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Abstract

Starting from the assumption that firms are more likely to adjust their prices when doing so is more

valuable, this paper analyzes monetary policy shocks in a DSGE model with firm-level heterogeneity. The

model is calibrated to retail price microdata, and inflation responses are decomposed into “intensive”, “ex-

tensive”, and “selection” margins. Money growth and Taylor rule shocks both have nontrivial real effects,

because the low state dependence implied by the data rules out the strong selection effect associated with

fixed menu costs. The response to firm-specific shocks is gradual, though inappropriate econometrics might

make it appear immediate.

Keywords: Nominal rigidity, state-dependent pricing, menu costs, heterogeneity, Taylor rule

JEL classification: E31, E52, D81
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Non-Technical Summary

Sticky prices are an important ingredient in modern dynamic general equilibrium models, including

those used by central banks for policy analysis. But how best to model price stickiness, and to

what extent stickiness of individual prices implies rigidity of the aggregate price level, remains as

controversial as ever. Calvo (1983) proposed — only for simplicity — assuming that the probability

of price adjustment remains constant over time. More realistically, the probability of price adjustment

will be “state-dependent”(it will depend on the current situation of the firm), which is true, for

example, if a firm must pay a constant “menu cost” each time it adjusts its price. This difference

matters: shocks to monetary policy stimulate the real economy strongly in models based on Calvo’s

assumption, whereas Golosov and Lucas (2007) have shown that the real effects of monetary shocks

are very small in a menu cost model.

This paper studies a general model of state-dependent pricing that nests the Calvo (1983) and

menu cost models as two opposite limiting cases. Our setup rests on one fundamental assumption:

firms are more likely to adjust their prices when doing so is more valuable. The parameters of the

relationship between the probability of price adjustment and the value of price adjustment are chosen

so that the distribution of price changes predicted by the model resembles the distribution observed

in recent microeconomic data from the US retail sector. When we choose the parameters this way, we

find that the degree of state dependence is quite low: that is, there is relatively little variation in the

probability of price adjustment. Therefore, when we simulate the effects of monetary policy shocks we

find substantial monetary non-neutrality, with real effects only slightly weaker than the Calvo model

implies.

Allowing the adjustment probability to be state-dependent makes it harder to calculate macroe-

conomic dynamics, because it requires keeping track of the specific situations of all the firms in the

economy; one cannot simply consider a “representative”firm. We employ a recent method for comput-

ing heterogeneous agent economies (Reiter, 2009) which is well-suited to the context of state-dependent

pricing. The method describes the distribution of firms nonparametrically, calculating a histogram of

firm characteristics in each time period.
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Our computational method allows us to calculate how various cross-sectional statistics change

over time. In particular, we decompose inflation into an “intensive margin” relating to the average

desired price change, an “extensive margin” relating to the fraction of firms adjusting, and a “selection

effect” relating to which firms adjust. Our decomposition vindicates the claim of Golosov and Lucas

(challenged by Caballero and Engel, 2007), that the strength of the selection effect is the main reason

why money shocks are so much weaker in the menu cost setup, as compared with other models of

sticky prices.

Our calculations also address a number of issues not considered in previous papers on state-

dependent pricing. We show that the shape and persistence of the macroeconomic response to money

supply shocks depends mainly on the degree of state dependence, not on the degree of autocorrelation

of the money process. Likewise, assuming a realistic degree of state dependence, monetary policy

has strong real effects regardless of whether it is described by a money growth rule or by a Taylor

rule. A final contribution of this paper is to calculate the response of prices to idiosyncratic as well as

aggregate shocks.
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1. Introduction

Sticky prices are an important ingredient in modern dynamic general equilibrium models, including

those used by central banks for policy analysis. But how best to model price stickiness, and to

what extent stickiness of individual prices implies rigidity of the aggregate price level, remains as

controversial as ever. Calvo’s (1983) assumption of a constant adjustment probability is popular for

its analytical tractability, and implies that monetary shocks have large and persistent real effects.

However, Golosov and Lucas (2007, henceforth GL07) have argued that microfounding price rigidity

on a fixed “menu cost”and calibrating to microdata implies that monetary shocks are almost neutral.

This paper calibrates and simulates a general model of state-dependent pricing that nests the Calvo

(1983) and fixed menu cost (FMC) models as two opposite limiting cases, with a continuum of smooth

intermediate cases lying between them. As in Dotsey, King, and Wolman (1999) and Caballero and

Engel (2007), the setup rests on one fundamental property: firms are more likely to adjust their prices

when doing so is more valuable. Implementing this assumption requires the selection of a parameterized

family of functions to describe the adjustment hazard; the exercise is disciplined by fitting the model to

the size distribution of price changes found in recent US retail microdata (Klenow and Kryvtsov 2008;

Midrigan 2008; Nakamura and Steinsson 2008).1 One of the calibrated parameters controls the degree

of state dependence; matching the smooth distribution of price changes seen in microdata requires

rather low state dependence. Therefore, an impulse response analysis of the effects of monetary policy

shocks reveals substantial monetary nonneutrality, with real effects only slightly weaker than the Calvo

model implies.

The impulse response analysis considers a number of issues unaddressed by previous work on state-

dependent pricing. GL07 restricted attention to iid money growth shocks; this paper also considers

the autocorrelated case, and shows that the shape and persistence of responses is primarily determined

by the degree of state dependence, not by the autocorrelation of the driving process. Moreover, this

paper also studies monetary policy governed by a Taylor rule, as opposed to an exogenous money

growth process, which reinforces the conclusion that a calibrated model of state-dependent pricing

1A companion paper, Costain and Nakov (2008), discusses the calibration in greater detail, documenting the steady-
state model’s fit to cross-sectional microdata on price adjustments, both for low and high trend inflation rates.
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has nontrivial real effects. This paper also decomposes inflation into an “intensive margin” relating

to the average desired price change, an “extensive margin” relating to the fraction of firms adjusting,

and a “selection effect” relating to which firms adjust. Our decomposition vindicates the claim of

GL07, which was challenged by Caballero and Engel (2007), that the selection effect is crucial for the

behavior of the FMC model. A fourth contribution of this paper is to calculate the impulse responses

of prices to idiosyncratic as well as aggregate shocks. The paper also implements a recent algorithm

for computing heterogeneous agent economies which is well-suited to modeling state-dependent pricing

but has not yet been applied in this context.

1.1. Relation to previous literature

Most previous work on state-dependent pricing has obtained solutions by strongly limiting the anal-

ysis, either focusing on partial equilibrium (e.g. Caballero and Engel, 1993, 2007; Klenow and Kryvtsov,

2008), or assuming firms face aggregate shocks only (e.g. Dotsey et al., 1999), or making strong as-

sumptions about the distribution of idiosyncratic shocks (e.g. Caplin and Spulber, 1987; Gertler and

Leahy, 2005). But Klenow and Kryvtsov (2008) argue convincingly that firms are frequently hit by

large idiosyncratic shocks. And while heterogeneity may average out in many macroeconomic contexts,

this is not true in the debate over nominal rigidities, because firm-level shocks could greatly alter firms’

incentives to adjust prices. GL07 were the first to confront these issues head on, by studying a menu

cost model in general equilibrium with idiosyncratic productivity shocks. They obtained a striking

near-neutrality result, but their model’s fit to price data is questionable, as our Figure 1 shows. A

histogram based on retail microdata shows a wide range of price adjustments, whereas their FMC

model generates just two sharp spikes of price increases and decreases occurring near the (S,s) bounds.

Other micro facts have been addressed in more recent papers on state-dependent pricing. Eichen-

baum, Jaimovich, and Rebelo (2008) and Kehoe and Midrigan (2010) modeled “temporary” price

changes (sales), assuming that these adjustments are cheaper than other price changes. However, they

ultimately conclude that the possibility of sales has little relevance for monetary transmission, which

depends instead on the frequency of regular non-sale price changes. Guimaraes and Sheedy’s (2010)

model of sales as stochastic price discrimination has the same implication. Thus, since the model
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developed in this paper has no natural motive for sales, it will be compared to a dataset of “regular”

price changes from which apparent sales have been removed. In another branch of the literature,

Boivin, Giannoni, and Mihov (2009) and Mackowiak, Moench, and Wiederholt (2009) calculate that

prices respond much more quickly to idiosyncratic than to aggregate shocks. However, the present

paper performs a Monte Carlo exercise which shows that this finding should be treated with caution.

Remarkably, even when the true response to an idiosyncratic shock fades in and out gradually, the

estimation routine of Mackowiak et al. can erroneously conclude that idiosyncratic shocks have an

immediate, permanent impact on prices.

