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Credit risk models used in quantitative risk management treat credit risk
analysis conceptually like a single person decision problem. From this per-
spective an exogenous source of risk drives the fundamental parameters of
credit risk: probability of default, exposure at default and the recovery rate.
In reality these parameters are the result of the interaction of many mar-
ket participants: They are endogenous. We develop a general equilibrium
model with endogenous credit risk that can be viewed as an extension of
the capital asset pricing model. We analyze equilibrium prices of securities
as well as equilibrium allocations in the presence of credit risk. We use the
model to discuss the conceptual underpinnings of the approach to risk weight
calibration for credit risk taken by the Basel Committee.

Keywords: Credit Risk, Endogenous Risk, Systemic Risk, Banking Regulation

JEL-Classification Numbers: G32, G33, G01, D52
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Non-Technical Summary

This paper applies conceptual ideas of general equilibrium to macroprudential analysis.
General equilibrium concepts are based on two main ideas: First, there is a consistent
system of accounting across all sectors in the economy. No ressources are magically
created or removed beyond what is intitially assumed and created or removed by eco-
nomic processes within the system. Second it is a model that takes feedback effects
between behavior of individuals and institutions and the aggregate state of the economy
systematically into account. By appying these ideas to financial stability analyis this
paper contributes to the rethinking of concepts that underlie the analysis of credit risk
in regulation, financial stability analysis and risk management as applied by monetary
and regulatory institutions today.

The paper contributes to an enhanced understanding of how concepts and ideas in
capital regulation of financial institutions interact with the economy at large. The main
aspect of financial instability that is represented in the model is credit risk and problems
of insolvency. The interaction between insolvency risk and the aggregate economy is
captured by applying ideas from equilibrium analysis that conceptually take the feed-
back between credit risk and aggregate economic activity into account, an aspect usually
neglected in traditional credit risk models underlying capital adequacy regulation. This
new perspective also helps in understanding the intrinsic limits of the current regulatory
framework. These limits stem from the attempt to treat the risk of insolvency as exoge-
nous, while it is in fact an endogenous phenomenon arising from the interaction of many
individuals. The paper shows that treating credit risk as exogenous is likely to lead to
a bias in risk weights and makes these weights less effective as a financial stability tool.
It explains why during the recent financial crisis risk weighted capital figures of banks
suggested a false feeling of safety. It identifies the endogenous nature of credit risk as a
key issue that needs to be adressed to calibrate capital adequacy figures in a way that
can work for both micro- and macroprudential purposes.

Put in a nutshell many of the ideas, concepts and tools applied in financial stability
analysis today think about risk analysis as a single person decision problem, where
risks are exogenous and do not depend on aggregate behavior of individuals. The risks
connected to financial markets and institutions are of an entirely different nature; they
emerge as the result of the interaction of many individuals. They are endogenous. We
develop a framework where credit risk emerges in this way and analyze the consequences
for some established ideas in capital adequacy regulation, in particular the calibration
of risk weights in credit risk models. We argue that in a world with endogenous credit
risk the calibration of risk weights based on exogenous risk assumptions is likely to lead
to significant biases in risk assessments.

The main focus of the paper is conceptual. Rather than taking the current regime of
capital regulation as given, we start in a framework that is highly stylized with respect to
institutional aspects but takes the idea that the parameters of credit risk, like probability
of default, exposure at default and loss given default are not generated by an exogenous
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random process but are the consequences of the interaction of many individuals in the
financial system. We try to understand the economic principles of risk and return in a
world where insolvency can occur. In order to do so and to contrast a world of financial
stability with a world where financial instability can occur we embedd our model into
one of the best known financial market model, the so called Capital Asset Pricing Model
(CAPM). Our model of credit risk in general equilibrium has a similar structure as the
CAPM and contains the CAPM in the limiting case where default and thus credit risk
does not occur in equilibrium. In the CAPM with default in addition to prices and
allocations also probabilities of default and recovery rates emerge as part of a financial
market equilibrium. Since the equilibrium concept captures the feedback between credit
risk and the real economy the framework can then be applied to study the impact of
regulatory ideas on the nature of this feedback process.

In terms of prices and allocations the main result is that in the CAPM with credit
risk, security prices have a similar structure as in the traditional CAPM but the market
portfolio is endogenous and the presence of one defaultable security affects the risk-
premia of all other traded securities through the market portfolio. Allocations retain
some similarity with the mutual fund structure of a CAPM equilibrium, but the efficiency
properties of CAPM, are lost.

Since credit events are a result of aggregate behavior and equilibrium the parameters
of credit risk are endogenous. In our model they can be derived from equilibrium security
prices and allocations. A major consequence of this view on credit risk is that there will
always be a feedback between the loss distribution, risk weights calibrated based on this
loss distribution and behavior.

An intuitive way to think about the mechanisms behind these feedback effects is as
follows: If historical asset prices and default rates are taken as an input to statistically
pin down and calibrate the weights for regulatory capital of financial institutions, the
regulatory prescription of these weights will have the following main effect: The behavior
of financial institutions under the new risk weights will not be the same as in a regime
before the risk weights were in place. Since at an aggregate level probabilities of default,
loss given default and exposure at default are a result of the aggregate behavior of
institutions, the risk weights calibrated on the pre regulation data will not be correct
anymore. The risk weights will be biased and will lack in accuracy as a result.

In conclusion, our paper provides arguments in favour of rethinking capital adequacy
regulation. In particular, macroprudential regulatory authorities may be well placed to
develop an approach that takes the endogeneity of financial risks into account.
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1. Introduction

During the past two decades credit risk modeling flourished both in the academic lit-
erature and in the financial industry (see McNeil et al. [2005] for an overview). Credit
risk modeling also had a considerable influence on recent developments in bank capital
regulation. The calibration of risk weights for different asset classes on a bank’s balance
sheet under the 2001 reform of the Basel Accord of 1988 (Basel II) was guided by recent
developments in credit risk modeling.

What is common to most of the credit risk models used in risk management and
regulation is the assumption that individual characteristics of credit instruments, in
particular the probability of default, the exposure at default and the recovery rate,
follow some exogenous probability law that can be estimated using historical data. The
credit risk model maps these characteristics into a loss distribution over a fixed time
horizon. Loss distributions of loan portfolios derived in this way are often used in risk
management to quantify the size of equity buffers necessary to support the portfolio.
In capital adequacy regulation under Basel II this concept of a loss distribution for a
portfolio of credit instruments is used to calibrate risk weights imposed by the regulator.

From an economic perspective, the probability of default, the exposure at default and
the loss given default are more naturally thought of as the aggregate result of individual
behavior. Thus, it makes more sense to think of credit risk as endogenous.

Thinking of credit risk as endogenous opens a different perspective that is in sharp
contrast to the prevailing analysis of credit risk. While standard credit risk modeling
thinks of credit risk analysis as a decision problem under risk, the endogenous view
of credit risk is conceptually nearer to an equilibrium phenomenon resulting from in-
teracting individual decisions of many agents. From such a perspective the standard
applications of credit risk modeling in regulation immediately look problematic. In the
application of credit risk models, the economic capital that is required to support a given
portfolio is derived as some quantile of the loss distribution, usually the value-at-risk. If
credit risk is endogenous there is a feedback effect between economic capital and the loss
distribution. Capital requirements will change the behavior of individuals and thus the
loss distribution and the risk weights which will in turn influence behavior. But not only
in the cross section also over time endogenous credit risk leads to other problems like
pro-cyclical effects of capital requirements, a problem that has been widely discussed in
the literature and the policy debate and that has been addressed in the recent amend-
ments to the Basel II framework.1 If credit risk is indeed endogenous, this has wider
implications for regulatory reform that go beyond the refinement of calibration of risk
weights for different asset classes.

In this paper we make an attempt to analyze credit risk as an equilibrium phenomenon
rather than as a decision problem under risk. Equilibrium analysis takes the endogenous
credit risk view to its extreme. We hope that for a conceptual discussion this extreme
turn in perspective is useful. Our aim is thus to formulate and analyze an equilibrium

1 The debate on procyclicality has accompanied the Basel process from the beginning. Important
references are Hellwig and Blum [1995], Danielsson et al. [2001] and Shin [2010] and the references
given there.
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model of credit risk from which we can learn something about the limits of standard
credit risk modeling in banking regulation.

An Overview of the Model We analyze credit risk by an abstract model of competitive
borrowing and lending with the possibility of bankruptcy. The exogenous parameters in
our analysis are state probabilities, risk preferences of individuals, endowments, financial
instruments and bankruptcy rules. What is endogenously determined by the model are
prices and allocations of risky securities including credit instruments as well as the
allocation of consumption indirectly induced by this allocation. These consumption
plans determine the exposure at default, default states and recovery rates and thus the
parameters of credit risk, assumed to be exogenous in traditional credit risk analysis.
What the model thus provides is an abstract perspective on a world where credit risk is
endogenous which can then be contrasted with a world where credit risk is exogenous.
The abstract perspective is able to highlight the basic logic of endogenous credit risk
but hides much of the institutional structure, such as the operation of borrowing and
lending through a banking system. While this feature makes the model not very useful to
discuss the specific design of capital regulation for banks we believe that it provides clear
perspective on the possibilities and limits of risk weight calibration based on traditional
credit risk models and thus on the conceptual underpinnings of current capital regulation
for banks.

Related Research Our model builds on the literature on default in general equilibrium
pioneered by Zame [1993] and Dubey et al. [2005] and developed in various variations in
Modica et al. [1998], Araujo and Pascoa [2002] and Sabarwal [2003]. This literature in
principle provides a framework that allows for an abstract analysis of endogenous credit
risk. For the current analysis it is however difficult to directly draw on these papers.
For our purpose they are too abstract because they are almost entirely focused on the
equilibrium concept and on existence results. They are also too general to clearly focus
on the specific aspect of endogenous credit risk.

Building on this literature we aim at a general equilibrium model of bankruptcy that is
more general than a fully parametrized example but specific enough to allow for a struc-
tured discussion of equilibrium prices and allocations. The idea is thus to go beyond a
pure existence result by providing enough structure to say more about equilibrium and
its main properties. Our leading example for this kind of analysis are Magill and Quinzii
[1997] and Magill and Quinzii [2000] as well as the exposition of the CAPM in Geanako-
plos and Shubik [1990] and in Magill and Quinzii [1995]. In the context of general
equilibrium modeling of default, our contribution is a model that is structurally similar
to the consumption based CAPM and contains the CAPM as a special case for the limit-
ing case of no default. It therefore allows to look at the general equilibrium modeling of
default from the perspective of a very well understood framework of financial economics.
By this formulation it also opens an opportunity to expose general equilibrium models
of default to experimental tests along the lines of Bossaerts [2002] and Bossaerts et al.
[2007]. We hope that the specific CAPM-like formulation of a general equilibrium model
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of bankruptcy and default is next to our main focus on the endogeneity of credit risk an
interesting additional contribution to the literature on default in general equilibrium.

