labor income tax rate is initially

lowered considerably and then raised above its steady state level in subsequent periods, be-

fore gradually returning to its long-run level. The responses of the real interest rate and

government spending are similar to those in the baseline setup. Government debt increases,

starting however from a higher stochastic steady state than in the baseline model. While

agents continue to attach a positive probability to positive future inflation rates, they now

do not attach much weight on the possibility of future output being above target.

To understand how the additional policy instrument affects the optimal policy mix and

stabilization outcomes, Figure 7 displays equilibrium responses to beginning-of-period gov-

ernment debt. We again focus on two alternative realizations of the demand shock, d = 0

(solid line) and d = −3 unconditional standard deviations (dashed line).

8We again set σ = 3−1/(1−G/Y ) and ω = 3−1/(G/Y ), since the model with variable labor income tax
rate could not be solved for the baseline calibration.
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Figure 6: Impulse responses - variable labor income tax rate
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Notes: Impulse responses to a −3 unconditional standard deviation demand shock. Realized path (solid

line), path expected in period 0 (dashed line), 50%, 75% and 90% confidence intervals (shaded areas),

natural real rate of interest (dotted line). Inflation and interest rates are expressed in annualized terms.

Government debt/spending is expressed as a share of annualized/quarterly steady state output in percentage

point deviations from the respective steady state ratio. Labor income tax rate is expressed in percentage

point deviation from its steady state level.

There are several important differences to the case with constant tax rates. First, the

equilibrium responses of the end-of-period government debt to beginning-of-period debt are

almost flat. In addition, also government spending and the interest rate vary much less with

outstanding government debt than in the baseline setup. Instead, the labor income tax rate

now becomes strongly increasing in beginning-of-period debt. Essentially, the policymaker

uses the labor income tax rate to implement the desired level of government debt. For given

beginning-of-period government debt, the optimal amount of debt is higher when there is a

negative demand shock, and hence the optimal tax rate is lower. Since the labor tax rate

affects marginal costs, the inflation rate is also increasing in the government debt level. In

contrast, output is now slightly decreasing in the debt level, and remains always close to its
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target level as long as the economy is not in a liquidity trap. Since the policymaker can always

use the labor income tax rate to achieve the desired government debt level, there is now a

much weaker link between the current debt level and future monetary policy. Consequently,

in case of the large negative demand shock the equilibrium response of the real interest rate

is essentially flat. In this respect, the use of the labor income tax rate as an additional policy

instrument reduces the amount of history dependence in monetary policy.

Figure 7: Equilibrium responses to previous period’s government debt - variable labor income
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5 Conclusion

How does the need to preserve government debt sustainability affect the optimal, time-

consistent monetary and fiscal policy response to a liquidity trap? We address this question

using a small, stochastic New Keynesian model with a zero bound on nominal interest rates

and focusing on two policy instruments, the short-term nominal interest rate and government

spending financed by non-state-contingent, nominal government bonds. Under the optimal

time-consistent policy mix, government spending is a decreasing function of the level of

outstanding government debt. Whereas in models with freely adjusting lump-sum taxes it

is optimal for a discretionary policymaker to raise government spending in a liquidity trap,

in our model a high government debt level might force the policymaker to lower government

spending despite a binding zero bound. At the same time, the monetary policy stance

becomes overall more expansionary the higher the level of government debt. Crucially, the

real interest rate keeps declining as a function of government debt when the nominal interest

rate is constrained by the zero bound. Hence, the lack of fiscal stimulus in a liquidity trap

characterized by a high government debt burden is compensated by a more accommodative

nominal interest rate policy in the future.
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Appendix

A Sensitivity analysis

In this section, we investigate the sensitivity of results to preference parameters, the degree

of price stickiness and the choice of the steady state debt-to-output ratio.

