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Abstract

A large empirical literature suggests that risk premia on stocks or corporate bonds are

large and countercyclical. This paper studies a simple real business cycle model with a

small, exogenously time-varying risk of disaster, and shows that it can replicate several

important facts documented in the literature. In the model, an increase in disaster risk

leads to a decline of output, investment, stock prices, and interest rates, and an increase

in the expected return on risky assets. The model matches well business cycle data and

asset price data, and the countercyclicality of risk premia. I present an extension of the

model with endogenous choice of leverage and endogenous default, and show that the model

accounts well for the level and cyclicality of credit spreads, and in particular the relation

between investment and credit spreads.

Keywords: business cycles, investment, credit spreads, risk premia, rare events.

JEL code: E32, E44, G12.
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Non-technical summary

During the 2008-2009 financial crisis, the yield on risky securities (such as corporate bonds, or 

securities backed by real estate loans or consumer credit) rose, while the yield on safe assets such as 

short-term government bonds fell. Standard macroeconomic models, however, give no role to these 

spreads, and have typically only one “interest rate”. Incorporating these spreads, which reflect both a 

borrower-specific default probability and an aggregate market price of risk, in a classical 

macroeconomic framework, in a rigorous fashion is useful both to understand macroeconomic 

movements and to design an optimal policy. 

This paper proposes a simple framework to analyze this question, building on the literature on “rare 

disasters”. This literature emphasizes that the existence of infrequent, but very deep recessions, can 

explain the observed equity premium. These “disasters” may be caused either by economic or financial 

crises (such as the Great Depression) or by wars and large natural disasters. Specifically, the paper 

studies the effect of a change in the risk of a disaster on economic decisions and prices. Technically, the 

model combines a real business cycle benchmark with a small, exogenously time-varying risk of 

disaster. An increase in disaster risk leads to a decline of output, investment, stock prices, and interest 

rates, and an increase in the expected return on risky assets and hence in credit spreads. This shock is 

equivalent, for quantities, to a preference shock, justifying the “equity premium shock” introduced by 

Smets and Wouters (2007). The model matches well business cycle data and asset price data, and the 

relations between prices and quantities, e.g. the countercyclicality of risk premia, the relation between 

the volatility index VIX (constructed by the Chicago Board of Trade using options prices) and GDP, or 

between the stock market and capital expenditures. Empirically, one can infer the probability of disaster 

from asset prices. Measured in this way, shocks to the probability of disaster appear to play an important 

role during the largest US recessions, including the current one. 

The technical contribution of this paper is to show how a small, time-varying risk of an economic 

“disaster” can be incorporated in a tractable manner in a dynamic stochastic general equilibrium (DSGE) 

model. While the finance literature suggests that rare disaster models can explain a variety of asset 

pricing facts, this literature has so far been confined to endowment economies, and hence does not 
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consider the feedback from time-varying risk premia to macroeconomic activity. In macroeconomics 

instead, the focus has been on linearized models where risk premia are tiny and nearly constant. 

I also present an extension of the model where (nonfinancial) corporations choose their financial 

leverage optimally and consequently default when unable to service their debt. The motivation is that a 

large literature in empirical finance documents the "credit spread puzzle", i.e. corporate bond spreads are 

too high and too volatile given the standard measures of liquidity and credit risk. Traditional models of 

financial frictions do not reproduce the level, volatility and cyclicality of risk premia. The project is to 

connect these literatures by introducing a stylized model of capital structure in a neoclassical (real 

business cycle) model with disaster risk. The capital structure (bond vs. equity choice) is driven by the 

usual trade-off between bankruptcy costs and tax shield.  

The model accounts well for the level and cyclicality of credit spreads, and in particular the relation 

between investment and credit spreads. The paper also shows that financial frictions considerably 

amplify the effect of disaster risk on quantities (by a factor of about three). In the model, the welfare 

cost of the advantageous tax treatment of debt is significant, because higher leverage leads to higher 

volatility as well as capital over-accumulation. Allowing firms to issue debt that is contingent on disaster 

has a substantial welfare benefit, as it curbs business cycle volatility. Last, the model is consistent with 

the idea that, as investors become more optimistic and believe that a disaster is less likely (e.g. because 

the economy is smoother, “the Great Moderation”), credit spreads fall, and firms decide to increase their 

leverage, making the economy more exposed to large negative shocks. 
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1 Introduction

The empirical finance literature has provided substantial evidence that risk premia vary over time,

and that they are countercyclical.1 Yet, standard business cycle models such as the real business

cycle model, or the dynamic stochastic general equilibrium (DSGE) models used for monetary

policy analysis, largely fail to replicate the level, the volatility, and the countercyclicality of risk

premia. In these models, the variation in expected returns is entirely driven by variation in the

risk-free interest rate. Is this a significant limitation of macroeconomic models? Do risk premia

matter for macroeconomic dynamics?

A general answer to this question is diffi cult, because risk premia can arise through different

mechanisms, ranging from preferences, to time-varying risk, to incomplete markets. However, a

first step is to provide a framework with large risk premia to study the connection between risk

premia and economic activity. The contribution of this paper is to introduce such a framework,

by building a tractable real business cycle model with a small, stochastically time-varying risk

of economic “disaster”, following the work of Rietz (1988), Barro (2006), and Gabaix (2007). In

my model, risk premia vary because the real quantity of risk varies, leading to a reaction of both

asset prices and macroeconomic aggregates. Existing work has so far been confined to endowment

economies, and hence does not consider the feedback from time-varying risk to macroeconomic

aggregates. An increase in the probability of disaster creates a collapse of investment and a

recession, as risk premia rise, increasing the cost of capital. Demand for precautionary savings

increase, leading the yield on less risky assets to fall, while spreads on risky securities increase.

These business cycle dynamics occur with no change in total factor productivity.2

Before turning to a quantitative analysis, I prove two theoretical results, which hold under the

assumption that a disaster reduces total factor productivity (TFP) and the capital stock by the

same amount. First, when the probability of disaster is constant, the path for macroeconomic

quantities implied by the model is the same as that implied by a model with no disasters, but a

different discount factor β. This “observational equivalence” (in a sample without disasters) is

reminiscent of the numerical analysis of Tallarini (2000), who found that macroeconomic dynamics

are essentially unaffected by the amount of risk or the degree of risk aversion. Second, when

the probability of disaster is stochastic, an increase in probability of disaster is observationally

1See e.g. Campbell and Shiller (1988) and Fama and French (1989) for stocks, Cochrane and Piazzesi (2006) for
Treasury bonds, Philippon (2008) and Gilchrist and Zakrajsek (2007) for corporate bonds, and Cochrane (2007)
or Backus, Routledge and Zin (2008) for recent overviews.

2Because disasters are rare, the risk is usually not realized in sample. However, my results are not driven by
sample selection (peso problem); see sections 4.3 and 5.5.
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equivalent to a preference shock. This implies that these shocks have affect macroeconomic

aggregates, and this provides an interpretation of the “equity premium shocks” introduced by

Smets and Wouters (2003) and other authors in their estimations of DSGE models. Consistent

with the literature, the paper argues that these shocks play a significant role in macroeconomic

dynamics. However I arrive at this conclusion from a very different path, since these shocks are

calibrated to replicate asset prices in my model.

Quantitatively, I find that this parsimonious model can match many asset pricing facts - the

mean, volatility, and predictability of returns - while doing at least as well as the RBC model in

accounting for quantities. This is important since many asset pricing models which are successful

in endowment economies do not generalize well to production economies.3 Most interestingly,

the model matches well the relations between macroeconomic aggregates (such as investment or

output) and asset prices (such as expected returns, the P-D ratio, or the VIX index). As is well

known, this connection between prices and quantities is problematic for most macroeconomic

models.

Empirical tests of the disaster model are notoriously diffi cult. Barro (2006) measured historical

disasters in cross-country data. To measure the time-varying probability of disaster, I use the

most natural restriction of the model - disaster risk affects powerfully asset prices. I infer the

probability of disaster from the observed price-dividend ratio. I then feed into the model this

estimated probability of disaster. The variation over time in this probability appears to account

for a share of business cycle dynamics, and is especially important during the sharpest downturns

such as the current recession.

This risk of an economic disaster may be a strictly rational expectation. For instance, dur-

ing the recent financial crisis, many commentators, including well-known macroeconomists, have

highlighted the possibility that the U.S. economy might fall into another Great Depression.4 My

results suggest that the probability of a disaster was indeed high in Fall 2008. More generally it

could reflect a time-varying belief, which may differ from the objective probability - i.e., waves of

optimism or pessimism (see e.g. Jouini and Napp (2008)). My model studies the macroeconomic

3As explained in Jermann (1998), Lettau and Uhlig (2000), Kaltenbrunner and Lochstoer (2008).
4 Greg Mankiw (NYT, Oct 25, 2008): "Looking back at [the great Depression], it’s hard to avoid seeing parallels

to the current situation. (...) Like Mr. Blanchard at the I.M.F., I am not predicting another Great Depression.
But you should take that economic forecast, like all others, with more than a single grain of salt.”

Robert Barro (WSJ, March 4, 2009): “... there is ample reason to worry about slipping into a depression. There is
a roughly one-in-five chance that U.S. GDP and consumption will fall by 10% or more, something not seen since
the early 1930s.”

Paul Krugman (NYT, Jan 4, 2009): “This looks an awful lot like the beginning of a second Great Depression.”
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effects of such time-varying beliefs. (Of course in reality beliefs may are endogenous, but under-

standing the effects of a change in beliefs is important.) This simple modeling device captures the

idea that aggregate uncertainty is sometimes high: people sometimes worry about the possibility

of a deep recession. It also captures the idea that there are some asset price changes which are

not obviously related to current or future TFP, i.e. “bubbles”, “animal spirits”, and which in

turn affect the macroeconomy.

I then present an important extension of the benchmark model, where firms are financed not

only with equity but also with defaultable bonds. This allows studying the default probability,

and corporate credit spread. I show that this model replicates several features of credit spreads

that have been emphasized in the recent empirical literature. First, in the data the probability

of default of an investment grade bond is much smaller than its credit spread: the probability is

about 0.4% per year (and there is substantial recovery upon default, around 50%), but the spreads

are on average around 100bp.5 Second, credit spreads are strongly correlated with investment,

and the part of credit spreads that forecasts investment is not the expected default frequency,

but rather the residual part of credit spreads, which Gilchrist and Zakrajsek dub the “excess

bond premium”. By their very nature, corporate bonds are safe in normal times, with limited

default during ordinary recessions, but are exposed to the risk of a very large downturn, and

hence disaster risk can replicate these features by generating a large, time-varying risk premium.

Introducing time-varying risk requires solving a model using nonlinear methods, i.e. going

beyond the first-order approximation and considering higher order terms in the Taylor expansion.

Researchers disagree on the importance of these higher order terms, and a fairly common view is

that they are irrelevant for macroeconomic quantities. Lucas (2003), in his presidential address,

summarizes: “Tallarini uses preferences of the Epstein-Zin type, with an intertemporal substi-

tution elasticity of one, to construct a real business cycle model of the U.S. economy. He finds

an astonishing separation of quantity and asset price determination: The behavior of aggregate

quantities depends hardly at all on attitudes toward risk, so the coeffi cient of risk aversion is left

free to account for the equity premium perfectly.”6 My results show, however, that when risk varies

over time, risk aversion affects macroeconomic dynamics in a significant way, and hence building

a model to match the equity premium or other asset pricing facts leads to different quantity

5This is the spread of a BAA-rated corporate bond over a AAA-rated corporate bond (rather than a Treasury),
so as to net out differences in liquidity.

6Note that Tallarini (2000) actually picks the risk aversion coeffi cient to match the Sharpe ratio of equity.
Since return volatility is very low in his model (there are no capital adjustment costs), the equity premium is much
smaller in his model than in the data.
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implications.

Overall, the contribution of the paper is twofold. Substantively, the quantitative and empirical

results of this paper suggest an important role for time-varying risk in accounting for business

cycles and asset prices. This result obtains in the context of a model which matches well data on

prices, quantities, and the relations between quantities and prices, which in itself is an important

achievement. Besides this substantive contribution, the technical contribution of the paper is to

provide a tractable framework which leads to volatile, countercyclical risk premia in a standard

macroeconomic model. The tractability of the framework is such that extensions to include credit

frictions, monetary policy, or several countries, are quite feasible.

The paper is organized as follows: the rest of the introduction reviews the literature. Section

2 studies a simple analytical example in an AK model which can be solved in closed form and

yields the central intuition for the results. Section 3 gives the setup of the full model and presents

the analytical results. Section 4 studies the quantitative implications of the model numerically.

Section 5 considers some extensions of the baseline model. Section 6 presents an empirical eval-

uation of the model, backing out the probability of disaster from asset prices. Section 7 builds a

substantial extension of the model, with endogenous choices of leverage (debt) and default.

Related Literature

Gabaix (2007, 2009) independently obtained propositions 1 and 2. On top of that, he develops

a specific model where variation in the probability of disaster has no macroeconomic effect. In

contrast, my paper uses the standard real business cycle model, and shows that a shock to

the probability of disaster is equivalent to a preference shock (proposition 3) and hence has

a macroeconomic effect. Unlike Gabaix then, my model generates an empirically compelling

correlation between asset prices and macroeconomic quantities. Moreover, my paper is more

quantitative and uses Epstein-Zin utility.

This paper is mostly related to four strands of literature. First, a large literature in finance

builds and estimates models which attempt to match not only the equity premium and the risk-

free rate, but also the variation of risk premia (i.e. the predictability of excess returns). Two

prominent examples are Bansal and Yaron (2004) and Campbell and Cochrane (1999). However,

this literature is limited to endowment economies, and hence is of limited use to analyze the

business cycle or to study policy questions.

Second, my paper is closely related to a small literature which studies business cycle mod-

els (i.e. with endogenous consumption, investment and output), and attempts to match both
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business cycle statistics but also asset returns first and second moments.7 Many of these studies

consider only the implications of productivity shocks, and generally study only the mean and

standard deviations of return and do not attempt to match the predictability of returns. My pa-

per contributes to this literature by focusing on the variation of risk premia and the correlations

between asset prices or returns, on the one hand, and macroeconomic quantities, on the other

hand. In contrast to my paper, many of these studies also abstract from employment, which is

a critical business cycle variable. Many of these studies have diffi culty reconciling business cycle

dynamics and asset returns, but my model does well in this dimension.

Third, the paper draws from the recent literature on “disasters”or rare events (Rietz (1988),

Barro (2006), Barro and Ursua (2008), Gabaix (2007), Gourio (2008a,2008b), Julliard and Ghosh

(2008), Martin (2008), Santa Clara and Yan (2008), Wachter (2008), Weitzmann (2007), Backus,

Chernov and Martin (2009)). Disasters are a powerful way to generate large risk premia. More-

over, as we will see, disasters are relatively easy to embed into a standard macroeconomic model.

Last, my paper studies the real effects of a shock to uncertainty, a channel recently emphasized

by Bloom (2009). Bloom (2009) considers a partial-equilibrium model with heterogeneous firms

facing fixed and linear costs to adjusting capital or labor. In his model, the uncertainty shock is a

temporary increase in the variance of aggregate and especially idiosyncratic productivity shocks.

His model generates a recession and a decrease in endogenous aggregate TFP in response to an

uncertainty shock. My model also generates a recession in response to higher uncertainty, but

there are several differences: (1) risk is modeled differently since the higher uncertainty affects

both productivity and the capital stock; (2) the mechanism is different since it relies on the

general equilibrium feedback, i.e. risk-averse consumers are less willing to invest in risky capital

when uncertainty is high; (3) the model does not generate any change in TFP. Most importantly,

my model focuses on the relations between asset prices and the macroeconomy. For instance, my

model can replicate the empirical finding that shocks to VIX affect output negatively.8

7A non-exhaustive list includes Jermann (1998), Tallarini (2000), Boldrin, Christiano and Fisher (2001), Lettau
and Uhlig (2000), Kaltenbrunner and Lochstoer (2008), Campanele et al. (2008), Croce (2005), Papanikolaou
(2008), Kuehn (2008), Uhlig (2006), Jaccard (2008), and Fernandez-Villaverde et al. (2008).

8Fernandez-Villaverde et al. (2009) also study the effect of shocks to risk, but they focus on a small open
economy which faces exogenous time-varying interest rate risk.
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2 A simple analytical example in an AK economy

To highlight the key mechanism of the paper, this section studies a streamlined model. Section 3

relaxes many of the simplifying assumptions, such as constant productivity, no adjustment costs,

etc., which are made for clarity. Consider a simple economy with a representative consumer who

has power utility:

U = E0

∞∑
t=0

βt
C1−γ
t

1− γ ,

where Ct is consumption and γ is the risk aversion coeffi cient (and also the inverse of the the

intertemporal elasticity of substitution of consumption). This consumer operates an AK technol-

ogy:

Yt = AKt,

where Yt is output, Kt is capital, and A is productivity, which is assumed to be constant. The

resource constraint is:

Ct + It ≤ AKt.

The economy is randomly hit by disasters. A disaster destroys a share bk of the capital stock.9

This may be because of a war which physically destroys capital, but there are alternative interpre-

tations. For instance, bk could reflect expropriation of capital holders (if the capital is taken away

and then not used as effectively), or it could be a “technological revolution”that makes a large

share of the capital worthless. It could also be that even though physical capital is not literally

destroyed, some intangible capital (such as matches between firms, employees, and customers)

is lost. Finally, one can imagine a situation where the demand for some goods falls sharply,

rendering worthless the factories which produce them.10

Throughout the paper I denote by xt+1 an indicator which is one if there is a disaster at time

t+ 1, and 0 if not.

The probability of a disaster varies over time. To maintain tractability I assume in this section

that it is i.i.d.: pt, the probability of a disaster at time t+ 1, is drawn at the beginning of time t

9A disaster does not affect productivity A. I will relax this assumption in section 3. In an AK model, a
permanent reduction in productivity would lead to a permanent reduction in the growth rate of the economy,
since the level of A affect the growth rate of output.
10In a large downturn, the demand for some luxury goods such as boats, private airplanes, etc. would likely fall

sharply. If this situation were to last, the boats-producing factories would never operate at capacity, and hence
the value would fall to zero.
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from a cumulative distribution function F. The law of accumulation for capital is thus:

Kt+1 = ((1− δ)Kt + It) (1− xt+1bk).

Finally, I assume that the two random variables pt+1, and xt+1 are independent. I also discuss

this assumption in more detail in section 3.

This model has one endogenous state variable, the capital stock K and one exogenous state p,

and there is one control variable C. There are two shocks: the realization of disaster x′ ∈ {0, 1} ,

and the draw of a new probability of disaster p′. The Bellman equation for the representative

consumer is:

V (K, p) = max
C, I

{
C1−γ

1− γ + βEp′,x′ (V (K ′, p′))

}
s.t. :

C + I ≤ AK,

K ′ = ((1− δ)K + I) (1− x′bk) .

The assumptions made ensure that V is homogeneous, i.e. V is of the form V (K, p) = K1−γ

1−γ g(p),

where g satisfies the Bellman equation:

g(p) = max
i

{
(A− i)1−γ

1− γ + β
(1− δ + i)1−γ (1− p+ p(1− bk)1−γ)

1− γ (Ep′g(p′))

}
, (1)

and i = I
K
is the investment rate. This implies that consumption and investment are both

proportional to the current stock of capital, but they typically depend on the probability of

disaster as well:

Ct = f(pt)Kt,

It = h(pt)Kt.

As a result, when a disaster occurs and the capital stock falls by a factor bk, both consumption

and investment also fall by a factor bk. Given that there are no adjustment costs, the value of

capital is equal to the quantity of capital, and hence it falls also by a factor bk in a disaster.
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Finally, the return on an all-equity financed firm is:

Re
t,t+1 = (1− δ + A) (1− xt+1bk),

i.e. it is 1− δ+A if there is no disaster, and (1− δ + A) (1− bk) if there is a disaster. Clearly, the

equity premium will be high, since the equity return and consumption are both very low during

disasters. Moreover, the equity premium is larger when the probability of disaster pt is higher.

Let us finally turn to the effect of p on the consumption-savings decision, i.e. the function

f(p). Using equation (1), the first-order condition with respect to i yields, after rearranging:

(
A− i

1− δ + i

)−γ
= β

(
1− p+ p(1− bk)1−γ) (Ep′g(p′)) . (2)

Given that p is i.i.d., the expectation of g on the right-hand side is independent of the current

p. The term (1 − bk)1−γ is greater than unity if and only if γ > 1. Hence, the right-hand side is

increasing in p if and only if γ > 1. Since the left-hand side is an increasing function of i, we

obtain that i is increasing in p if γ > 1, it is decreasing in p if γ < 1, and it is independent of p if

γ = 1.