For the case of market risk the nature and consequences of endogenous risk, risk that
arises by pricing and repricing in financial markets, have been analyzed in Danielsson
et al. [2009] and Shin [2010]. The institutional structure of intermediation and bank bal-
ance sheets are directly built into these models. Our analysis provides a complementary
perspective on endogenous risk for the case of credit risk.

Structure of the paper We begin in section (2) with the analysis of a simple example
of competitive borrowing and lending that illustrates the main concepts and idea of our
analysis of credit risk in general equilibrium. In section (3) we describe and analyze the
model, we define the concept of bankruptcy equilibrium. In section (4) we present the
central results. We prove existence and characterize the properties of equilibrium prices
and quantities. Section (5) clarifies the relations between the CAPM and our model of
bankruptcy equilibrium. Section (6) analyses the implications of endogenous credit risk
for credit risk modeling and risk calibration. Finally section(7) concludes. An appendix
contains proofs of propositions.

2. Bankruptcy Equilibrium: An Example

Let us start with a simple example of competitive borrowing and lending. In the context
of this example we can develop the basic elements and arguments behind our approach
to modeling bankruptcy in general equilibrium and introduce some of our basic concepts
as well as some notation.

In our example two risk averse agents live for one period starting today (t = 0)
and ending tomorrow (t = 1). They have endowments of a consumption good today
and tomorrow. The endowments are described by the vectors ω1 = (ω1

0, ω
1
1) and ω2 =

(ω2
0, ω

2
1) with all entries positive. Both agents have standard preferences for consumption

xi = (xi0, x
i
1) that can be described by a utility function ui(xi). We define the net income

transfers as τ i = xi − ωi.
The agents can achieve an inter-temporal consumption profile by buying or selling

today a bond, which promises one unit of consumption good tomorrow in quantities zi

at price q on a competitive financial market. Borrowing and lending in this model is
competitive in the sense that agents maximize their utility function within their budget
constraint taking the price of the bond q as given.

To contrast the model with default with a model without default, it might be helpful
to look at a picture which shows a competitive equilibrium with borrowing and lending
in a net-trade diagram.
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Figure 1: Competitive borrowing and lending in equilibrium without default. Optimality of deci-
sions requires that the utility gradients πi of the lender and the borrower are orthogonal
to the space of net income transfers T spanned by the possibility to trade a bond.
The equilibrium problem is then to find a price q that rotates the space of net income
transfers in a way that the net transfers add up to zero.

In the diagram the black axes labeled τ0 = xi0 − ωi0 and τ1 = xi1 − ωi1 define the
space of net income transfers. The axes defining the consumption spaces of agent 1
and agent 2 in the net transfer diagram are the coordinates labeled by x10 and x11 and
x20 and x21 respectively. The endowment points in the net transfer diagram are defined
by (−ω1

0,−ω1
1) and (−ω2

0,−ω2
1). Optimal decisions require that the gradients of the

utility functions are orthogonal to the net income transfers that are feasible by trading
a bond a prices q, that is to the subspace of all income transfers that are spanned by
T = (−q, 1). For such an optimum to exists, prices must be arbitrage free. This means
that the subspace of feasible net income transfers must go from the left upper quadrant
through zero and then through the right lower quadrant. In this case an investor an
agent who buys the financial promise has to pay q today to receive 1 tomorrow, while
the agent who sells the promise received q today and the contract obliges him to repay
1 tomorrow. In the diagram as it is drawn here agent 2 is the lender, while agent 1 is
the borrower. The equilibrium problem is that q has to adjust such that at the optimal
decisions the net trades τ̄1(q) and τ̄2(q) add up to zero. This balancing is achieved by
rotating the subspace of feasible net income transfers through financial market trading
appropriately by adjustments in q.

Let us now introduce bankruptcy into the example. By bankruptcy we mean a situ-
ation where an agent is not anymore able to honor his debts zi given the value of his
assets ωi1 at t = 1. Note that we do not allow for default: As long as the debt zi can be
paid given the asset value ωi1 the agent is obliged to honor his obligation. Bankruptcy
means allowing agents to plan a negative consumption tomorrow. For given preferences
this might be the optimal choice. Of course an agent can not consume a negative bundle.
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We interpret the utility of the negative plan as a utility penalty on bankruptcy. This
puts a limit on borrowing. We assume that the utility function evaluates jointly positive
and negative consumption plans.

Assume that our utility function embeds a penalty function which is strictly increasing
in the value of the planned shortfall in a bankruptcy:2

xi− := 0 ∧ (ωi1 + zi)

If we denote the consumption value corresponding to a non-negative value of assets in
terms of the consumption good, by

xi+ = 0 ∨ (ωi1 + zi)

we have

xi1 = xi+1 + xi−1
= 0 ∧ (ωi1 + zi) + 0 ∨ (ωi1 + zi)

= ωi1 + zi.

The idea to model the costs of default as a utility penalty is due to Dubey et al.
[2005] and Zame [1993]. In our setup the consumer ex ante evaluates a consumption
plan with respect to both the real consumption xi+s and the default penalty xi−s such
that ui(xi0, x

i
1) = ui(x10, (x

i+
1 + xi−1 )). In Dubey et al. [2005] and Zame [1993] ui(xi0, x

i
1)

is separated into the sum ui(xi0, x
i+
1 ) + λwi(xi−1 ), the utility from real consumption and

the penalty function. In our setup the utility function evaluates real consumption and
default penalty jointly.3

But how can planned bankruptcy occur in equilibrium? To see how, assume agent 2
is the lender and agent 1 is the borrower. Let us look at the problem of agent 2 first.
Every unit of lending provided to the market has to be discounted because only a fraction
r ∈ [0, 1] will be recovered. His problem is now to find an optimum consumption plan
by taking this recovery rate into account. The recovery rate that will emerge depends
on the decision of agent 1: The recovery rate is given by

r =
−z1 ∧ ω1

1

−z1

It is the fraction of what is actually paid given to what payment has been promised.
Agent 1, the borrower, takes the payoff profile of the the bond (in which he holds a

short position) as given. He does not have to take into account potential bankruptcy by
others, since he is borrowing.

2We use the notation ∨ and ∧ as the maximum and minimum operator. Applied to vectors the operators
give the component-wise maximum of minimum.

3At a technical level this approach in combination with considering bankruptcy (in contrast to default)
makes the individual decision problem tractable because linearity of the constraints is preserved at
the level of the individual decision problem.
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The equilibrium problem now changes in the following way compared with a situation
without bankruptcy: The optimization problem looks different from the perspective of
borrowers and lenders. From the perspective of agent 1, the borrower, the problem is to
find a net income transfers τ 1 in the cone spanned by the vector T s = (q,−1) such that
his utility gradient π1 = ∇u1(x̄1) is orthogonal to the ray spanned by T s. For agent 2
the situation is different: He has to find all net income transfers in the cone spanned by
the vector T l = (−q, r) such that his utility gradient π2 = ∇u2(x̄2) is orthogonal to the
ray spanned by T l. The decision of agent 1 takes the default penalty into account, since
the real consumption he can get at time t = 1 is only zero. The distance between his
consumption plan and his equilibrium consumption is exactly the bankruptcy penalty.

The equilibrium problem is now more involved than in a world without bankruptcy
since both q and r have to adjust to guarantee that financial markets clear and that
the non-negative parts of the consumption plans are equal to the available resources.
The equilibrium problem is now to find a (q̄, r̄) such that both cones T l and T s make
consumption compatible with the resource constraints in the economy.

Formally (q̄, r̄) is a bankruptcy equilibrium when agents have taken an optimal decision
and

(τ 1(q̄, r̄)) ∨ −ω1) + (τ 2(q̄, r̄) ∨ −ω2) = 0

To interpret the equilibrium condition in economic terms we rewrite it: First, since
agents must not choose a negative consumption in t = 0, security markets must clear
or4

z1(q̄, r̄) + z2(q̄, r̄) = 0

Furthermore (q̄, r̄) must be such that

(x1(q̄, r̄) ∨ 0) + (x2(q̄, r̄) ∨ 0) = ω1
1 + ω2

1

The condition that date 1 consumption must be feasible is equivalent to requiring that
the expected recovery rate is equal to the recovery rate that is realized at t = 1. The
equilibrium condition could therefore be alternatively formulated as requiring security
markets to clear and that agents correctly expect the equilibrium recovery rate r̄.

In this simple example a bankruptcy equilibrium can be visualized. Figure 2 displays
the basic geometry of a bankruptcy equilibrium. Contrary to the no bankruptcy case,
the space of net income transfers gets a ”kink”. Lenders and borrowers live financially in
two different worlds and a wedge between promises sold and promises purchased arises.
Still if agents hold rational expectations about the equilibrium recovery rate, prices and
the recovery rate can adjust to let security markets clear at one price q and keep the
aggregate resource constraints in the economy. From the picture we see that it can occur
that the bond market might not be used by all agents. More generally, with more agents
there might be agents who are not trading in the bond in equilibrium. The higher the
credit risk of the bond (the lower is r) the lower is market and funding liquidity in the
bond. In our model credit and liquidity risk are two sides of the same coin.

4This condition is equivalent to τ10 + τ20 = 0.
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Figure 2: Competitive borrowing and lending with bankruptcy. What was the net transfer space
before now gets a kink. Optimality for the lender requires that his utility gradient π1 is
orthogonal to the ray spanned by the vector T l = (−q, r). For the borrower the utility
gradient π2 is orthogonal to the ray spanned by T s = (q,−1) because he holds a short
position in the bond. The default penalty is equal to the vertical distance of his optimal
decision point to the point where his date one consumption is zero. The equilibrium
problem is that q and r have to adjust such that the linear space spanned by T l = (−q, r)
passes through the time 1 zero consumption point of agent 1. At this point the real net
transfers are such that they add up to zero.

In the picture we see that agent 1 finds it optimal to chose a consumption plan which
implies a bankruptcy tomorrow. His transfer cone T s is given by the dashed red ray
starting at the origin of the net transfer space. At this consumption plan he has to
pay a penalty equal to the vertical distance between his optimal choice and the zero
consumption line.