First, we consider how the intertemporal elasticity of substitution in private and public

spending affects stabilization policies and outcomes in a liquidity trap. Figure 8 shows im-

pulse responses for the baseline calibration and for the case of somewhat higher intertemporal

elasticities, σ = 3−1/(1−G/Y ) and ω = 3−1/(G/Y ). The change in σ increases the interest

Figure 8: Impulse responses for alternative intertemporal elasticities of substitution

0 2 4 6 8 10 12
−4

−3

−2

−1

0

Output

0 2 4 6 8 10 12
−2

−1.5

−1

−0.5

0

Inflation

baseline
higher IES

0 2 4 6 8 10 12

0

0.5

1

1.5

2

Government spending

0 2 4 6 8 10 12
0

1

2

Nominal interest rate

0 2 4 6 8 10 12
0

1

2

Government debt

quarters
0 2 4 6 8 10 12

0

1

2

Real interest rate

quarters

Notes: Impulse responses to a −3 unconditional standard deviation demand shock for the baseline cali-

bration (solid line) and in case of higher intertemporal elasticities of substitution (dashed line). Inflation

and interest rates are expressed in annualized terms. Government debt/spending is expressed as a share

of annualized/quarterly steady state output in percentage point deviations from the respective steady state

ratio.
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elasticity of aggregate demand, rendering monetary policy more effective in stabilizing output

and inflation than under the baseline calibration. Consequently, we observe smaller declines

of output and inflation. Government debt increases by less so that no fiscal retrenchment is

necessary to stabilize the economy, and output and inflation do not overshoot their target

levels.

Figure 9 shows impulse responses for two alternative degrees of price stickiness, the baseline

case with a Calvo parameter of α = 0.66 (solid line) and an alternative case with more price

rigidities, α = 0.75 (dashed line). The policy responses for the two calibrations are very

Figure 9: Impulse responses for alternative degrees of price stickiness
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Notes: Impulse responses to a −3 unconditional standard deviation demand shock for the baseline calibration

(solid line) and for a higher degree of price stickiness of α = 0.75(dashed line). Inflation and interest rates are

expressed in annualized terms. Government debt/spending is expressed as a share of annualized/quarterly

steady state output in percentage point deviations from the respective steady state ratio.

similar. In case of a higher degree of price stickiness, however, inflation is less responsive to

variations in current real activity so that the initial drop in the inflation rate as well as the

subsequent upswing are more muted than under the baseline calibration.
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Finally, Figure 10 compares impulse responses for the baseline calibration to the case of a

lower (30%) and a higher (65%) steady state government debt-to-output ratio. The higher

Figure 10: Impulse responses for alternative steady state government debt ratios

0 2 4 6 8 10 12

−3

−2

−1

0

Output

0 2 4 6 8 10 12

−1

−0.5

0

Inflation

 

 

30% debt ratio
50% debt ratio
65% debt ratio

0 2 4 6 8 10 12

0

1

2

Government spending

0 2 4 6 8 10 12
0

1

2

Nominal interest rate

0 2 4 6 8 10 12
0

1

2

3
Government debt

quarters
0 2 4 6 8 10 12

0

1

2

Real interest rate

quarters

Notes: Impulse responses to a −3 unconditional standard deviation demand shock in case of steady state

debt-to-output ratios of 30% (dashed lines), 50% (solid lines) and 65% (dashed-dotted lines). Inflation and

interest rates are expressed in annualized terms. Government debt/spending is expressed as a share of

annualized/quarterly steady state output in percentage point deviations from the respective steady state

ratio.

the steady state debt ratio, the more leverage do changes in the nominal interest rate have

over the government’s interest rate payments. Hence, in case of the low steady state debt

ratio, monetary policy is less effective in stabilizing government debt and therefore keeps

nominal interest rates low for longer than in the baseline case. At the same time, fiscal

policy is less expansionary and engages in a stronger subsequent retrenchment in order to

stabilize government debt and to mitigate the boost in future output and inflation. Never-

theless, output and inflation decline less on impact than in the baseline case. Conversely,

in the case of the high steady state government debt-to-output ratio the policymaker imple-
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ments a bigger spending stimulus but keeps monetary policy less accommodative, resulting

in somewhat larger drops in output and inflation.

B Numerical algorithm

Let Z =
[
π̂ Ŷ Ĝ i Φb

]′
and Z̃ =

[
π̂ Ŷ Ĝ Φb

]′
. We approximate Z by a linear

combination of n basis functions ψj, j = 1, ..., n. In matrix notation

Z
(
d, b̂−1

)
≈ CΨ

(
d, b̂−1

)
, (B.1)

where

C =


cπ1 · · · cπn

cY1 · · · cYn

cG1 · · · cGn

ci1 · · · cin

cΦ1 · · · cΦn

 , Ψ
(
d, b̂−1

)
=


ψ1

(
d, b̂−1

)
...