The intuition for this result is as follows: if p goes up, investment in physical capital becomes

more risky and hence less attractive, i.e. the risk-adjusted physical return on capital goes down.11

The effect of a change in the return on the consumption-savings choice depends on the value of

the intertemporal elasticity of substitution (IES), because of offsetting wealth and substitution

effects. If the IES is unity (i.e. utility is log), savings are unchanged and thus the investment rate

does not respond to a change in the probability of disaster. But if the IES is larger than unity,

i.e. γ < 1, the substitution effect dominates, and i is decreasing in p. Hence, an increase in the

probability of disaster leads initially, in this model, to a decrease in investment, and an increase

in consumption, since output is unchanged on impact. Next period, the decrease in investment

leads to a decrease in the capital stock and hence in output. This simple analytical example thus

shows that a change in the perceived probability of disaster can lead to a decline in investment

and output. The key mechanism is the effect of rate-of-return uncertainty on the optimal savings

decision.12

11Following Weil (1989), I define the risk-adjusted return as E(R1−γ)
1

1−γ , where R is the physical return on
capital.
12The effect of rate-of-return uncertainty differs from that of labor-income uncertainty, as is well known at least

since Levhari and Srinivasan (1969) and Sandmo (1970). The example of this secton is related to work by Epaulard
and Pommeret (2003).
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Extension to Epstein-Zin preferences

To illuminate the respective role of risk aversion and the intertemporal elasticity of substitu-

tion, it is useful to extend the preceding example to the case of Epstein-Zin utility. Assume, then,

that the utility Vt satisfies the recursion:

Vt =
(
C1−γ
t + βEt

(
V 1−θ
t+1

) 1−γ
1−θ
) 1
1−γ

, (3)

where θ measures risk aversion towards static gambles, γ is the inverse of the intertemporal

elasticity of substitution (IES) and β reflects time preference.13 It is straightforward to extend

the results above; the first-order condition now reads

(
A− i

1− δ + i

)−γ
= β

(
1− p+ p(1− bk)1−θ) 1−γ1−θ

(
Ep′g(p′)

1−θ
1−γ

) 1−γ
1−θ

,

and we can apply the same argument as above, in the realistic case where risk aversion θ ≥ 1 :

the now risk-adjusted return on capital is
(
1− p+ p(1− bk)1−θ) 1

1−θ ; it falls as p rises; an increase

in the probability of disaster will hence reduce investment if and only if the IES is larger than

unity.14 Hence, the parameter which determines the sign of the response is the IES, and the risk

aversion coeffi cient (as long as it is greater than unity) determines the magnitude of the response

only. While this example is revealing, it has a number of simplifying features, which lead us to

turn now to a quantitative model.

3 A Real Business Cycle model with Time-Varying Risk

of Disaster

This section introduces a real business cycle model with time-varying risk of disaster and study its

implications analytically. The next section considers the quantitative implications of the model

using numerical methods. The model extends the simple example of the previous section in

the following dimensions: (a) the probability of disaster is persistent instead of i.i.d.; (b) the

production function is neoclassical and affected by standard TFP shocks; (c) labor is elastically

13Note that it is commonplace to have a (1− β) factor in front of u(C,N) in equation (3), but this is merely a
normalization, which it is useful to forgo in this case.
14The disaster reduces the mean return itself, but this is actually not important. We could assume that there

is a small probability of a “capital windfall” so that a change in p does not affect the mean return on capital.
Crucially, what matters here is the risk-adjusted return on capital, E(R1−θ)

1
1−θ , and a higher risk reduces this

return. See section 5.6 for more details.
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supplied; (d) disasters may affect total factor productivity as well as capital; (e) there are capital

adjustment costs.

3.1 Model Setup

The representative consumer has preferences of the Epstein-Zin form, and the utility index incor-

porates hours worked Nt as well as consumption Ct:

Vt =
(
u(Ct, Nt)

1−γ + βEt
(
V 1−θ
t+1

) 1−γ
1−θ
) 1
1−γ

, (4)

where the per period felicity function u(C,N) is assumed to have the following form:

u(C,N) = Cυ(1−N)1−υ.

Note that u is homogeneous of degree one, hence γ is the inverse of the intertemporal elasticity

of substitution (IES) over the consumption-leisure bundle, and θ measures risk aversion towards

static gambles over the bundle.

There is a representative firm, which produces output using a standard Cobb-Douglas pro-

duction function:

Yt = Kα
t (ztNt)

1−α ,

where zt is total factor productivity (TFP), to be described below. The firm accumulates capital

subject to adjustment costs:

Kt+1 =

(
(1− δ)Kt + φ

(
It
Kt

)
Kt

)
(1− xt+1bk).

where φ is an increasing and concave function, which curvature captures adjustment costs, and

xt+1 is 1 if there is a disaster at time t + 1 (with probability pt) and 0 otherwise (probability

1− pt). At this stage bk is a parameter, which may be zero - i.e., a disaster only affects TFP. We

explore quantitatively the role of bk in section 5.2.

The resource constraint is

Ct + It ≤ Yt.

Aggregate investment cannot be negative: It ≥ 0. Depending on parameter values, this constraint

may bind in the periods immediately following a disaster.
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Finally, we describe the shock processes. Total factor productivity (TFP) is assumed to follow

a unit root process, and is affected by standard normally distributed shocks εt as well as disasters.

Mathematically,

log zt+1 = log zt + µ+ σεt+1 + xt+1 log(1− btfp),

where µ is the drift of TFP, and σ is the standard deviation of normal shocks, and btfp is the

reduction in TFP following a disaster. Here too, we will consider various values for btfp, including

possibly zero - i.e., a disaster only destroys capital but does not actually affect TFP. Last, the

probability of disaster pt follows a stationary Markov process with transition function T. In the

quantitative application, I will simply assume that the log of pt follows an AR(1) process.

I assume that the three exogenous shocks pt+1, εt+1, and xt+1 are all independent conditional on

pt. This assumption requires that the occurrence of a disaster today does not affect the probability

of a disaster tomorrow. This assumption may be wrong either way: a disaster today may indicate

that the economy is entering a phase of low growth or is less resilient than thought, leading agents

to revise upward the probability of disaster, following the occurrence of a disaster. But on the

other hand, if a disaster occurred today, and capital or TFP fell by a large amount, it is unlikely

that they will fall again by a large amount next year. Rather, historical evidence suggests that

the economy is likely to grow above trend for a while (Gourio (2008a), Barro et al. (2009)). In

section 5.3, I extend the model to consider these different scenarios.

3.2 Bellman Equation

In this section I set up a recursive formulation of the problem, which is used to prove analytical

results. The model has three state variables: capital K, technology z and probability of disaster

p. There are two independent controls: consumption C and hours worked N ; and three shocks:

the realization of disaster x′ ∈ {0, 1} , the draw of the new probability of disaster p′, and the

normal shock ε′. The first welfare theorem holds, hence the competitive equilibrium is equivalent

to a social planner problem, which is easier to solve. Denote V (K, z, p) the value function, and
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define W (K, z, p) = V (K, z, p)1−γ. The social planning problem can be formulated as:

W (K, z, p) = max
C,I,N

{(
Cυ(1−N)1−υ)1−γ

+ β

(
Ep′,ε′,x′W (K ′, z′, p′)

1−θ
1−γ
) 1−γ

1−θ
}
, (5)

s.t. :

C + I ≤ z1−αKαN1−α,

K ′ =

(
(1− δ)K + φ

(
I

K

)
K

)
(1− x′bk) ,

log z′ = log z + µ+ σε′ + x′ log(1− btfp).

(Because we take a power 1 − γ of the value function, if γ > 1, the max operator must

be transformed into a min.) A standard homogeneity argument implies that we can write

W (K, z, p) = zυ(1−γ)g(k, p), where k = K/z, and g satisfies the associated Bellman equation:

g (k, p) = max
c,i,N


cυ(1−γ)(1−N)(1−υ)(1−γ)

+βeµυ(1−γ)

(
Ep′,ε′,x′e

σε′υ(1−θ) (1− x′btfp)υ(1−θ) g (k′, p′)
1−θ
1−γ
) 1−γ

1−θ

 , (6)

s.t. :

c+ i = kαN1−α,

k′ =
(1− x′bk)

(
(1− δ)k + φ

(
i
k

)
k
)

eµ+σε′ (1− x′btfp)
.

Here c = C/z and i = I/z are consumption and investment detrended by the stochastic tech-

nology level z. This homogeneity argument simplifies the problem substantially. It delivers some

analytical results, and makes the numerical analysis simpler: first, k is stationary; second, the

dimension of the state space is reduced.

3.3 Asset Prices

It is straightforward to compute asset prices in this economy. The stochastic discount factor is

given by the formula

Mt,t+1 = β

(
Ct+1

Ct

)υ(1−γ)−1(
1−Nt+1

1−Nt

)(1−υ)(1−γ)
 Vt+1

Et
(
V 1−θ
t+1

) 1
1−θ

γ−θ

. (7)

The price of a one-period risk-free bond is Et (Mt,t+1) , but this risk-free asset may not have an

observable counterpart. Following Barro (2006), I will assume that government bonds are not

15



risk-free but are subject to default risk during disasters.15 More precisely, if there is a disaster,

the recovery rate on government bonds is r, i.e. the loss is 1 − r. The T-Bill price can then be

easily computed as Q1,t = Et (Mt,t+1(1 + xt+1(r − 1))))
def
= Q1(k, p). The ex-dividend value of the

firm assets Pt is defined through the value recursion:

Pt = Et (Mt,t+1 (Dt+1 + Pt+1)) ,

where Dt = F (Kt, ztNt) − wtNt − It is the payout of the representative firm, and wt is the

wage rate, given by the marginal rate of substitution of the representative consumer between

consumption and leisure. The equity return is then Rt,t+1 = Dt+1+Pt+1
Pt

. If the positivity constraint

on investment does not bind, the unlevered equity return can be rewritten, following a standard

Q-theory argument (See Jermann (1998) or Kaltenbrunner and Lochstoer (2008)) as

Rt,t+1 = (1− xt+1bk)φ
′
(
It
Kt

)1− δ + φ
(
It+1
Kt+1

)
φ′
(
It+1
Kt+1

) +
αKα

t+1z
1−α
t+1 N

1−α
t+1 − It+1

Kt+1

 , (8)

where the first term emphasize that if bk > 0, capital holders make a loss in the event of a disaster.

The empirical counterpart to this unlevered equity return is not stock returns, because in

the real world, firms have financial leverage and operating leverage (e.g. fixed costs and labor

contracts). This is a substantial source of profit and dividend volatility, which is not present in

the model. Under the Modigliani and Miller theorem, in the absence of financial friction or taxes,

the only effect of leverage is to modify the payout process and subsequently the asset prices.

Rather than model the leverage explicitly, I follow the asset pricing literature (e.g. Abel (1999))

and compute the price of a claim to Dlev
t = Y λ

t , where λ > 1 is the leverage parameter. This

formulation implies that ∆ logDlev
t = λ∆ log Yt, making dividends more volatile than output, as

in the data. I will use the price of this levered claim to output as the model counterpart to

stock prices. In section 5.1, I show that this formulation of leverage gives similar results to a

formulation based on a constant debt-equity ratio.

3.4 Analytical results

This section proves some analytical results in the special case bk = btfp, i.e. productivity and

capital fall by the same amount if there is a disaster. Under this assumption, we first establish

15Empirically, default often takes the form of high rates of inflation which reduces the real value of nominal
government debt.
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the behavior of quantities and returns following a disaster. Then we establish the equivalence

between disaster risk and a change in impatience (discount factor). All these results stem directly

from equation (6).16

Proposition 1 Assume that bk = btfp. Then, a disaster leads consumption, investment, and

output to drop by a factor bk = btfp, while hours do not change. The return on capital is also

reduced by the same factor, while the return on government bonds is reduced by a factor r. There

is no further effect of the disaster on quantities or prices, i.e. all the effect is on impact.

Proof. Equation (6) leads to policy functions c(k, p), i(k, p), N(k, p) and y(k, p) = kαN(k, p)1−α

which express the solution as a function of the probability of disaster p (the exogenous state

variable) and the detrended capital k (the endogenous state variable). The detrended capital

evolves according to the shocks ε′, x′, p′ through

k′ =
(1− x′bk)

(
(1− δ)k + φ

(
i(k,p)
k

)
k
)

eµ+σε′ (1− x′btfp)
.

The key remark is that if bk = btfp, then

k′ =

(
(1− δ)k + φ

(
i(k,p)
k

)
k
)

eµ+σε′

is independent of the realization of disaster x′. As a result, the realization of a disaster does not

affect c, i, N, y, since k is unchanged, and hence it leads consumption C = cz, investment I = iz,

and output Y = yz to drop by a factor bk = btfp on impact. Furthermore, once the disaster

has hit, it has no further effect since all the endogenous dynamics are captured by k, which is

unaffected. The statement regarding returns follows from the expression of the stock return (8):

given that the investment-capital ratio and output-capital ratios are unaffected by the disaster,

the only effect of the disaster is to multiply Rt,t+1 by the factor (1− bk).

The intuition for proposition 1 stems directly from the condition for the steady-state of the

neoclassical growth model, which is determined by the level of TFP according to the familiar

formula 1
β
− 1 + δ = αKα−1 (Nz)1−α . Given the preference specification, the steady-state hours

are unaffected by the change in TFP. The decrease in z hence requires an equal decrease in K

to reach a steady-state. When bk = btfp, the amount of capital destruction is exactly what is

16An alternative derivation, using the Euler equation, is provided in the appendix.
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required for the economy to jump from one steady-state to another steady-state, and there are

no further transitional dynamics.

In contrast, when bk 6= btfp, a disaster leads both to impact effects and to further transitional

dynamics. For instance, a capital destruction without reduction in productivity leads to high

investment and a recovery as the economy converges back to its initial steady-state. Inversely, a

productivity decline without capital destruction leads to a persistently low level of investment as

the economy adjusts gradually to reach its new steady-state.

We can now state the first main result.

Proposition 2 Assume that the probability of disaster p is constant, and that bk = btfp. Then the

policy functions c(k), i(k), N(k), and y(k) are the same as in a model without disasters (p = 0),

but with a different time discount factor β∗ = β(1− p+ p(1− bk)υ(1−θ))
1−γ
1−θ . Assuming θ ≥ 1, we

have β∗ ≤ β if and only if γ < 1. Asset prices and expected returns, however, will be different

under the two models.

Proof. Following proposition 1, note that k′ is independent of the realization of disaster x′. As

a result, we can simplify the expectation in the Bellman equation (6):

g (k) = max
c,i,N


cυ(1−γ)(1−N)(1−υ)(1−γ)

+βeµυ(1−γ)

(
Ex′ (1− x′btfp)υ(1−θ) × Eε′eσε

′υ(1−θ)g (k′)
1−θ
1−γ
) 1−γ

1−θ

 ,

i.e.:

g (k) = max
c,i,N

{
cυ(1−γ)(1−N)(1−υ)(1−γ) + β∗eµυ(1−γ)

(
Eε′e

σε′υ(1−θ)g (k′)
1−θ
1−γ
) 1−γ

1−θ
}
.

We see that this is the same Bellman equation as the one in a standard neoclassical model, with

discount rate β∗. As a result, the policy functions c(k), N(k), i(k) and y(k) are also the same as

a standard neoclassical model.

Asset prices, on the other hand, are driven by the stochastic discount factor, which weights

the possibility of disaster (see the expression of the SDF in the computational appendix). Both

consumption and the return on capital are low in a disaster as show in Proposition 1, hence the

equity premium will be larger than in a model without disaster risk.

This result has several implications. First, in a sample without disasters, the quantities

implied by the model (consumption, investment, hours, output and capital) are exactly the same

as those implied by the standard RBC model, provided that the discount factor is adjusted. In
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practice, this adjustment is small and hence has very little effect on quantity dynamics. For

the benchmark calibration, we have β = .994, and β∗ ≈ .9934. As a particular implication, the

response to a standard normal TFP shock ε will be exactly the same, hence the model will generate

the standard patterns of higher investment, output, employment and consumption following an

increase in TFP.

Second, this analytical result clarifies the numerical findings of Tallarini (2000). As discussed

in the introduction, he found, in a model where the IES is unity, that higher risk aversion has

little effect on business cycle quantity dynamics (a finding often interpreted as “fixing the asset

pricing properties of a RBC model need not change the quantity dynamics”). In my model, if the

IES is unity (γ = 1), β∗ is exactly equal to β, hence no adjustment is required and the equivalence

of dynamics is an exact result. The model nevertheless generates a large equity premium, since a

disaster leads to a large decline in consumption and in the equity return. This proposition hence

shows how to construct a model with large risk premia and reasonable business cycle dynamics,

addressing the question studied by Jermann (1998) and Boldrin, Christiano and Fisher (2001).

Third, the result implies that the steady-state level of capital stock will be affected by the

probability of disaster. If risk aversion θ is greater than unity, and the IES is above unity, then

β∗ < β, leading people to save less: the steady-state capital stock is lower than in a model without

disasters. While higher risk to productivity leads to higher precautionary savings, rate-of-return

risk can reduce savings.

While this first result is interesting, it is not fully satisfactory however, since the constant

probability of disaster implies constant risk premia. As is well known, constant risk premia imply

that price-dividend ratios and returns are not volatile enough. This motivates extending the

result for a time-varying p.

Proposition 3 Assume that bk = btfp, and that p follows a stationary Markov process. Then the

policy functions c(k, p), i(k, p), N(k, p), and y(k, p) are the same as in a model without disasters

(p = 0), but with stochastic discounting (i.e. β follows a stationary Markov process). Assuming

θ ≥ 1, β is inversely related to p if and only if γ < 1.

Proof. The proof also uses the fact that k′ is independent of x′, to simplify the expectation inside

the Bellman equation (6):

g (k, p) = max
c,i,N


cυ(1−γ)(1−N)(1−υ)(1−γ)

+βeµυ(1−γ)

(
Ex′|p (1− x′btfp)υ(1−θ) Eε′,p′e

σε′υ(1−θ)g (k′, p′)
1−θ
1−γ
) 1−γ

1−θ

 .
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Define

β(p) = β
(
Ex′|p (1− x′btfp)υ(1−θ)

) 1−γ
1−θ

= β
(
1− p+ p(1− btfp)υ(1−θ)) 1−γ1−θ

.

Since p is Markov, β is Markov too. Assuming θ ≥ 1, β is increasing in p if and only if γ < 1.We

have:

g (k, p) = max
c,i,N

{
cυ(1−γ)(1−N)(1−υ)(1−γ) + β(p)eµυ(1−γ)

(
Eε′,p′e

σε′υ(1−θ)g (k′, p′)
1−θ
1−γ
) 1−γ

1−θ
}
,

i.e. the Bellman equation of a model with time-varying β, but no disasters.

This result shows that the time-varying risk of disaster has the same implications for quantities

as a preference shock. It is well known that these shocks have a significant effect on macroeconomic

quantities (a point that we will quantify later). In a sense, this version of the model breaks the

“separation theorem”of Tallarini (2000): when risk varies over time, risk aversion has an effect

on the quantities. Asset prices will respond as well, generating correlations of risk premia and

quantities.

This result is interesting in light of the empirical literature which suggests that “preference

shocks”or “equity premium shocks”may be important (e.g., Smets and Wouters (2003)). Chari,

Kehoe and McGrattan (2009) criticize these shocks which lack microfoundations. My model

provides a simple microfoundation, which allows to tie these shocks to asset prices precisely, and

justifies the label “equity premium shock”. Of course, my model is significantly simpler than the

medium-scale models of Smets and Wouters (2003), but I conjecture that this equivalence can be

generalized to a large class of models.

Interestingly, this result also shows that it is technically feasible to solve DSGE models with

time-varying risk premia. A full non-linear solution of a medium-scale DSGE model is daunting.

But under this result, we can solve the quantities of the model by solving a model with shocks to

β and no disasters, i.e. a fairly standard model which we can approximate well using log-linear

methods. Once quantities are found, we can solve for asset prices using nonlinear methods. The

computational appendix details this solution method.

The three propositions require that bk = btfp; analytical results are impossible without this

assumption. As discussed above, proposition 1 does not hold if bk 6= btfp. On the other hand,

numerical experiments suggest that proposition 2 is robust to this assumption, in that the dynamic

response to a TFP shock is largely unaffected by the presence or type of disasters (i.e. bk vs.

btfp). Proposition 3 is somewhat more fragile. For instance, if disasters affect only TFP, and
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there are no adjustment costs, then an increase in p will lead people to want to hold more capital,

for standard precautionary savings reasons. This is true regardless of the IES. We discuss this

further and relax the assumption bk = btfp in Section 5.2.