From the picture we see how the bond market can equilibrate in such a situation.
The transfer space of the lender has to be rotated from the ray (−q, 1) to T l = (−q, r)
such that if this ray is prolonged to an imaginary linear space it passes through the zero
consumption line of agent 1 at x11 = 0. In this position the market can clear because
at this point the actual net income transfers sum to zero and thus (τ 1(q̄, r̄)) ∨ −ω1) +
(τ 2(q̄, r̄) ∨ −ω2) = 0.

This example reveals in a nutshell the basic mechanics of a bankruptcy equilibrium.
But where is credit risk entering the picture? This aspect of bankruptcy can only be
seen in a slightly more complex version of the example, which we are going to develop
in our model. In the more complex version there are different states of the world at
t = 1 each occurring with some given probability. As in the simple example agents
can use a financial instrument with which they can borrow and lend, possibly with a
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planned bankruptcy in some state of the world. Agents can also use alternative financial
instruments which may be used for risk sharing only. In this slightly more complicated
version agents take an optimal portfolio decision and financial instruments are priced
according to their risk characteristics. Clearly the decision of some agents to choose a
consumption plan that implies bankruptcy in some state is a credit risk from the view-
point of the lenders. But this is a risk that arises endogenously as a consequence of the
agents’ decisions. All parameters of credit risk that are assumed to follow an exogenous
probability law in the usual credit risk models, the probability of default, the exposure
at default and the recovery rate are now endogenously determined in equilibrium.

3. The Model

3.1. A Bond Equity Economy

We consider a pure exchange economy with one commodity and a finite number I of
agents. There are two dates, t = 0 and t = 1, and a finite number S of states of the
world at date t = 1 which occur with probabilities ρs 6= 0.

Each agent is characterized by a consumption set X ⊂ RS+1, a utility function ui :
X → R and an initial endowment ωi = (ωi0, ω

i
1) ∈ X ∩ RS+1

++ . We denote ωi0 is the
endowment at t = 0 and ωi1 = (ωi1, . . . , ω

i
S) is the endowment vector at t = 1. In a

similar manner we denote by xi = (xi0, x
i
1) ∈ X the consumption plan of agent i. We

denote ω1 =
∑I

i=1 ω
i
1 with ωs =

∑I
i=1 ω

i
s and define X = R+ ×

∏S
s=1[−ωs, ωs).

This definition of the consumption set X reflects our assumption that agents can plan
negative consumption in some future states (but not at t = 0). Each agent is assumed to
have a preference ordering over consumption plans defined by an additively separable,
linear quadratic utility function

ui(xi) = αi0x
i
0 −

1

2

S∑
s=1

ρs(α
i
1 − xis)2, i = 1, . . . , I, (1)

where the time 1 state probabilities are given by the ρs for s = 1, . . . , S. We assume
that all preference parameters (αi0, α

i
1) ∈ R2

++ are chosen such that for each agent
αi11 − ω1 ∈ RS++ where 1 is the S-dimensional vector consisting of components equal
to 1. Such an assumption is used for instance in Nielsen [1989] to ensure existence of
equilibrium with preferences allowing satiation. It ensures monotonicity of utility on
those regions of the choice set X that correspond to a feasible allocation. A comprehen-
sive discussion of assumptions dealing with satiation can be found in Sato [2010]. This
specification of preferences assumes agents who care about the mean and the variance
of their consumption plans. The advantage of this specific restriction is that it allows a
characterization of equilibrium prices, portfolios and consumption.

To achieve a consumption profile optimally adapted to their risk preferences agents
can trade J + 1 securities. These securities belong to two categories: First, there are J
securities with payoff profile yj = (yj1, . . . , y

j
S) ∈ RS . In a richer model, where income

is not given by endowments but generated in production, these payoffs could represent
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for instance the market value of the output of firms at t = 1. The S × J matrix of all
security payoffs yj is given by Y . Each consumer chooses a portfolio zie ∈ RJ of these
securities. Their prices are denoted by qe ∈ RJ . Together with the security payoffs Y
they define the possible trades an agent can make by using these securities.

We do not allow agents to default by trading securities yj . Thus, only trades are
allowed which fulfill

ωi1 + Y zie ≥ 0. (2)

While there are many securities yj there is only one security in the second class. It is
a bond, which allows the agents to make loans. The bond promises to pay one unit of
income in every state of the world. But since agents can take on debts by trading the
bond and go bankrupt an agent who has invested in the bond has to take into account
that the payoff profile of the bond is not 1 ∈ RS but only r1 ∈ [0, 1]S . We define the
positions of agent i long in the bond by zib+ and the positions short in the bond by zib−.

A portfolio is then a tuple zi = (zib+, z
i
b−, z

i
e) ∈ Z, where Z = R2

+ × RJ is the cone
of possible portfolio positions. The constraint given in equation (2) is required to hold
additionally and will be added when we define the budget set of an agent.

Since in this paper we are not interested in the most general formulation of the bank-
ruptcy model but rather in a formulation that has enough structure to allow for a
description of equilibrium allocations and equilibrium credit risk we impose the follow-
ing additional restriction on security payoffs. We assume that span(Y ) ∩ RS+ = 0. This
assumption ensures that no matter how the recovery rate r1 will materialize in equilib-
rium, as long as it is non-zero, it will never define a payoff profile that can be reproduced
by a portfolio of securities yj .5

We assume that the matrix V = [1|Y ] has full column rank, that J+1 < S (incomplete
markets) and that E(V j) > 0 for all securities j = 1, . . . , J , where E denotes the
expectation operator.

We define the matrix T by

T =

[
−qb qb −qe
r1 −1 Y

]
The set of feasible income transfers is given by

C = {τ ∈ RS+1|τ = Tz z ∈ Z}

3.2. Bankruptcy

We want to allow for the case that in period t = 0 agents can take more debt than they
can service in every state. Thus, an institutional arrangement for states in which agents
go bankrupt and do not pay back their loans has to be introduced. Bankruptcy refers to
a set of institutional arrangements specifying the reallocation of claims among economic
agents. An agent is bankrupt, when the value of his debts exceeds the value of his

5This is a restrictive assumption that avoids tedious technicalities in the proof of existence of equilib-
rium.
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assets. In the two period framework employed here this condition can be unambiguously
defined.6

In case of a bankruptcy, all remaining assets of the debtor will be seized and distributed
among the creditors. The remaining debt will be forgiven. In case of bankruptcy two
institutional aspects are essential for the economic outcome: First, how will the remain-
ing assets be distributed among the claim holders? Second, what kind of penalty will be
imposed on the bankrupt agent for not paying back the contracted amount of debt?

Bankruptcy laws specify these rules. A penalty is necessary in order to avoid that
consumers with monotone preferences have unbounded demand for debt. Penalties for
bankruptcies usually consist in excluding bankrupt individuals, at least temporarily,
from further credit and constraining their consumption to a minimum for some period.
Usually these penalties depend also on the size of the losses which creditors suffer.

If a bankruptcy occurs existing claims of the asset holders can no longer be satisfied.
We want to analyze our bankruptcy model as a model of perfect competition. Bank-
ruptcy is anonymous. Anonymity of bankruptcy can be formalized by assuming that
purchases and sales of the bond are implemented through some central clearing institu-
tion that spreads shortfalls on promised payments proportionally among creditors. The
remaining assets of bankrupt agents ωis + Ysz

i
e < zib− will be seized and distributed to

the creditors. If repayments
(∑I

i=1 z
i
b− ∧ (ωis + Ysz

i
e)
)

fall short of aggregate promises∑I
i=1 z

i
b− in some state s then these claims will be reduced proportionally.7 The recovery

rate in state s, rs ∈ [0, 1], is

rs =

∑I
i=1 z

i
b− ∧ (ωis + Ysz

i
e)∑I

i=1 z
i
b−

.

If there is no activity in the bond market we define rs = 1. When planning their
consumption and investments consumers will take this recovery rate rs into account as
an expected parameter which will be determined in equilibrium.

Define the positive and negative parts of consumption by

xi− := xi ∧ 0 and

xi+ := xi ∨ 0.

We model the bankruptcy penalty by a penalty function which is strictly increasing in
the value on which the debtor defaults in a bankruptcy. Notice that a consumption
plan xi = xi+ + xi− can now become negative in some states. The consumer must

6Such a formalization has been used in the literature in different versions by Modica et al. [1998],
Sabarwal [2003], Araujo and Pascoa [2002]. It is also close to the framework of Eisenberg and Noe
[2001], which shows how one can extend our bankruptcy rule to many loan instruments and non-
anonymous bankruptcy in a pure balance sheet mechanics framework. A bankruptcy occurs if agents
cannot repay their due liabilities. In contrast to Zame [1993] and Dubey et al. [2005], we do not
allow agents to default on their loans. Agents will repay their debts as long as the value of their
endowments and assets allows it. If liabilities exceed this value a bankruptcy occurs.

7The operator ∧ denotes the component wise minimum. The component wise maximum operator is
defined as ∨. By Ys we denote the s-th row of the matrix Y
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be capable of evaluating xis < 0. Her consumption set is no longer confined to the
positive orthant. The quadratic utility function gives a joint evaluation of consumption
and bankruptcy penalties.8 The greater the extent of bankruptcy the lower the utility.
Whether consumers will accept the risk of bankruptcy in some state will thus ultimately
depend on their preferences.

3.3. Bankruptcy Equilibrium

The budget set of agent i is then given by:

Bi(q, r1) =
{
xi ∈ X | ∃zi ∈ Z : xi − ωi = T (q, r1)zi and ωi1 + Y zie ≥ 0

}
,

where we partitioned the vector zi into zi = (zib+, z
i
b−, z

i
e). Note that the recovery rate

on the bond in each state is taken as a parameter. Consumers are assumed to maximize
their utility subject to this budget constraint. Notice that consumption xis may become
negative in some state s, indicating that the consumer is bankrupt in this state and
receives a bankruptcy penalty corresponding to this negative consumption value.

Let u = (u1, . . . , uI) and ω = (ω1, . . . ,ωI). Let V = [1, Y ] denote the exogenously
given security payoffs. We denote by E(u,ω, V ) the corresponding economy.