ψn

(
d, b̂−1

)
 .

The coefficients chj , j = 1, 2, ..., n; h ∈ {π, Y,G, i,Φ}, are set such that (B.1) holds exactly

at n selected collocation nodes

Z
(
X(k,:)

)
= CΨ

(
X(k,:)

)
, (B.2)

for k = 1, ..., n, where

X =

[ (
ιb ⊗ d̄

)′(
b̄−1 ⊗ ιd

)′
]′

is a n×2 matrix, and X(k,:) refers to the elements in row k of matrix X. ιp is a column vector

of ones with length np, p ∈ {d, b}. The column vectors d̄ and b̄−1 contain the grid points of

the demand shock and lagged government debt, respectively. The vectors have length np. It

holds n = nd · nb.

The iterative solution algorithm is based on two nested loops: one outer loop (counter s1)

targeted at the convergence of the derivatives of the expectations functions and an inner loop

(counter s2) seeking convergence of policy function coefficients. The algorithm then works

as follows:

1. At the initial iteration step, we start with a guess for the coefficient matrix C(0,0) and

for the partial derivatives of the expectation functions ∂Eπ̂

∂b̂

(0)
, ∂EŶ

∂b̂

(0)
, ∂EĜ

∂b̂

(0)
.

2. At iteration step s1 of the outer loop, we proceed as follows.
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(a) At iteration step s2 of the inner loop, we use the guess C(s1,s2) to determine the

level of government debt b̂ at the n collocation nodes. Using the budget constraint:

b̂(s1,s2)
(
X(k,:)

)
=

1

β

(
X(k,2) −

b

Y
C

(s1,s2)
(1,:) Ψ

(
X(k,:)

)
+

(
1 + τC +

1 + τC

1− τN
τNσ

)
C

(s1,s2)
(3,:) Ψ

(
X(k,:)

)
−
(
τC +

1 + τC

1− τN
τN (1 + σ + η)

)
C

(s1,s2)
(2,:) Ψ

(
X(k,:)

))
+
b

Y

(
C

(s1,s2)
(4,:) Ψ

(
X(k,:)

)
− r∗

)
,

for k = 1, ..., n.

(b) Next, we update the expectation functions:

Eπ̂(s1,s2)
(
X(k,:)

)
=

m∑
l=1

ϖlC
(s1,s2)
(1,:) Ψ

(
ρX(k,1) + ϵ(l), b̂

(s1,s2)
(
X(k,:)

))
EŶ (s1,s2)

(
X(k,:)

)
=

m∑
l=1

ϖlC
(s1,s2)
(2,:) Ψ

(
ρX(k,1) + ϵ(l), b̂

(s1,s2)
(
X(k,:)

))
EĜ(s1,s2)

(
X(k,:)

)
=

m∑
l=1

ϖlC
(s1,s2)
(3,:) Ψ

(
ρX(k,1) + ϵ(l), b̂

(s1,s2)
(
X(k,:)

))
EΦ̂b(s1,s2)

(
X(k,:)

)
=

m∑
l=1

ϖlC
(s1,s2)
(5,:) Ψ

(
ρX(k,1) + ϵ(l), b̂

(s1,s2)
(
X(k,:)

))
,

for k = 1, ..., n. A Gaussian quadrature scheme is used to discretize the normally

distributed random variable, where ϵ is a vector of quadrature nodes with length

m and ϖ is a vector of length m containing the weights.

(c) Assuming first, that the zero bound is not binding at any collocation node, the

optimality conditions for the discretionary policy regime imply

Z(s1,s2)
(
X(k,:)

)
=
(
A(s1)

(
X(k,:)

))−1 ·B +
(
A(s1)

(
X(k,:)

))−1 · F · EZ̃(s1,s2)
(
X(k,:)

)
+
(
A(s1)

(
X(k,:)

))−1 ·D ·X(k,1),

(B.3)
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for k = 1, ..., n, where

A
(s1)
k =


1 −κ κΓ 0 0

0 1 −1 1/σ 0

κ λ −λΓ 0 a35

0 0 1 0 a45

−Ω
(s1)
2k 0 0 0 Ω

(s1)
1k

 ,

where

a35 = −
(
κ

β
+ σ

)
b

Y
− 1

β

(
τC +

1 + τC

1− τN
τN(1 + σ + η)