4 Quantitative Results

This section first presents the calibration. I then successively study the implications of the model

for business cycle quantities, for asset prices, and finally for the relations between asset prices

and quantities. In general, the model cannot be solved analytically, leading me to resort to a

numerical approximation. A nonlinear method is crucial to analyze time-varying risk premia. I use

a standard policy function iteration algorithm, which is described in detail in the computational

appendix.

4.1 Calibration

Parameters are listed in Table 1. The period is one quarter. Many parameters follow the business

cycle literature (Cooley and Prescott (1995)). The risk aversion parameter is picked to replicate

the mean equity premium, and it is set at 6. However, this is risk aversion over the consumption-

hours bundle. Since the share of consumption in the utility index is .3, the effective risk aversion

to a consumption gamble is 1.8 (Swanson (2010)).

The intertemporal elasticity of substitution of consumption (IES) is set at 2. There is a

large debate regarding the value of the IES. Most direct estimates using aggregate data find low

numbers (e.g. Hall (1988)), but this view has been challenged by several authors (see among

others Bansal and Yaron (2004), Guvenen (2006), Mulligan (2004), Vissing-Jorgensen (2002)).

As emphasized by Bansal and Yaron (2004), a low IES has the counterintuitive effects that higher

expected growth lowers asset prices, and higher uncertainty increases asset prices. The IES plays

a key role for only part of my results, namely the response of macroeconomic quantities to an

increase in the probability of disaster.

The functional form for the adjustment cost function follows Jermann (1998): Φ(x) = a1
x1−η

1−η +

a2, where a1 and a2 are set such that the steady-state is independent of η and marginal Q is one.

The unique parameter η is set to match approximately the volatility of investment, relative to

output, leading to η = .15, a value well in the range of empirical estimates.17

17The volatility of investment is limited by general equilibrium feedbacks, as in the RBC model, hence only
moderate adjustment costs are required to lower further a bit the volatility of investment.
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One crucial element of the calibration is the probability and size of disaster. I assume that

bk = btfp = .43 and the probability is .017 per year on average. These numbers are motivated by

the evidence in Barro (2006) who reports this unconditional probability, and the risk-adjusted size

of disaster is on average 43%. (Barro actually uses the historical distribution of sizes of disaster.

In his model, this distribution is equivalent to a single disaster with size 43%.) In my model,

with bk = btfp = .43, both consumption and output fall by 43% if there is a disaster. Note that

since the Solow residual is z1−α, the actual drop in productivity is 30.2%.

Whether one should model a disaster as a capital destruction or a reduction in TFP is an

important question. Clearly some disasters, e.g. in South America since 1945, or Russia 1917,

affected TFP, perhaps by introducing an ineffi cient government and poor policies. On the other

hand, World War II led in many countries to massive physical destructions and losses of human

capital. It would be interesting to gather further evidence on disasters, and measure bk and btfp

directly. This is beyond the scope of this paper. I concentrate on the parsimonious benchmark

case bk = btfp.This has the advantage of clarity, since the analytical results of section 3 apply, and

generates the same consumption dynamics during disasters as assumed in the literature that uses

endowment economies (Barro (2006), Gabaix (2007), Wachter (2008), Gourio (2008)). In section

5.2, I discuss an alternative calibration with bk = 0, which generates many of the same results,

provided that there are capital adjustment costs. Hence the capital destruction is not necessary

for the model to match the data well.

The second crucial element is the persistence and volatility of movements in this probability

of disaster. I assume that the log of the probability follows an AR(1) process:

log pt+1 = ρp log pt + (1− ρp) log p+ σpεp,t+1,

where εp,t+1 is i.i.d. N(0, 1).18 The parameter p is picked so that the average probability is .017

per year, and I set ρp = .92 and the unconditional standard deviation σp√
1−ρ2p

= 1.85, which allows

the model to fit reasonably well the volatility and predictability of equity returns. Regarding the

default of government bonds during disasters, I follow the work of Barro (2006): conditional on

a disaster, government bonds default with probability .6, and the default rate is the size of the

disaster. The leverage parameters λ is set to 2 (Abel (1999)).

On top of this benchmark calibration, I will also present results from different calibrations

18This equation allows the probability to be greater than one, however I will approximate this process with a
finite Markov chain, which ensures that 0 < pt < 1 for all t ≥ 0.
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(no disasters, constant probability of disaster, and in section 5 more extensions) to illustrate the

sensitivity of the results.

Some may argue that this calibration of disasters is extreme. A few remarks are in order.

First, a long historical view makes this calibration sound more reasonable, as shown by Barro

(2006) and Barro and Ursua (2008). An example is the U.K., which sounded very safe in 1900,

but experienced a variety of very large negative shocks during the XXth century. Second, it

is also possible to change the calibration, and increase risk aversion19 while reducing the size or

probability of disasters. One can also employ fairly standard devices to boost the equity premium,

and reduce the probability of disaster further - e.g., the disasters may be concentrated on a limited

set of agents, or some agents may have background risk (private businesses); or idiosyncratic risk

might be countercyclical. These features could all be added to the model, at a cost in terms of

complexity, and would likely reduce the magnitude of disasters required to make the model fit

the data.

4.2 An increase in the probability of a disaster

We can now perform the key experiment of an increase in the probability of disaster, i.e. an

increase in risk. Figure 1 plots the impulse response of quantities to a doubling of the probability

of disaster at time t = 6, starting at its long-run average (.017% per year or 0.00425% per

quarter).20 Investment decreases, and consumption increases, as in the analytical example of

section 2, since the elasticity of substitution is assumed to be greater than unity. Employment

decreases too, through an intertemporal substitution effect: the return on savings is low and thus

working today is less attractive. (This is in spite of a negative wealth effect which tends to push

employment up; given the large IES the substitution effect overwhelms the wealth effect both for

consumption and for leisure.) Hence, output decreases because both employment and the capital

stock decrease, even though there is no change in current or future total factor productivity.

This is one of the main result of the paper: this shock to risk leads to a recession. After impact,

consumption starts falling. These results are robust to changes in parameter values, except for the

IES which crucially determines the sign of the responses, and the assumption that bk = btfp (as we

19The risk aversion in my calibration less than two, and hence even lower than in Barro (2006), because the
variation over time in the probability of disaster is an additional source of risk.
20For clarity, to compute this figure, I assume that there are no realized disaster. The simulation is started of

after the economy has been at rest for a long time (i.e. no realized disasters, no normal shocks, and no change in
the probability of disaster). I obtain this figure by averaging out over 100,000 simulations which start at t = 6 in
the same position, but then have further shocks to ε or p.
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discuss in section 5.2 below). The size of adjustment costs, and the level of risk aversion, affect only

the magnitude of the response of investment and hours. This figure is consistent with proposition

3: the shock is equivalent, for quantities, to a preference shock to β. The model predicts some

negative comovement between consumption and investment, which may seem undesirable.21 I

discuss this further in Section 5.4.

Regarding asset prices, figure 2 reveals that, following the shock, the risk premium on equity

increases (the spread between the red—crosses line and the black-full line becomes larger), and

the short rate decreases, as investors try to shift their portfolio towards safer assets - a “flight to

quality”. Hence, in the model, an increase in risk premia coincides with a recession. On impact

(at t = 6), the increase in the risk premium lowers equity prices substantially, through a discount

rate effect.

4.3 First and second moments of quantities and asset returns

Table 2 reports the standard business cycle moments obtained from model simulations. Results

are reported both for a sample where no disaster actually takes place (i.e. agents fear a disaster

but it does not occur in sample), and, in the starred rows, for a full sample that includes disaster

realizations (i.e. population moments). The data row reports the standard U.S. post-WWII

statistics. Given the lack of disasters in these data, one should compare the data to the model

results in a sample without disasters.

Row 2 shows the results for the standard model (i.e. bk = btfp = 0). The success of the basic

RBC model is clear: consumption is less volatile than output, and investment is more volatile

than output. The volatility of hours is on the low side, a standard defect of the basic RBC model

driven by the specification of the utility function and adjustment costs.

Introducing a constant probability of disaster, in row 3, does not change the moments signifi-

cantly. This is consistent with proposition 2. However, the presence of the risk shock - the change

in the probability of disaster - leads to additional dynamics, which are visible in row 5. Specif-

ically, the correlation of consumption with output is reduced. Total volatility increases, since

there is an additional shock, but this is especially true for investment and employment. Overall

the model gets closer to the data for most moments, except the relative volatility of investment

which is slightly too high.

21Despite the fact that consumption rises on impact, states of nature with high probability of disaster are still
"bad states", i.e. high marginal utility states. This is because the stochastic discount factor also includes current
hours and future utility, and the higher uncertainty reduces the future value due to risk aversion (i.e. volatility is
a priced factor; see e.g. Bansal and Yaron (2004) for a related analysis).
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Turning to returns, table 3 shows that the benchmark model (row 4) can generate a large

equity premium: about 6% (=4*(1.93-0.42)) per year for a levered equity (the model counterpart

to real stocks). The unlevered equity also has a significant risk premium of 1.8% per year. These

risk premia are computed over short-term government bonds, which are not riskless in the model;

they would be larger if computed over the risk-free asset. Whether these risk premia are calculated

in a sample with disasters or without disasters does not matter much quantitatively - the risk

premia are reduced by 15—25 basis point per quarter or 0.6-1% per year. Hence, sample selection

is not a critical issue.

Table 3 shows that the volatility of the levered equity approximately matches that of the data

(7.14% per quarter vs. 8.14% in the data). This is in sharp contrast with the RBC model (1.59%)

or the model with constant probability of disaster (1.53%). Importantly, the model matches the

low volatility of short-term interest rates (0.85% vs. 0.81% in the data), an improvement over

the studies of Jermann (1998) and Boldrin, Christiano and Fisher (2001) which implied highly

volatile interest rates.

For completeness, it is important to note that an unlevered equity does not have volatile

returns, however (0.40% per quarter). The intuition is that, without adjustment costs, Tobin q

is unity, and the return on capital is simply 1− δ + αKα−1
t+1 (zt+1Nt+1)1−α, which is very smooth.

My calibration has only a small amount of adjustment costs, hence Tobin q varies little and the

return on unlevered capital is smooth.22

4.4 Relations between asset prices and macroeconomic quantities

This section evaluates the ability of the model to reproduce some relations between asset prices

and macroeconomic quantities.

22This foonote describes, for completeness, the implications of the model for the term structure of interest rates.
Because the model does not incorporate inflation, it is diffi cult to estimate the extent to which the model fits the
data. Moreover, these results for the yield curve are similar to those in the endowment economy model of Gabaix
(2007). Assume that all bonds default by the same amount during disasters. The model then generates a negative
term premium, consistent with the evidence for indexed bonds in the UK. This negative term premium is not
due to what happens during disasters, since short-term bonds and long-term bonds are assumed to default by the
same amount. As usual, TFP shocks generate very small risk premia. The term premium is thus driven by the
third shock, i.e. the shock to the probability of disaster. An increase in the probability of disaster reduces interest
rates, as the demand for precautionary savings rises. As a result, long-term bond prices rise. Hence, long term
bonds hedge against the shock to the probability of disaster, they have lower average return than the short-term
bonds, and the yield curve is on average downward sloping. Obviously, one possibility to make the yield curve
upward-sloping is to assume that long-term bonds will default by a larger amount, should a disaster happen.
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4.4.1 Countercyclicality of risk premia

An important feature of the data is that risk premia are countercyclical. This has been illustrated

strikingly by the recent crisis, where the yield on risky assets such as corporate bonds went up

while the yield on safe assets such as government bonds went down. This pattern is common to

most U.S. recessions. To illustrate it simply, figure 3 reports the covariance between detrended

output ỹt and stock excess returns at different leads and lags, i.e. Cov
(
ỹt, R

e
t+k −R

f
t+k

)
,for

k = −12 to k = 12 quarters. In the data (full line), this covariance is positive for k < 0, reflecting

the well-known fact that excess returns lead GDP, but this covariance becomes negative for

k ≥ 0, implying that output negatively leads excess returns, i.e. risk premia are lower when

output is high.23 I concentrate on the covariance rather than the correlation because the size

of the association is critical (correlations can look good even if there is only a tiny variation,

provided it has the right sign). GDP is detrended using the one-sided version of the Baxter-King

(1999) filter.

The fact that returns lead GDP, while interesting, might be rationalized by several models,

e.g. a model of advance information and adjustment costs or time-to-build. More simply, as

can be seen in the figure 3, even the basic RBC model generates this pattern, since high returns

reflect positive TFP shocks, and positive TFP shocks lead to a period of above-trend output.

More interesting, and more discriminating, is the right-side of this picture, i.e. high output is

associated with low future excess returns. The model without shocks to p, i.e. the RBC model,

does not generate any variation in risk premia, so the model-implied covariance is very close to

zero.24 In contrast, my model generates about the right comovement of output and risk premia.

This is a validation of the model key mechanism: changes in risk drive both expected returns and

output.

4.4.2 VIX and GDP

The VIX index is a measure of the implied volatility of the SP500, constructed by the CBOE from

option prices with different strikes. Mathematically, it is defined as
√

4varQt
(
rmt+1

)
, where the

23I use this particular statistic because it has a natural model counterpart. There are other, more powerful ways
to show in the data that risk premia are countercyclical. First one can use additional variables, not present in
the model: e.g. the unemployment rate forecasts excess stock returns negatively. Second, one can use a standard
return forecasting regression, i.e. running future returns on the current dividend yield, the short rate and the
term spread, and observe that the fitted values from this regression are significantly negatively correlated with
detrended GDP.
24It is important to use a one-sided filter for this purpose, since with a two-sided filter output is low when future

output is high, i.e. in the RBC model when future TFP is high, i.e. when future returns are high: hence, the RBC
model generates a negative covariance between two-sided filtered output and future excess returns.
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variance is taken under the risk-neutral measure, and the factor 4 annualizes the variance. In an

influential study, Bloom (2009) shows using a reduced-form VAR that shocks to the VIX index

have a significant negative effect on output. Figure 4 reproduces this results by depicting the

impulse response of output to a shock to VIX in the data (full blue line). This impulse response

function is computed using a Cholesky decomposition, under the orthogonalization assumption

that a shock to VIX has no instantaneous impact on GDP.25

Running the same VAR on the model-generated data yields a response that is fairly similar

to the data (red crosses). In the model, VIX is largely driven by the fear of a disaster, i.e. VIX

is nearly one-to-one with the state variable p. Increases in p lead to an increase in VIX and a

decline in output. Hence, the model generates an impulse response consistent with the data. In

contrast, in a real business cycle model without disaster risk, VIX is small and nearly constant,

and the VAR finds actually a positive effect of VIX on output.

4.4.3 Investment and Asset Prices

One enduring puzzle in macroeconomics and finance is the relation between investment and the

stock market. While the Q-theory correctly predicts a positive correlation, the level of adjustment

costs required to match the investment and the stock market is widely considered excessive (see

e.g. Philippon (2009) for a recent discussion). In contrast, I show here (see also section 6) that

my model captures well the magnitude of the relation between the stock market and investment,

even with small adjustment costs.

One way to measure this association is to compute the covariance between investment and asset

prices in the RBCmodel. Figure 5 presents the cross-covariogram γk = Cov(it+k, log(Pt/Dt)),where

it+k is HP-filtered log investment, for k = −12 to k = 12 quarters.

The black (diamonds) line shows the data, reflecting the well-known pattern that investment

and the stock market are positively correlated, with the stock market leading investment. The

blue line (crosses) presents the covariogram for the model with only TFP shock, i.e. the basic

RBC model. The model generates actually a small negative covariance between the price-dividend

ratio and investment, because TFP shocks have little effect on the stock market value - higher

TFP increase future cash flows, but also increases interest rates, leading to offsetting effects on

the levered equity.

25The orthogonalization assumption has little impact on these results. Following Bloom, both GDP and volatility
are HP-filtered, but this is not critical either. Last, in the model, as in the data, it makes relatively little difference

whether we use the implied volatility, based on the risk-neutral measure, or the physical volatility,
√
4vart

(
rmt+1

)
.
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The red line (diamonds) the covariogram for the benchmark model, i.e. including both TFP

shocks and shocks to the probability of disaster. The key result is that the covariance is now of the

right magnitude. Both models are, however, unable to replicate the exact timing of the association

between the stock market and investment, i.e. to match the observed lag, but additional frictions

such as time-to-plan may account for this.

4.4.4 IES estimation in the model

Similar to Bansal and Yaron (2004), my model requires an elasticity of intertemporal substitution

(IES) larger than unity, which is at odds with traditional estimates such as Hall (1988). While it

is impossible to do justice to the vast literature studying the IES, it is noteworthy that running

the standard Hall regressions in my model would lead to small estimates, just like Hall found.

Table 4 reports the slope and R2 from a univariate regression of consumption growth from t

to t+1 on the time t short-term government bond rate (first two columns) or the pure risk-free

rate (last two columns). The slope coeffi cient is the IES estimate. Each row corresponds to a

variant of the model, which differ according to the utility function (power utility or Epstein-Zin),

whether labor supply is fixed or labor is part of the utility function (which modifies the usual

Euler equation), and whether the model has only shocks to TFP (no disaster risk) or the model

has both TFP shocks and shocks to disaster risk.

In the simple RBC model (row 1), the Hall regression works well and suggests an IES of 1.76,

which is close to the true value. If leisure is introduced in the utility function, the IES estimate

recovered is already lower, around 1.00. Adding shocks to disaster risk disturbs the relationship

between expected consumption growth and interest rates, because higher uncertainty leads (if the

IES is greater than unity) to lower interest rates and higher expected consumption growth. As

a result, the slope coeffi cient falls to 0.38 if one uses the short-term government bond rate, and

0.23 if one uses the pure risk-free asset. Moreover, using the equity return would lead to a slightly

negative relationship. The results of this highly stylized model suggest that the IES used in this

paper is not inconsistent with the empirical evidence.

4.4.5 Other asset pricing implications

The model has several other interesting implications for asset prices, which I describe briefly in

this section. First, the model is consistent with the evidence that equity returns are predictable,
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but dividends are not. The standard regression

Re
t→t+k −R

f
t→t+k = α + β

Dt

Pt
+ εt+k,

yields a R2 = 25% at the four-year horizon (k = 4) in the data (this figure, however, is sample-

specific), and a R2 = 54% in the model. In both data and model, the results are similar if the

left-hand side variable is returns rather than excess returns. Second, in the model as in the data,

dividends are much less forecastable than returns, i.e. in a regression

Dt+k

Dt

= α + β
Dt

Pt
+ εt+k,

the R2 is 1% in the data at a four-year horizon, while it is 6% in the model. Hence, there is

somewhat too much predictability of returns in the model, but the model is consistent with the

finding that discount rate variation is the key driver of stock prices.

Third, the model generates an Euler equation error. A large literature has concentrated on

the ability of models to generate a significant equity premium and volatile returns. Lettau and

Ludvigson (2009) argue that a more challenging test is to generate a failure of the Euler equation,

i.e. estimating the Euler equation with CRRA utility on data simulated from the model should

lead, as in the data, to a rejection of the model. These author show that few models can pass

this test, because in most models aggregate consumption is highly correlated with returns. In

my model, the shock to the probability of disaster induces a negative comovement between asset

returns and aggregate consumption, leading the CRRA model to be rejected.

Fourth, the model can generate qualitatively, but not quantitatively, results similar to those

of Beaudry and Portier (2006, BP hereafter), which have stimulated a large recent literature on

“news shocks”. BP show empirically that shocks to the stock market lead to a gradual increase in

TFP and GDP, suggestive of advance information about cash flows. An alternative interpretation

of their findings is that the stock market movements are driven by changes in risk premia, which

then feed back to GDP (and possibly in measured TFP through variation in utilization). To

evaluate this possibility, I ran the same bivariate VAR with GDP growth and the stock market

return in the data, in the RBC model, and in my model.26 The impulse response are similar to

BP, i.e. a “return shock”leads to a cumulative increase in GDP, however the magnitude of the

26Following BP, I use the orthogonalization assumption that the stock market shock does not affect GDP
instantaneously. Obviously in my model this assumption is incorrect, hence the shocks picked by the VAR are
combinations of the fundamental shocks, of opposite effect on output.
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response is much smaller in my model than in the data.

5 Robustness and Extensions

In this section, I discuss several extensions of the baseline model, and check that the results are

robust to various changes in the calibration.