While matching pricing data makes it essential to allow for firm-specific shocks, this complicates

computation, because the distribution of prices and productivities across firms becomes a relevant

state variable. This paper shows how to compute a dynamic general equilibrium with state-dependent

pricing via the two-step algorithm of Reiter (2009), which calculates steady state equilibrium using

backwards induction on a grid, and then linearizes the equations at every grid point to calculate the

dynamics. This avoids some complications (and simplifying assumptions) required by other applicable

methods. In contrast to GL07, there is no need to assume that aggregate output remains constant after

a money shock. In contrast to Dotsey, King, and Wolman (2008), it more fully exploits the recursive

structure of the model, tracking the price distribution without needing to know who adjusted when.

In contrast to the method of Krusell and Smith (1998), used by Midrigan (2008), there is no need to

find an adequate summary statistic for the distribution. In contrast to Den Haan (1997), there is no

need to impose a specific distributional form. The nonlinear, nonparametric treatment of firm-level

heterogeneity in Reiter’s algorithm makes it straightforward to calculate the time path of cross-sectional

statistics, like our inflation decomposition; the linearization of aggregate dynamics makes it just as

easy to analyze a variety of monetary policy rules or shock processes as it would be in a standard,

low-dimensional DSGE model.

Several other closely related papers have also remarked that an FMC model implies a counterfactual

distribution of price adjustments, in which small changes never occur. They proposed some more

complex pricing models to fix this problem, including sectoral heterogeneity in menu costs (Klenow

and Kryvtsov, 2008), multiple products on the same “menu” combined with leptokurtic technology
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shocks (Midrigan, 2008), or a mix of flexible- and sticky-price firms plus a mix of two distributions of

productivity shocks (Dotsey et al., 2008). This paper proposes a simpler approach: we just assume the

probability of price adjustment increases with the value of adjustment, and treat the hazard function

as a primitive of the model. A family of hazard functions with just three parameters suffices to match

the distribution of price changes at least as well as the aforementioned papers do. Our setup can be

interpreted as a stochastic menu cost model, like Dotsey et al. (1999) or Caballero and Engel (1999);

under this interpretation the hazard function corresponds to the c.d.f. of the menu cost. Alternatively,

our setup can be seen as a model of near-rational behavior, like Akerlof and Yellen (1985), in which

firms sometimes make mistakes if they are not very costly; in this case the hazard function corresponds

to the value distribution of errors.2 Under either interpretation, the key point is that the adjustment

hazard increases smoothly with the value of adjusting, in contrast with the discontinuous jump in

probability implied by the FMC model. An appropriate calibration of the smoothness of the hazard

function yields a smooth histogram of price changes consistent with microdata; this smoothness is

the same property that eliminates the strong selection effect found by GL07. Thus, none of the

complications Dotsey et al. and Midrigan tack on to the FMC framework are crucial for their most

important finding: a state-dependent pricing model consistent with observed price changes implies

nontrivial real effects of monetary shocks, similar to those found under the Calvo framework.

2. Model

This discrete-time model embeds state-dependent pricing by firms in an otherwise-standard New

Keynesian general equilibrium framework based on GL07. Besides the firms, there is a representative

household and a monetary authority that either implements a Taylor rule or follows an exogenous

growth process for nominal money balances.

The aggregate state of the economy at time t, which will be identified in Section 2.3., is called Ωt.

Whenever aggregate variables are subscripted by t, this is an abbreviation indicating dependence, in

equilibrium, on aggregate conditions Ωt. For example, consumption is denoted by Ct ≡ C(Ωt).

2The two interpretations imply slightly different Bellman equations: in the first case, but not in the second, a flow
of menu costs is subtracted out of the firm’s flow of profits.
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2.1. Household

The household’s period utility function is 1
1−γC

1−γ
t −χNt+ν log(Mt/Pt), where Ct is consumption,

Nt is labor supply, and Mt/Pt is real money balances. Utility is discounted by factor β per period.

Consumption is a CES aggregate of differentiated products Cit, with elasticity of substitution ε:

Ct =

{∫ 1

0

C
ε−1
ε

it di

} ε
ε−1

. (1)

The household’s nominal period budget constraint is∫ 1

0

PitCitdi+Mt +R−1t Bt = WtNt +Mt−1 + Tt + Bt−1 + Ut, (2)

where
∫ 1

0
PitCitdi is total nominal consumption. Bt is nominal bond holdings, with interest rate Rt−1;

Tt is a lump sum transfer from the central bank, and Ut is a dividend payment from the firms.

Households choose {Cit, Nt, Bt,Mt}∞t=0 to maximize expected discounted utility, subject to the

budget constraint (2). Optimal consumption across the differentiated goods implies

Cit = (Pt/Pit)
εCt, (3)

so nominal spending can be written as PtCt =
∫ 1

0
PitCitdi under the price index

Pt ≡
{∫ 1

0

Pit
1−εdi

} 1
1−ε

. (4)

Defining inflation as Πt+1 ≡ Pt+1/Pt, the first-order conditions for labor supply, consumption, and

money use can be written as:

χ = C−γt Wt/Pt, (5)

R−1t = βEt

(
C−γt+1

Πt+1C
−γ
t

)
, (6)

1− v′(mt)

C−γt

= βEt

(
C−γt+1

Πt+1C
−γ
t

)
. (7)

2.2. Monopolistic firms

Each firm i produces output Yit under a constant returns technology Yit = AitNit, where Ait is an

idiosyncratic productivity process, AR(1) in logs:

logAit = ρ logAit−1 + εait, (8)
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and labor Nit is the only input. Firm i is a monopolistic competitor that sets a price Pit, facing the

demand curve Yit = CtP
ε
t P

−ε
it , and must fulfill all demand at its chosen price. It hires in a competitive

labor markets at wage rate Wt, generating profits

Uit = PitYit −WtNit =

(
Pit − Wt

Ait

)
CtP

ε
t P

−ε
it ≡ U(Pit, Ait,Ωt) (9)

per period. Firms are owned by the household, so they discount nominal income between times t and

t+ 1 at the rate β P (Ωt)u′(C(Ωt+1))
P (Ωt+1)u′(C(Ωt))

, consistent with the household’s marginal rate of substitution.

Let V (Pit, Ait,Ωt) denote the nominal value of a firm at time t that produces with productivity

Ait and sells at nominal price Pit. Prices are sticky, so Pit may or may not be optimal. However, we

assume that whenever a firm adjusts its price, it chooses the optimal price conditional on its current

productivity, keeping in mind that it will sometimes be unable to adjust in the future. Hence, the value

function of an adjusting firm, after netting out any costs that may be required to make the adjustment,

is V ∗(Ait,Ωt) ≡ maxP V (P,Ait,Ωt). For clarity, it helps to distinguish the firm’s beginning-of-period

price, P̃it ≡ Pit−1, from the end-of-period price at which it sells at time t, Pit, which may or may not

be the same. The distributions of prices and productivities across firms at the beginning and end of t

will be denoted Φ̃t(P̃ , A) and Φt(P,A), respectively.

The gain from adjusting at the beginning of t is:

D(P̃it, Ait,Ωt) ≡ max
P

V (P,Ait,Ωt)− V (P̃it, Ait,Ωt). (10)

The main assumption of our framework is that the probability of price adjustment increases with

the gain from adjustment. The weakly increasing function λ that governs this probability is taken

as a primitive of the model. Invariance of this function requires that its argument, the gain from

adjustment, be written in appropriate units. As was mentioned in the introduction, this setup can

be interpreted as a stochastic menu cost model, or as a model of near-rational price decisions. In the

case of stochastic menu costs, the labor effort of changing price tags or rewriting the menu is likely

to be a large component of the cost; in the near-rational case, the adjustment probability should be

related to the labor effort involved in obtaining new information or recomputing the optimal price.

Therefore, under either interpretation, the most natural units for the argument of the λ function are

units of labor time. Thus, the probability of adjustment will be defined as λ
(
L
(
P̃it, Ait,Ωt

))
, where
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L
(
P̃it, Ait,Ωt

)
= D( ˜Pit,Ait,Ωt)

W (Ωt)
expresses the gains from adjusting in time units by dividing by the wage.

The functional form for λ will be specified in Sec. 2.2.1.

The value of selling at any given price equals current profits plus the expected value of future

production, which may or may not occur at a new, adjusted price. Given the firm’s idiosyncratic

state variables (P,A) and the aggregate state Ω, and denoting next period’s variables with primes, the

Bellman equation under the near-rational interpretation of the model is

V (P,A,Ω) =

(
P − W (Ω)

A

)
C(Ω)P (Ω)εP−ε + (11)

βE

{
P (Ω)C(Ω′)−γ

P (Ω′)C(Ω)−γ

[(
1− λ

(
D(P,A′,Ω′)

W (Ω′)

))
V (P,A′,Ω′) + λ

(
D(P,A′,Ω′)

W (Ω′)

)
max
P ′

V (P ′, A′,Ω′)

]∣∣∣∣A,Ω} .

Here the expectation refers to the distribution of A′ and Ω′ conditional on A and Ω. Note that on the

left-hand side of the Bellman equation, and in the term that represents current profits, P refers to a

given firm i’s price Pit at the end of t, when transactions occur. In the expectation on the right, P

represents the price P̃i,t+1 at the beginning of t+ 1, which may (probability λ) or may not (1− λ) be

adjusted prior to time t+ 1 transactions to a new value P ′.