)
a45 =

1

λG

(
1

β
+ (1− Γ)

b

Y
σ +

1

β
(1− Γ)τC − 1

β
Γ
1 + τC

1− τN
τN
)

B =


0

r∗/σ

0

0

0

 , F =


β 0 0 0

1/σ 1 −1 0

0 0 0 0

0 0 0 0

0 0 0 1

 , D =


0

1

0

0

0

 ,

and

Ω
(s1)
1k ≡ 1− σ

b

Y

(
∂EŶ

∂b̂

(s1)(
X(k,:)

)
− ∂EĜ

∂b̂

(s1)(
X(k,:)

))

Ω
(s1)
2k ≡ β

∂Eπ̂

∂b̂

(s1)(
X(k,:)

)
Ω

(s1)
3k ≡ ∂EŶ

∂b̂

(s1)(
X(k,:)

)
− ∂EĜ

∂b̂

(s1)(
X(k,:)

)
+

1

σ

∂Eπ̂

∂b̂

(s1)(
X(k,:)

)
.

For those k for which the zero lower bound is violated, i.e. i(s1,s2)
(
X(k,:)

)
< 0,

A(s1)
(
X(k,:)

)
in (B.3) is replaced by

Â
(s1)
k =


1 −κ κΓ 0 0

0 1 −1 1/σ 0

(1− Γ)κ (1− Γ)λ (λG − (1− Γ)λΓ) 0 â35

0 0 0 1 0

−Ω
(s1)
2k − κΩ

(s1)
3k −λΩ

(s1)
3k λΓΩ

(s1)
3k 0 â55

,
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where

â35 =
1

β
− (1− Γ)

κ

β

b

Y
− 1

β
(1 + η)

1 + τC

1− τN
τN

â55 = Ω
(s1)
1k +

(
b

Y

(
κ

β
+ σ

)
+

1

β

(
τC +

1 + τC

1− τN
τN(1 + σ + η)

))
Ω

(s1)
3k .

(d) Let

C̄(s1,s2+1) =
[
Z(s1,s2)

(
X(1,:)

)
· · · Z(s1,s2)

(
X(n,:)

)]
Ψ(X)−1 ,

where the element in the vth row and wth column of the n × n matrix Ψ (X)

equals ψv

(
X(w,:)

)
. For given s1, we then update

C(s1,s2+1) = ζ2C̄
(s1,s2+1) + (1− ζ2)C

(s1,s2),

where ζ2 ∈ (0, 1], and continue iterating on the inner loop until

∥∥vec (C̄(s1,s2+1) − C(s1,s2)
)∥∥

∞ < δ.

After convergence of the inner loop, we update the derivatives of the expectations

functions with respect to b̂. Let

∂Eπ̂

∂b̂

(s1+1)(
X(k,:)

)
≡

m∑
l=1

ϖlC
(s1,s̄2)
(1,:) Ψb

(
ρX(k,1) + ϵ(l), b̂

(s1,s̄2)
(
X(k,:)

))
∂EŶ

∂b̂

(s1+1)(
X(k,:)

)
≡

m∑
l=1

ϖlC
(s1,s̄2)
(2,:) Ψb

(
ρX(k,1) + ϵ(l), b̂

(s1,s̄2)
(
X(k,:)

))
∂EĜ

∂b̂

(s1+1)(
X(k,:)

)
≡

m∑
l=1

ϖlC
(s1,s̄2)
(3,:) Ψb

(
ρX(k,1) + ϵ(l), b̂

(s1,s̄2)
(
X(k,:)

))
,

where Ψb (· · · ) represents the first derivative of the basis functions with respect to the

second argument b̂, and s̄2 represents the last iteration step in the inner loop before

convergence. The guess for the partial derivatives of the expectations functions is then
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updated as follows

∂Eπ̂

∂b̂

(s1+1)(
X(k,:)

)
= ζ1

∂Eπ̂

∂b̂

(s1+1)(
X(k,:)

)
+ (1− ζ1)

∂Eπ̂

∂b̂

(s1)(
X(k,:)

)
∂EŶ

∂b̂

(s1+1)(
X(k,:)

)
= ζ1

∂EŶ

∂b̂

(s1+1)(
X(k,:)

)
+ (1− ζ1)

∂EŶ

∂b̂

(s1)(
X(k,:)

)
∂EĜ

∂b̂

(s1+1)(
X(k,:)

)
= ζ1

∂EĜ

∂b̂

(s1+1)(
X(k,:)

)
+ (1− ζ1)

∂EĜ

∂b̂

(s1)(
X(k,:)

)
,

for k = 1, ..., n, with updating parameter ζ1 ∈ (0, 1]. Finally, we set C(s1+1,0) = C(s1,s2).