5.1 A calibration with financial leverage

The benchmark model follows a formulation of leverage which is standard in the asset pricing

literature, i.e. the dividend process is Dt = Y λ
t with λ = 2. One may worry that the nonlinearity

is important. To check this, I computed the return on a levered equity, given an exogenous debt

issuance policy.27 Since the Modigliani-Miller theorem holds, the debt policy has no impact on

the allocation. Assume that the firm each period adjusts its debt issues to keep the maturity

equal to 5 years, and the book leverage ratio equal to 0.45 (Abel (1999), Barro (2006)). The

expression for the levered firm return is

Rlevt+1 =
Pt+1 +Dt+1 − ωtQ(n−1)

t+1

Pt − ωtQ(n)
t

,

where Q(n)
t is the price of a zero-coupon n-period bond, and ωt is the number of bonds issued,

e.g. for a constant book leverage policy ωtQ
(n)
t = .45Kt. The mean return on the levered equity

is then 2.25% per quarter, while the standard deviation of the return is 9.46%. This contrasts

with 1.93% and 7.14% in my simple formulation of leverage. Moreover, in simulations, the two

returns have a correlation above .95. Hence, the results are very similar if I use this formulation

of leverage. Alternatively, one can assume that the firm keeps the market leverage ratio constant.

In the benchmark model, the market value of the firm is somewhat more volatile than its capital

stock, due to adjustment costs, but this effect is not very large, hence the results are similar

(2.23% for mean return and 9.37% for volatility of return).

27I assume that the debt has the same default characteristics as government debt, i.e. it will default in a disaster,
but by less than the capital stock. The results are stronger if the debt is truly risk-free. An interesting extension
of the model is to make default endogenous.
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5.2 A calibration without capital destruction

An interesting question is whether one should model a disaster as a reduction in TFP or a

destruction of the existing capital stock.28 Decreases in TFP arise for instance because of poor

government policies or extreme misallocation, while destructions of the capital stock can be due

to wars or expropriations (see the discussion in section 2). Tables 4 and 5 study the sensitivity of

the key results to this assumption, and propose a different parametrization of the model without

capital destruction which gives results similar to the benchmark. In tables 4 and 5, I keep the

parameters as in the benchmark, except for those noted in the first column.

First, note that a calibration with only capital destruction and no TFP decline does not fit the

data well (row 6). Business cycle statistics are, to a first order, similar to the benchmark model,

but the equity premium is small and returns are not volatile. Intuitively, a disaster does not

impact agents much in this economy, because capital share is only one-third, and hours increase

following the disaster, thereby limiting the initial decline in output, and moreover the economy

returns fairly quickly to its steady-state. Moreover, with recursive utility, agents take into account

their future (high) consumption and hence do not mind disasters all that much.29

Second, when disasters affect solely TFP, and there are no adjustment costs (row 3), the model

generates a sizeable equity premium, and volatile returns. The business cycle statistics, however,

imply too much volatility of investment and the correlation of consumption and investment and

output is negative, contrary to the data. There is also a qualitative change: an increase in the

probability of disaster now leads to an increase in the capital stock for precautionary savings

reasons. As a result, in this case, and regardless of the IES, an increase in the probability of

disaster leads to a boom in investment and output, i.e. the sign of the impulse responses depicted

in figure 1 are reversed.

Adding adjustment costs can however undo this effect. Intuitively, with adjustment costs, the

price of capital will fall significantly if a disaster occurs. Hence investing in capital is now more

risky when the disaster probability rises, generating rate of return uncertainty (as discussed in

section 2). In row 4, I use the benchmark level of adjustment costs (η = .15), and in row 5 I use

a higher value (η = .5). These calibrations now imply that a rise in the probability of disaster

leads to a recession. The equity premium is high (about 4% per year) and returns are volatile

28In the benchmark, I assumed that a disaster affects TFP and the capital stock equally. This generates a
responses of consumption following a disaster which is the same as the endowment economy literature (e.g. Rietz
(1988), Barro (2006)).
29Following Gourio (2008), a low IES would make the equity premium larger, but this would also make increases

in p lead to booms, generating unrealistic correlations between asset prices and quantities.
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(over 6% per quarter). As the degree of adjustment costs is increased, the volatility of investment

becomes close to the data, and the negative correlation of consumption with output or investment

is overturned. Overall I conclude that a calibration without capital destruction can be successful,

provided that adjustment costs are large enough.

5.3 Disaster Dynamics

As pointed out by Constantinides (2008) and Barro et al. (2009), disasters have more complicated

dynamics in the real world than the pure jump typically assumed. First, disasters may last several

years. Second, a recovery might then follow. This leads me to consider two variations on the

model to study how these features affect my results. First, I consider disasters which last more

than one period. Assume that a disaster leads only to a 20% drop in both productivity and the

capital stock. However, a disaster also makes the probability of a disaster next period increase

to 50%. Next period, either a disaster occurs, in which case the probability of a further disaster

remains at 50%, or it doesn’t, in which case this probability shifts back to a standard value. The

last row of tables 4 and 5 shows the impact of this modification on the results. First, the business

cycle dynamics are largely unaffected. Second, while the disaster is substantially smaller, the

model still generates a high equity premium and volatile returns (though a bit less than in the

data or benchmark). In this version of the model, a disaster initially leads to a large drop of

investment, and a smaller drop in consumption, due to the very high risk of a further disaster

which leads people to cut back on investment. Moreover, asset prices fall further during the

disaster, since they are hit both by the realization of a disaster today and by the fear of another

disaster tomorrow. The key lesson from this illustrative computation is that adding some fear of

further disasters is a very powerful ingredient.

Second, I study how the results are affected by the presence of recoveries. More precisely,

assume that following a disaster, there is a probability of recovery, i.e. an upward jump of capital

and TFP which brings these quantities back to the initial trend. Following a disaster, one of

three things can happen. Either there is a recovery right away (with probability 10%); there is

no recovery (with probability 20%); or the recovery is uncertain (with probability 70%). When

the recovery is uncertain, a new draw next period determines if there is a recovery, or not, or if

it is still uncertain; and so on. Overall this leads to a recovery with probability 50%, with an

uncertain timing. This is roughly in line with the estimates of Barro et al. (2009). The results of

this model are shown in row 7. The business cycle statistics show somewhat less volatility than
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the benchmark. The equity premium and return volatility are also somewhat smaller than in

the benchmark model, but they remain significant. Summarizing, the results of this section show

that the model results are weakened, but not in a dramatic way,30 when disasters are modeled in

a more realistic way.

5.4 Comovement of consumption and investment

An implication of the model that may seem odd is that, when the probability of disaster rises,

consumption initially increases, while output, employment and investment fall. Given the high

IES, the wealth effect is overwhelmed by the substitution effect, hence hours go down and con-

sumption goes up. More generally, given that productivity does not change, and the capital stock

is predetermined, the labor demand schedule (marginal product of labor) is unchanged on im-

pact, and, as explained by Barro and King (1984), this makes it impossible to generate on impact

positive comovement between consumption and hours worked.31

It is not clear that this lack of impact comovement is necessarily a deficiency of the model.

Consumption, investment, and hours are far from perfectly correlated in the data (see Table

2), which means that any model needs a shock which pushes consumption and investment in

opposite directions sometimes. Indeed, we see in Table 2 that adding the shock to the probability

of disaster brings the model closer to the data regarding the correlations. Moreover, while the

impact response displays negative comovement, consumption eventually falls, although after a

long delay.

Alternatively, there are some extensions of the model which may overturn this result. Here

I discuss intuitively some possibilities. The most simple extension is simply to assume that the

shocks to the probability of disaster and the TFP shocks are correlated. Indeed, we observe that

during recessions, investors and workers seem to fear terrible outcomes. This can also be generated

endogenously through a learning mechanism as follows. Disasters are modeled for convenience as

jumps, but in reality the contraction is not instantaneous. As a result, it is sometimes diffi cult for

consumers and firms to determine if a decrease in productivity and output is a standard recession

30In these experiments I have kept all parameters fixed as I changed the process for disasters, to illustrate the
effect of disaster dynamics. Needless to say, to put the models on an equal footing, I could have recalibrated all the
parameters, which would allow me to improve significantly the match of the data, e.g. by having slightly higher
risk aversion.
31This issue is shared by many other papers which incorporate either a shock to preferences (e.g. Smets and

Wouters 2008) a shock to investment good prices (e.g. Justiniano, Primiceri and Tambalotti 2010), a shock to
micro-uncertainty (e.g. Gilchrist, Ortiz and Zakrajsek (2009), or a shock to financial frictions (e.g. Hall (2009)).
These models adopt the last proposed solution to the comovement puzzle, namely sticky prices (except Hall (2009)
who assumes that markups are countercyclical).
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(a shock ε in our setup) or is the start of a large depression. A large decrease in productivity, due

either to a disaster or to a large negative shock ε, will then lead agents to anticipate a further

decrease next period. Because consumption reacts negatively to a standard TFP shock, this

learning mechanism would attenuate the comovement puzzle.

Alternatively, it may be possible to employ non-standard preferences or adjustment cost for-

mulations, as in Jaimovich and Rebelo (2009) for instance.

Finally and probably more interestingly, countercyclical markups may alter this result. Sup-

pose one were to embed the model in a standard New Keynesian framework with sticky prices,

which generates countercyclical markups endogenously. A perfect monetary policy could repli-

cate the flexible price allocation, i.e. the results of this paper. In this case, an increase in the

probability of disaster would require the central bank to decrease short-term interest rates. If,

for some reason, monetary policy is not accommodative enough, or it is impossible to decrease

interest rates because of the zero lower bound, then consumption would have to adjust. Since

the real interest rate is too high, consumption would fall. This intuition suggests that this (very

substantial) extension of the model may resolve the comovement puzzle.32

5.5 Government policy

In the model, the welfare theorems hold, implying no role for government policy. However, it is

tempting to “offset” the time-varying wedge in the Euler equation created by the volatility in

the probability of disaster. In the case where bk = btfp, a simple policy can achieve this goal:

the government commits to bail out capital holders. That is, the government provides a subsidy

to capital holders, proportional to their holdings of capital, in the event of a disaster. If the

government can finance this policy with lump-sum taxes, the agents’decisions are the same as

in a model without disasters. The intuition for this result (proved in the appendix) can be easily

seen in the model without adjustment costs and expected utility, where the return on capital is

RK
t+1 = (1− xt+1bk) (1− δ + F1 (Kt+1, zt+1Nt+1)) ,

and the presence of disaster risk affects the equilibrium only through the Euler equation

U1(Ct, Nt) = βEt
(
RK
t+1U1(Ct+1, Nt+1)

)
.

32I thank Emmanuel Farhi for this suggestion.
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Suppose now that the government engineers a state-contingent subsidy, so that the return to

capital holders is RK
t+1 (1 + xt+1ζ) , where ζ is the amount of subsidy, to be determined. The

equilibrium is then characterized by the equation

U1(Ct, Nt) = βEt ((1− δ + F1 (Kt+1, zt+1Nt+1)) (1− xt+1bk) (1 + xt+1ζ)U1(Ct+1, Nt+1)) . (9)

Assuming that the utility function takes the form U(C,N) = C1−γ

1−γ v(N), it is easy to see that if

1+ζ = (1− bk)γ−1 , the time-varying wedge disappears: changes in p have no effect, since investors

anticipate that they will be bailed out should a disaster happen. Hence, this policy reduces overall

volatility. But of course this is sub-optimal since investment should vary in response to changes

in the probability of disaster. This policy thus reduce welfare. This policy is attractive only if

agents have incorrect beliefs, and the government wants to maximize the expected utility of the

agents under the correct beliefs.

5.6 Time-varying volatility vs. time-varying jump probability

The model concentrates on a specific model of risk, i.e. a jump with a fixed size. However, the

results of the paper immediately generalize to a larger class of shock processes. More precisely,

let Xt+1 be a random variable with strictly positive support, which affects both the capital stock

and productivity, i.e.

Kt+1 = ((1− δ)Kt + Φ (It, Kt))Xt+1,

and

log zt+1 = log zt + µ+ σεt+1 + log (Xt+1) ,

then propositions 2 and 3 of section 2.4 can be restated as: the decision rules are the same as in

a model where the agent’s discount factor between time t and time t+ 1, βt is

βt = Et(X
1−θ
t+1 )

1−γ
1−θ , (10)

with θ the risk aversion coeffi cient and γ the inverse of the IES. Hence, while I focused in the

paper on the case where Xt+1 is a binomial variable (Xt+1 = 1 w/prob 1− pt, and Xt+1 = 1− b

w/prob pt), alternative stochastic processes generate similar effects. As an example, if Xt+1 is

log-normally distributed with unit mean, i.e. log(Xt+1) is N(−σ2
t/2, σ

2
t ), where σt follows an
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exogenous stochastic process, then

βt = e−θ(1−γ)σ2t ,

and an increase in σt reduces βt if and only if γ < 1 i.e. the IES is greater than unity, as

in proposition 3. The key ingredient of my results is the fact that risk is time-varying, and

not its specific distribution.33 More generally, the expression (10) suggests that higher order

moments may matter,34 and the results of the paper hence readily apply to distributions with

excess kurtosis, i.e. “fat tails”.

6 The Empirical Importance of Time-Varying Risk

The previous sections show that a simple, parsimonious framework accounts for a variety of

business cycle and asset pricing facts. However one may remain skeptical since the probability

of disaster is diffi cult to measure.35 This section tests the model directly by identifying the

probability of disaster from asset prices —a natural approach, since asset prices are measured

precisely and the probability of disaster affects them strongly. We then are able to back out the

shocks to the probability of disasters, and to compare the data and the time series implied by

two models: first, a model without disaster risk, where the only shock is a shock to TFP; second,

a model with both TFP shocks and the shock to the probability of disaster.

Specifically, I pick the probability of disaster pt to match the price-dividend ratio at each date.

Following Campbell and Shiller (1988), we know that the stock market movements are largely

due to variation in discount rates, which in my model come from variation in p. This motivates

my choice of the P-D ratio as a reasonable source of information for p.36 More precisely, in the

model, given a vector of parameters Θ, the price-dividend ratio Pt
Dt
is a function of the two state

variables, kt = Kt
zt
(where Kt is the capital stock and zt is TFP) and of the probability of disaster

33The empirical implications are, however, somewhat different since normally distributed shocks occur every
period. The calibration would then be different, with a significantly higher risk aversion and smaller shocks, but
the effects would be similar in the end.
34For instance, Weitzman (2007) shows that this expression may not even be finite for some “natural”distri-

butions. Martin (2008) provides a decomposition using cumulants, and shows in some examples that the higher
cumulants (higher moments) can play an important role in this conditional expectation. For my calibration, the
second moment (time-varying risk) is the most important. Calibrations which emphasize the risk of even more
extreme disasters, however, may imply that the time-varying skewness or kurtosis matters.
35One indirect piece of evidence is that estimated DSGE models give a significant role to shocks to β, or to

shocks to the relative price of investment goods, which have similar dynamic properties, in accounting for business
cycle fluctuations. These estimation results are not based on asset prices data but on quantities alone.
36Alternatively, one could use option prices, e.g. the VIX index, to measure p. Since the model fits well the

reduced-form relation between GDP and VIX (section 4.3), it is likely that if p is picked to match VIX in the
data, the model would also match the GDP data well. Unfortunately, data for VIX are available only since 1986,
limiting the power of this test.
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pt :
Pt
Dt

= ψ (kt, pt; Θ) .

Standard data from the BEA lead to estimates of Kt and zt, hence kt, from 1948q1 to 2008q4.

I then calculate, for each date, the value of the probability of disaster p̂t which allows to match

exactly the observed price-dividend ratio in the data. Next, I feed this probability of disaster

in the model, together with the measured TFP. For instance, the policy functions imply that

aggregate investment is It = zti(kt, pt). Finally, the implied series for investment and output are

HP-filtered and compared to the data and to the baseline RBC model. The baseline RBC model

is constructed using the same measurements of technology zt and capital kt, as It = zti(kt).
37

Figure 6 depicts the probability of disaster obtained from this procedure. By construction,

this time series is a nonlinear function of the price-dividend ratio Pt
Dt
and the detrended capital

stock kt. The short-run fluctuations hence mostly reflect changes in the stock market value.

The probability of disaster - a measure of perceived risk - is highly volatile, consistent with the

quantitative model. Interestingly, the highest probability of disaster is estimated to occur at the

very end of the sample, in the last quarter of 2008.

Figures 7 and 8 present the quantity implications. The first figure presents the data and the

RBC model, with the NBER recessions marked as shaded areas. As is well known, the RBC

model does a reasonable job at matching macroeconomic aggregates, given the observed path for

TFP, until 1985, even if it does not generate quite enough volatility, especially for investment.

The second figure plots the data and the model with disaster risk. Comparing the two figures

side by side, the difference between the two models is small in “normal times”. During recessions

however, my model generates a sharper drop in output and especially in investment. For instance,

the effect of the 1975 or 1981 recessions on investment are dramatically underpredicted by the

RBC model, while my model generates about the right decline in investment. Another episode

of special interest is the current recession. Figure 9 “zooms in”on the most recent data. Little

happens to TFP in 2008, hence the RBC model does not predict a sharp recession. My model,

however, generates a large drop in investment and output through the shock to pt, i.e. higher

perceived risk.

Table 6 summarizes the fit of the models by computing several statistics: first, the corre-

lation and covariance between the data and each model; second, the mean absolute error, i.e.

37It makes little difference if the capital stock is not measured, i.e. the time series for It are calculated using
only an initial estimate of the capital stock K1948 and only TFP is fed into the model to construct the path.
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E |datat −modelt| .38 A close look at figure 8 suggests that there is a slight lag between the model

and the data, hence I also report these statistics when the model series are lagged by 2 quarters.

(There may well be delays to decisions and various adjustment costs which create such a delay,

not captured in the simple version of the model.) Finally, I report the same statistics for the

subsample of recessions.

The statistics of table 6 are consistent with the discussion of the figures in the previous

paragraph. First, without the lag, adding the probability of disaster does not improve much the

fit of the RBC model, if at all. Second, taking into account the lag, the model with shocks to p

now improves a bit on the RBC model, especially for investment, but also for employment and

output: the correlation and covariance of model and data becomes higher (Table 6, columns 3

and 4), and there is a reduction in the mean absolute error. The model does more poorly for

consumption, however. Last, the improvement in fit for investment, output and employment is

quite significant if one looks at the subsample of recessions. For instance, the correlation between

the model investment and the data investment goes from 44.9 to 61.8, and the mean absolute

error goes down from 187 to 130 (Table 6 rows 2 and 10, last two columns). The correlation of

model and data employment similarly goes from 34.0 to 43.3.

Table 7 shows a measure of volatility, E |xt| , for x =data, RBC model, or RBC model with

disaster risk. The table reveals that the model generates higher volatility: for instance, the

investment statistic is only 3.74 in the RBC model vs. 9.55 in the data. The model with time-

varying risk yields 6.51, a significant improvement. This is especially true in recessions: the

volatility of investment or employment conditional on being in a recession almost doubles.

From an intuitive point of view, these result are not very surprising in light of the well-known

empirical regularity that the stock market is correlated with GDP and investment. Section 4

shows that the model matches the relation between asset prices and investment. Hence, feeding

in asset prices from the data (through pt) allows the model to improve on quantities by using the

empirical explanatory power of the stock market for investment or GDP. Overall, shocks to the

probability of disaster, as restricted by asset prices data, appear to help the RBC model fit the

data, especially during severe recessions, arguably the most interesting episodes.

38Here and table 7, I use the mean absolute error, because (unlike the variance) it is meaningful in a subsample
with gaps, such as the subsample of recessions.
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7 Extension: model with endogenous debt and default

In this long section, I extend the model to allow for endogenous debt (aka leverage) choice, with

endogenous debt and equity financing This allows me analyzing the behavior of credit spreads,

default probabilities, investment, and the “excess bond premium” as defined in Gilchrist and

Zakrajsek (2011).

The capital structure choice modifies the standard RBC model equilibrium in two ways. First,

the standard Euler equation is adjusted to reflect that investment is financed using both debt

and equity, and the user cost of capital hence takes into account expected discounted bankruptcy

costs as well as the tax savings generated by debt finance. Second, an additional equation deter-

mines the optimal leverage choice, by equating the marginal expected discounted (tax) benefits

and (bankruptcy) costs of debt. The model remains highly tractable and intuitive, which allows

to evaluate the role of defaultable debt and leverage choice on quantities and prices in a trans-

parent fashion. In particular, the model encompasses the standard real business cycle model (the

benchmark model) as a special (limiting) case.

The first result is that time-varying disaster risk generates large, volatile and countercyclical

credit spreads, which are significantly larger than default probabilities. The second main result

is that financial frictions amplify substantially —by a factor of about three —the response of the

economy to a shock to the disaster probability. This amplification effect does not arise if the

economy is subjected to TFP shocks.