The right-hand side of the Bellman equation can be simplified by using the notation from (9), and

the rearrangement (1− λ)V + λmaxV = V + λ(maxV − V ):

V (P,A,Ω) = U(P,A,Ω) + βE

{
P (Ω)C(Ω′)−γ

P (Ω′)C(Ω)−γ
[V (P,A′,Ω′) +G(P,A′,Ω′)]

∣∣∣∣A,Ω} , (12)

where

G(P,A′,Ω′) ≡ λ

(
D(P,A′,Ω′)

W (Ω′)

)
D(P,A′,Ω′). (13)

The terms inside the expectation in the Bellman equation represent the value V of continuing without

adjustment, plus the flow of expected gains G due to adjustment. Since the firm sets the optimal price

whenever it adjusts, the price process associated with (12) is

Pit =

⎧⎪⎨⎪⎩
P ∗(Ait,Ωt) ≡ argmaxP V (P,Ait,Ωt) with probability λ

(
D( ˜Pit,Ait,Ωt)

W (Ωt)

)
P̃it ≡ Pi,t−1 with probability 1− λ

(
D( ˜Pit,Ait,Ωt)

W (Ωt)

) . (14)

Equation (14) is written with time subscripts for additional clarity.
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2.2.1. Alternative sticky price frameworks

Our assumptions require the function λ to be weakly increasing and to lie between zero and one.

The paper focuses primarily on the following functional form:

λ (L) ≡ λ

λ+ (1− λ)
(
α
L

)ξ (15)

with α and ξ positive, and λ ∈ [0, 1]. This function equals λ when L = α, and is concave for ξ ≤ 1 and

S-shaped for ξ > 1 (see the second panel of Fig. 1). The parameter ξ effectively controls the degree of

state dependence. In the limit ξ = 0, (15) nests Calvo (1983), with λ (L) = λ, making the adjustment

hazard literally independent of the relevant state variable, which is L. At the opposite extreme, as

ξ → ∞, λ (L) becomes the indicator 1 {L ≥ α}, which equals 1 whenever L ≥ α and is zero otherwise.

This implies very strong state dependence, in the sense that the adjustment probability jumps from 0

to 1 when the state L passes the threshold level α. For all intermediate values 0 < ξ < ∞, the hazard

increases smoothly with the state L. In this sense, choosing ξ to match microdata means finding the

degree of state dependence most consistent with firms’ observed pricing behavior.

TABLE 1 ABOUT HERE

The combination of Bellman equation (12) with (13) is based on a near-rational interpretation of our

setup; for 0 < ξ < ∞ this version of the model will be called “SSDP”, for “smoothly state-dependent

pricing”. However, (12) nests several other models too, by appropriate choice of the gains function G

and the hazard function λ, as Table 1 shows. Subtracting a flow of menu costs E(κ|κ < L) ≡ ∫ L

0
κλ(dκ)

out of the gains G converts the SSDP model into a stochastic menu cost (SMC) model. The FMC

model sets the adjustment probability to a step function, subtracting a constant menu cost α out of

G; it is the limit of the SMC model as ξ → ∞. The Calvo model is derived both from SSDP and from

SMC as ξ → 0.3 An alternative hazard function derived from Woodford (2008) is also considered.

3In the limit of SMC as ξ → 0, the menu cost is zero with probability λ and infinite with probability 1− λ, which is
when firms do not adjust. The flow of menu costs paid is therefore zero.
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2.3. Monetary policy and aggregate consistency

Two specifications for monetary policy are compared: a money growth rule and a Taylor rule. In

both cases the systematic component of monetary policy is perturbed by an AR(1) process z,

zt = φzzt−1 + εzt , (16)

where 0 ≤ φz < 1 and εzt ∼ i.i.d.N(0, σ2
z). Under the money growth rule, which is analyzed first to

build intuition and for comparison with previous studies, z affects money supply growth:

Mt/Mt−1 ≡ μt = μ∗ exp(zt). (17)

Alternatively, under a Taylor interest rate rule, which is a better approximation to actual monetary

policy, the nominal interest rate follows

Rt

R∗
= exp(−zt)

((
Pt/Pt−1

Π∗

)φπ
(
Ct

C∗

)φc

)1−φR (
Rt−1
R∗

)φR

, (18)

where φc ≥ 0, φπ > 1, and 0 < φR < 1, so that when inflation Πt exceeds its target Π
∗ or consumption

Ct exceeds its target C
∗, Rt tends to rise above its target R∗ ≡ Π∗/β. For comparability between the

two monetary regimes, the inflation target is set to Π∗ ≡ μ∗, and the rules are specified so that in both

cases, a positive z represents an expansive shock.

Seigniorage revenues are paid to the household as a lump sum transfer Tt, and the government

budget is balanced each period, so that Mt = Mt−1 + Tt. Bond market clearing is simply Bt = 0.

When supply equals demand for each good i, total labor supply and demand satisfy

Nt =

∫ 1

0

Cit

Ait

di = P ε
t Ct

∫ 1

0

P−εit A−1it di ≡ ΔtCt. (19)

Equation (19) also defines a measure of price dispersion, Δt ≡ P ε
t

∫ 1

0
P−εit A−1it di, weighted to allow for

heterogeneous productivity. As in Yun (2005), an increase in Δt decreases the goods produced per

unit of labor, effectively acting like a negative aggregate shock.

At this point, all equilibrium conditions have been spelled out, so an appropriate aggregate state

variable Ωt can be identified. At time t, the lagged distribution of transaction prices Φt−1(P,A) is

predetermined. Knowing Φt−1, the lagged price level can be substituted out of the Taylor rule, using

Pt−1 =
[∫∫

P 1−εΦt−1(dP, dA)
]1/(1−ε)

. It can thus be seen that Ω ≡ (zt, Rt−1,Φt−1) suffices to define
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the aggregate state. Given this Ωt, equations (4), (5), (6), (8), (9), (10), (12), (13), (14), (16), (18),

and (19) together give enough conditions to determine the distributions Φ̃t and Φt, the price level Pt,

the functions Vt ≡ V (P,A,Ωt), Ut, Dt, and Gt, and the variables Rt, Ct, Nt, Wt, and zt+1. Thus they

determine the next state, Ωt+1 ≡ (zt+1, Rt,Φt).

Under a money growth rule, the time t state can instead be defined as Ωt ≡ (zt,Mt−1,Φt−1).

Substituting (7) for (6) and (17) for (18), knowing Ωt ≡ (zt,Mt−1,Φt−1) suffices to determine Φ̃t, Φt,

Pt, Vt, Ut, Dt, Gt, Ct, Nt, Wt, zt+1, and Mt. Thus the next state, Ωt+1 ≡ (zt+1,Mt,Φt(P,A)), can be

calculated.

3. Computation

The fact that this model’s state variable includes the distribution Φ, an infinite-dimensional object,

makes computing equilibrium a challenge. The popularity of the Calvo model reflects its implication

that general equilibrium can be solved up to a first-order approximation by keeping track of the

average price only. Unfortunately, this result typically fails to hold if pricing is state-dependent;

instead, computation requires tracking the whole distribution Φ.

Equilibrium will be computed following the two-step algorithm of Reiter (2009), which is intended

for contexts, like this model, with relatively large idiosyncratic shocks and also relatively small aggre-

gate shocks. In the first step, the aggregate steady state of the model is computed on a finite grid,

using backwards induction.4 Second, the stochastic aggregate dynamics are computed by lineariza-

tion, grid point by grid point. In other words, the Bellman equation is treated as a large system of

expectational difference equations, instead of as a functional equation.

3.1. Detrending

Calculating a steady state requires detrending to make the economy stationary. Here it suffices

to scale all nominal variables by the aggregate price level, defining the real wage and money supply

wt = Wt/Pt and mt ≡ Mt/Pt, and the real prices at the beginning and end of t, p̃it ≡ P̃it/Pt

4Actually, Reiter’s algorithm permits calculation of the aggregate steady state using a variety of finite-element
methods; we choose backwards induction on a grid since it is a familiar and transparent procedure.
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and pit ≡ Pit/Pt. The beginning-of-t and end-of-t distributions will be written as Ψ̃t(p̃it, Ait) and

Ψt(pit, Ait), respectively. At the end of t, when goods are sold, the real price level is one by definition:

1 =

{∫∫
p1−εt−1Ψt(dp, dA)

}1/(1−ε)
. (20)

For this detrending to make sense, the nominal price level Pt must be irrelevant for real quantities,

which must instead be functions of a real state variable Ξt that is independent of nominal prices and

the nominal money supply. A time subscript on any aggregate variable must now denote dependence

on the real state, implying for example wt = w(Ξt) =W (Ωt)/P (Ωt) and Ct = C(Ξt) = C(Ωt). While

the price level will cancel out, inflation will still appear in the model, and must be determined by real

variables, satisfying Πt = Π(Ξt−1,Ξt) = P (Ωt)/P (Ωt−1).