Definition 1 (Equilibrium). A financial market equilibrium with bankruptcy of the econ-
omy E(u,ω, V ) is a tuple of consumption plans, portfolio choices, security prices and
recovery rates (x̄, z̄b+, z̄b−, z̄e, q̄, r̄1) ∈ (X)I × R2I

+ × RJI × RJ × [0, 1]S such that for all
i = 1, . . . , I

(i) x̄i = arg max{ui(xi) | xi ∈ Bi(q̄, r̄1)}

(ii)
∑I

i=1 z̄
i
b+ =

∑I
i=1 z̄

i
b− and

∑I
i=1 z̄

i
e = 0

(iii)
∑I

i=1 x̄
i+ =

∑I
i=1ω

i

In equilibrium feasibility of the consumption allocation is guaranteed by condition
(iii). This does not preclude that consumers choose an amount of debt which leads to a
negative value of the consumption plan in some state. Hence, x̄is can be negative in some
states, representing the bankruptcy penalty experienced by this consumer. Creditors
hold rational expectations about the recovery rate in states where bankruptcy occurs.
Only in this case security market clearing (ii) and good market clearing (iii) can be
fulfilled simultaneously. Bankruptcy is factored into the asset price system q̄. Note that
the standard general equilibrium concept without bankruptcy is a special case of the
financial market equilibrium with bankruptcy when rs = 1 for all states s.

4. Bankruptcy Equilibrium: Results

4.1. Bankruptcy Equilibrium: Existence

We first show that our equilibrium concept is well defined. We show that under our
assumptions on preferences, endowments and securities a bankruptcy equilibrium will

8This observation has been made by Magill and Quinzii [2000].
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always exist. From our proof of existence, which is detailed in the appendix, we can gain
some insight into the economics of a bankruptcy equilibrium.

Proposition 1 (Existence of Bankruptcy Equilibrium). Let E(u,ω, V ) be a finance
economy. If

A1 : ui : X → R is linear quadratic and X = R+ ×
∏S
s=1[−ωs, ωs),

A2 : ωi = (ωi0, ω
i
1) ∈ X ∩ RS+1

++

A3 : For each agent αi11− ω1 ∈ RS++

A4 : The matrix [1|Y ] has column rank J + 1

A5 : span(Y ) ∩ RS+ = 0

then a bankruptcy equilibrium exists.

Proof: The proof is given in the appendix. �
Existence of a bankruptcy equilibrium has been proved in a more general setting by

Sabarwal [2003] and for a slightly different version of the model by Modica et al. [1998]
and Araujo and Pascoa [2002]. We would like to make a few remarks about our proof of
existence of a bankruptcy equilibrium because we believe that this proof reveals some
interesting features of the economics of a bankruptcy equilibrium that would be hidden,
if we just invoked the general existence theorem by Sabarwal [2003].

Our proof first shows that for an arbitrary recovery rate r1 we can always find a
security price vector q̄ that clears the financial market. This does however not guarantee
that we have a bankruptcy equilibrium according to our definition because this requires
that r1 is chosen such that the good market clears at t = 1. This will be possible
only if r1 corresponds to the actually realized equilibrium recovery rate, which must
therefore be perfectly foreseen. An argument showing that we can always find such a
corresponding r̄1 completes the existence proof.

This proof reveals the special role of default expectations for the allocative conse-
quences of credit risk. It might be possible that the prices in financial markets perfectly
coordinate supply and demand for securities. Still if also inter-temporal consumption
decisions should be perfectly coordinated by the market it has to be the case that the
recovery rate is perfectly foreseen. Otherwise there will be rationing or slack resources in
the economy. Note that a model of borrowing and lending with bankruptcy always has
a trivial equilibrium where there is no trade in the bond. Indeed if everybody expects
zero recovery from an investment in the bond then it is indeed optimal not to trade
in the bond at all and the expectations are also consistent with these actions. This
situation is somewhat reminiscent of general equilibrium models of money that always
have equilibria where money has no value (see Gale [1982]). Zame [1993] and Dubey
et al. [2005] make attempts to exclude these kinds of equilibria through some kind of
refinement. We believe however that the possibility of such trivial equilibria in a context
of bankruptcy and default are entirely natural and should indeed be part of the model.
The role of default expectations is absolutely crucial in coordinating behavior. This
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feature of the bankruptcy model leads to interesting problems in a richer context with
production where “wrong” expectations about the aggregate recovery rate would then
lead – for instance – to unemployment or underinvestment.

4.2. Bankruptcy Equilibrium and No Arbitrage

In the following, we use the probability induced inner products

〈x1, y1〉 =

S∑
s=1

ρsxsys ∀ x1, y1 ∈ RS and (3)

〈x,y〉 =

S∑
s=0

ρsxsys ∀ x,y ∈ RS+1, (4)

where we define ρ0 := 1.
Trading in financial markets allows agents to redistribute income across states of the

world. In the bankruptcy model the set of feasible income transfers is a closed, convex
and finitely generated cone given by

C = {τ ∈ RS+1|τ = Tz, z ∈ Z}.

Definition 2 (No Arbitrage). Absence of arbitrage in the financial market means that
for a given recovery rate r1 security prices q have to be such that there does not exist
any z ∈ Z such that Tz > 0.9

This condition can be characterized as follows:

Lemma 1. Given (q, r1, Y ) there is no arbitrage if an only if there exists a vector
π ∈ RS+1

++ such that 〈π, τ 〉 ≤ 0 for all τ ∈ C.

Proof: The proof is given in the appendix �
In the following, we normalize π such that π0 = 1 and write the date 1 components

of π as π1. Let us define in addition to the matrix V = [1|Y ] the matrix W = [r1|Y ].
For a given recovery rate r1 it follows from Lemma 1 that the set of no arbitrage prices
can be written as

Q(r1) = {q ∈ RJ+1 | π1W ≤ q ≤ π1V for some π1 ∈ RS++}. (5)

In the no bankruptcy case the no arbitrage condition allows the pricing of arbitrary
income streams that can be generated from already existing securities by a linear pricing
function. While with incomplete markets (normalized) state prices consistent with no
arbitrage are not unique, the projection of π1 onto the space spanned by the existing
security payoffs V is unique. Here, span(V ) need not include 1. Denote this projection
by πV1 then the price of an arbitrary income stream m ∈ span(V ) in a bankruptcy
equilibrium is given by

c(m) = 〈πV1 ,m〉.
9Tz > 0 is a vector inequality. A vector y ∈ RS+1 > 0 if and only if y ∈ RS+1

+ and y 6= 0
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This pricing formula can be interpreted in statistical terms as

c(m) = E(πV1 )E(m) + cov(πV1 ,m).

The vector πV1 is in the span of traded securities and is sometimes also called the pricing
security.

If, in addition, preferences are linear-quadratic for a financial market equilibrium the
pricing result can be considerably sharpened. In this case, assuming that 1 ∈ span(V )
and ω1 ∈ span(V )10, we can write for any m ∈ span(V ) the pricing formula as

c(m) =
E(m)

1 + r
− 1

α0
cov(ω1,m),

where α0 =
∑I

i=1 α
i
0, ω1 =

∑I
i=1 ω

i
1 and 1/(1 + r) is the price of the risk-less income

stream 1. This is the famous formula known from the consumption based capital asset
pricing model, in which the aggregate endowment ω1 is the market portfolio. In the
following, we show how close to this result we can come in a bankruptcy equilibrium.

In the bankruptcy case the characterization of no arbitrage by the existence of positive
state prices does not yield a linear pricing function. Let us denote the matrix T1 =
(r1,−1, Y ). The marketed subset is then C1 = {m ∈ RS |m = T1 z, and z ∈ Z} and the
polar cone to the cone of net income transfers C is denoted by C◦ = {π ∈ RS+1|〈π, τ 〉 ≤
0 for all τ ∈ C}.

Applying Theorem 3 in Elsinger and Summer [2001] we claim that for any m ∈ ∂C1

c(m) = max
π∈C◦∩RS+1

++

〈
π1
π0
, y

〉
.

It can be shown that the pricing functional (see Elsinger and Summer [2001] Corollary
5) c is sub-linear. It can be interpreted in statistical terms as

c(m) = max
π∈C◦∩RS+1

++

{
E

(
π1
π0

)
E(m) + cov

(
π1
π0
, y

)}
. (6)

This is how far we can get with respect to the pricing of contingent claims in the bank-
ruptcy model building on no arbitrage arguments only.

Note that this observation shows a close connection between security pricing in a
bankruptcy equilibrium and the literature on security pricing with portfolio constraints
(see Jouinni and Kallal [1995], Luttmer [1996] and Elsinger and Summer [2001]). This is
of course due to the fact that we formalized the portfolio choice problem with bankruptcy
as a choice from the convex set Z instead as from the linear space RJ+1. As in the
case with no bankruptcy we can sharpen the result in equation (6) if we make further
assumptions about preferences. This is what we are going to do in the following section.

10These conditions can be weakened. See Magill and Quinzii [1995], chapter 3 exercise 7.

17



4.3. Prices and Allocations in Bankruptcy Equilibrium

Assume we have a bankruptcy equilibrium (x̄, z̄, q̄, r̄1), where agents take optimal deci-
sions by solving the problem

max{ui(xi) |xi ∈ Bi(q̄, r̄1}. (7)

The existence of a solution to the consumer optimization problem is characterized by
the no arbitrage condition.

Lemma 2. The consumer problem (7) has a solution if and only if the financial market
is arbitrage-free.

Proof: The proof is given in the appendix. See also [Magill and Quinzii, 1995, Theorem
9.3] for the case without bankruptcy. �

Since the linear quadratic utility function is differentiable and concave we have:

Lemma 3. The consumer problem (7) has an interior solution (x̄i) if and only if
∇ui(x̄i) ∈ C◦, where the gradient ∇ is defined with respect to the inner product (4).

Proof: The proof is given in the appendix. �
Using these results we can now give a description of a bankruptcy equilibrium in terms

of equilibrium prices.

Proposition 2. If (x̄, z̄, q̄, r̄1) is a bankruptcy equilibrium of the economy E(u,ω, F )
with interior solutions then

(i) there exist strictly positive constants a and b such that the pricing security γ̄ fulfills

γ̄1 = a1− b ω̃1,

(ii) the equilibrium market value of any income stream m ∈ C1 fulfills the weak inequal-
ity

c(m) ≥ 〈γ̄1,m〉 = E(γ̄1)E(m)− b cov(ω̃1,m),

where ω̃1 =
(
ω1 − (1− r1)

∑
i z̄
i−) is the aggregate endowment ω1 reduced by the aggre-

gate losses from bankruptcy.