The key mechanism is as follows. When the probability of economic disaster exogenously

increases, the probability of default rises (holding leverage policy fixed). A higher probability

of default directly raises expected discounted bankruptcy costs. However, expected discounted

bankruptcy costs also rise through a second channel: agents anticipate that defaults are now

more systematic, i.e. more likely to be triggered by a bad aggregate shock rather than a bad

idiosyncratic shock. This higher systematic default risk increases the risk premium on corporate

debt, making it more expensive to raise funds for investment. Overall, higher expected discounted

bankruptcy costs increase the user cost of capital, leading to a reduction in investment. In

equilibrium, firms also cut back on debt and substitute for equity, but since debt is cheaper due

to the tax advantage, the user cost of capital has to rise. To summarize, higher disaster risk

worsens financial frictions because debt is not effi cient when disaster risk is high.

Before describing the model, we review briefly the literature on financial frictions and credit

spreads.
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7.0.1 Related Literature on credit spreads and financial frictions

This extension builds on the large macroeconomic literature studying general equilibrium business

cycle models with financing constraints (Bernanke and Gertler (1989) and Kiyotaki and Moore

(1997)). Some recent studies in this vein are Chugh (2010), Gomes and Schmid (2008), Jermann

and Quadrini (2008), Mendoza (2010), Miao and Wang (2010), and Liu, Wang and Zha (2009).

Amdur (2010), Covas and Den Haan (2009), and Hennessy and Levy (2007) study the business

cycle behavior of capital structure. The paper is also closely related to Philippon (2009), who

demonstrates how to link bond prices an real investment,39 and to Gilchrist and Zakrajsek (2011),

who construct an “excess bond premium”that contains significant macroeconomic information.

This extension studies the real effects of a shock to uncertainty, a channel recently emphasized

by Bloom (2009), who emphasize the “wait-and-see”effect driven by lumpy hiring and investment

behavior. My model focuses on aggregate uncertainty and lowers desired investment through gen-

eral equilibrium effects (risk premia) and by exacerbating financial frictions. A related mechanism

has recently been explored in the studies of Arellano, Bai and Kehoe (2010) and Gilchrist, Sim

and Zakrajek (2010), who consider shocks to idiosyncratic uncertainty shocks as in Bloom (2009),

but in a setup with credit frictions. I compare this mechanism and my mechanism in more detail

below.

Finally, the extension relates to the vast literature on the “credit spread puzzle”(e.g. Leland

(1994), Huang and Huang (2003), Hackbardt, Miao and Morellec (2006), Chen (2010), Chen,

Collin Dufresne and Goldstein (2009), and Bhamra, Kuehn and Strebulaev (2009a, 2009b)). This

literature documents that the prices of corporate bonds are too low to be accounted for in a risk-

neutral model, and considers various risk adjustments, borrowed either from the long-run risk or

the habits literature, to improve the fit of prices. Perhaps surprisingly, there is (to my knowledge)

no model that studies the contribution of disaster risk to the credit spread puzzle. Moreover, the

literature does not consider investment and is not set in general equilibrium, making it diffi cult to

evaluate the macroeconomic impact of the financial frictions. On the other hand, this literature

considers long-term debt and more detailed asset pricing implications.

For clarity, I restate the full model in this section, starting with the household problem, then

the firm problem, and finally defining the equilibrium and asset prices.

39Philippon’s results, which hold under the Modigliani and Miller theorem (given an exogenous leverage policy)
do not require him to specify a full general equilibrium model.

40



7.1 Household

As in the main model, the representative household has recursive preferences over consumption

and leisure, following Epstein and Zin (1989):

Ut =

(
(1− β)(Cυ

t (1−Nt)
1−υ)1−ψ + βEt

(
U1−γ
t+1

) 1−ψ
1−γ

) 1
1−ψ

. (11)

Here ψ is the inverse of the intertemporal elasticity of substitution (IES) over the consumption-

leisure bundle, and γ measures risk aversion towards static gambles over the bundle. When

ψ = γ, the model collapses to expected utility. While the additional flexibility of recursive utility

is useful in calibrating the model, the key qualitative results can be obtained with standard CRRA

preferences (See section 7.6.5).

The household supplies labor in a competitive market, and trades in stocks and bonds issued

by the corporate sector.40 The budget constraint reads

Ct + nstPt + qtBt ≤ WtNt + %tBt−1 + nst−1 (Pt +Dt)− Tt, (12)

where Wt is the real wage, Bt−1 is the quantity of debt issued by the corporate sector in period

t− 1 at price qt−1, each unit of which is redeemed in period t for %t, n
s
t is the quantity of equity

shares, Pt is the price of equity, Dt is the dividend, and Tt is a lump-sum tax. We will normalize

the number of equity shares nst to one. In the absence of default, %t = 1, but %t < 1 if some bonds

are not repaid in full. The household takes the process of %t as given, but it is determined in

equilibrium by default decisions of firms, as we will see later.

Intertemporal choices are determined by the stochastic discount factor (a.k.a. marginal rate

of substitution), which prices all assets:

Mt+1 = β

(
Ct+1

Ct

)υ(1−ψ)−1(
1−Nt+1

1−Nt

)(1−υ)(1−ψ) Uψ−γ
t+1

Et
(
U1−γ
t+1

)ψ−γ
1−γ

. (13)

The labor supply decision is governed by the familiar condition:

Wt =
1− υ
υ

Ct
1−Nt

. (14)

40It is possible to introduce government bonds as well. If the government finances this debt using lump-sum
taxes and transfers, Ricardian equivalence holds, and government policy does not affect the equilibrium allocation
and prices.
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7.2 Firms

We first describe the general structure of the firm problem, then we fill in the details.

7.2.1 Summary

There is a continuum of firms, which are all identical ex-ante and differ ex-post only in their

realization of an idiosyncratic shock. For simplicity, we assume that firms live only for two

periods. Firms purchase capital at the end of period t in a competitive market, for use in period

t+1. This investment is financed through a mix of equity and debt. In period t+1, the aggregate

shocks and the idiosyncratic shock are revealed, firms decide on employment and production, and

then sell back their capital. Two cases arise at this point: (1) the firm value is larger than

outstanding debt: the debt is then repaid in full and the residual value goes to shareholders as

dividends; or (2) the firm value is smaller than outstanding debt: in this case the firm declares

default, equityholders receive nothing, and bondholders capture the firm’s value, net of some

bankruptcy costs. In all cases, the firms disappear after production in period t+ 1 and new firms

are created, which will raise funds and invest in period t+ 1, and operate in period t+ 2.41

The timing assumption clarifies the mechanism: it implies that a default realization does not

affect employment, output and profits. Ex-ante however, default risk affects the cost of capital to

the firm and hence its investment decision. This investment decision in turns affects employment

and output, and in general equilibrium all quantities and prices. In section 7.6.1, we consider an

extension where default affects production.

Since firms are ex-ante identical, they will all make the same choices. Because both production

and financing technologies exhibit constant return to scales, the size distribution of firms is

indeterminate, and has no effect on aggregate outcomes.

7.2.2 Production

All firms operate the same constant returns to scale Cobb-Douglas production function using

capital and labor. The output of firm i is

Yit = Kα
it(ztNit)

1−α,

41The assumption that firms live two periods, while obviously unrealistic, leads to substantial simplification of
the analysis, which is useful to solve the model but also to clarify its implications. An important direction of
future research is to incoporate long-lived firms and long-term debt in the model. Based on section II.A below, I
conjecture that the model mechanism would still be relevant.
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where zt is aggregate total factor productivity (TFP), Kit is the individual firm capital stock, and

Nit is labor. Both input and output markets are competitive and frictionless.

7.2.3 Productivity shocks

To model the possibility of large recessions, I assume that the aggregate TFP process in this

economy is driven not only by the usual “small”normally distributed shocks standard in RBC

theory, but also by rare large negative shocks.42 Formally,

log zt+1 = log zt + µ+ σet+1 + xt+1 log(1− btfp),

where {et+1} is i.i.d. N(0, 1), and xt+1 is an indicator equal to 1 if a disaster happens, and 0

otherwise. The probability of a disaster at time t + 1 is denoted pt. I will also assume that

the realization of disaster affects the capital stock (see the next paragraph). The probability of

disaster pt follows itself a Markov chain with transition matrix Q. The three aggregate shocks

{et+1, xt+1, pt+1} are assumed to be independent, conditional on pt.

7.2.4 Depreciation shocks

Firms decide on investment at time t, but the actual quantity of capital that they will have to

operate at time t + 1 is random, and is affected both by realizations of aggregate disasters xt+1

as well as an idiosyncratic shock εit+1. Specifically, if a firm i picks Kw
i,t+1 at time t (w for wish),

it actually has Kit+1 = Kw
it+1(1 − xt+1bk)εit+1 to operate in period t + 1, and (1 − δ)Kit+1 units

of capital to resell. The idiosyncratic shock εit+1 is i.i.d. across firms and across time, and drawn

from a cumulative distribution function H, with mean unity.

7.2.5 Discussion of the assumptions regarding disasters

Barro (2006) and Barro and Ursua (2008) identify numerous large negative macroeconomic shocks

in a cross-section of countries, which are usually caused by wars or economic depressions. In a

standard neoclassical model there are two simple ways to model macroeconomic disasters —as

destruction of the capital stock, or as a reduction in total factor productivity. My formulation

allows for both.
42For parsimony and tractability, these rare disasters are modeled as one-time permanent jump in TFP; Gourio

(2010, 2011) considers various extensions and shows that the key results are largely unaffected if disasters are
modeled as smaller shocks that are persistent, and are followed by recoveries, provided that risk aversion is
increased somewhat.
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TFP appears to play an important role during economic depressions (Kehoe and Prescott,

2007). While economists do not understand well the sources of fluctuations in total factor pro-

ductivity, large and persistent declines in TFP may be linked to poor government policies, such

as expropriation or confiscatory taxes. They may also be caused by disruptions in financial

intermediation, if these lead to ineffi cient capital allocation.

Capital destruction is clearly realistic for wars or natural disasters, but it can also be inter-

preted more broadly. Perhaps it is not the physical capital but the intangible capital (customer

and employee value) that is destroyed during prolonged economic depressions.

In terms of economic mechanism, the model requires two ingredients: (1) that disasters are

clearly bad events, with high marginal utility of consumption; (2) that the return on capital is

low during disasters. These assumptions are certainly realistic. Introducing a large TFP shock

is the simplest way to obtain (1) in a neoclassical model, and introducing a depreciation shock

is the simplest way to obtain (2). An alternative to depreciation shocks is to introduce steep

adjustment costs: since investment falls significantly during disasters, the price of capital would

also fall, generating endogenously low returns on capital during disasters.

7.2.6 Capital structure choice

The choice of equity versus debt is driven by a standard trade-off between default (bankruptcy)

costs and the tax advantage of debt. Specifically, I assume that bondholders recover a fraction θ

of the firm value upon default, where 0 < θ < 1. Moreover, a firm which issues debt at a price

q receives χq, where χ > 1. That is, for each dollar that the firm raises in the bond market, the

government gives a subsidy χ− 1 dollar. For simplicity, I assume that the subsidy takes place at

issuance.43

The price q is determined at time of issuance, taking into account default risk, and hence

depends on the firm’s choice of debt and capital as well as the economy’s state variables. Equity

issuance is assumed to be costless. When χ = θ = 1, the capital structure is indeterminate and

the Modigliani-Miller theorem holds. When χ = 1, the firm finances only through equity, since

debt has no advantage. As a result, there is no default, and we obtain the standard RBC model.

When θ = 1, or more generally θχ ≥ 1, the firm finances only through debt, since default is not

costly enough. We assume χθ < 1, a necessary assumption to generate an interior choice for the

capital structure.

43In reality, interest on corporate debt is deductible from the corporate income tax, hence the implicit subsidy
takes place when firms’earnings are taxed.
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7.2.7 Employment, Output, Profits, and Firm Value

To solve the optimal financing choice, we first need to determine the profits and the firm value.

(The distribution of firm value determines the probability of default and hence the lending terms

the firm can obtain ex-ante.) The labor choice is determined through the standard static profit

maximization problem, given the realized values of both productivity and capital stock, and given

the aggregate wage:

π (Kit, zt;Wt) = max
Nit≥0

{
Kα
it(ztNit)

1−α −WtNit

}
,

which leads to the labor demand

Nit = Kit

(
z1−α
t (1− α)

Wt

) 1
α

, (15)

and the output supply

Yit = Kα
it(ztNit)

1−α = Kit

(
(1− α)

Wt

zt

) 1−α
α

.

These equations can then be aggregated. Define aggregates through Kt =
∫ 1

0
Kitdi, Yt =

∫ 1

0
Yitdi,

etc., we obtain that Yt = Kα
t (ztNt)

1−α,i.e. an aggregate production function exists, and it has

exactly the same shape as the microeconomic production function. Aggregating 15 shows that

the wage satisfies the usual condition Wt = (1 − α) Yt
Nt
.The law of motion for capital is obtained

by summing over i the equation Kit+1 = Kw
it+1(1 − xt+1bk)εit+1. As noted above, all firms are

identical ex-ante, and they will make the same investment choice Kw
it+1 = Kw

t+1. Since εit+1 has

mean unity, idiosyncratic shocks average out and the aggregate capital is

Kt+1 = Kw
t+1(1− xt+1bk).

Profits at time t+ 1 are given by

πit+1 = Yit+1 −Wt+1Nit+1 = αYit+1 = αKit+1

(
(1− α)
Wt+1

zt+1

) 1−α
α

= Kit+1α
Yt+1

Kt+1

,

i.e. each firm receives factor payments proportional to the quantity of capital it has, and to the

aggregate marginal product of capital α Yt+1
Kt+1

. The total firm value at the end of the period is

Vit+1 = πit+1 + (1− δ)Kit+1 = Kit+1

(
1− δ + α

Yt+1

Kt+1

)
. (16)
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We define the aggregate return on capital as RK
t+1 = (1−xt+1bk)

(
1− δ + α Yt+1

Kt+1

)
. The individual

return on capital is RK
it+1 = εit+1R

K
t+1. The firm value is thus

Vit+1 = RK
it+1K

w
t+1 = εit+1R

K
t+1K

w
t+1.

From ease of notation, I will from now on abstract from the firm subscript i, since all firms are

identical and differ only ex-post in their realization of ε.

7.2.8 Investment and Financing Decisions

As noted above, all firms make the same choices for capital, debt, and hence equity issuance,

which are linked through the budget constraint χqtBt+1 + St = Kw
t+1. To find the optimal choice

of investment and financing, we first need to find the likelihood of default, and the loss-upon-

default, for any possible choice of investment and financing. This determines the price of corporate

debt. Taking as given this bond price schedule, the firm can then decide on optimal investment

and financing.

More precisely, the firm will default if its realized value Vt+1, which is the sum of profits and

the proceeds from the sale of undepreciated capital, is too low to repay the debt Bt+1. This will

occur if the firm’s idiosyncratic shock ε is smaller than a cutoff value, which itself depends on the

realization of aggregate states (et+1, pt+1, xt+1). Mathematically, at time t+ 1, the value of firms

which finish operating is Vt+1 = εt+1R
K
t+1K

w
t+1, hence default occurs if and only if

εt+1 <
Bt+1

RK
t+1K

w
t+1

def
= ε∗t+1.

Given this default rule, the bond issue is priced ex-ante using the representative agent’s stochastic

discount factor:

qt = Et

(
Mt+1

(∫ ∞
ε∗t+1

dH(ε) +
θ

Bt+1

∫ ε∗t+1

0

εRK
t+1K

w
t+1dH(ε)

))
.

In this equation, the first integral gives the value of the debt in the full repayment states. These

states depend on the realization of shocks occurring at time t+ 1, notably disasters, through the

threshold for default ε∗t+1. The second term gives the average recovery in default states, divided
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among all the bondholders and net of bankruptcy costs. We can rewrite the bond price as

qt = Et

(
Mt+1

(
1−H

(
ε∗t+1

)
+
θRK

t+1K
w
t+1

Bt+1

Ω
(
ε∗t+1

)))
, (17)

where Ω(x) =
∫ x

0
sdH(s). Note the following properties of Ω, which follow from the fact that H

is a c.d.f. with mean unity: (i) Ω(x) = 1−
∫∞
x
sdH(s); (ii) limx→∞Ω(x) = 1; (iii) Ω′(x) = xh(x).

We can now set up the firm’s problem at time t : it must decide how much to invest, how

much debt to issue (and hence how much of the investment is financed through equity), so as to

maximize the expected discounted equity value:

max
Bt+1,Kw

t+1,St
Et (Mt+1 max (Vt+1 −Bt+1, 0))− St, (18)

subject to:

χqtBt+1 + St = Kw
t+1, (19)

Vt+1 = εt+1R
K
t+1K

w
t+1. (20)

Equation (19) is the funding constraint: investment must come out of equity St, or the sale of

bonds (including the subsidy) χqtBt+1. The objective function (18) takes into account the option

of default for equityholders. Given that the firm defaults if εt+1 < ε∗t+1, we can rewrite this

problem as:

max
Bt+1,Kw

t+1

Et

Mt+1

 RK
t+1K

w
t+1 + (χθ − 1)RK

t+1K
w
t+1Ω(ε∗t+1)

+ (χ− 1)Bt+1

(
1−H

(
ε∗t+1

))
−Kw

t+1, (21)

s.t. : ε∗t+1 =
Bt+1

RK
t+1K

w
t+1

.

In this expression, the first term is the expected discounted firm value, Et
(
Mt+1R

K
t+1K

w
t+1

)
; the

second term (which is negative since χθ < 1) is expected discounted bankruptcy costs; and the

third term is the expected discounted tax shield. The last term Kw
t+1 is simply the cost of invest-

ment. By contrast, in a frictionless model, the firm would simply maximize Et
(
Mt+1R

K
t+1K

w
t+1

)
−

Kw
t+1. The difference is that the firm also takes into account the value of tax subsidies and default

costs in making its decisions. Default costs are born by debt holders ex-post, but expected default

costs are passed on into debt prices ex-ante, implying that equity holders actually bear the costs

of default.
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To solve this program, we simply take the first-order conditions with respect to Kw
t+1 and

Bt+1. The first-order condition with respect to Kw
t+1 yields,

Et
(
Mt+1R

K
t+1

(
1 + (χθ − 1) Ω(ε∗t+1) + (χ− 1) ε∗t+1

(
1−H

(
ε∗t+1

))))
= 1. (22)

Recall that RK
t+1 = (1 − xt+1bk)

(
1− δ + α Yt+1

Kt+1

)
is the familiar expression for the unlevered

physical return on capital, adjusted to reflect the possibility of disasters. In a model without

financial frictions, the standard Euler equation implies Et
(
Mt+1R

K
t+1

)
= 1; here, equation (22)

is modified to take into account the bankruptcy costs (the second term), which raise the cost of

capital, and the tax shield (the third term), which reduces it. When χ = θ = 1, we return to the

standard equation, corresponding to the case of an unlevered firm. Overall the firm has always

access to cheaper financing than in the frictionless (all-equity financed) model, since it always has

the possibility to not take any debt. As a result, the steady-state capital stock is always higher

when χ > 1 than in the frictionless version.

The first order condition with Bt+1 is

(1− θ)Et
(
Mt+1ε

∗
t+1h

(
ε∗t+1

))
=

(
1− 1

χ

)
Et
(
Mt+1

(
1−H

(
ε∗t+1

)))
. (23)

This equation determines the optimal financing choice between debt and equity.44 The left-hand

side is the marginal cost of debt, i.e. an extra dollar of debt will increase the likelihood of default,

and the associated bankruptcy costs. The right-hand side is the marginal benefit of debt, i.e. the

higher tax shield in non-default states. Importantly, both the marginal cost and the marginal

benefit are discounted using the stochastic discount factor Mt+1. The importance of this risk-

adjustment is consistent with the empirical work by Almeida and Philippon (2007), who note

that corporate defaults are more frequent in “bad times”and as a result the ex-ante marginal

cost of debt is higher than a risk-neutral calculation would suggest. This risk-adjustment will

play a substantial role in the analysis below: for a given debt level, an increase in the probability

of disaster increases expected discounted default costs, not only because defaults become more

likely, but also because they are more likely to occur during bad aggregate times.

We can define desired leverage Lt+1 = Bt+1/K
w
t+1, which is decided at time t. The firm defaults

44For this equation to generate a unique threshold, some regularity condition must be imposed on the distribution
H. The technical condition (which we assume from now on) is that the function z → zh(z)

1−H(z) is increasing. Bernanke,
Gertler and Gilchrist (1999) make the same assumption in the context of a related model. Most distributions (such
as the log-normal distribution) satisfy this assumption.
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if εRK
t+1 < Lt+1 i.e. if the return on capital is low relative to the leverage.