A similar property applies to the value function and profits, which must be homogeneous of degree

one in prices. Thus, define real profits u and real value v as follows:

u (p, A,Ξ) = u (P/P (Ω), A,Ξ) ≡ P (Ω)−1U(P,A,Ω), (21)

v (p, A,Ξ) = v (P/P (Ω), A,Ξ) ≡ P (Ω)−1V (P,A,Ω). (22)

To verify homogeneity, divide through the nominal Bellman equation (12) by P (Ω) to obtain

v(p, A,Ξ) = u(p, A,Ξ) + βE

{
C(Ξ′)−γ

C(Ξ)−γ

[
v

(
p

Π(Ξ,Ξ′)
, A′,Ξ′

)
+ g

(
p

Π(Ξ,Ξ′)
, A′,Ξ′

)]∣∣∣∣A,Ξ} , (23)

using the definitions

g (p̃, A,Ξ) ≡ λ

(
d (p̃, A,Ξ)

w(Ξ)

)
d (p̃, A,Ξ), (24)

d (p̃, A,Ξ) ≡ max
p

v(p, A,Ξ)− v(p̃, A,Ξ), (25)

which satisfy g (p̃, A,Ξ) = G(P (Ω)p̃, A,Ω)/P (Ω) and d (p̃, A,Ξ) = D(P (Ω)p̃, A,Ω)/P (Ω).5 This de-

trending implies that when a firm’s nominal price remains unadjusted at time t, its real price is deflated

5In deriving (23) from (12), initially a term of the form C(Ω′)−γ

P (Ω′)C(Ω)−γ V (P,A′,Ω′) appears on the right-hand side; using

(22) this reduces to C(Ξ′)−γ

C(Ξ)−γ v
(

p
Π(Ξ′,Ξ) , A

′,Ξ′
)
. Reducing the G term in the same way yields (23).
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by factor Πt = Pt/Pt−1. Therefore the real price process is

pit =

⎧⎪⎪⎨⎪⎪⎩
p∗(Ait,Ξt) ≡ argmaxp v(p, Ait,Ξt) with probability λ

(
d(Π−1

t pi,t−1,Ait,Ξt)
w(Ξt)

)
Π−1t pi,t−1 with probability 1− λ

(
d(Π−1

t pi,t−1,Ait,Ξt)
w(Ξt)

) . (26)

To see that these definitions of real quantities suffice to detrend the model, define the real state as

Ξt ≡ (zt, Rt−1,Ψt−1). Knowing Ξt, in the case of a Taylor rule, equations (5), (6), (8), (16), (18), (19),

(20), (21), (23), (24), (25), and (26), with substitutions of real for nominal variables where necessary,

suffice to determine the distributions Ψ̃t and Ψt, inflation Πt, the functions ut, vt, gt, and dt, and

the variables Ct, wt, Nt, Rt, and zt+1. For a money growth rule, the real state can be defined as

Ξt ≡ (zt,mt−1,Ψt−1), and equation (18) is replaced by (7) and by

mt = μ∗ exp(zt)mt−1/Πt, (27)

which together determine Rt and mt. Thus next period’s state Ξt+1 can be calculated if Ξt is known.

3.2. Discretization

The price process (26) takes a continuum of possible values, but to solve this model numerically

the idiosyncratic states must be restricted to a finite-dimensional support. Hence, the continuous

model will be approximated on a two-dimensional grid Γ ≡ Γp × Γa, where Γp ≡ {p1, p2, ...p#p} and

Γa ≡ {a1, a2, ...a#a} are logarithmically-spaced grids of possible values of of pit and Ait. Thus the

time-varying distributions will be treated as matrices Ψ̃t and Ψt of size #p × #a, in which the row

j, column k elements, called Ψ̃jk
t and Ψjk

t , represent the fraction of firms in state (pj, ak) before and

after price adjustments in period t, respectively. From here on, bold face is used to identify matrices,

and superscripts are used to identify notation related to grids.

Similarly, the value function is written as a #p×#a matrixVt of values v
jk
t ≡ v(pj, ak,Ξt) associated

with the prices and productivities
(
pj, ak

) ∈ Γ. The time subscript indicates the fact that the value

function shifts due to changes in the aggregate state Ξt. When necessary, the value is evaluated using

splines at points p /∈ Γp off the price grid. In particular, the policy function

p∗t (A) ≡ argmax
p

v(p, A,Ξt) (28)
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is defined without requiring that it be chosen from the grid Γp, because our solution method will

require policies to vary continuously with their arguments. The policies at the productivity grid points

ak ∈ Γa are written as a row vector p∗t ≡
{
p∗1t ...p∗#

a

t

}
≡ {

p∗t (a
1)...p∗t (a

#a
)
}
. Various other equilibrium

functions are also treated as #p ×#a matrices. The adjustment values Dt, the probabilities Λt, and

the expected gains Gt have (j, k) elements given by6

djkt ≡ max
p

vt(p, a
k)− vjkt , (29)

λjk
t ≡ λ

(
djkt /wt

)
, (30)

gjkt ≡ λjk
t djkt . (31)

Given this discrete representation, the distributional dynamics can be written in a more explicit

way. First, to keep productivity A on the grid Γa, it is assumed to follow a Markov chain defined by

a matrix S of size #a ×#a. The row m, column k element of S represents the probability

Smk = prob(Ait = am|Ai,t−1 = ak). (32)

Also, beginning-of-t real prices must be adjusted for inflation. Ignoring grids, the time t−1 price pi,t−1

would be deflated to p̃it ≡ pi,t−1/Πt at the beginning of t. Prices are forced to remain on the grid by

a #p ×#p Markov matrix Rt in which the row m, column l element represents

Rml
t ≡ prob(p̃it = pm|pi,t−1 = pl,Πt = Π(Ξt,Ξt−1)). (33)

When the deflated price pi,t−1/Πt falls between two grid points, Rt rounds it up or down stochastically

without changing its mean. Also, if pi,t−1/Πt drifts up or down past the largest or smallest grid points,

then Rt rounds it down or up to keep prices on the grid. Thus the transition probabilities are

Rml
t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if pl/Πt ≤ p1 = pm

pl/Πt−pm−1

pm−pm−1 if p1 < pm = min{p ∈ Γp : p ≥ pl/Πt} < p#
p

pm+1−pl/Πt

pm+1−pn if p1 ≤ pm = max{p ∈ Γp : p < pl/Πt} < p#
p

1 if pl/Πt > p#
p
= pm

0 otherwise

. (34)

6The max in (29), like the argmax in (28), ignores the grid Γp so that djkt varies continuously in response to any
change in the value function.
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Combining the adjustments of prices and productivities, the beginning-of-t distribution Ψ̃t can be

calculated from the lagged distribution Ψt−1 as follows:

Ψ̃t = Rt ∗Ψt−1 ∗ S′, (35)

where the operator ∗ represents matrix multiplication. Two facts explain the simplicity of this equation.

First, the exogenous shocks to Ait are independent of the inflation adjustment linking p̃it with pi,t−1.

Second, productivity is arranged from left to right in the matrix Ψt−1, so productivity transitions

are represented by right multiplication, while prices are arranged vertically, so price transitions are

represented by left multiplication.

Next, a firm with beginning-of-t state (p̃it, Ait) = (pj, ak) ∈ Γ will adjust its price to pit = p∗kt with

probability λjk
t , and otherwise leave it unchanged. If adjustment occurs, prices are kept on the grid

by rounding p∗kt up or down stochastically to the nearest grid points, without changing the mean. For

concise notation, let Epp and Epa be matrices of ones of size #p ×#p and #p ×#a, respectively. Let

Γp be wide enough so that p1 < p∗kt < p#
p
for all k ∈ {1, 2, ...#a}. For each k, define lt(k) so that

plt(k) = min{p ∈ Γp : p ≥ p∗kt }. Then the following #p ×#a matrix governs the stochastic rounding:

Pt ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
plt(k)−p∗kt

plt(k)−plt(k)−1 in column k, row lt(k)− 1

p∗kt −plt(k)−1

plt(k)−plt(k)−1 in column k, row lt(k)

0 elsewhere

. (36)

The end-of-t distribution Ψt can then be calculated from Ψ̃t as follows:

Ψt = (Epa −Λt) . ∗ Ψ̃t +Pt . ∗ (Epp ∗ (Λt . ∗ Ψ̃t)). (37)

where (as in MATLAB) the operator .∗ represents element-by-element multiplication.

The same transition matrices show up when the Bellman equation is written in matrix form. Let

Ut be the #p ×#a matrix of current profits, with elements

ujk
t = u(pj, ak,Ξt) =

(
pj − wt

ak

)
Ctp

−ε
j (38)

for
(
pj, ak

) ∈ Γ. Then the Bellman equation is simply

Vt = Ut + βEt

{
C−γt+1

C−γt

R′
t+1 ∗ (Vt+1 +Gt+1) ∗ S

}
, (39)
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where Gt+1 = Λt+1 . ∗Dt+1 was defined by (31).