Proof: The proof is given in the appendix. �
From Proposition 2 we see that security prices in a bankruptcy equilibrium look similar

to security prices in a financial market equilibrium without bankruptcy and quadratic
preferences. The most important change is that in a bankruptcy equilibrium the role
taken by the aggregate endowment ω1 is now replaced by the aggregate endowment
corrected for the aggregate losses from bankruptcy ω̃1. Since this quantity determines
the pricing security, the prices of all securities whether or not they are affected by credit
risk are influenced by the trading of a defaultable security.

Since in a bankruptcy equilibrium agents can’t go short in the security promising
r1 and also can’t go long in the security 1 income streams m that can be generated
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from the existing securities can not anymore be valued by a linear function. However
Proposition 2 shows that we can give valuation bounds for income streams that can be
replicated, similar as in the literature on portfolio constraints (see Luttmer [1996]).

We can also characterize equilibrium allocations such that the relationship to two
fund separation theorems characteristic for the CAPM can be seen. The structure of
bankruptcy equilibrium requires that we characterize the consumption (default) plans
of agents depending on whether they are long or short in the bond in a bankruptcy
equilibrium. As in the case with pricing the role of the aggregate endowment ω1 is
now taken by the aggregate endowment corrected for aggregate credit losses ω̃1. Since
constraints on the possible bond positions (zi+b , zi−b ) may bind for some agents, we get
additional terms that depend on the Lagrangian multipliers of the respective constraints.

Proposition 3. If in a bankruptcy equilibrium an agent i trades long in the bond, her
equilibrium consumption plan is given by

x̄i1 = ωi1 + PYb+

(
(αi1 −

αi0
α0
α1)1− (ωi1 −

αi0
α0
ω̃1)

)
− σb+

αi0
α0
r1e,

where σb+ :=
∑I

i=1 σ
i
b+ is the sum of all agents’ Lagrange multipliers corresponding to

the constraints zib+ ≥ 0 cf. A.3, PYb+ is the projection on the span of the matrix (r1, Y )
and

r1e :=
r1 − PY (r1)

||r1 − PY (r1)||2
.

If agent i trades short in the bond, her equilibrium allocation is given by

x̄i1 = ωi1 + PYb−

(
(αi1 −

αi0
α0
α1)1− (ωi1 −

αi0
α0
ω̃1)

)
− σb−

αi0
α0
1e,

where σb− :=
∑I

i=1 σ
i
b− is the sum of all agents’ Lagrange multipliers corresponding to

the constraints zib− ≥ 0, cf. A.3, PYb+ is the projection on the span of the matrix (−1, Y )
and

1e :=
1− PY (1)

||1− PY (1)||2
.

If in equilibrium agent i does not trade in the bond, her equilibrium allocation is given
by

x̄i1 = ωi1 + PY

(
(αi1 −

αi0
α0
α1)1− (ωi1 −

αi0
α0
ω̃1)

)
.

Proof: The proof is given in the appendix. �
From Proposition 3 we see that in the bankruptcy equilibrium consumption is charac-

terized by an approximate linear risk sharing rule both for agents long and short in the
bond with the aggregate endowment corrected for credit losses. At this point it might
be helpful to clarify the relation between bankruptcy equilibrium and the CAPM.
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5. Bankruptcy Equilibrium and the CAPM

A bankruptcy equilibrium characterized in Propositions 2 and 3 shows in many respects
structural similarities with the famous capital asset pricing model (CAPM). There are
also some important differences. We would now like to discuss bankruptcy equilibrium
in the context of the CAPM.11

An economy with utility functions ui and endowments ωi and a financial market
structure given by a S × J matrix of securities A is said to fulfill the assumptions of
the capital asset pricing model if preferences are mean variance, the span of A contains
a riskless security 1 and for every agent i his date t = 1 endowment ωi1 lies in the
span of A. Linear quadratic preferences - as we use in our paper - are a special case of
mean variance preferences that allow a closed form description of equilibrium prices and
allocations in the case without bankruptcy. In the usual CAPM story the economy is
represented as a bond equity economy where agents have ownership shares in exogenously
given production plans. These shares are their sole source of income. The spanning
assumption is then automatically satisfied. Finally there are objective probabilities for
the state of the world at t = 1. It is thus possible to describe income and consumption
streams by their statistical properties.

In the case of linear-quadratic preferences, at an interior equilibrium, optimality con-
ditions and the equilibrium condition of security market clearing imply that equilibrium
prices can be written as

q̄ =
1

α0
〈(α11− ω1), A〉 (8)

If the riskless security 1 is in the span of A this results in the CAPM pricing formula

qj =
E(Aj)

1 + r
− 1

α0
cov(ω1, A

j) (9)

This formula says that the price of a security depends on its expected payoff discounted at
the risk-less rate and the covariance of the payoff stream with the aggregate endowment.
The aggregate endowment is in this case the benchmark portfolio called the market
portfolio in the terminology of the CAPM.

In the finance literature this pricing relation is usually formulated in returns per unit
of income invested at date t = 0. If qj 6= 0 the return of security Aj is defined as

RAj =
Aj

qj
(10)

The per unit return on the risk-less security 1 is defined as the risk-less return R1 = R̄ =
(1+r). The excess return of security Aj is the difference RAj−R1 and its expected value
is called the risk premium on Aj . The return on the market portfolio Rω1 is determined
by the application of pricing equation (8) to the income stream ω1.

11Our discussion of the CAPM follows [Magill and Quinzii, 1995, Chap. 3 Exercise 5].
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This implies the famous CAPM formula (security market line formula) for equilibrium
risk premiums given by

E(RAj )− R̄ =
cov(Rω1 , RAj )

var(Rω1)

(
E(Rω1)− R̄

)
(11)

which asserts that only systematic risk is priced in a CAPM equilibrium. As we see from
this discussion this is an equivalent formulation for the pricing equation (8) formulated
in returns instead of prices.

This pricing relation holds in the CAPM with linear quadratic preferences, even if the
aggregate endowment is not in the span of A. The structure of the pricing relation is not
affected when the span of A does not contain the risk-less income stream, though the
formula changes slightly. In this case the role of the riskless income stream is replaced
by the income stream that is nearest12 in the span of A to the riskless income stream.
The formulas get a slight bit messier because we loose the simple expression for the price
of the risk-less income stream but the structure of the pricing formula and the security
markets line formula remain basically intact.

The pricing relation in a bankruptcy equilibrium changes only slightly compared to
a standard CAPM: First, since the net income transfers that are achievable by trading
securities is a cone and not a linear space, the pricing function is now not linear any
longer. Second the role of the aggregate endowment is now taken by the aggregate
endowment corrected by the aggregate equilibrium losses from credit risk. Since in the
case of linear quadratic preferences the CAPM pricing relation holds no matter whether
or not the aggregate endowment is in the span of the existing securities this leaves the
structure of the pricing relation unchanged. For more general mean variance preferences
this structure would only carry over to the part of the credit loss corrected endowment
that can be spanned by the existing securities (see Oh [1996]). Since credit risk affects
systematic risk, the CAPM-like pricing structure in a bankruptcy equilibrium affects the
price of all securities no matter whether they have a credit risk or not. In equilibrium
credit risk affects risk premia across all securities traded in financial markets. Finally,
unlike in the CAPM-equilibrium without bankruptcy the equilibrium prices of securities
can not be written as functions of the exogenous parameters. This is because aggregate
credit losses depend on portfolio decisions. Only if the equilibrium aggregate short
position in the bond is known, ω̃1 can be determined.

With respect to the equilibrium allocation things are a bit more involved. To see
this consider again the no bankruptcy case with linear quadratic preferences first. In an
equilibrium without bankruptcy where all agents trade with respect to a security matrix
A it can be shown that the equilibrium allocation is given by

x̄i1 = ωi1 + PA

(
(αi1 −

αi0
α0
α1)1− (ωi1 −

αi0
α0
ω1)

)
(12)

where PA denotes the orthogonal projection onto the span of A with respect to the inner
product (3).

12in the norm induced by the probability inner product
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Comparing this allocation with the benchmark Arrow-Debreu (contingent market)
equilibrium with normalized state prices π = (1, π1, . . . , πS) first order conditions imply
that

ρs(α
i
1 − xis) = πsα

i
0 (13)

Thus in equilibrium we must have

ρs
(α1 − ωs)

α0
= πs (14)

Using the first order condition we can derive the vector equilibrium date 1 consumption
in the contingent market equilibrium as

¯̄xi1 =

(
αi1 − α1

αi0
α0

)
1 +

αi0
α0
ω1 (15)

Going back to (12) we now see that under the assumptions of the CAPM with both 1

and ω1 in the span of A, PA1 = 1 and PAω1 = ω1. Thus the CAPM assumptions imply
that x̄i1 = ¯̄xi1.

In this case we see why in the CAPM both the allocation fulfills a linear risk sharing
rule (mutual fund theorem) and is at the same time pareto efficient even if the column
rank of A is smaller than the number of states.

If the riskless security is not anymore in the span of A linear risk sharing stays in
tact but the riskless security is replaced by the income stream in the span of A which
is closest to the riskless income stream. Pareto optimality of risk sharing is lost. If also
the aggregate endowment is not in the span the mutual fund property changes as well.
In this case the endowment can be decomposed in a tradeable part ωt1 which lies in the
span of A and a non-tradeable part ωnt1 which is in the orthogonal complement of the
span of A. For the tradeable part of the endowment we still have a mutual fund theorem.
Using (12) we see that in this case we have

x̄i1 − ωi
nt

1 =

(
αi1 −

αi0
α0
α1

)
PA1 +

αi0
α0
ωt1 (16)

Pareto optimality is also not fulfilled in this case. We can however see from comparing
(12) with (15) that the equilibrium net trade is the net trade that is closest in the span
of A to the net trade that is realized in a Arrow Debreu (contingent market) equilibrium.