7.3 Equilibrium

The equilibrium definition is standard. First, the labor market clears:

(1− α)
Yt
Nt

= Wt =
(1− υ)Ct
υ (1−Nt)

. (24)

Second, the goods market clears, i.e. total consumption plus investment plus bankruptcy costs

equals output,

Ct + It + (1− θ)R(ε∗t )Vt = Yt. (25)

This equation implies that higher bankruptcy costs induce a negative wealth effect. In order to

clarify the mechanism, I initially abstract from this effect, by assuming that the default cost is a

tax, i.e. it is transferred to the government, which then rebates it to household using lump-sum

transfers (Tt in equation 12). Then, the resource constraint is simply

Ct + It = Yt. (26)

Under this simplification, equations 22 and 23 are the only departures of our model from the

standard real business cycle model: first, the Euler equation needs to be adjusted to reflect the

tax shield and bankruptcy costs; second, the optimal leverage is determined by the trade-off

between costs and benefits of debt finance. To summarize, the equilibrium is characterized by the

equations (24), (26), as well as (22) and (23) and the definition of the stochastic discount factor

(13) and (11).

7.3.1 Recursive Representation

It is useful, both for conceptual clarity and to implement a numerical algorithm, to present

a recursive formulation of this equilibrium. This can be done in three steps. First, we make

the simplifying assumption that the bankruptcy cost is a tax, instead a of a real resource cost.

Second, we note that the equilibrium can be entirely characterized from time t onwards given

the values of the realized aggregate capital stock Kt, the probability of disaster pt, and the level

of total factor productivity zt, i.e. these are the three state variables.45 Third, examination of

45The level of outstanding debt Bt at the beginning of period is not a state variable, since it does not affect
production or investment possibilities. It does affect default, but because defaults do not affect production, and
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the first-order conditions shows that they can be rewritten solely as a function of the detrended

capital kt = Kt/zt and pt. This is a standard simplification in the stochastic growth model when

technology follows a unit root, which also applies to our framework.

As a result the equilibrium policy functions can be expressed as functions of two state variables

only, k and p. Hence, the model has the same states as the frictionless real business cycle (RBC)

model. There is an additional equilibrium policy function to solve for, the desired leverage L(k, p),

and correspondingly, we have an additional first-order condition (equation (23)). Last, the first-

order condition determining optimal investment, i.e. the standard Euler equation (equation 22)),

is modified to take into account the marginal financing costs. The full list of equations of this

recursive representation is in appendix.

7.3.2 Asset Prices

Any payoff can be priced using the stochastic discount factor, given by the representative agent’s

marginal rate of substitution. I focus here on four assets: a pure risk-free asset, a short-term

government bond which may default during disasters, the corporate bond, and the equity. All

these assets last only one period. The price of the risk-free asset can be calculated as the

expectation of the stochastic discount factor, P rf
t = Et (Mt+1) . Following Barro (2006), the

government bond is assumed to default by a factor ∆ during disasters, and hence its price is

P gov
t = Et (Mt+1 (1− xt+1∆)) . The payoff to a diversified portfolio of corporate bonds, used in

the household budget constraint (equation (12)), is %t+1 = 1−H
(
ε∗t+1

)
+

θRKt+1K
w
t+1

Bt+1
Ω
(
ε∗t+1

)
, and

the corporate bond price is P corp
t = qt = Et

(
Mt+1%t+1

)
. Last, the equity value is

P eq
t = Et

(
Mt+1

(
RK
t+1K

w
t+1

(
1− Ω

(
ε∗t+1

))
−Bt+1

(
1−H

(
ε∗t+1

))))
.

Given constant return to scale and no equity issuance costs, the equity price satisfies a free entry

condition: P eq
t = St.

7.4 Quantitative results

This section studies the implications of the model presented in the previous section. First, I

present a combination of analytical results and comparative statics to illustrate the workings of

bankruptcy costs are not in the resource constraint, the realization of default does not matter in itself —what
matters is the possibility of default going forward. Here we rely on two assumptions: (1) the default cost is a tax;
(2) default takes place after production.
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the model. Then, a parametrized version of the model is solved numerically so as to delineate

its predictions for business cycle quantities, for asset returns, an in particular for the level and

volatility of credit spreads, and their relation with investment and GDP.46

7.4.1 Steady-state comparative statics

To better understand the model, it is useful to perform a “steady-state”analysis, as is commonly

done in macroeconomics, but one that takes into account the risk of disaster. The first step is

the following result.

Proposition 4 Assume that bk = btfp, i.e. capital and productivity fall by the same factor in a

disaster Then, a disaster leads consumption, investment, output to also drop by the same factor

bk = btfp, while hours do not change. The return on physical capital is reduced by the same factor.

There is no further effect of the disaster on quantities or prices, i.e. all the effect is on impact.

Proof. The equilibrium is characterized by the policy functions c(k, p), i(k, p), N(k, p), L(k, p)

and y(k, p) = kαN(k, p)1−α which express the solution as a function of the probability of disaster

p (the exogenous state variable) and the detrended capital k (the endogenous state variable). The

detrended capital evolves according to the shocks ε′, x′, p′ through

k′ =
(1− x′bk) ((1− δ)k + i(k, p))

(1− x′btfp) eµ+σe′
.

Since bk = btfp,

k′ =
((1− δ)k + i(k, p))

eµ+σe′
,

is independent of the realization of disaster x′. As a result, the realization of a disaster does

not affect c, i, N, y, L since k is unchanged, and hence it leads consumption C = cz, investment

I = iz, and output Y = yz to drop by a factor bk = btfp on impact. Furthermore, once the

disaster has hit, it has no further effect since all the endogenous dynamics are captured by k,

which is unaffected. The statement regarding returns follows from the expression of the physical

return, RK
t+1 = (1− xt+1bk)

(
1− δ + α yt+1

kt+1

)
.

To obtain further results, we consider a simplified version of the model, where we shut down

the shocks to the probability of disaster and the TFP shocks et+1. As a result, the only source of

shocks are disaster realizations, and can solve for the path of quantities and returns.
46Given the nonlinear form of the model, and the focus on risk premia, it is important to use a nonlinear solution

method. The policy functions c(k, p), N(k, p), g(k, p), and L(k, p), are approximated using Chebychev polynomials
and solved for using projection methods. The appendix details the computational method.
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Proposition 5 Assume that bk = btfp, that σ = 0, and that pt = p. The economy has a balanced

growth path where kt, ct, it, yt, Lt,Nt, the risk-free rate, the expected return on capital, and the

probability of default, and the credit spread are constant, equal to k∗, c∗, i∗, etc. Along this balanced

growth path, the level of capital, consumption, investment and output Kt, Ct, It, Yt, are obtained

by multiplying k∗, c∗, i∗, y∗ by zt, which is evolves as zt+1 = zte
µ+xt+1 log(1−bz).

Proof. Given that σ = 0, and p is constant, the law of motion for capital further simplifies to

k′ = ((1−δ)k+i(k))
eµ

. Call k∗ the solution to this equation; the policy functions c(k), i(k), N(k), L(k)

then imply that these variables are also constant if k = k. Given this, consumption growth and

other variables are iid, implying that expected returns and credit spreads are constant.

To visualize this result, note that macro quantities in this version of the model simply grow

along constant trends, with no deviation except for occasional large downward jumps. During

these jumps, realized returns on bonds and equity are low, but the dynamics of quantities are

unaffected. The discount factor for this simplified version of the model depends only on the

disaster realization:

M(x′) =
βeµ((1−ψ)υ−1)(1− x′btfp)(1−γ)υ−1

(1− p+ p(1− btfp)(1−γ)υ)
ψ−γ
1−γ

,

and the economy’s steady-state capital-labor ratio k/N and leverage L = B/Kw are determined

by the two equations:

βeµ((1−ψ)υ−1)

(1− p+ p(1− btfp)(1−γ)υ)
ψ−γ
1−γ

(
1− δ + α

(
k

N

)α−1
)

(27)

= (1− p) (1 + (χθ − 1) Ω (ε∗nd) + (χ− 1) ε∗nd (1−H (ε∗nd)))

+p (1− btfp)υ(1−γ)−1 (1− bk) (1 + (χθ − 1) Ω (ε∗d) + (χ− 1) ε∗d (1−H (ε∗d))) .

and

0 = (1− p) (χ (θ − 1) ε∗ndh (ε∗nd) + (χ− 1) (1−H (ε∗nd))) (28)

+p (1− btfp)υ(1−γ)−1 (χ (θ − 1) ε∗dh (ε∗d) + (χ− 1) (1−H (ε∗d))) ,

with ε∗d = L
(1−bk)φ

and ε∗nd = L
φ
, and φ = 1 − δ + α

(
k
N

)α−1
is the standard marginal product of

capital.

While these expressions initially appear complicated, they provide significant intuition. First,

note that they are recursive: equation (28) first determines the ratio of leverage to the marginal
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product L
φ
, and equation (27) then determines the marginal product of capital φ and hence k

N
.47

When there is neither disaster risk nor financial frictions, i.e. p = 0 and χ = θ = 1, the first

equation collapses to the standard user cost equation,

βeµ((1−ψ)υ−1)

(
1− δ + α

(
k

N

)α−1
)

= 1.

When there is disaster risk but no financial frictions (as in Gourio (2010)), the steady-state capital

is determined as

βeµ((1−ψ)υ−1)

(
1− δ + α

(
k

N

)α−1
)(

1− p+ p (1− btfp)υ(1−γ)
) 1−ψ
1−γ

= 1.

Simple algebra shows that a higher probability of disaster p induces to a lower capital stock

provided that the IES is greater than unity: agents are reluctant to invest in the more risky

capital stock. Consider now the case of financial frictions but no disaster risk, equation (28)

reflects simply the trade-off between the default costs and tax benefits of leverage:

χ (1− θ) ε∗h (ε∗) = (χ− 1) (1−H (ε∗)) .

Last, in the full model, disaster risk affects the amount of desired leverage for two reasons. First,

it changes the distribution of payoffs to the investment. Second, it changes the discount rates

which multiply this distribution of payoffs (the term (1− btfp)υ(1−γ)−1 in equation (28)).

7.4.2 The determinants of optimal leverage and investment

Figure 10 uses this simplified version of the model to illustrates the effect of several key parameters

on the steady-state values of capital, leverage, default probability and credit spreads. Each column

corresponds to one parameter. The first column shows the effect of idiosyncratic volatility σε.

Holding debt policy constant, higher idiosyncratic risk leads to more default and hence higher

credit spreads, increasing the user cost of capital. This leads firms to reduce investment. In

equilibrium, firms also endogenously reduce leverage, which mitigates the increase in default and

47Labor supply and the scale of the economy are then determined by preferences in the standard way. First,
note that

c = kαN1−α − δk = N

((
k

N

)α
− δ k

N

)
,

and second the MRS = MPL condition implies 1−υ
υ

c
1−N = (1− α)

(
k
N

)α
. Since k

N is known, this is one equation
in one unknown N .

53



in credit spreads, but makes firms rely more heavily on equity issuance, which is more costly.

The second column shows the effect of the tax subsidy χ. A higher χ directly reduces the user

cost of capital, since holding debt policy constant, the firm is able to raise more capital. Second,

a higher χ makes debt relatively more attractive than equity, leading firms to take on more debt

and increase leverage. This higher leverage leads to a higher probability of default and higher

credit spreads.

Finally, the third column shows the effect of increasing the recovery rate parameter θ. Since

the expected cost of bankruptcy falls, the user cost of investment falls and investment rises.

Holding debt policy constant, a higher θ leads to a lower credit spread, since the recovery value

is higher. However, since firms take on more debt, the probability of default and credit spreads

go up.

7.4.3 User cost, financial frictions and probability of disaster

Turning now to the effect of the probability of disaster, figure 11 displays the effect of a rise in

p on capital, leverage, credit spreads and the user cost α
(
k
N

)α−1
, which is r + δ in the standard

neoclassical model. Higher disaster risk leads to a reduction in leverage in equation (28), and

hence an increase in the user cost (adjusted for the tax shield and bankruptcy costs) in equation

(27) and a lower capital-labor ratio. The figure compares the frictionless model (χ = θ = 1, i.e.

the firm is only equity-financed) and the model with the friction (χ > 1). The percentage response

of the steady-state capital stock to a change in the probability of disaster is substantially larger

in the model with the financial friction, reflecting that the user cost is much more affected by an

increase in disaster risk. An increase in disaster risk in itself increases the probability of default,

but also makes the risk of default more likely to be driven by a bad aggregate realization, hence

increases the cost of debt significantly, as reflected by the credit spread.48 Overall, the probability

of disaster p has an effect similar to that of σε, which is the shock considered by Arellano, Bai

and Kehoe (2010) or Gilchrist, Sim and Zakrajek (2010) in very recent studies. I return to this

comparison in section 7.6.6.

7.4.4 Parametrization

Parameters are listed in Table 8. (I use a slightly different parametrization than in the benchmark

model, though it has little effect.) The period is one year. Many parameters follow the business

48For high values of the probability of disaster p, the credit spread is decreasing in p. This counterintuitive result
simply reflects that for very high p, firms reduce debt significantly to avoid bankruptcy and associated costs.
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cycle literature (Cooley and Prescott (1995)). The risk aversion parameter is four, in order to get a

reasonable level for the equity premium. Note that this is the risk aversion over the consumption-

hours bundle. Since the share of consumption in the utility index is .3, the effective risk aversion

to a consumption gamble is 1.33 (Swanson (2010)), a very low number by the standards of the

asset pricing literature.

The intertemporal elasticity of substitution of consumption (IES) is set at 2. There is a

large debate regarding the value of the IES. Most direct estimates using aggregate data find low

numbers (e.g. Hall (1988)), but this view has been challenged by several authors (see among

others Bansal and Yaron (2004), Gruber (2006), Mulligan (2004), Vissing-Jorgensen (2002)). As

emphasized by Bansal and Yaron (2004), a low IES has the counterintuitive effects that higher

expected growth lowers asset prices, and higher uncertainty increases asset prices. Section 7.6.5

analyzes how the results are affected by the intertemporal elasticity of substitution.

One crucial element of the calibration is the probability and size of disaster, which follow Barro

(2006, 2009) and Barro and Ursua (2008) closely. The probability of a disaster is 1.7% per year on

average. For computational simplicity, I summarize the historical distribution of disasters using

a five-point distributions, with disaster sizes ranging from 15% to 57%.49 While these disaster

sizes may seem very large, they are the ones estimated by Barro and Barro and Ursua (2007) in

a large international panel data set. The results are largely unchanged if the disaster size is set

to be smaller —e.g., perhaps the US faces smaller disasters than most other countries —but risk

aversion is correspondingly increased.

The second crucial element is the persistence and volatility of movements in this probability

of disaster. I assume that the log of the probability follows an AR(1) process:

log pt+1 = ρp log pt + (1− ρp) log p+ σpεp,t+1,

where εp,t+1 is i.i.d. N(0, 1).50 The parameter p is picked so that the average probability is .017

per year, and I set ρp = .75 and the unconditional standard deviation σp√
1−ρ2p

= 1.50 in order to

roughly match the volatility of credit spreads.

49The data from Barro and Ursua refers to consumption or output, but my model requires to parametrize the
capital and TFP destruction. It would be interesting to gather further evidence on disasters, and measure bk and
btfp directly. This is beyond the scope of this paper. I concentrate on the parsimonious benchmark case bk = btfp.
Given this assumption, to match a drop of, say, 25% in consumption, requires exactly a drop of 25% of capital
and z, hence the Barro and Ursua distribution of GDP losses leads directly to the distribution of capital and
productivity losses. (Because TFP = z1−α, the drop in total factor productivity is smaller than 25%.)
50This equation allows the probability to be greater than one, however I will approximate this process with a

finite Markov chain, which ensures that 0 < pt < 1 .
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As is standard, I use a log-normal distribution for H, the distribution of idiosyncratic shocks.

The three remaining parameters determine the leverage choice: χ, θ and σε, the variance of

idiosyncratic shocks. Following the corporate finance literature, I set θ = 0.4, consistent with

estimates of recovery rates in “bad times”. The parameters σε and χ are then picked to match

a target average probability of default and leverage. The target for the probability of default is

0.5% per year. I also set a target for leverage equal to 0.55. In the data leverage is somewhat

smaller, perhaps 0.45. Targeting a leverage of 0.45 leads to an unrealistically large variance of

idiosyncratic shocks σε. This likely reflects that firm values are more volatile in the model than

in the data. Higher volatility may be driven by fixed costs of production, which are equivalent to

a higher target for leverage. Alternatively, the distribution of idiosyncratic shocks may exhibit

skewness and/or kurtosis.51

7.4.5 Impulse response functions

I first illustrate the dynamics of the model in response to the three fundamental shocks: the

standard TFP shock, the disaster realization, and a temporary shock to the probability of disaster.

I next discuss how the model fits quantitatively both quantity and price data.

7.4.5.1 The effect of a TFP shock Figure 12 shows the response of quantities and returns

to a one standard-deviation shock (i.e. 2%) to the level of total factor productivity. For clarity,

this picture, as well as the ones following, assumes that no other shock is realized. The response

of quantities is similar to that of the standard real business cycle model: investment rises as firms

desire to accumulate more capital, employment rises because of the higher labor demand, and

consumption adjusts gradually, leading to temporarily high interest rates. The equity return is

high on impact, reflecting the sensitivity of firms’dividends to TFP shocks due to leverage, but

corporate bonds are largely immune to small TFP shocks - the default and recovery rates are

barely affected.52 As a result, the path for the bond return mirrors that of the risk-free return.

There is essentially no change in leverage or credit spreads, since the trade-offdetermining optimal

leverage is hardly affected by the slightly higher TFP.

51The targets are not exactly matched in the full model because the calibration is done using the “steady-state”
version of the model, studied in the previous section.
52I define the default rate as the share of firms in default. Because some of the capital is recovered in defaults,

this is not the realized loss for debholders.
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7.4.5.2 The effect of a disaster Figure 13 shows the response of quantities and returns to a

disaster which hits at t = 5. The disaster realization leads capital and TFP to fall by the factors

bk and btfp respectively. The calibration assumes that these parameters are equal, and in this

simulation, bk = btfp = 25%. As a result, the transitional dynamics are very simple, as seen in the

figure, and as proved in the proposition 1: output, consumption and investment drop on impact

by the same factor, and hours do not change.

The return on capital is also -25%, and is divided among equity and debt. But it is also further

reduced by default, which leads to losses since θ < 1. In this simulation, approximately 12% of

firms are in default, the realized equity return is roughly -52% and the realized bond return is

-4.5%. (The returns we compute are the average across all the firms, as defined in section 7.3:

there are always some firms with very high idiosyncratic shocks which do not default.) Figure

14 illustrates that both equity and corporate debt are risky assets, since their returns are very

low precisely in the states (disasters) when marginal utility is high (consumption growth is low).

The figure confirms that a disaster does not generate any transitional dynamics in quantities,

leverage, credit spreads, interest rates, or risk premia.

7.4.5.3 The effect of an increase in the probability of a disaster The important shock

in this extension - as in the benchmark model - is the shock to the probability of disaster —i.e.

an increase in perceived risk. Figure 14 presents the responses to an unexpected increase in the

probability of disaster at time t = 5. The higher risk leads to a sharp reduction in investment.

Simultaneously, the higher risk pushes down the risk-free interest rate, as demand for precaution-

ary savings increases. This lower interest rate decreases employment through an intertemporal

substitution effect. Hence, output decreases because employment decreases, even though there is

no change in current or future total factor productivity, and even though the capital stock adjusts

slowly. Intuitively, there is less demand for investment and this reduces the need for production.

Consumption increases on impact since households want to invest less in the now more risky

capital. Consumption then falls over time. Qualitatively, these dynamics are similar to that in

the frictionless version, but the quantitative results are quite different. To illustrate this clearly,

figure 15 superimposes the responses to a shock to the probability of disaster for the frictionless

model (χ = θ = 1) and for the current model. The response of macro quantities on impact is

approximately three times larger in the model with financial frictions.

As argued in section 7.5.1, the mechanism through which disaster risk affects the economy is

by changing the expected discounted bankruptcy costs. These become significantly higher, since
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default is (i) more likely and (ii) more likely to occur in “bad times”. This increases the user cost

for a given financial policy, leading firms to cut back on investment. Moreover, firms also adjust

their financial policy, reducing debt and leverage.

Because risk increases, risk premia rise as the economy enters this recession: the difference

between equity returns and risk-free returns becomes larger, and the spread of corporate bonds

over risk-free bonds also rises (see the bottom panel of figure 14). This last result is not fully

general, however. The equilibrium level of credit spreads depends on the endogenous quantity

of debt, or leverage that firms decide to take on. For certain parameter values, the endogenous

decrease in leverage leads, paradoxically, to lower credit spreads in response to a higher probability

of disaster. However, for the parameter values that we use, firms do not decide to cut back on

debt too much, and spreads rise with the probability of disaster. The model hence generates the

required negative correlation between credit spreads and investment output. More generally, the

model implies that risk premia are larger in recessions, consistent with the data.