Several comments may help clarify this Bellman equation. Note that the expectation Et refers only

to the effects of the time t+1 aggregate shock zt+1, because multiplying by R′
t+1 and S fully describes

the expectation over the idiosyncratic state (pj, ak) ∈ Γ. S has no time subscript, since the Markov

productivity process is not subject to aggregate shocks, whereas the inflation adjustment represented

by R′
t+1 varies with the policy shock. Also, while the distributional dynamics iterate forward in time,

with transitions governed by R and S′, the Bellman equation iterates backwards, so its transitions are

described by R′ and S.

3.3. Computation: steady state

In an aggregate steady state, monetary policy shocks z are zero, and transaction prices converge to

an ergodic distribution Ψ, so the aggregate state of the economy is constant: Ξt = (zt, Rt−1,Ψt−1) =

(0, R,Ψ) ≡ Ξ under the Taylor rule, or Ξt = (zt,mt−1,Ψt−1) = (0,m,Ψ) ≡ Ξ under a money growth

rule. The steady state of any aggregate equilibrium object is indicated by dropping the subscript t.

The steady state calculation nests the firm’s backwards induction problem inside a loop that

determines the steady-state real wage w. Note first that inflation and the interest rate must satisfy

Π = μ∗ = βR; hence the matrix R is known. Then, guessing w, the first-order condition (5) determines

C, making it possible to calculate all elements ujk of U from (38). Thus backwards induction on the

grid Γ can be used to solve the Bellman equation

V = U+ βR′ ∗ (V +G) ∗ S. (40)

Solving (40) involves finding the matrices V, D, Λ, and G, so the matrix P can also be calculated

from (36). Thus (35) and (37) can be used to find the distributions Ψ̃ and Ψ, and finally (4) can be

used to check the guessed value of w. In the discretized notation, equation (4) becomes

1 =

#p∑
j=1

#a∑
k=1

Ψjk
t

(
pj
)1−ε

. (41)

If (41) holds at the ergodic distribution Ψt = Ψ, then a steady-state equilibrium has been found.
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3.4. Computation: dynamics

While the Bellman equation (39) and distributional dynamics (37) can be interpreted as functional

equations, under the discrete approximation of Sec. 3.2 they can alternatively be seen as two long lists

of expectational difference equations that describe the values and probabilities at all grid points. Thus

Reiter (2009) proposes linearizing these equations around their steady state, calculated in Sec. 3.3.

To do so, it is first convenient to reduce the number of variables by eliminating simple intratemporal

relationships. Assuming a money growth rule, the model can be described by the following vector of

endogenous variables:

−→
X t ≡

(
vec (Vt)

′ , Ct, Πt, vec (Ψt−1)
′ , mt−1

)′
(42)

Vector
−→
X t, together with the shock process zt, consists of 2#p#a + 4 variables determined by the

following system of 2#p#a + 4 equations: (39), (7), (41), (37), (27), and (16). Under a Taylor rule,

mt−1 is replaced by Rt−1, and (7) and (27) are replaced by (6) and (18). Thus the expectational

difference equations governing dynamic equilibrium constitute a first-order system of the form

EtF
(−→
X t+1,

−→
X t, zt+1, zt

)
= 0, (43)

where Et is an expectation conditional on zt and all previous shocks.7 Next, system F can be linearized

numerically to construct the Jacobian matrices A ≡ D−→
X t+1

F , B ≡ D−→
X t
F , C ≡ Dzt+1F , and D ≡ DztF .

This yields the following first-order linear expectational difference equation system:

EtAΔ
−→
X t+1 + BΔ−→

X t + EtCzt+1 +Dzt = 0, (44)

where Δ represents a deviation from steady state. This system has the form considered by Klein (2000),

so it will be solved using his QZ decomposition method, though other linear rational expectations

solvers would be applicable as well.

The virtue of Reiter’s method is that it combines linearity and nonlinearity in a way appropriate for

the context of price adjustment, where idiosyncratic shocks are larger and more economically important

7Note that given (
−→
X t+1,

−→
X t, zt+1, zt), all other variables appearing in (39), (7), (41), (37), (27), and (16) can be

substituted out using intratemporal equations. Given Πt and Πt+1, Rt and Rt+1 are known; thus Ψ̃t = Rt ∗ Ψt−1 ∗ S′

can be calculated too. The wage can be calculated from (5), so Ut can be constructed. Finally, given Vt and Vt+1 it
is possible to construct Pt, Dt, and Dt+1, and thus Λt and Gt+1. Therefore the arguments of F are indeed sufficient
to evaluate the system (43).
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for individual firms than aggregate shocks. To deal with large idiosyncratic shocks, it treats functions

of idiosyncratic states nonlinearly (calculating them on a grid). But in linearizing each equation at

each grid point, it recognizes that aggregate changes (monetary shocks z, or shifts of the distribution

Ψ) are unlikely to affect individual value functions in a strongly nonlinear way. On the other hand, it

makes no assumption of approximate aggregation like that of Krusell and Smith (1998).

4. Results

4.1. Parameterization

Our calibration seeks price adjustment and productivity processes consistent with microdata on

price changes, like those in Klenow and Kryvtsov (2008), Nakamura and Steinsson (2008), and Midrigan

(2008). Since utility parameters are not the main focus, these are set to the values used by GL07. The

discount factor is set to β = 1.04−1 per year; the coefficient of relative risk aversion of consumption

is set at γ = 2. The coefficients on labor disutility and the utility of money are χ = 6 and ν = 1,

respectively, and the elasticity of substitution in the consumption aggregator is ε = 7.

The main price data that will serve as an empirical benchmark are the AC Nielsen data reported by

Midrigan (2008). Therefore, the model will be simulated at monthly frequency, with a zero steady state

money growth rate, consistent with the zero average price change found in the monthly AC Nielsen

dataset. Midrigan reports the data after removing price changes attributable to temporary “sales”, so

our simulation results should be interpreted as a model of “regular” price changes unrelated to sales.

Conditional on these specification choices, the parameters of the adjustment process (λ, α, and ξ) and

of the productivity process (ρ and σ2
ε) are chosen to minimize a distance criterion between the data

and the model’s steady state.8 The criterion sums two terms, scaled for comparability: one relating

to the frequency of adjustment, and the other relating to the histogram of nonzero price adjustments.

TABLE 2 ABOUT HERE

Table 2 summarizes the steady-state behavior of the model under the estimated parameters, to-

8The productivity process (8) is approximated on the grid Γa using Tauchen’s method; we thank Elmar Mertens for
making his software available. The productivity grid has 25 points, and the price grid Γp has 31 points. Both grids are
logarithmically spaced; steps in Γp represent 4% changes. Results are not sensitive to the use of this coarse grid, since
the average absolute price adjustment is much larger (around 10%).
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gether with evidence from four empirical studies. The baseline specification, in which λ, α, and ξ are

all estimated, is labelled SSDP. The table also reports Calvo (λ estimated, ξ ≡ 0, and α undefined) and

FMC specifications (α estimated, ξ ≡ ∞, and λ undefined), as well as a version based on Woodford’s

(2008) adjustment function and an SMC specification. All versions of the model match the target

adjustment frequency of 10% per month.9 But the extreme cases of the model (Calvo and FMC) are

much less successful in fitting the size distribution of price adjustments than are the smooth interme-

diate cases; the Calvo model understates the average size and standard deviation of price adjustments,

whereas the FMC model overstates both.

The trouble with the FMC model, as Fig. 1 shows, is that it only produces price changes lying just

outside the (S,s) bands, whereas the adjustments observed in the data are very diverse.10 Thus the

FMC model that best fits the data produces adjustments that are too large on average; no adjustments

in the model are less than 5%, whereas one quarter of all adjustments are below the 5% threshold

in the AC Nielsen data. The Calvo model errs in the opposite direction, with too many small price

adjustments, though its fit statistics are better than those of the FMC model. In contrast, all three

specifications with a smoothly increasing adjustment hazard (SSDP, SMC, and Woodford) match the

data well, since they permit large and small price adjustments to coexist. In fact, there is so little

difference between these models that only SSDP will be discussed from here on.11

FIGURE 1 ABOUT HERE

4.2. Effects of monetary policy shocks

Since all specifications are calibrated to the same observed adjustment frequency, the fact that

only large, valuable price changes occur in the FMC model, whereas some changes in the SSDP and

Calvo frameworks are trivial, has important implications for monetary transmission. Fig. 2 compares

responses to several types of monetary shocks across these three adjustment specifications. All simula-

9We fit the model to Nakamura and Steinsson’s (2008) measure of the median frequency of price adjustments which
is lower, but presumably more robust, than measures based on means.

10Klenow and Kryvtsov (2008) document that large and small price changes coexist even within narrow product
categories, and that the FMC model performs poorly even when menu costs are allowed to differ across sectors.