3. The algorithm ends when:∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
vec



∂Eπ̂

∂b̂

(s1+1)(
X(k,:)

)
− ∂Eπ̂

∂b̂

(s1)(
X(k,:)

)
∂EŶ

∂b̂

(s1+1)(
X(k,:)

)
− ∂EŶ

∂b̂

(s1)(
X(k,:)

)
∂EĜ

∂b̂

(s1+1)(
X(k,:)

)
− ∂EĜ

∂b̂

(s1)(
X(k,:)

)



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
∞

< δ,

for some δ > 0.

The collocation nodes are distributed with a support covering ± 4 unconditional standard

deviations of the exogenous state variable and the realizations of the endogenous state vari-

able when simulating the model. We use MATLAB routines from the CompEcon toolbox

of Miranda and Fackler (2002) to obtain the Gaussian quadrature approximation of the in-

novations to the demand shock, and to evaluate the spline functions and their first-order

derivatives.

C Optimal time-consistent policy with a variable labor

income tax rate

The Bellman equation reads:

V (st) = min
{π̂t,Ŷt,Ĝt,it,b̂t,τ̂Nt }

(
1

2

(
π̂2
t + λ

(
Ŷt − ΓĜt

)2
+ λGĜ

2
t

)
+ βEtV (st+1)

)
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subject to

π̂t = βEtπ̂(st+1) + κ

(
Ŷt − ΓĜt +

(σ + η)−1

1− τN
τ̂Nt

)
Ŷt = Ĝt + EtŶ (st+1)− EtĜ(st+1)−

1

σ
(it − Etπ̂(st+1)− r∗) + dt

b̂t =
1

β

(
b̂t−1 −

b

Y
π̂t +

(
1 + τC +

1 + τC

1− τN
τNσ

)
Ĝt −

(
τC +

1 + τC

1− τN
τN (1 + σ + η)

)
Ŷt

− 1 + τC

(1− τN)2
τ̂Nt

)
+
b

Y
(it − r∗)

it ≥ 0,

and the law of motion for the demand shock (7).

The consolidated first-order conditions read{
(1− Γ)κ+

[
1− τN

1− τN
(
1 + τC

)
(1 + η)− (1− Γ)κ

b

Y

](
b

Y
+

1 + τC

1− τN
σ + η

κ

)−1}
π̂t

+(1− Γ)λŶt + (λG − (1− Γ)λΓ) Ĝt = 0

Etπ̂(st+1) +

((
b

Y
+

1 + τC

1− τN
σ + η

k

)
1

β
Ω2t − Ω1t

)
π̂t − Ω3tΦ

zlb
t = 0

Φzlb
t it = 0

Φzlb
t ≥ 0

it ≥ 0,

as well as the New Keynesian Phillips curve, the dynamic IS curve and the government

budget constraint, where

Φzlb
t ≡

(
b

Y

(
σ +

κ

β

)
+

1

β

(
τC +

1 + τC

1− τN
τN (1 + σ + η)

))
π̂t

− 1

β

(
b

Y
+

1 + τC

1− τN
σ + η

k

)(
κπ̂t + λ

(
Ŷt − ΓĜt

))
Ω1t ≡ 1− σ

b

Y

(
∂EtŶ (st+1)

∂b̂t
− ∂EtĜ(st+1)

∂b̂t

)

Ω2t ≡ β
∂Etπ̂(st+1)

∂b̂t

Ω3t ≡ ∂EtŶ (st+1)

∂b̂t
− ∂EtĜ(st+1)

∂b̂t
+

1

σ

∂Etπ̂(st+1)

∂b̂t
.
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The variable Φzlb
t is the (normalized) multiplier associated with the zero lower bound con-

straint.
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