The efficiency properties as well as the form of the linear risk sharing rule that carries
over to a bankruptcy equilibrium can be seen more clearly in the light of this discussion.
The riskless income stream will not be generally available for all agents in a bankruptcy
equilibrium. Furthermore, even if we assume that the aggregate endowment ω1 is in the
span of Y this does not guarantee that the aggregate endowment corrected for credit
losses ω̃1 is in the span of Y as well. Thus there is no a priori benchmark or mar-
ket portfolio in a bankruptcy equilibrium. The market portfolio arises endogenously in
equilibrium. Both of these features - no riskless income stream and no a priory bench-
mark portfolio in the span of available securities - imply that a bankruptcy equilibrium
allocation cannot be pareto optimal.
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A linear risk sharing rule carries over in the sense that the equilibrium consumption
net of the non tradeable part of the individual endowment fulfills an approximate linear
risk sharing rule for agents long, short and inactive in the bond. The additional factor
that enters the equation comes from the fact that for some agents the constraints on
the bond holdings may become binding. In the limit for bankruptcy risk going to zero
(r1 going to 1) the bankruptcy equilibrium looks like a generalized CAPM equilibrium
without specific assumptions about whether 1 or ω1 is in the span of existing securities.

6. Endogenous Credit Risk

In this section we briefly discuss the standard analysis of portfolio credit risk (see McNeil
et al. [2005]) and its application in capital regulation from the perspective of our model.
In the standard analysis a portfolio credit risk model is a mapping from a set of individual
credit instrument characteristics and market parameters into a loss distribution for the
portfolio. In capital adequacy regulation this analysis is applied to the calibration of risk
weights for different asset classes. The basic idea is that weights are calibrated in such a
way that the capital contribution of each asset class is proportional to this asset class’s
contribution to the 99.9 % Value-at-Risk of the portfolio.13 The capital calibrated in
this way should then be able to support a portfolio with this risk profile in the sense
that it is able to absorb all losses within the VaR range.

If credit risk is endogenous like in our model such an approach to risk weight cali-
bration would not work. The reason is simply that in an equilibrium model credit risk
analysis differs from a decision problem under risk, because the parameters of credit
instruments depend on the equilibrium. Thus any imposition of risk weights that con-
strain individual behavior in some way will change the instrument parameters and thus
the loss distribution. In such an environment risk weight calibration can soon become a
fairly intractable problem.

To see this connection more clearly let us discuss the standard approach to credit risk
modeling a bit more precisely and translate the concepts into the general equilibrium
model. The standard approach usually considers a portfolio of exposures over a fixed
time horizon. The exposures have a fixed recovery rate and the default of each creditor
happens with a certain probability before the time horizon. To take into account default
correlation, credit risk models usually assume that default probabilities depend on a
common factor. For example, in the famous single factor model (see Schönbucher [2000])
asset values of creditors at the time horizon are dependent on a common factor and some
idiosyncratic noise term. The default event occurs when asset values decline below a
certain threshold. The credit risk parameters determine a loss distribution. Risk weights
for asset classes are determined such that they are proportional to the contribution of
assets in each class to some Value at Risk level in the loss distribution.

13To make this description more precise several technical qualifications have to be added. What is taken
as the base for risk weight calibration under the Basel II advanced internal rating based approach
is the asymptotic contribution of a specific risk to the 99.9 % VaR of the portfolio in a one-factor
Gaussian threshold model with a specific asset correlation parameter. For a good reference, see Gordy
[2001]
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A portfolio of credit risk instruments occurs in our model at the level of the aggregate
economy or at the level of the clearing house. Creditors are the agents who hold a short
position in the bond. The clearing house holds at t = 0 a fixed claim with credit risk at
t = 1 on each of these agents. Credits are financed by receipts from bond investors at
t = 0. The clearing house has obligations to bond investors at t = 1. These obligations
are fulfilled out of revenues from the creditors. The probability of default of a creditor i
at time t = 0 in our case depends on the equilibrium because it is given by the probability
that agent i plans a negative consumption at the time horizon t = 1. This probability
is the sum of all ρs where such a negative consumption would occur in equilibrium.
The recovery rate for each creditor in a particular state of the world is the ratio of
what he actually pays and what he promises and thus is also something determined in
equilibrium. The pooled or average recovery rate in the portfolio is r1.

Assume that an expert committee is charged with prescribing a risk sensitive amount of
equity against the portfolio of bonds the clearing house has bought from creditors at t =
0. The expert committee decides to achieve risk sensitivity by calibrating weights for each
creditor such that the equity amount to be issued against the amount of loans granted to
creditor i reflects creditor i′s contribution to the 99% Value at Risk of the loan portfolio.
The committee has a sufficiently long history of data generated by bankruptcy equilibria
which differ only by some idiosyncratic noise. Based on these data the committee comes
up with estimated parameter values for the probability of default of each creditor, his
exposure at default as well as the recovery rate. Assuming a credit risk model they
would calculate a loss distribution for the clearing house and engineer an equity buffer
that requires to issue wi of equity against each unit of bond issued to creditor i. The
contribution factor wi is calibrated such that it corresponds to the marginal contribution
to the 99% VaR under the estimated loss distribution based on the historical data.

The budget constraint of agents would change in two ways: Beyond the bond and the
securities yj we would now have a new security that promises in each state a share of the
net worth from the difference between what is received from creditors and what is payed
to bond investors. If this net worth becomes negative the clearing house is bankrupt and
the losses are distributed proportionally to the bond holders. If this security is not in the
span of existing securities the transfer space changes. The expectation about the recovery
rate r1 now depends on the vector of risk weights, because these weights determine the
amount of equity issued by the clearing house and thus the threshold beyond which bond
holders have to share in credit losses. Both effects change relative prices of securities. As
a consequence individual decisions as well as the aggregate consequences change and the
parameters with which a credit loss distribution has been estimated are now different. In
a world with endogenous credit risk, risk weight calibration becomes thus an extremely
involved if not entirely intractable problem. But of course risk weighting can only work,
if we can get the numbers on the weights (approximately) right. In a world where
the parameters of credit risk are endogenous risk weight calibration according to the
standard procedures is problematic if not flawed.

In the context of the model, we can also see more clearly that the question whether
risk weight calibration for capital adequacy requirements is good or bad is not well posed
(see Hellwig [2010]). As long as the precise objectives of the regulation remains unclear
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this question can not be answered in a meaningful way. We need a broader framework
modeling the economics of credit risk to see more clearly what are the economic costs of
credit risk, by which mechanisms precisely credit risk imposes costs on society at large
and how it might be regulated. Hellwig [2010] points out that the buffer story of bank
capital is only one of at least three conflicting versions about the mechanisms by which
capital standards might influence the risk of a banking system.

Our model provides a general equilibrium framework in which questions of efficiency,
the optimality of risk allocation from the viewpoint of society at large (welfare) can
be addressed in principle. The seminal literature on credit risk in general equilibrium
has indeed made the claim that the possibility of defaulting on loans may be welfare
enhancing from an ex-ante viewpoint (see Dubey et al. [2005], Zame [1993]). The mech-
anism by which this welfare enhancement comes about is based on risk transfer options
the traded security structure allows for in an incomplete markets setting. An extreme
example would be as follows: If we had no financial instruments at all and then got
a possibility to save and borrow, even if in some states a default and the dead-weight
loss from punishment had to be incurred, the benefits from this possibility to reallocate
income across time and states might be so large that they outweigh these costs. Exam-
ples given by Dubey et al. [2005] suggest that there might even be an optimal amount
of credit risk for the economy as a whole. It is however not clear what would be the
appropriate instrument to implement such an optimal amount. Our framework provides
a starting point to look deeper into this question. This is something we would like to
analyze in future research.

Thinking about credit risk in this way also raises the deeper question whether the way
credit risk is modeled here captures in a useful way the salient features of the economic
costs of default that occur in practice. Spanning arguments might in this respect be not
the most important thing. Perhaps the length of the time span resources are left idle
while the redistribution of claims and a future use of the assets has to be decided is an
aspect much more crucial for the social costs of default than the spanning considerations
highlighted in the model. In the model, even though defaults occur, the resolution of
default is entirely without frictions. There is thus perhaps a need to formulate not
only models that make the existing literature on credit risk in general equilibrium more
tractable but also for models that highlight the frictions of resolving a bankruptcy as
the key economic costs of credit risk.

7. Conclusions

This paper contributes to the literature about default in general equilibrium. It suggests
a framework that allows us to use the central ideas of this literature while providing
enough structure to describe equilibrium prices and allocations and going beyond ab-
stract existence results and fully parametrized examples. We believe that using this
approach we can mobilize the conceptual power of general equilibrium thinking for fi-
nancial stability analysis. This power stems from the focus on the systemic aspects of
economic interaction. This is highly needed in financial stability analysis where many
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of the tools and concepts used by regulators and policy makers look at risk analysis as
a game against nature.

Taking the Capital Asset Pricing Model (CAPM) as a starting point, we develop a
general equilibrium model of credit risk which embeds the CAPM as a special case. We
describe the structure of equilibrium security prices and allocations in the presence of
credit risk. While prices can be described in a very similar way than in the CAPM credit
risk in the economy affects risk premia of all securities traded in the market. Allocations
in a bankruptcy equilibrium retain some similarity with the mutual fund structure in
the CAPM but the efficiency properties of a CAPM equilibrium are lost.

We apply our framework to an analysis of the prevailing thinking about credit risk
in the regulatory debate. While in this debate credit risk is conceptually thought of as
exogenous our model shows a world where all the parameters of credit risk – probability
of default, exposure at default and recovery rate – are endogenous. We discuss the idea
of engineering loss absorption buffers of equity for credit losses by designing risk weights
for asset classes. We show that in a world of endogenous credit risk the approach to
calibrating risk weights is problematic and potentially intractable. From a more general
perspective our paper provides a framework in which the more fundamental question
about what would in principle be the right approach to regulate credit risk can be
addressed. Building on the results derived in this paper, we plan to tackle this question
in subsequent research.

The policy debate on regulation still has very weak conceptual foundations. We hope
that with this paper we can make a contribution to the attempts to improve this situa-
tion.
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A. Appendix

A.1. Proof of Lemma 1:

We can apply the same arguments as in the proof of Magill and Quinzii [1995] theorem
9.3. (iii). The only twist in our case is that the inequality πτ ≤ 0 cannot be turned into
an equality because τ ∈ C does not imply that −τ ∈ C. �

A.2. Proof of Lemma 2:

Suppose first the consumer problem max{ui(xi) |xi ∈ Bi(q̄, r̄1,ωi)} has a solution x̄i =
ωi + T z̄i such that (x̄i0, x̄

i
1) ∈ X but the financial market admits an arbitrage. Then

there is a zi ∈ Z such that Tzi ≥ 0 and Tzi 6= 0. Thus the consumption plan xi :=
ωi + T z̄i + Tzi fulfills xi ≥ x̄i and xi 6= x̄i. By monotonicity of ui on X we have
ui(xi) > ui(x̄)i but then x̄i can not be a solution to the consumer optimization problem.