11Our companion paper, Costain and Nakov (2008), shows that the SSDP model performs somewhat better than
Woodford’s specification at high (e.g. 70% annually) inflation rates. But at low inflation rates, the responses to monetary
shocks (available from the authors) are indistinguishable across the SSDP, SMC, and Woodford specifications.
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tions assume the same utility parameters, and zero baseline inflation, and are calculated starting from

the steady state distribution associated with the corresponding specification. The first two rows show

impulse responses to one percentage point money growth shocks, comparing the i.i.d. case with that

of monthly autocorrelation φz = 0.8. The third row shows the responses to a 25 basis point interest

rate shock under a Taylor rule.

FIGURE 2 ABOUT HERE

In all three models, an increase in money growth stimulates consumption. The fact that some prices

fail to adjust immediately means expected inflation rises, decreasing the ex ante real interest rate; it

also means households’ real money balances increase; both these effects raise consumption demand.

However, as GL07 emphasized, the average price level adjusts rapidly in the FMC specification (lines

with circles), with a large, short-lived spike in inflation. This makes changes in real variables small and

transitory, approaching the monetary neutrality associated with full price flexibility. At the opposite

extreme, prices adjust gradually in the Calvo specification (lines with squares), leading to a large,

persistent increase in output. The response of the SSDP model (lines with dots) mostly lies between

the other two, but is generally much closer to that of the Calvo model.

Comparing the first and second rows of Fig. 2 shows that while the shape of the inflation and output

responses differs substantially across models, it is qualitatively similar under iid and autocorrelated

money growth processes. Inflation spikes immediately in the FMC model with autocorrelated money,

because the average price increase rises by much more than 1%, as firms anticipate that money growth

will remain positive for some time. The rise in inflation is smaller but more persistent in the SSDP

and Calvo cases. Note that the persistence of inflation does not differ noticeably depending on the

autocorrelation of money growth, but instead appears to be determined primarily by the degree of

state dependence. Thus the big difference between the impulse responses in the first and second rows

is one of size, not of shape: the overall response is larger with autocorrelated money.

The third row of Fig. 2 shows responses under a Taylor rule, assuming that the underlying shock

z is i.i.d., and that the rule has inflation and output coefficients φπ = 2 and φc = 0.5, and smoothing

coefficient φR = 0.9. While money growth shocks are small, permanent, changes to the level of the

nominal money supply, Taylor rule shocks involve large but mostly transitory changes in the level of



26
ECB
Working Paper Series No 1333
April 2011

nominal money. Nonetheless, the two types of monetary policy shocks have similar real effects, and

moreover, the finding that a micro-calibrated model of state-dependent pricing implies substantial

monetary nonneutrality is strengthened in several ways by considering a Taylor rule. First, under

the Taylor rule, the SSDP and Calvo impulse responses of inflation and consumption are even closer

together than they were under the money growth rule. In fact, for consumption, both SSDP and FMC

imply virtually the same effect on impact as that occurring in the Calvo model, though the effect is

less persistent in the FMC case.

Recall, though, that the Taylor rule responses in Fig. 2 suppose an initial drop in the nominal

interest rate of 25 basis points. Since the interest rate is endogenous, the required underlying shock εz

varies across models, and it is particularly large in the FMC case. Therefore, it is useful to consider

additional ways of comparing the real effects of monetary shocks across models. Thus, instead of

comparing shocks with the same initial interest rate effect, Table 3 compares monetary policies with

the same implied inflation variability. As in Sec. VI of GL07, the calculation asks the following question:

if monetary policy shocks were the only source of observed US inflation volatility, how much output

variation would they cause? Under the SSDP specification, money growth shocks alone would explain

65% of observed output fluctuations; the figure rises to 116% under the Calvo specification, and falls to

15% in the FMC case.12 Assuming a Taylor rule, the differences across models are even stronger, and

the monetary nonneutrality associated with the SSDP and Calvo specifications is even larger. Taylor

rule shocks alone would explain 110% of US output fluctuation under the SSDP specification, rising to

306% in the Calvo case. The table also reports a “Phillips curve” coefficient, calculated by regressing

log output on inflation, instrumented by the exogenous monetary policy shock. The conclusions are

similar: the SSDP model implies large real effects of monetary shocks, closer to the Calvo specification

than to the FMC specification, and the differences across the three models increase under a Taylor

rule, compared with a money growth rule.

Next, Fig. 3 plots the response of price dispersion, Δt, defined in (19). In our model, one reason

prices vary is that firms face different productivities. But additional price dispersion, caused by failure

to adjust when necessary, implies inefficient variation in demand across goods that acts as a decrease

12The table considers autocorrelated money growth shocks. The results for i.i.d. money growth are very similar, since
correlation mostly changes the scale of the impulse responses, rather than their shape.
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in aggregate productivity: Ct = Nt/Δt. In a representative agent model near a zero-inflation steady

state, Δt is negligible because it is roughly proportional to the cross-sectional variance of prices,

a quantity of second order in the inflation rate.13 But cross-sectional price variance is not second

order when large idiosyncratic shocks are present, so the dispersion wedge Δt may be quantitatively

important, especially since ε = 7 magnifies variations in the ratio Pit/Pt. The first row of Fig. 3

shows that for SSDP and Calvo, increased money growth throws firms’ prices further out of line

with fundamentals, increasing dispersion; raising consumption therefore requires a larger increase in

labor in these specifications. In contrast, the FMC case shows little change in Δt, because all firms

with severe price misalignments do in fact adjust. Interestingly, since the Taylor rule leans against

inflationary shocks, there is much less variation in the price level for the SSDP and Calvo cases in

our Taylor rule simulation than there is under autocorrelated money growth. The result is that in all

three specifications, variation in Δt is negligible after a shock to the Taylor rule.

FIGURE 3 ABOUT HERE

4.3. Inflation decompositions

To a first-order approximation, inflation can be calculated as an average of log nominal price

changes. Using our grid-based notation, and starting from the beginning-of-period distribution Ψ̃t,

πt = logΠt =

#p∑
j=1

#a∑
k=1

xjk
t λjk

t Ψ̃jk
t , (45)

where xjk
t ≡ log

(
p∗t (ak)

pj

)
is the desired log price adjustment of a firm with price pj and productivity ak.

Formula (45) can be decomposed in several ways to investigate the sources of monetary nonneutrality

in the model. Klenow and Kryvtsov (2008) rewrite (45) as the product of the average log price

adjustment xt times the frequency of price adjustment λt:

πt = xtλt, xt ≡
∑

j,k x
jk
t λjk

t Ψ̃jk
t∑

j,k λ
jk
t Ψ̃jk

t

, λt ≡
∑
j,k

λjk
t Ψ̃jk

t . (46)

Dropping higher-order terms, this implies the following inflation decomposition:

Δπt = λΔxt + xΔλt, (47)

13See for example Gaĺı (2008), p. 46 and Appendix 3.3.
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where variables without time subscripts represent steady states, and Δ represents a deviation from

steady state.14 Klenow and Kryvtsov’s “intensive margin”, IKK
t ≡ λΔxt, is the part of inflation

attributable to changes in the average price adjustment; their “extensive margin”, EKK
t ≡ xΔλt, is

the part due to changes in the frequency of adjustment.

Unfortunately, this decomposition does not reveal whether a rise in the average log price adjustment

xt is caused by a rise in all firms’ desired adjustments, or by a reallocation of adjustment opportunities

from firms desiring small or negative price changes to others wanting large price increases. That is,

IKK
t confounds changes in desired adjustments (the only relevant changes in the Calvo model) with

the “selection effect” emphasized by GL07. To distinguish between these last two effects, inflation can

instead be broken into three terms: an intensive margin capturing changes in the average desired log

price change, an extensive margin capturing changes in how many firms adjust, and a selection effect

capturing changes in who adjusts. These three effects are distinguished by rewriting (45) as

πt = x∗tλt +
∑
j,k

xjk
t

(
λjk
t − λt

)
Ψ̃jk

t , x∗t ≡
∑
j,k

xjk
t Ψ̃jk

t . (48)

Note that in (48), x∗t is the average desired log price change, whereas in (46), xt is the average log price

change among those who adjust. Thus (48) says that inflation equals the mean desired adjustment times

the adjustment frequency plus a selection term
∑

j,k x
jk
t

(
λjk
t − λt

)
Ψ̃jk

t =
∑

j,k λ
jk
t

(
xjk
t − x∗t

)
Ψ̃jk

t that

can be nonzero if some changes xjk
t are more or less likely than the mean adjustment probability λt,

or (equivalently) if firms with different probabilities of adjustment λjk
t tend to prefer adjustments that

differ from the mean desired change x∗t .