7.4.6 Business cycle and financial statistics

Tables 10, 11 and 12 report standard business cycle and asset return statistics as well as default

rates and leverage ratios.53 To illustrate the role of disaster risk and time-varying disaster risk,

I solve the model with the benchmark parameter values, under different assumptions regarding

the structure of shocks: (i) only TFP shocks, (ii) TFP shocks and disasters, but a constant

probability of disaster; (iii) TFP shocks and disasters, with a time-varying risk of disaster. I also

consider three variant of the model: (a) with the financial friction, (b) with constant leverage,

and (c) with no financial friction. The benchmark model results (a-iii) are indicated in bold in

these tables. The variant with constant leverage adds the constraint that Bt+1 = LKw
t+1, i.e.

firms must pick debt and capital so that their ratio is constant (and equal to the average leverage

in the benchmark model).

The models with only TFP shocks (rows 1 through 3) generate a decent match for quantity

dynamics, as is well known from the business cycle literature. This model, however, generates

rather small spreads for corporate bonds, and these spreads simply account for the average default

of corporate bonds, because aggregate risk premia are very small. The spread is 51bp, twice below

the data, whereas the probability of default is 79bp, larger than the data. Moreover, these spreads

53The leverage and default probability data are taken from Chen, Collin-Dufresne, and Goldstein (2009). The
other data (GDP, consumption, investment, and credit spreads) are from FRED. I use BAA-AAA as the credit
spread measure, and obtain similar results as Chen, Collin-Dufresne, and Goldstein. All series are annualized.
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are essentially constant. The risk premium for equity is also very small and equity returns are

not volatile. Note that except for investment, which is somewhat less volatile in the model with

financial friction, the quantity moments are largely unchanged as we go from row 1 to row 3.

Hence, financial frictions do not amplify the response to TFP shocks.54 The smaller volatility

of investment in the model with financial frictions may be explained by the higher steady-state

capital stock (as in Santoro and Wei (2010)).

When constant disaster risk is added to the model (rows 4 through 6), the quantity dynamics

are unaffected (table 9). Table 10 reveals that credit spreads are significantly larger however,

because defaults are much more likely during disasters, when marginal utility is high. The model

generates a higher equity risk premium and a plausible credit spread: the average spread is 129bp,

and the probability of default is 50bp. However, the volatility of spreads is still close to zero.

This motivates turning to the model with time-varying risk of disaster.

Rows 7 through 9 display the results for the models with time-varying disaster risk. The

variation in the disaster risk does indeed lead to volatile credit spreads, roughly in line with the

data. The equity premium is too low, but it is significant, and similar to that of the model with

constant probability of disaster. Introducing the time-varying risk of disaster also generates new

quantity dynamics: output and especially investment become more volatile. Moreover, credit

spreads are countercyclical. Overall, the model fits well many stylized facts.

It is noteworthy that the model can generate volatile spreads only when disaster risk is time-

varying. This suggests that variation in aggregate risk is important and plays a role in shaping

business cycles.55

The amplification effect of disaster risk shock through financial frictions is visible in table

9: while the financial friction model exhibits less volatility than the RBC model when disaster

risk is constant, it has more volatility than the RBC model when disaster risk is added. This

is especially true for investment volatility, which nearly doubles as time-varying disaster risk is

introduced.

The model with constant leverage generates even more volatility of quantities. Because firms

cannot delever easily when the probability of disaster rises, the model generates more movements

in spreads and investment. Finally, the model implies some volatility of leverage, but it falls

54The appendix presents a comparison of the impulse response functions to a TFP shock for the different models,
which confirms this result.
55The key mechanism of the model is time-varying aggregate uncertainty. This time-varying aggregate un-

certainty comes here from a time-varying probability of disaster, but the model implications are similar if the
uncertainty takes the form of normally distributed shocks. If the shocks are small, risk aversion needs to be
correspondingly higher.
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somewhat short of the data. However, the one-period nature of firms in this model makes it

diffi cult to interpret this statistic: the flow and stock of debt are equal in the model, while they

behave differently in the data (Jermann and Quadrini (2009), Covas and Den Haan (2009)).

It is interesting to quantify the increase in systematic risk that occurs when the disaster prob-

ability rises. Figure 16 presents the correlation of defaults that is expected given the probability

of disaster today, i.e. Corrt (defi,t+1, defj,t+1) for any two firms i and j in the model economy.

In normal times, the probability of disaster is low, and defaults are largely idiosyncratic since

aggregate TFP shocks do not create much variation in default rates. Hence, this correlation is

low. The correlation becomes much higher, however, when the probability of disaster rises. This

is because defaults are now much more likely to be simultaneously triggered by the realization

of a disaster. This higher correlation would show up in some asset prices such as CDO or CLO

(collateralized debt or loan obligations). This higher correlation stems directly from the increase

in aggregate uncertainty, holding idiosyncratic uncertainty constant. This correlation is affected

by firms’choices, however, since they decide on how much debt to take which affects their default

likelihood: for very large p, firms cut back on debt so much that this correlation may fall.

Overall, the model has two main deficiencies: first, the correlation of consumption and output

is too low; second, the equity return is not volatile enough. The latter point is also driven by

the fact that equities are only a one-period asset here, implying that the conditional volatility of

equity returns equals the conditional volatility of dividends (i.e. there is only a cash flow effect

and no discount rate effect).

7.5 Variations on the model

This section considers some implications and extensions of the baseline model, and the sensitivity

of the quantitative results to parameter changes.

7.5.1 Default crises and time-varying resilience of the economy

For the purpose of analytical clarity, the benchmark model assumes that default does not affect

output: (i) bankruptcy costs are a tax rather than a real resource cost, and (ii) a firm in default is

as productive as a firm in good standing. This section relaxes these two assumptions: (i) in reality,

bankruptcies are costly: costs include legal fees as well as the loss of intangible capital such as

customer goodwill; (ii) firms in default are likely less productive as they need to reorganize and are

constrained in their relations with suppliers and customers. Relaxing either of these assumptions
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implies that an economy with a high level of outstanding debt is prone to “default crises”: any

negative shock may drive many firms into default, which further degrades the economy. The exact

effect of (i) and (ii) is however different: (i) is a pure wealth effect, while (ii) reduces productivity

and hence labor demand. Neither (i) nor (ii) affects the default decision ex-post, since the outside

option of equity holders is zero.

An important implication of this extension of the model is that the economy’s sensitivity to

shocks (or resilience) is time-varying. For instance, as discussed in the previous section, a low

probability of disaster leads firms to pick a high leverage. This makes the economy less resilient,

i.e. its investment and output will fall more should a bad shock occur. This is consistent with a

widely held view that during the 2000s, perception of risk fell, leading firms to increase leverage

and making the 2008 recession worse.

Formally, we make the following two changes to the model. The first is to assume that a share

ω of the bankruptcy costs is a real resource cost. The second is that firms in default have lower

productivity, by a factor (1− ζ)α . These two changes do not affect the expression for the default

threshold ε∗t+1 = Bt+1
Kw
t+1R

K
t+1
.Total output, taking into account the lower productivity of firms in

default, is now

Yt = (Kt)
α (ztNt)

1−α ((1− (1− ζ)Ω(ε∗t+1)
))α

.

The resource constraint now reads

Ct + It + (1− θ)ωΩ
(
ε∗t+1

)
RK
t Kt = Yt.

We also need to modify consequently the firm value and bond price equations and the associated

first order conditions; these equations are available in the appendix. As a result of this change,

the quantity of debt B is now an additional state variable.

Figure 17 illustrates the negative effect of outstanding debt on the economy for the case ζ = 0.5

and ω = 0, i.e. firms in default are more productive. (The appendix presents an examples for

the case of ζ = 0 and ω = 0.5, i.e. bankruptcies have real resource costs.) Ceteris paribus, a

larger amount of debt increases default rates, and reduces output, employment, investment and

consumption.
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7.5.2 State-contingent debt

The defining characteristic of debt is that it is not state contingent. In the aftermath of the

2008 financial crisis, several economists have proposed that debt should be conditioned on large

aggregate shocks. This section evaluates this proposal by allowing firms in the model to issue

debt which repayments are contingent on the disaster realization x′.

The model is easily modified; first, the budget constraint now reads,

Kw
t+1 = St + χqndt B

nd
t+1 + χqdtB

d
t+1,

where Bnd
t+1 (resp. B

d
t+1) is the face value of the debt to be repaid in non-disaster (resp. disaster)

states, and qndt (resp. qdt ) the associated price:

qndt = Et

(
(1− xt+1)Mt+1

(∫ ∞
ε∗t+1

dH(ε) +
θ

Bt+1

∫ ε∗t+1

0

εRK
t+1K

w
t+1dH(ε)

))
,

where (1 − xt+1) is a dummy equal to 1 if no disaster happens, and similarly for qdt .Taking

first-order conditions leads to the following characterization of the equilibrium: first, the Euler

equation is

Et

Mt+1R
K
t+1


1 + (χ− 1)Lndt+1(1− xt+1)

(
1−H

(
ε∗t+1

))
+ (χ− 1)Ldt+1xt+1

(
1−H

(
ε∗t+1

))
+ (θχ− 1) Ω(ε∗t+1)


 = 1,

and second, optimal debt is determined through the two equations:

χ− 1

χ
Et
(
(1− xt+1)Mt+1

(
1−H

(
ε∗t+1

)))
= (1− θ)Et

(
Mt+1Ω′(ε∗t+1) (1− xt+1)

)
, (29)

χ− 1

χ
Et
(
xt+1Mt+1

(
1−H

(
ε∗t+1

)))
= (1− θ)Et

(
Mt+1Ω′(ε∗t+1)xt+1

)
.

The Euler equation interpretation is similar to that of the benchmark model; the investor takes

into account the total user cost of debt, which now must take into account the different leverage

in disaster vs. non-disaster states. The optimal leverage condition simply says that, rather than

equating expected discounted marginal costs and benefits of debt over all the states together,

the firm can now equate these expected marginal costs and benefits conditional on the disaster

happening or not. This added flexibility will lead the firm to issue little debt that is payable
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in disaster states, since bankruptcy is much more likely and costly in these states. As a useful

special case, suppose that there are no TFP shocks or shocks to p, then the expectations are just

expectations over the idiosyncratic shocks ε, and the first-order condition states, if we denote

default cutoff in non-disaster states by εnd∗t+1 and in disasters by ε
d∗
t+1:

χ− 1

χ

(
1−H

(
εd∗t+1

))
= (θ − 1) Ω′(εd∗t+1),

χ− 1

χ

(
1−H

(
εnd∗t+1

))
= (θ − 1) Ω′(εnd∗t+1),

implying that εd∗t+1 = εnd∗t+1, i.e.
Bdt+1

Kw
t+1(1−bk)

=
Bndt+1
Kw
t+1
or Bd

t+1 = Bnd
t+1(1 − bk). Hence, the firm targets

the same default probability, conditional on a disaster happening, and conditional on no disaster

happening. This implies a much lower face value of debt in disasters.

Figure 18 compares the response of the model with state-contingent debt to an increase in

disaster risk, with the response of the benchmark model. The amplification effect largely dis-

appears, and the model implies now no more volatility in investment than the frictionless RBC

model. Hence, while the assumption that private contracts are not made contingent on aggregate

realizations is made in many models (such as Bernanke, Gertler and Gilchrist (1999) or Kiy-

otaki and Moore (1997)), this result suggest that it is far from innocuous. Krishnamurthy (2003)

similarly found that allowing for conditionality reduces or eliminate the amplification effect of

financial frictions.

The benefits of debt conditionality in reducing volatility in response to shocks to disaster risk,

comes on top of the obvious advantage that, should a disaster happen, there will be fewer defaults,

which are likely to be costly (as in the previous section). This suggests that debt conditionality

is likely valuable, provided that disasters can be well defined in a contract.

7.5.3 Welfare cost of the tax shield

Following a large literature in corporate finance, the model features as a prime determinant of

capital structure the tax subsidy to debt, or tax shield. The tax shield is ineffi cient in the model

for two reasons. First, the tax shield lowers the user cost of capital and hence encourages capital

accumulation. However, the competitive equilibrium of the model without taxes is already Pareto

optimal, hence the subsidy leads to overaccumulation of capital. Second, the tax shield also

amplifies fluctuations in aggregate quantities, including consumption, and hence reduces welfare.

Table 16 illustrates this effect by displaying the volatility of output, investment and employment,
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for various values of χ. Both in terms of steady-states and in terms of fluctuations then, the

tax subsidy generates deadweight losses. A figure in appendix gives the welfare cost of the tax

subsidy, as a function of χ. For our benchmark calibration of χ = 1.062, removing the tax shield

entirely would increase welfare substantially, equivalent to a permanent increase of consumption

of approximately 3.52%. However, in the presence of a corporate tax, the tax shield may have

some value as it brings the economy closer to the zero capital tax economy.

7.5.4 Capital adjustment costs

While the benchmark model abstracts from adjustment costs in the interest of simplicity, intro-

ducing them is useful to generate further volatility in the value of capital. In particular, the model

implies that an increase in the probability of disaster has essentially no effect on realized equity

returns or bond returns.56 This implication is overturned if there are adjustment costs, because

the price of capital then falls following an increase in the probability of disaster, since investment

and marginal Q fall. It is simplest to consider an external adjustment cost formulation. Suppose

that capital goods are produced by a competitive investment sector which takes It consumption

goods at time t, and Kt capital goods at time t, and generates Kt+1 = (1 − δ)Kt + Φ
(
It
Kt

)
Kt

capital goods next period. These capital goods are then sold in a competitive market to final

goods producing firms at a price given by: PK
t = 1

Φ′
(
It
Kt

) .The same formulas as in the model then
apply, with the proviso that the return on capital RK

t+1 is now

RK
t+1 =

(
(1− δ)PK

t+1 + α Yt+1
Kt+1

PK
t

)
(1− xt+1bk),

and Vt = KtR
K
t+1P

K
t , and ε

∗
t+1 = Bt+1

RKt+1K
w
t+1P

K
t

= Lt+1
RKt+1P

K
t
. Following Jermann (1998), I set Φ(x) =

a0 + a1
x1−η

1−η , where a0 and a1 are picked to make the steady-state investment rate and marginal

Q independent of η. Tables 13 through 15 report model moments for two values of η, and a

figure in appendix compares the impulse response function of the benchmark model (without

adjustment costs) and the model with adjustment costs (η = .1), when the shock is an increase

in the probability of disaster. As expected, adjustment costs smooth the response of investment

and output. The qualitative dynamics, as well as the asset prices, remain similar. When the

probability of disaster rises, the return on equity is now lower, and the return on the corporate

bond is also slightly lower, reflecting the fall in the resale value of capital and the ensuing higher

56Technically, the only effect is through a decrease in the supply for labor which pushes the wage up, leading to
slightly lower profits and hence slightly higher default rates.
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default rate.

7.5.5 Role of the IES and risk aversion

While the households are assumed to have recursive utility, the model can also be solved in the

special case of expected utility. When the elasticity of substitution is kept equal to 2, and the

risk aversion is lowered to .5 to reach expected utility, the qualitative implications are largely

unaffected. Tables 13 through 15 report the model moments with this specification. Because

risk aversion is lower, all risk premia are lower, and the response of quantities to a probability of

disaster shock is also smaller since agents care less about risk.57

In contrast, when the elasticity of substitution is small, a shock to the probability of disaster

may lead to different qualitative effects. When the IES is low enough, investment, output and

employment rise (rather than fall) as the probability of disaster rises. The intuition is that

higher risk makes people save more, despite the fact that the capital is more risky. In the

frictionless model, the threshold value for the IES is exactly unity. In the model of this paper,

higher uncertainty has a more negative effect on investment demand, and hence the threshold

value for the IES is lower than unity. Hence, for a certain range of values of IES below unity,

the financial friction model implies that higher disaster risk lowers economic activity, while the

frictionless model implies the opposite — an extreme example of the potential importance of

financial frictions. Tables 13 through 15 report the model moments with a low IES (.25), which

generates the opposite comovement. This specification is unattractive, since it implies that risk

premia are procyclical, contrary to the data.

7.5.6 Comparison with idiosyncratic uncertainty shocks

Following Bloom (2009), several recent studies consider the effect of an increase in idiosyncratic

uncertainty, σε in our notation. While Bloom (2009) focused on the transmission of this shock

through adjustment costs frictions, Arellano, Bai and Kehoe (2009), and Gilchrist, Sim and

Zakrajek (2010) use default risk frictions, similar to my model. The shock to disaster risk is also

an increase in uncertainty, and hence has a qualitatively similar effect. For instance, comparing

figures 10 and 11 shows that the two parameters p and σε have similar effects on steady-states.

57There is one qualitative change, but it is hard to discern in most statistics. A shock to the probability
of disaster increases consumption, hence with expected utility it is a “good state”, i.e. low marginal utility of
consumption state. This is not the case with Epstein-Zin utility, since the future value is lower, making a high
probability of disaster state a “bad state”(high marginal utility of consumption). This in turn implies that assets
which pay off well in that state have higher risk premia rather than lower risk premia.
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However, the channel through which the mechanism operates is somewhat different in my model,

because an increase in aggregate uncertainty makes defaults more systematic and hence affects

the bond risk premium.

To illustrate the differences in the mechanism, we can think of three experiments. First,

the response of the economy to a shock to σε is essentially unaffected by the coeffi cient of risk

aversion. In contrast, as shown in section 7.5.1, the response to an increase in disaster risk in

my model is stronger when risk aversion is larger. Second, in the frictionless version, an increase

in disaster risk leads to a recession, whereas an increase in idiosyncratic risk has no effect on

economic activity.58 Finally, suppose that we consider a shock to disaster risk, such that high

disaster risk states have low idiosyncratic volatility, making the total quantity of risk constant

over time. In essence, we are changing only the relative importance of aggregate and idiosyncratic

risk, and hence the correlation across firms. This shock reduces investment and output, if risk

aversion is positive, even though total risk does not change at the microeconomic level. The

appendix produces the impulse responses corresponding to these three experiments.

The aim of this discussion is not to argue that idiosyncratic uncertainty shocks are unim-

portant, but that the channel through which they operate is different than the channel through

which aggregate uncertainty shock operate, at least in this model. The two approaches have

different strengths: my model connects well with the evidence on the behavior of credit spreads,

correlation risk and aggregate risk premia. In contrast, the studies of Arellano et al. and Gilchrist

et al. focus on more realistic microeconomic heterogeneity, and take into account the effect of

uncertainty on reallocation and on the labor wedge among other issues.

7.5.7 Samples with disasters

So far the results reported are calculated in samples which do not include disasters. Large

excess returns arise for two reasons: first, a standard risk premium; second, a sample selection

(“Peso problem”) since the sample does not include the lowest possible return realizations. To

quantify the importance of the second effect, tables 13 through 15 report the model moments

in the benchmark model if the sample includes disasters. Quantities and returns are of course

more volatile since they include some large realizations. The average excess returns on equities

is 1.38% (vs. 2.30% in a sample without disasters). Similarly, the average return on corporate

58In some models, an increase in uncertainty would lead to a boom by leading to labor reallocation among firms
with decreasing return to scale. But in the model of this paper, idiosyncratic shocks literally wash out because of
the combined assumptions of constant return to scale and frictionless labor market.
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bonds is 0.44% (vs. 0.60% in a sample without disasters (unreported in tables)). The dynamics

of credit spreads and leverage are completely unaffected.

8 Conclusion

This work shows how introducing disaster risk into a standard RBC model improves its fit of

asset return data, preserves its success for quantities in response to a TFP shock, and creates

some interesting new macroeconomic dynamics. The model can replicate not only the second

moments of quantities and asset returns, but also a variety of empirical relationships between

macroeconomic quantities and asset prices, which have so far largely eluded researchers.

This parsimonious setup is fairly tractable, which allows to derive some analytical results and

makes it easy to embed into richer models. One particular extension that I study in detail is

when leverage and default are choice variables. I find that the model then reproduces well the

level, volatility, and countercyclicality of credit spreads.

More broadly, the quantitative and empirical results of this paper suggest an important role

for time-varying risk in macroeconomic models, and give some hope that we may be able to

connect better asset prices and business cycles.
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Parameter Symbol Value Target
Capital share α .34 Cooley and Prescott (1995)
Depreciation rate δ .02 Cooley and Prescott (1995)
Share of consumption in utility υ .3 Cooley and Prescott (1995)
Discount factor β .994 Mean short-term interest rate
Adjustment cost curvature η 0.15 Investment volatility
Trend growth of TFP µ .0025 Measured TFP
Standard deviation of ordinary TFP shock σ .01 Measured TFP
IES 1/γ 2 A priori (see text)
Risk aversion over the θ 6 Average equity premium
consumption-leisure bundle
Size of disaster in TFP btfp .43 Barro (2006)
Size of disaster for capital bk .43 Barro (2006)
Persistence of log(p) ρp .92 Predictability regressions
Unconditional std. dev. of log(p) σp√

1−ρ2p
1.85 Volatility of returns

Leverage λ 2 Abel (1999), Barro (2006)
Recovery rate for bonds during disasters 1− r(1− b) .828 Barro (2006)

Table 1: Parameter values for the benchmark model. The time period is one quarter.