Now assume that the financial market is arbitrage-free. Then, by Lemma 1 there
is a π ∈ C◦ ∩ RS+1

++ with 〈π, τ 〉 ≤ 0. Define the corresponding contingent budget set
Bi(π) := {xi ∈ X | 〈π, (xi − ωi)〉 ≤ 0}. Using that X is bounded from below, it can
be shown (cf. [Magill and Quinzii, 1995, Proposition 7.3]) that Bi(π) is compact. Since
Bi(q̄, r̄1,ωi) is a closed subset of Bi(π) it is compact, too. Thus, the maximization of
the continuous utility function ui on Bi(q̄, r̄1,ωi) has a solution. �

A.3. Proof of Lemma 3:

We partition the matrix T and the portfolio vector zi into long-bond, short-bond, and
equity trades by T = (Tb+, Tb−, Te) and zi = (zib+, z

i
b−, z

i
e)
T , respectively. Using Lagrange

multipliers πi ∈ R1+S , σib+ ≥ 0, and σib− ≥ 0, The KKT conditions for the minimization
of the Lagrange function

Li(xi, zi,πi, σib+, σ
i
b−) = −ui(xi) + 〈πi,xi − ωi − Tzi〉 − σib+zib+ − σib−zib−

imply that

〈∇ui(x̄i), Te〉 = (0, . . . , 0),

〈∇ui(x̄i), Tb+〉 = −σib+ ≤ 0, and

〈∇ui(x̄i), Tb−〉 = −σib− ≤ 0,

from which follows that ∇ui(x̄i) ∈ C◦. Since the optimization problem is convex, the
KKT conditions are also sufficient. �

A.4. Proof of Proposition 2:

The gradient of the linear quadratic utility function fulfills in the equilibrium allocation
x̄i according to Lemma 3

〈∇ui(x̄i), τ 〉 ≤ 0 ∀τ ∈ C.
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Summing up all agent’s equilibrium gradients we define the vector

γ :=
I∑
i=1

∇ui(x̄i) = (α0, α11− (ω1 − d1))T ,

where d1 =
∑I

i=1 d
i
1 is the aggregate credit loss of all agents. Still we have 〈γ, τ 〉 ≤

0 ∀τ ∈ C. Since any trade τ ∈ C can be decomposed as τ = (−c(m),m) we get for
γ̄ := 1

α0
γ that γ̄1 = α1

α0
1− 1

α0
ω̃1 and c(m) ≥ 〈γ̄1,m〉, which proves the lemma. �

A.5. Proof of Proposition 3:

Suppose agent i goes long in the bond. Define her trading matrix by Tlong =

(
−qb qe
r1 Y

)
.

From the proofs of lemma A.3 and proposition A.4 we know that

〈T Tlong,∇ui(x̄i)〉 =

(
0
0

)
and (17)

〈T Tlong,γ〉 =

(
−σb+

0

)
, (18)

where ∇ui(xi) = (αi0, α
i
1 − xi1)T and γ = (α0, α11 − ω̃1)T . Divide equation (17) by αi0

and equation (18) by α0, subtract the equations and multiply the result by αi0 again.
With τ̄ i1 := x̄i1 − ωi1 this gives

〈Y T
b+, τ̄

i
1〉 = 〈Y T

b+, (α
i
1 −

αi0
α0
α1)1− (ωi1 −

αi0
α0
ω̃1)〉 − αi0

α0

(
σb+
0

)
.

As span(Y ) ∩ RS+ = 0 (i. e. assumption A5) holds, we can write(
σb+
0

)
= 〈Y T

b+, σb+
r1 − PY (r1)

||r1 − PY (r1)||2
〉 = 〈Y T

b+, σb+r1e〉.

Now, since 〈Y T
b+, v1〉 = 〈Y T

b+, PYb+(v1)〉 for any vector v1 ∈ RS , it follows that

τ̄ i1 = PYb+

(
(αi1 −

αi0
α0
α1)1− (ωi1 −

αi0
α0
ω̃1)− σb+

αi0
α0
r1e

)
.

Finally, since r1 − PY (r1) ∈ span(Yb+), the result follows.
The results for agents going short and for agents that do not trade in the bond are

proved similarly. �

A.6. Proof of Proposition1:

Before we proof the proposition we have to establish a number of auxiliary results. We
first always assume that r1 6= 0 and deal with the case r1 = 0 separately.
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Define the matrices W = [r1|Y ] and V = [1|Y ]. For any r1 ∈ [0, 1]S define the set of
arbitrage-free security prices at r1 by

Q(r1) = {q ∈ RJ+1
++ | ∃π ∈ RS++ πW ≤ q ≤ πV }

By Lemma (2) the consumer problem is well defined for any q ∈ Q(r1).
We begin with the characterization of the optimal decisions of agents.

Lemma 4. When q ∈ Q(r1) the decision problem of each agent has a unique solution
(x̄i, z̄i) that satisfies z̄ib+z̄

i
b− = 0, i.e. at each profile of optimal decisions the set of agents

is partitioned in agents long, agents short and agents inactive in the bond market.

Proof: The fact that at an optimal decision an agent is either long, short or inactive
in the bond market can be shown directly from the KKT conditions which we have
derived in Lemma (A.3). If zib+ > 0 and zib− > 0 then σib+ = 0 and σib− = 0. But
then 〈∇ui(x̄i), Tb+〉 = 〈∇ui(x̄i), Tb−〉. This is possible only if there is no bankruptcy in
equilibrium. In terms of the model this means r1 = 1. If on the other hand zib+ > 0 and
zib− = 0 or zib+ = 0 and zib− > 0 then we have either

〈∇ui(x̄i), Tb+〉 = 0 and

〈∇ui(x̄i), Tb−〉 ≤ 0

or

〈∇ui(x̄i), Tb+〉 ≤ 0 and

〈∇ui(x̄i), Tb−〉 = 0

Both systems are always compatible because r1 ∈ [0, 1]S . If zib+ = 0 and zib− = 0 then
both σib+ > 0 and σib− > 0. In this case zib+ = 0 and zib− = 0 is the optimal decision
because any investment costs more than the net present value of its future payments or
any short position creates less value today than has to be paid back tomorrow. Therefore
any optimal solution to the consumer problem has the property that a consumer is either
long or short or inactive in the bond market but he is never simultaneously long and
short in the bond.

By assumption [A1] the optimal consumption choice x̄i is unique. By assumptions
[A4] and [A5] both the matrices V = [1 Y ] and W = [r1 Y ] have full column rank. As
a consequence the mappings zi 7→ V zi + ωi1 and zi 7→Wzi + ωi1 are injective. The asset
portfolios are thus uniquely determined by the solution to the equations

Wzi(q; r1) = xi1(q; r1)− ωi1
V zi(q; r1) = xi1(q; r1)− ωi1

�
We define the budget correspondence Bi 7→ RS+1 by

Bi(q; r1) = {xi ∈ RS+1 | ∃zi ∈ Z xi − ωi ≤ Tzi Tzie + ωi ≥ 0}
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Lemma 5. For any r1 ∈ [0, 1]S, the budget correspondence is continuous and xi(q; r1)
and zi(q; r1) are continuous functions of q.

Proof: By Lemma (2) if q ∈ Q(r1) then Bi(q; r1) is compact. Let qn be any sequence
in Q(r1) converging to q̄ and xin(qn; r1) ∈ Bi(q; r1). Then by definition of the budget
correspondence there is a zin(qn; r1) such that xin(qn; r1)−ωi ≤ Tzin and Tzien +ωi ≥ 0.
Define tn = Tzin. tn must be bounded. Assume it was unbounded then limn→∞ ‖tn‖ =
+∞. Multiply the budget constraint with 1/‖tn‖. Since the budget is bounded from
below the right hand side converges to a vector v with ‖v‖ = 1 while the left hand side
converges to 0. This is a contradiction to the no arbitrage condition which requires that
C∩RS+1

++ = ∅. Thus tn is a bounded sequence and thus has a convergent subsequence. By
Hildenbrand and Kirmann [1991] Theorem AIII.1 the budget correspondence is uhc. The
correspondence is also lhc. Since ωi ∈ X ∩ RS+1

++ the correspondence bi(q; r1) = {xi ∈
RS+1 | ∃zi ∈ Z xi − ωi < Tzi Tzie + ωi > 0} is non-empty. Let xin and zin denote
sequences with xin → x̄ and zin → z̄, where x̄ ∈ Bi(q; r1) for some z. Then for every qn

such that qn → q̄ for n large enough xin − ωi < Tzin and Tzien + ωi > 0. Thus xin ∈
bi(q; r1). Therefore bi(q; r1) is lhc at q̄. By [A4] and [A5] Bi(q; r1) = cl bi(q; r1). Since
the closure of a lhc correspondence is also lhc, the budget correspondence is lhc. Since the
budget correspondence is uhc and lhc it is continuous. Since xi(q; r1) = arg max ui(xi)
on Bi(q; r1) it follows from the Berge Maximum Theorem (see for instance Border [1985])
that xi(q; r1) is continuous on Q(r1). Since zi(q; r1) is unique by Lemma (4) zi(q; r1) is
also continuous on Q(r1). �

Lemma 6. Let zi0(q; r1) = xi0(q; r1)−ωi0. Define the individual excess demand functions
by f i(q; r1) =

(
zi0(q; r1), zi(q; r1)

)
. f i(q; r1) is

(i) continuous on Q(r1)

(ii) homogeneous of degree 0: f i(λq; r1) = f i(q; r1) for all λ > 0 for all q > 0.

(iii) bounded below: Define A = [r1|−1|Y ].
(
zi0(q; r1), Azi(q; r1)

)
≥ (−ωi0,−(ωi1 +ω1))

for all q ∈ Q(r1).

(iv) fulfills Walras law qf i(q; r1) = 0 for all q ∈ Q(r1).

(v) If qn is a sequence in Q(r1) such that qn → q̄ ∈ ∂Q(r1) or diverging,
i.e. ‖qn‖ → ∞ then (zi0(q; r1), zi(q; r1))→

(
z̄i0, z̄

i
)

such that ωi + Tz(q̄, r1) ∈ ∂X
or ‖zi0(q; r1), zi(q; r1)‖ → ∞.

Proof:

(i) The continuity of the individual excess demand function follows directly from
Lemma (5).