Equation (48) leads to the following inflation decomposition:

Δπt = λΔx∗t + x∗Δλt +Δ
∑
j,k

xjk
t

(
λjk
t − λt

)
Ψ̃jk

t . (49)

Our intensive margin effect, It ≡ λΔx∗t , is the effect of changing all firms’ desired adjustment by the

same amount (or more generally, changing the mean preferred adjustment in a way that is uncorrelated

with the adjustment probability). It is the only nonzero term in the Calvo model, where λjk
t = λ

for all j, k, t. Our extensive margin effect, Et ≡ x∗Δλt, is the effect of changing the fraction of

14Actually, Klenow and Kryvtsov (2008) propose a time series variance decomposition, whereas (46) is a decomposition
of each period’s inflation realization. But the logic of (46) is the same as that in their paper.
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firms that adjust, assuming the new adjusters are selected randomly. Our selection effect, St ≡
Δ
∑

j,k x
jk
t

(
λjk
t − λt

)
Ψ̃jk

t , is the effect of redistributing adjustment opportunities across firms with

different desired changes xjk
t , while fixing the overall fraction that adjust.

An alternative decomposition, proposed by Caballero and Engel (2007), also differences (45):

Δπt =
∑
j,k

Δxjk
t λjkΨ̃jk +

∑
j,k

xjkΔλjk
t Ψ̃jk +

∑
j,k

xjkλjkΔΨ̃jk
t (50)

They further simplify this to

Δπt = λΔμt +
∑
j,k

xjkΔλjk
t Ψ̃jk (51)

under the assumption that all desired price adjustments change by Δxjk
t = Δμt when money growth

increases by Δμt, and by taking an ergodic average so that the last term drops out.15 Their first

term, ICE
t ≡ Δμtλ, is the same as our intensive margin It, if their assumption that all desired

price adjustments change by Δμt is correct. But therefore, their “extensive margin” term ECE
t ≡∑

j,k x
jkΔλjk

t Ψ̃jk, confounds the question of how many firms adjust (our extensive margin Et) with the

question of who adjusts (our selection effect St), which is the mechanism stressed by GL07.

FIGURE 4 ABOUT HERE

The importance of identifying the selection effect separately becomes clear in Fig. 4, which illus-

trates our decomposition of the inflation impulse response to monetary shocks. The three components

of inflation, It, Et, and St, are shown to the same scale for better comparison. The graphs demonstrate

clearly (in contrast to Caballero and Engel’s claim) that the short, sharp rise in inflation observed in

the FMC specification results from the selection effect. This is true both under Taylor rule shocks,

where inflation spikes to 1.5% on impact, of which 1.25% is the selection component, and under (au-

tocorrelated) money growth shocks, where inflation spikes to 2.8%, with 2.25% due to selection. In

contrast, inflation in the Calvo model is caused by the intensive margin only; in SSDP there is a

nontrivial selection effect but it still only accounts for around one-third of the inflation response.

15Our equation (49) is intended to decompose each period’s inflation realization, so it allows for shifts in the current

distribution Ψ̃jk
t . Caballero and Engel instead propose a decomposition (see their eq. 17) of the average impact of a

monetary shock. Therefore they evaluate their decomposition at the ergodic distribution (the time average over all
cross-sectional distributions, called fA(x) in their paper). Since this is a fixed starting point of their calculation, they
do not need to include a ΔfA(x) term.
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On the other hand, the extensive margin Et ≡ x∗Δλt plays a negligible role in the inflation response.

This makes sense, because the simulation assumes a steady state with zero inflation, so steady state

price adjustments are responses to idiosyncratic shocks only, and the average desired adjustment x∗ is

essentially zero. Therefore Et is negligible even though the adjustment frequency λt itself does vary.
16

The extensive margin only becomes important when there is high trend inflation, so that the average

desired adjustment x∗ is large and positive.

As for the intensive margin, its initial effect after a money growth shock is similar across all

adjustment specifications, but it is more persistent in the Calvo and SSDP cases than in the FMC

case. The scale of the intensive margin depends on the autocorrelation of money growth: the mean

desired price change rises roughly one-for-one after an i.i.d. money growth shock (not shown), and

rises by roughly five percentage points when money growth has autocorrelation φz = 0.8 (first row

of Fig. 4). Thus, in the autocorrelated case, the intensive margin is initially I1 ≡ λΔx∗1 ≈ 0.5%.

In other words, firms wish to “frontload” price adjustment by approximately the same amount in all

three specifications; but many of these changes occur immediately in the FMC case (showing up as a

redistribution of adjustment opportunities, i.e., a selection effect), whereas they are realized gradually

in the other specifications. Under a Taylor rule, the intuition is similar, bearing in mind that Fig. 4 is

scaled to give an initial decline of 25 basis points in the nominal interest rate. This requires a larger

underlying shock z in the FMC specification than in the other cases; thus the effect on the intensive

margin is larger (but less persistent) for FMC than it is for Calvo and SSDP.

4.4. Effects of idiosyncratic shocks

Two recent empirical papers have compared how prices respond to idiosyncratic, as well as aggregate

shocks (Boivin, Giannoni, and Mihov, 2007; Mackowiak, Moench, and Wiederholt, 2009). Fig. 5 shows

our model’s implications for idiosyncratic shocks. Specifically, it shows the expected response to a one

standard deviation idiosyncratic productivity decrease, in the Calvo, FMC, and SSDP specifications.

A productivity decrease causes a gradual price increase over time, followed by a decline back to the

mean price level as the autoregressive productivity process (8) reverts. Any individual response, of

16The fact that the steady state has exactly zero inflation is not crucial here; Et is quantitatively insignificant compared
to the other inflation components at any typical OECD inflation rate.
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course, is a large discrete price adjustment; but since the probability of adjustment in any given month

is much less than one, the average response is slow, reaching its peak after eight months in the SSDP

model.17 The speed of response is similar to that in the Calvo specification, in contrast with the FMC

case, where the maximum impact occurs after only three months. On the other hand, the maximum

response is much larger in the SSDP case than in the Calvo model; this is one dimension along which

SSDP resembles the FMC model. In other words, even though firms in the SSDP model suffer Calvo-

like adjustment lags, the fact that the probability of adjustment increases with the value of adjustment

protects them from the risk of exceptionally bad price misalignments. They are therefore more willing

to react to idiosyncratic shocks than Calvo firms are.

FIGURE 5 ABOUT HERE

These results might raise doubts about the SSDP model’s consistency with empirical evidence,

since Boivin et al. (2007) and Mackowiak et al. (2009) claim that the response to idiosyncratic shocks

is much faster than that to aggregate shocks. To see whether our findings contradict these previous

papers, Fig. 6 reports the results of running the estimation routine of Mackowiak et al. on panel data

produced by the SSDP model. The simulated data cover the prices of 79 firms over 245 months, which

is the same structure of observations as in Mackowiak et al., except that their observations correspond

to sectors, whereas ours correspond to individual firms. The results are remarkably similar to those in

Figs. 1-2 of Mackowiak et al. (2009). In particular, the estimated response to an idiosyncratic shock is

immediate and essentially permanent, as those authors found. In contrast, the estimated response to

aggregate shocks appears more sluggish (and is statistically indistinguishable from zero in our case).

FIGURE 6 ABOUT HERE

What causes the estimation routine to characterize the response to an idiosyncratic productivity

shock in this way, in stark contrast with the true response, shown in Fig. 5? The problem is that the

true idiosyncratic shocks in microdata are unknown to an econometrician, so Mackowiak et al. identify

them as residual price increases not explained by aggregate shocks. In the SSDP model, individual

prices typically respond with a lag to the true productivity shock. But in the estimation routine, the

moment of the shock corresponds by assumption to the moment of the price increase, so the response

17The responses shown are averaged both with respect to the steady state distribution of prices and productivities,
and with respect to the realization of the adjustment process λ.
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is estimated to be immediate.

Mean reversion of the idiosyncratic component occurs by discrete individual price jumps in the

model, whereas Mackowiak et al. assume that this component (Bv in their eq. 1) decays smoothly.

Hence their estimation procedure interprets price adjustments that revert to the mean as a sequence

of new idiosyncratic shocks that happen to go in the opposite direction (which is why the initial shock

is interpreted as permanent). Thus, results from this procedure (or others that identify idiosyncratic

shocks as a residual, e.g. Boivin et al.) should be treated with caution. Our Monte Carlo exercise

shows that, at least in some cases, it may exaggerate the speed of response to idiosyncratic shocks,

which might suggest stronger state dependence than the data actually warrant.

5. Conclusions

This paper has computed the impact of monetary policy shocks in a quantitative macroeconomic

model of state-dependent pricing. It has calibrated the model for consistency with microeconomic data

on firms’ pricing behavior, estimating how the probability of price adjustment depends on the value

of adjustment. Given the estimated adjustment function, the paper has characterized the dynamics of

the distribution of prices and productivities in general equilibrium.

The calibrated model implies that prices rise gradually in response to monetary stimulus, causing

a large, persistent rise in consumption and labor. Looking across specifications, the main factor

determining how monetary shocks propagate through the economy is the degree of state dependence.