σ(∆ logC)
σ(∆ log Y )

σ(∆ log I)
σ(∆ log Y )

σ(∆ logN)
σ(∆ log Y )

σ(∆ log Y ) ρC,Y ρI,Y ρN,Y ρI,C

Data 0.57 2.68 0.92 0.98 0.45 0.68 0.71 0.49
No disaster 0.66 1.86 0.24 0.78 1.00 1.00 0.99 0.99
Constant p 0.67 1.87 0.24 0.78 1.00 1.00 0.99 0.99
Constant p* 0.96 1.12 0.06 3.10 1.00 1.00 0.52 0.99
Benchmark 0.73 3.03 0.54 0.83 0.66 0.85 0.72 0.21
Benchmark* 0.96 1.35 0.15 2.88 0.87 0.90 0.42 0.60

Table 2: Business cycle statistics. Second moments implied by the model, for different cali-
brations. Quarterly data. The statistics are computed in a sample without disasters, except for
the rows marked with a star, which are computed in a full sample. rho(A,B) is the correlation of
the growth rate of time series A and B. Data sources in appendix.
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E(Rf ) E(Rb) E(Re) E(Re,lev) σ(Rf ) σ(Rb) σ(Re) σ(Re,lev)

Data – 0.21 – 1.91 – 0.81 – 8.14
No disaster 0.71 0.71 0.71 0.74 0.04 0.04 0.24 1.59
Constant p 0.02 0.32 0.77 1.22 0.04 0.04 0.25 1.53
Constant p* 0.02 0.24 0.58 0.92 0.04 0.85 2.20 4.07
Benchmark 0.15 0.42 0.88 1.93 1.37 0.85 0.40 7.14
Benchmark* 0.17 0.36 0.69 1.60 1.29 1.28 2.06 7.94

Table 3: Financial Statistics. Mean and standard deviation of returns implied by the model
for (a) a pure risk-free asset, (b) a one-quarter government bond, (c) a claim to dividends, (d)
a claim on levered output. Quarterly data. The statistics are computed in a sample without
disasters, except for the rows marked with a star, which are computed in a full sample. Data
sources in appendix.

σ(∆ logC)
σ(∆ log Y )

σ(∆ log I)
σ(∆ log Y )

σ(∆ logN)
σ(∆ log Y )

σ(∆ log Y ) ρC,Y ρI,Y ρN,Y ρI,C

Data 0.57 2.68 0.92 0.98 0.45 0.68 0.71 0.49
Benchmark 0.73 3.03 0.54 0.83 0.66 0.85 0.72 0.21
bk = 0, η = 0 0.77 9.45 1.07 1.34 -0.13 0.89 0.89 -0.41
bk = 0 0.80 5.55 0.85 0.99 0.24 0.85 0.78 -0.21
bk = 0, η = .5 0.90 3.71 0.65 0.80 0.56 0.77 0.57 -0.03
btfp = 0, η = .15 0.77 3.67 0.66 0.87 0.50 0.83 0.71 -0.03
Recoveries 0.71 2.56 0.44 0.81 0.79 0.88 0.74 0.43
Multiperiod disasters 0.73 2.90 0.52 0.82 0.69 0.86 0.73 0.26

Table 4: Robustness and Extensions. Business cycle statistics. Second moments implied
by the model, for different calibrations. Quarterly data. The statistics are computed in a sample
without disasters.

E(Rf ) E(Rb) E(Re) E(Re,lev) σ(Rf ) σ(Rb) σ(Re) σ(Re,lev)

Data – 0.21 – 1.91 – 0.81 – 8.14
Benchmark 0.15 0.42 0.88 1.93 1.37 0.85 0.40 7.14
bk = 0, η = 0 0.57 0.77 0.60 1.71 0.72 0.38 2.07 6.15
bk = 0 0.51 0.72 0.64 1.71 0.69 0.29 1.68 6.25
bk = 0, η = .5 0.48 0.68 0.72 1.71 0.74 0.33 1.11 6.22
btfp = 0 0.70 0.80 0.91 0.86 0.32 0.12 0.51 1.60
Recoveries 0.38 0.56 0.86 1.42 0.94 0.57 0.34 4.68
Multiperiod disasters 0.49 0.62 0.86 1.52 1.04 0.64 0.38 5.52

Table 5: Robustness and Extensions. Financial statistics. Mean and standard deviation of
returns implied by the model for (a) a pure risk-free asset, (b) a one-quarter government bond, (c)
a claim to dividends, (d) a claim on levered output. Quarterly data. The statistics are computed
in a sample without disasters.
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b R2 b R2

CRRA cons. TFP shocks only 1.75 0.20 1.75 0.20
CRRA cons. + leisure TFP shocks only 1.00 0.05 1.00 0.05
Epstein-Zin cons. TFP shocks only 1.76 0.22 1.76 0.22
Epstein-Zin cons. + leisure TFP shocks only 0.92 0.04 0.92 0.04
CRRA cons. TFP shocks + p shocks 2.26 0.15 1.48 0.15
CRRA cons. + leisure TFP shocks + p shocks 0.60 0.10 0.38 0.09
Epstein-Zin cons. TFP shocks + p shocks 0.51 0.14 0.40 0.13
Epstein-Zin cons. + leisure TFP shocks + p shocks 0.38 0.12 0.23 0.12

Table 6: Estimation of the IES in model-generated data. This table reports the slope and
R2 from a univariate regression of consumption growth from t to t+1 on the time t short-term
government bond rate (first two columns) or the pure risk-free rate (last two columns). Each
row corresponds to a variant of the model, which differ according to the utility function (power
utility or Epstein-Zin), whether labor supply is fixed or labor is part of the utility function, and
whether the model has only shocks to TFP (no disaster risk) or the model has both TFP shocks
and shocks to disaster risk.

Full sample With two-quarter lag Recessions
RBC RBC+p RBC RBC+p RBC RBC+p

Corr(model,data) C 43.26 24.96 31.20 11.74 -16.29 -31.72
I 50.69 44.18 54.61 60.81 44.92 61.83
N 16.07 11.02 48.90 48.90 33.96 43.36
Y 67.71 64.33 56.56 60.80 28.88 39.27

Cov(model,data) C 0.31 0.17 0.23 0.08 -0.10 -0.19
I 5.15 8.00 5.56 10.85 3.08 8.79
N 0.08 0.14 0.26 0.60 0.10 0.39
Y 1.11 1.24 0.92 1.16 0.29 0.48

E |data-model| C 194.51 210.35 206.65 227.82 43.51 50.99
I 848.01 917.13 831.41 768.78 187.55 129.70
N 369.59 384.13 345.39 326.76 90.44 72.00
Y 243.94 253.55 255.29 247.30 65.31 56.20

Table 7: Fit of the model. The table reports three statistics of fit, for each time series (C,I,N,Y),
and for the full sample, with a two-quarter lag, and for the subsample of recessions. The statistics
are the correlation between model and data, the covariance between model and data, and the
mean absolute error. See section 6 for the construction of the series.

Full sample Recessions
xt = Data RBC RBC+p Data RBC RBC+p

E |xt| C 2.11 1.18 1.18 0.52 0.29 0.22
I 9.55 3.74 6.51 2.72 1.00 1.92
N 3.72 0.53 1.23 1.03 0.14 0.35
Y 3.09 1.82 2.11 1.05 0.48 0.59

Table 8: Volatility and conditional volatilities. The table reports the mean absolute value
of each time series (C,I,N,Y), for the data and for each model; results are reported for the full
sample and for the subsample of recessions. This is a measure of the volatility implied by each
model. See section 6 for the construction of the series.
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Parameter Symbol Value
Capital share α .3
Depreciation rate δ .08
Share of consumption in utility υ .3
Discount factor β .98
Trend growth of TFP µ .01
Standard deviation of TFP shock σ .02
Intertemporal elasticity of substitution 1/ψ 2
Risk aversion γ 4
Mean probability of disaster .017
Distribution of btfp = bk : values (.15,.25,.35,.45,.57)
Distribution of btfp = bk : probabilities (.333,.267,233,.033,.133)
Persistence of log(p) ρp .75
Unconditional std. dev. of log(p) σp√

1−ρ2p
1.5

Idiosyncratic shock volatility σε 0.2267
Tax subsidy χ− 1 0.0616
Recovery rate θ 0.4

Table 9: Parameter values for the extension with endogenous leverage. The time period
is one year.

σ(∆ log Y ) σ(∆ logC)
σ(∆ log Y )

σ(∆ log I)
σ(∆ log Y )

σ(∆ logN)
σ(∆ log Y )

ρC,Y ρI,Y
Data 2.78 0.65 2.52 0.96 0.61 0.80

No disaster risk Endog. leverage 1.80 0.55 1.88 0.33 0.97 0.99
Constant leverage 1.80 0.55 1.89 0.33 0.97 0.99
RBC 1.82 0.56 2.47 0.35 0.96 0.98

Constant Endog. leverage 1.81 0.55 1.97 0.34 0.96 0.99
Disaster risk Constant leverage 1.81 0.55 1.97 0.34 0.96 0.99

RBC 1.83 0.56 2.50 0.35 0.96 0.98
Time-varying Endog. leverage 2.11 0.77 3.38 0.83 0.12 0.86
Disaster risk Constant leverage 2.46 0.89 4.62 1.05 -0.23 0.86

RBC 1.86 0.60 2.89 0.46 0.79 0.91

Table 10: Business cycle statistics (annual). Second moments implied by the model with
endogenous leverage, for different versions of the model. The statistics are computed in a sample
without disasters. rho(A,B) is the correlation of the growth rate of time series A and B. The
endogenous leverage model is in bold.
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E(Rf ) E(Re) E(y) σ(y) ρ(y,gdp) σ(Rf ) σ(Re)
Data 0.80 7.60 0.94 0.41 -0.37 2.50 16.20

No disaster risk Endog. leverage 2.46 2.44 0.51 0.00 -0.56 0.23 0.39
Cst leverage 2.46 2.39 0.55 0.01 0.64 0.23 0.39
RBC 2.59 2.54 -0.01 0.00 0.11 0.27 0.33

Constant Endog. leverage 1.21 3.84 1.29 0.00 -0.65 0.22 0.41
Disaster risk Cst leverage 1.21 3.81 1.32 0.01 0.65 0.22 0.41

RBC 1.32 2.65 -0.01 0.00 -0.03 0.26 0.33
Time-varying Endog. leverage 1.31 3.60 0.98 0.46 -0.53 2.33 1.18
Disaster risk Cst leverage 1.31 3.85 1.21 1.40 -0.80 2.58 1.88

RBC 1.41 2.65 -0.01 0.00 -0.07 2.05 0.34

Table 11: Financial Statistics, 1. Mean and standard deviation of the risk-free return, the
equity return, and the spread between the corporate bonds and the risk-free bond (denoted y).
The statistics are calculated in a sample without disasters. The correlation is the correlation
between the spread BAA-AAA and HP-filtered GDP.

E(Lev) Std(Lev) E(ProbDef) Std(ProbDef)
Data 0.45 0.09 0.39 NA

No disaster risk Endog. leverage 0.56 0.00 0.79 0.01
Constant leverage 0.57 0.00 0.86 0.03
RBC 0.00 0.00 0.00 0.00

Constant Endog. leverage 0.54 0.00 0.50 0.01
Disaster risk Constant leverage 0.55 0.00 0.53 0.02

RBC 0.00 0.00 0.00 0.00
Time-varying Endog. leverage 0.54 0.04 0.58 0.23
Disaster risk Constant leverage 0.54 0.00 0.49 0.02

RBC 0.00 0.00 0.00 0.00

Table 12: Financial Statistics, 2. Mean and volatility of leverage and of probability of default.
The statistics are calculated in a sample without disasters. Data from Chen, Collin-Dufrense and
Goldstein (2009).

σ(∆ log Y ) σ(∆ logC)
σ(∆ log Y )

σ(∆ log I)
σ(∆ log Y )

σ(∆ logN)
σ(∆ log Y )

ρC,Y ρI,Y
Data 2.78 0.65 2.52 0.96 0.61 0.61
Benchmark financial friction 2.11 0.77 3.38 0.83 0.12 0.86
Samples with disasters 5.47 1.00 1.58 0.32 0.81 0.80
Adjustment costs (η = .1) 1.75 0.83 2.60 0.62 0.54 0.83
Adjustment costs (η = .2) 1.58 0.90 2.11 0.48 0.73 0.80
IES = .5 1.59 0.78 1.58 0.23 0.96 0.96
IES = .25 1.57 0.94 2.11 0.51 0.70 0.80
Risk aversion = .5 1.97 0.69 2.83 0.67 0.39 0.88

Table 13: Extensions of the model: business cycle statistics (annual).
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E(Rf ) E(Re) E(y) σ(y) ρ(y,gdp) σ(Rf ) σ(Re)
Data 0.80 7.60 0.94 0.41 -0.37 2.50 16.20
Benchmark financial friction 1.31 3.60 0.98 0.46 -0.53 2.33 1.18
Samples with disasters 1.30 2.68 0.98 0.46 -0.52 2.34 7.05
Adjustment costs (η = .1) 1.31 3.62 0.98 0.46 -0.46 2.17 1.75
Adjustment costs (η = .2) 1.32 3.62 0.98 0.46 -0.37 2.09 2.07
IES = .5 1.61 3.90 0.98 0.47 -0.10 2.36 1.11
IES = .25 1.97 4.27 0.98 0.46 0.21 2.40 1.11
Risk aversion = .5 2.28 3.68 0.77 0.28 -0.63 1.50 0.91

Table 14: Extensions of the model: Financial Statistics, 1.

E(Lev) Std(Lev) E(ProbDef) Std(ProbDef)
Data 0.45 0.09 0.39 0.51
Benchmark financial friction 0.54 0.04 0.58 0.23
Samples with disasters 0.54 0.04 0.81 2.55
Adjustment costs (η = .1) 0.54 0.04 0.58 0.24
Adjustment costs (η = .2) 0.54 0.05 0.58 0.24
IES = .5 0.54 0.04 0.58 0.23
IES = .25 0.54 0.04 0.58 0.23
Risk aversion = .5 0.55 0.03 0.65 0.18

Table 15: Extensions of the model: Financial Statistics, 2.

σ(∆ log Y ) σ(∆ log I)
σ(∆ log Y )

σ(∆ logN)
σ(∆ log Y )

E(Lev)
χ = 1.062 (Benchmark) 2.11 3.38 0.83 0.54
χ = 1.06 2.11 3.41 0.82 0.54
χ = 1.05 2.05 3.41 0.77 0.53
χ = 1.04 2.00 3.37 0.71 0.51
χ = 1.03 1.96 3.30 0.64 0.50
χ = 1.02 1.91 3.14 0.57 0.47
χ = 1.01 1.89 3.00 0.51 0.43
χ = 1.005 1.87 2.94 0.48 0.39
χ = 1.002 1.86 2.92 0.47 0.34
χ = 1.001 1.86 2.91 0.46 0.30
χ = 1 (RBC) 1.86 2.89 0.43 0.00

Table 16: Effect of tax shield parameter on mean leverage and volatilities of quantities.
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Figure 1: The e¤ect of an increase in the probability of disaster on macroeconomic quanti-

ties. Impulse response of (I,Y,C,N,Z) to a shock to the probability of disaster at t = 6: Time (x-axis)

is in quarters. The probability of disaster goes from its long-run average (0.425% per quarter) to twice

its long-run average then mean-reverts according to its AR(1) law of motion. For clarity, this �gure

assumes that there is no shock to TFP, and no disaster realized.
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Figure 2: The e¤ect of an increase in the probability of disaster on asset returns and spreads.

Impulse response of asset returns to a shock to the probability of disaster at t = 6: Time (x-axis) is in

quarters. The probability of disaster doubles at t = 6, starting from its long-run average. The �gure

plots the short-term government bond return, the equity return, and the levered equity return.
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Figure 3: Cross-covariogram of GDP and excess stock returns in the model and in the data.

Cross-covariogram of the (one-sided Baxter-King �ltered) log GDP, and excess stock returns, in the

data (blue dashed line), the RBC model, i.e. the model with only TFP shocks, (black circles) and the

benchmark model with both p-shocks and TFP shocks (red crosses). The lag/lead (x-axis) is in quarters.

The model covariograms are obtained by running 1000 simulations of length 200 each, and averaging.
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Figure 4: Impulse response to a shock to VIX in a bivariate (VIX,GDP) VAR, in the model

and in the data. This �gure gives the IRF to a one-standard deviation shock to VIX, in a bivariate

VAR of HP-�ltered log GDP, and HP-�ltered VIX, in the data (blue full line), the RBC model, i.e. the

model with only TFP shocks (black circles), and the benchmark model with both p-shocks and TFP

shocks (red crosses). The model IRFs are obtained by running 1000 simulations of length 200 each,

running the VAR on each simulation, and averaging. Orthogonalization assumption: GDP doesn�t

react to a VIX shock at t = 0.
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Figure 5: Cross-covariogram of investment and P-D ratio in the model and in the data.

Cross-covariogram of the log HP �ltered investment, and the HP �ltered P-D ratio, in the data (black

diamond line), in the RBCmodel, i.e. the model with only TFP shocks (blue crosses), and the benchmark

model with both p-shocks and TFP shocks (red diamonds). The model covariograms are obtained by

running 1000 simulations of length 200 each, and averaging.
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Figure 6: Time-series for the quarterly probability of disaster (1948q1 to 2008q4). This

picture plots pt, as implied by the model given the observed price-dividend ratio from CRSP and the

measured capital stock and TFP (see section 6).
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Figure 7: Time-series of investment and output, in the data and in the RBC model. This

picture plots the data and the model-implied time series for macro aggregates for the RBC model (when

TFP is fed into the model). All series are logged and HP-�ltered, 1947q1-2008q4.
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Figure 8: Time-series of investment and output, in the data and in the benchmark model.

This picture plots the data and the model-implied time series for investment and output for the bench-

mark model (when both TFP and the disaster probability is fed into the model). All series are logged

and HP-�ltered, 1947q1-2008q4.
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Figure 9: Time-series of investment and output, in the data, in the RBC model, and in the

benchmark model, from 2005q1 to 2008q4. This picture is a zoomed-in version of the previous two

�gures, and displays the data, the model-implied time series for macro aggregates for the RBC model

(when TFP is fed into the model) and for the benchmark model (when both TFP and the probability

of disaster are fed into the model). See section 6 for details. All series are logged and HP-�ltered, over

1947q1-2008q4, then cut from 2005q1 onwards.
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Figure 10: Comparative statics on steady-state. E¤ect of idiosyncratic volatility �"; tax subsidy

�; and recovery rate �, on capital, leverage, probability of default (in %), and credit spread (in %).
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Figure 12: Impulse response function of model quantities and returns to a one standard

deviation shock to total factor productivity. Quantity responses are shown in % deviation from

balanced growth path. Returns, default rates, credit spreads, leverage and the probability of disaster

are annual, in % per year.
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Figure 13: Impulse response function of model quantities and returns to a disaster realiza-

tion. Quantity responses are shown in % deviation from balanced growth path. Returns, default rates,

credit spreads, leverage and the probability of disaster are annual, in % per year.
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Figure 14: Impulse response function of model quantities and returns to a shock to the

probability of disaster. Quantity responses are shown in % deviation from balanced growth path.

Returns, default rates, credit spreads, leverage and the probability of disaster are annual, in % per year.
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Figure 15: Comparison of RBC model with and without �nancial friction. This �gure compares

the impulse response of three models to a probability of disaster shock: the benchmark model (red full

line), the model with constant leverage (green dot-dashed line), and the frictionless RBC model (blue

dashed line). Quantity responses are shown in % deviation from balanced growth path. Returns, default

rates, credit spreads, leverage and the probability of disaster are annual, in % per year.
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Figure 17: E¤ect of outstanding debt on quantities, when �rms in default are less productive.

The �gure plots the policy functions for consumption, c(k; b; p); employment N(k; b; p); output y(k; b; p);

investment i(k; b; p); the relative productivity of �rms in default relative to �rms not in default, and the

share of �rms in default, as a function of outstanding debt b (holding k and p �xed).
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Figure 18: Role of state-contingent debt. The �gure plots the impulse response function of model

quantities to a shock to the probability of disaster. Blue full line = state-contingent debt, red line =

benchmark model, green line = RBC frictionless model. Quantity responses are shown in % deviation

from balanced growth path.
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