(ii) The budget set of agent i is then given by:

Bi(q, r1) =

(xi0, x
i
1) ∈ X

∣∣∣∣∣∣∣∣
∃(zib+, zib−, zie) ∈ Z such that
q0(x

i
0 − ωi0) = −qbzib+ + qbz

i
b− − qezie,

x1 − ω1 = r1z
i
b+ − 1zib− + Y zie, and

ω1 + Y zie ≥ 0


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Note that we have so far used the price normalization q0 = 1, which we could
work with precisely because of homogeneity. Clearly scaling (q0, qb, qe) with λ > 0
leaves the budget set and thus demand functions for consumption and securities
unchanged.

(iii) The lower bounds results in a straightforward way from the definition of X because
xi0 ∈ R+ and xi1 ∈

∏I
i=1[−ω1, ω1).

(iv) Follows from the definition of the budget set and the fact that ui is monotone on
X.

(v) Suppose this claim is not true and f i(qn; r1)→ (z̄i0, z̄
i) such that ωi + T z̄i ∈ intX

where z̄i0 = x̄i0 − ωi0 for some positive x̄i0.

We consider first the case where qn → q̄ ∈ ∂Q(r1). We show that (z̄i0, z̄
i) max-

imizes utility at q̄. Since zi(qn; r1) is an optimal choice, ui(ωi + Tzi(qn; r1)) ≥
ui(ωi). Assume that (z̄i0, z̄

i) is not optimal at q̄. Then there exists a (z̃i0, z̃
i)

with ui(ωi + T z̃i(q̄; r1) > ui(ωi + T z̄i(q̄; r1)). Since ui and zi(q; r1) are contin-
uous there exists a N ∈ N such that for all n > N there is a zi(qn, r1) with
ui(ωi + Tzi(qn, r1)) > ui(ωi + T z̄i) such that zi(qn, r1)) is affordable at qn. By
continuity then ui(ωi + T z̃i(qn, r1)) > ui(ωi + Tzi(qn, r1)) for n sufficiently large,
contradicting the optimality of zi(qn, r1)). Thus (z̄i0, z̄

i) must be optimal at q̄ but
since q̄ is an arbitrage price it is not possible that (z̄i0, z̄

i) is an interior solution by
Lemma (2). Thus the statement can only be false if ‖qn‖ → ∞
Let us now consider the case ‖qn‖ → ∞. We have so far used the price normal-
isation q0 = 1. By homogeneity we now re-normalize prices to q0 = 1/‖qn‖ for
date 0 consumption and qn/‖qn‖ for securities. Suppose that qn/‖qn‖ → q̄ and
‖zi0(qn/‖qn‖; r1), zi(qn/‖qn‖; r1)‖ converges to some (z̄i0, z̄

i) and z̄i is a portfolio
that induces a utility maximizing consumption bundle at (q̄0, q̄). If not then there
exists a (z̃i0, z̃

i) with ui(ωi+T z̃i(q̄; r1)) > ui(ωi+T z̄i(q̄; r1)). Since ui and zi(q; r1)
are continuous there exists a N ∈ N such that for all n > N there is a zi(qn, r1) with
ui(ωi + Tzi(qn, r1)) > ui(ωi + T z̄i) such that zi(qn, r1)) is affordable at at prices
(1/‖qn‖, qn/‖qn‖). By continuity then ui(ωi + T z̃i(qn, r1)) > ui(ωi + Tzi(qn, r1))
for n sufficiently large, contradicting the optimality of zi(qn, r1)). Consequently
z̄i induces a utility maximizing consumption bundle at prices (q̄0, q̄). This leads
to a contradiction, since we have assumed that ‖qn‖ → ∞ it must be the case
that 1/‖qn‖ → 0 so q̄0 = 0 but at this price agents can choose unbounded date 0
consumption.

�
We now define G(q; r1) =

∑I
i=1 f

i(q; r1) as the security aggregate excess demand
function. We want to show the existence of a q∗ such that G(q∗; r1) = 0. We rely on a
result due to Grandmont [1977] derived from Debreu [1956]. See also Border [1985] and
Magill and Quinzii [1995].
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Lemma 7. Let Q̄(r1) ∈ RJ+1 be a closed convex cone which is not a linear space.
Let Q(r1) denote the interior of Q̄(r1) and let Q̂(r1) = {q ∈ Q(r1) | ‖q‖ = 1}. If
G : Q̂(r1) → RJ+1 is a continuous function which satisfies qG(q; r1) = 0 for all q ∈
Q̂(r1) and the boundary property given below holds then there is a q∗ ∈ Q̂(r1) such that
G(q∗; r1) = 0. The boundary property is: If qn → q̄ with q̄ ∈ ∂Q̂(r1) and qn ∈ Q̂(r1) for
all n ∈ N, there exists a q̂ ∈ Q̂(r1) such that for n sufficiently large, q̂G(qn; r1) > 0.

Proof: For a proof of this results see Border [1985] chapter 18. �
Proof of Proposition 1 Define the set

Q̄(r1) = {q ∈ RJ+1
+ | ∃π ∈ RS+1

+ πW ≤ q ≤ πV }

By [A4] and [A5] this is the closure of the set Q(r1). Since Q̄(r1) is also a convex
cone, the set Q̄(r1) is a closed and convex cone. Lemma (7) can therefore be applied to
G(q; r1). Since the individual excess demand functions are homogeneous of degree zero
the aggregate excess demand function G(q; r1) is homogeneous of degree zero we can re-
normalize prices and and consider the restriction to Q̂(r1). This function fulfills Walras
law, because the individual excess demand function fulfill Walras’ law. It therefore
remains to check the boundary property of Lemma (7). Let qn → q̄ with q̄ ∈ ∂Q̂(r1)
and qn ∈ Q̂(r1) for all n ∈ N. Consider q̂ G(qn; r1) for some q̂ ∈ Q̂(r1). In this
case we know from the boundary behavior of individual excess demand functions that
limn→∞G(qn; r1)→ (z̄i0, z̄

i) inducing a consumption plan in the boundary of the feasible
set or limn→∞ ‖G(qn; r1)‖ → ∞. Define the matrix A = [r1,−1, Y ]. Since q̂ ∈ Q̂, we
have the inequality q̂ G(qn; r1) ≥ π̂AG(qn; r1) and π̂ ∈ RS++. Since AG(qn; r1) has
at least one positive element π̂ can always be chosen such that for n sufficiently large
π̂AG(qn; r1) > 0 and thus q̂ G(qn; r1) > 0. In the other case limn→∞ ‖AG(qn; r1)‖ → ∞.
Since AG(qn; r1) is bounded below there must exist some N such that q̂G(qn; r1) > 0
for all n > N . Thus in both cases by Lemma (7), there exists a q∗ ∈ Q̂(r1) such that
G(q∗; r1) = 0.

Now consider the special case r1 = 0 next. In this case every agent expects the bond
to pay zero and given these expectations no trade in the bond is indeed consistent with
an equilibrium in which only securities Y j are traded. But this is just a standard CAPM
equilibrium without a riskless asset which exists by standard results in the literature (see
for instance Dana [1996]). So indeed for every r1 ∈ [0, 1]S there is a q∗ ∈ Q̂(r1) such
that G(q∗; r1) = 0.

Note, however that this is not yet a bankruptcy equilibrium, since r1 ∈ [0, 1]S has
been chosen arbitrary. For arbitrary r1 the equilibrium condition

∑I
i=1 x̄

i+ =
∑I

i=1ω
i

will not be fulfilled.
For any q ∈ Q(r1) define the correspondence R(r1; q) = (r(r1; q), . . . , r(rs; q)) :

[0, 1]S 7→ [0, 1]S by

r(rs; q) =


∑I

i=1 z
i
b−(q;r1)∧(ω

i
s+Ysz

i
e(q;r1))∑I

i=1 z
i
b+(q;r1)

if
∑I

i=1 z
i
b+(q; r1) > 0

[0, 1] otherwise

Note that in a bankruptcy equilibrium the equilibrium condition
∑I

i=1 x̄
i+ =

∑I
i=1ω

i

and the requirement that r1 is a fixed point of R(r1; q), i.e. R(r1; q) = r1, are equivalent.
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To see this, consider the case
∑I

i=1 z
i
b+(q; r1) > 0 first. For any s ∈ S summing

xis = ωis + rsz
i
b+ − zib− + Ysz

i
e

over all agents yields

I∑
i=1

(xis − ωis) =
I∑
i=1

(
rsz

i
b+ − zib− + Ysz

i
e

)
⇐⇒

I∑
i=1

(
(xis ∨ 0) + (xis ∧ 0)− ωis

)
=

I∑
i=1

(
rsz

i
b+ − zib− + Ysz

i
e

)
⇐⇒

I∑
i=1

(
(xis ∨ 0)− ωis

)
=

I∑
i=1

(
rsz

i
b+ − zib− + Ysz

i
e − (xis ∧ 0)

)
In a bankruptcy equilibrium

∑I
i=1

(
(xis ∨ 0)− ωis

)
= 0. By the equivalence derived above

this can be true if an only if
∑I

i=1

(
rsz

i
b+ − zib− − (xis ∧ 0)

)
= 0, since Ys

∑I
i=1 z

i
e = 0.

Now this equation can hold if and only if

rs =

∑I
i=1

(
zib− + (xis ∧ 0)

)∑I
i=1 z

i
b+

=

∑I
i=1

(
xis + zib− ∧ zib−

)∑I
i=1 z

i
b+

Since by Lemma (4) we know that zib+z
i
b− = 0 in equilibrium we can conclude that

rs =

∑I
i=1 z

i
b− ∧ (ωis + Ysz

i
e)∑I

i=1 z
i
b+

If
∑I

i=1 z
i
b+(q; r1) = 0 the bond is not traded and zib+ = 0 as well as zib− = 0 for all

agents, hence any r1 ∈ [0, 1] is a feasible recovery rate.
R(r1; q) is a convex valued correspondence of [0, 1]S into [0, 1]S which has a closed

graph. By the Kakutani fixed point theorem (see Hildenbrand and Kirmann [1991])
there is a fixed point, i.e. there is a r1 ∈ R(r1). Thus for any q ∈ Q(r1) we can
always find an r1 such that r1 ∈ R(r1). In particular we can therefore always find for
q∗ ∈ Q(r1) such that G(q∗; r1) = 0 a r∗1 such that r∗1 ∈ R(r1) which is equivalent to∑I

i=1 x̄
i+(q∗; r∗1) =

∑I
i=1ω

i. It follows therefore that under assumptions [A1]-[A5] there
exists a bankruptcy equilibrium. �
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