That is, increasing the autocorrelation of money growth shocks simply makes their effects larger,

without any notable change in the shape or persistence of the implied impulse responses. In contrast,

decreasing the degree of state dependence from the extreme of fixed menu costs (FMC) to the opposite

extreme of the Calvo (1983) model strongly damps the initial inflation spike caused by a money growth

shock and increases its effect on real variables. The parameterization most consistent with microdata

(labelled “SSDP” throughout the paper) is fairly close to the Calvo model in terms of its quantitative

effects. The conclusions are similar if the monetary authority follows a Taylor rule instead of a money

growth rule, except that the difference across adjustment specifications becomes even stronger, and

the monetary nonneutrality of the SSDP specification is increased.
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This paper also decomposes the impulse response of inflation into an intensive margin effect relating

to the average desired price change, an extensive margin effect relating to the number of firms adjusting,

and a selection effect relating to the relative frequencies of small and large or negative and positive

adjustments. Under the preferred (SSDP) calibration, about two-thirds of the effect of a monetary

shock comes through the intensive margin, and most of the rest through the selection effect. The

extensive margin is negligible unless the economy starts from a high baseline inflation rate. Under

the FMC specification, a monetary shock instead causes a quick increase in inflation, driven by the

selection effect, which eliminates most of its effects on real variables.

Since the selection effect represents changes in the adjustment probability across firms, its strength

depends directly on the degree of state dependence. We say that the state dependence is strong in

a model of fixed menu costs because they make λ a step function: at the threshold, a tiny increase

in the value of adjustment suffices to raise the adjustment probability from 0 to 1. Therefore the

distribution of price changes consists of two spikes: there are no small changes, and firms change their

prices as soon as they pass the adjustment thresholds. Hence, in steady state, those firms that might

react to monetary policy are all near the two adjustment thresholds; a monetary stimulus decreases

λ from 1 to 0 for some firms desiring a price decrease, while increasing λ from 0 to 1 for others

preferring an increase, making the inflation response quick and intense. That is, the same property

which makes money nearly neutral in the FMC model is the one which makes that model inconsistent

with price microdata. A model in which adjustment depends more smoothly on the value of adjusting

fits microdata better and yields larger real effects of monetary policy.
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Tables and Figures

Table 1: Adjustment specifications

Specification Adjustment probability λ(L) Mean gains, in units of time: G(P,A,Ω)/W (Ω)

Calvo λ̄ λ̄L(P,A,Ω)

Fixed MC 1 {L ≥ α} λ (L(P,A,Ω)) [L(P,A,Ω)− α]

Woodford λ̄/[λ̄+
(
1− λ̄

)
exp(ξ(α− L))] λ (L(P,A,Ω))L(P,A,Ω)

Stoch. MC λ̄/[λ̄+
(
1− λ̄

)
(α/L)ξ] λ (L(P,A,Ω)) [L(P,A,Ω)− E (κ|κ < λ (L(P,A,Ω)))]

SSDP λ̄/[λ̄+
(
1− λ̄

)
(α/L)ξ] λ (L(P,A,Ω))L(P,A,Ω)

Note: λ(L) is the probability of price adjustment; L is the real loss from failure to adjust, as a function of firm’s price

P and productivity A, and aggregate conditions Ω. G represents mean nominal gains from adjustment; dividing by

the nominal wage W converts gains to real terms. λ̄, α and ξ are parameters to be estimated.
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Table 2. Steady-state simulated moments for alternative estimated models and evidence

Productivity parameters Adjustment parameters

See eq. (8) for definitions See Table 1 for definitions

Calvo (σε, ρ) = (0.0850, 0.8540) λ̄ = 0.10

Fixed MC (σε, ρ) = (0.0771, 0.8280) α = 0.0665

Woodford (σε, ρ) = (0.0924, 0.8575)
(
λ̄, α, ξ

)
= (0.0945, 0.0611, 1.3335)

Stoch. MC (σε, ρ) = (0.0676, 0.9003)
(
λ̄, α, ξ

)
= (0.1100, 0.0373, 0.2351)

SSDP (σε, ρ) = (0.0677, 0.9002)
(
λ̄, α, ξ

)
= (0.1101, 0.0372, 0.2346)

Moments Model Evidence

Calvo FMC Wdfd SMC SSDP MAC MD NS KK

Frequency of price changes 10.0 10.0 10.0 10.0 10.0 20.5 19.2 10 13.9

Mean absolute price change 6.4 17.9 10.3 10.0 10.1 10.5 7.7 11.3

Std of price changes 8.2 18.4 13.6 12.2 12.2 13.2 10.4

Kurtosis of price changes 3.5 1.3 4.0 2.9 2.9 3.5 5.4

% price changes ≤5% in abs value 47.9 0.0 37.0 26.3 26.3 25 47 44

Mean loss in % of frictionless profit 36.8 10.6 37.4 25.6 25.6

Mean loss in % of frictionless revenue 5.2 1.5 5.3 3.6 3.6

Fit: Kolmogorov-Smirnov statistic 0.111 0.356 0.038 0.024 0.025

Fit: Euclidean distance 0.159 0.409 0.072 0.060 0.056

Note: Price statistics refer to non-sale consumer price changes and are stated in percent. The last four columns report

statistics from Midrigan (2008) for AC Nielsen (MAC) and Dominick’s (MD), Nakamura and Steinsson (2008) (NS), and

Klenow and Kryvtsov (2008) (KK). To calibrate the productivity parameters ρ and σ2
ε, together with the adjustment

parameters λ̄, α and ξ, we minimize a distance criterion with two terms, (1) the difference between the median frequency

of price changes in the model (fr) and in the data, and (2) the distance between the histogram of log price changes in

the model (histM ) and the data (histD): min(25 ‖fr − 0.10‖+ ‖histM − histD‖).
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Table 3. Variance decomposition and Phillips curves of alternative models

Data SSDP Calvo FMC

Std of quarterly inflation (×100) 0.246 0.246 0.246 0.246

% explained by nominal shock 100 100 100

Money growth rule (see eq. 16-17)

Std of money growth shock (×100) 0.174 0.224 0.111

Std of detrended output (×100) 0.909 0.586 1.053 0.121

% explained by money growth shock 64.5 115.9 13.3

Slope coeff. of the Phillips curve 0.598 1.069 0.134

Standard error 0.004 0.039 0.005

Taylor rule (see eq. 18)

Std of Taylor rule shock (×100) 0.393 0.918 0.129

Std of detrended output (×100) 0.909 0.995 2.741 0.134

% explained by Taylor rule shock 109.6 301.6 14.7

Slope coeff. of the Phillips curve 1.055 2.785 0.126

Standard error 0.093 0.290 0.006

Note: for each monetary regime (Taylor or money growth rule) and each pricing model, the nominal shock is scaled

to account for 100% of the standard deviation of inflation. The volatility of output in the data is measured as the

standard deviation of HP-filtered quarterly log real GDP. The “slope coefficients” are the estimates of β2 in a 2SLS

regression of (log) consumption on inflation, instrumented by the exogenous nominal shock. The first stage regression

is πq
t= α1+α2μ

q
t+εt, and the second stage is cqt= β1+β2(4π̂

q
t ) + εt, where π̂q

t is the prediction for inflation from the

first-stage and the superscript q denotes conversion to quarterly frequency.
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Note: (top row) responses of inflation and consumption to an iid money growth shock; (middle row) responses to a

correlated money growth shock; (bottom row) responses to a Taylor rule shock. Inflation responses are in percentage

points; consumption responses are in percent deviation from steady-state. Lines with dots - benchmark SSDP model;

lines with squares - Calvo; lines with circles - fixed menu cost
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Fig. 3. Price dispersion across models

Note: (top row): responses to a correlated money growth shock; (bottom row): responses to a Taylor rule shock. The

responses are in percent deviation from steady-state. Lines with dots - benchmark SSDP model; lines with squares -

Calvo; lines with circles - fixed menu cost
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Fig. 4. Inflation decomposition across models

Note: decomposition of the inflation response into an intensive margin, extensive margin, and selection effect (see eq.54)

(top row): responses to a correlated money growth shock. (bottom row): responses to a Taylor rule shock. The responses

are in percentage points and sum up to the total inflation response shown in figure 2. Lines with dots - benchmark

SSDP model; lines with squares - Calvo; lines with circles - fixed menu cost
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Fig. 5. Theoretical mean response to an idiosyncratic productivity shock across models

Lines with dots - benchmark SSDP model; lines with squares - Calvo; lines with circles - fixed menu cost
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Fig. 6. Estimated price responses and speed of response from model-generated data

Note: (top, left): price responses to a firm-specific shock estimated on SSDP model-generated data; (top, right): price

responses to an aggregate shock estimated on SSDP model-generated data; (bottom, left): speed of price response to a

firm-specific shock; (bottom, right): speed of responses to an aggregate shock. The estimation is done by applying the

procedure of Mackowiak, Moench, and Wiederholt to a panel of price series generated by the SSDP model with both

idiosyncratic and aggregate shocks present.
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