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Abstract

The number of variables related to long-run economic growth is
large compared with the number of countries. Bayesian model aver-
aging is often used to impose parsimony in the cross-country growth
regression. The underlying prior is that many of the considered vari-
ables need to be excluded from the model. This paper, instead, advo-
cates priors that impose parsimony without excluding variables. The
resulting models fit the data better and are more robust to revisions
of income data. The positive relationship between measures of trade
openness and growth is much stronger than found in the literature.

JEL classification: C20, C52, O40, O47
Keywords: Economic Growth, Bayesian Model Averaging, Adaptive Ridge

Regression, Measurement Error
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Non-technical summary 

This paper proposes a new econometric approach to studying determinants of 
economic growth across countries. It estimates a large regression in which growth is 
regressed on all available explanatory variables that have been proposed in the 
literature. The Introduction argues that this approach is consistent with the existing 
growth theory. The rest of the paper shows that it is not only feasible but also 
empirically plausible. Moreover, it delivers results which are robust to the 
measurement error inherent in the data. 

Since the number of coefficients is large, it is necessary to impose some parsimony on 
the estimation. This paper compares a range of approaches to achieve this. It shows 
advantages of a simple approach that has not received enough attention before: 
shrinking the coefficients towards zero with variants of the well known ridge 
regression.  

The number of explanatory variables is so large because hundreds of theories have 
been developed to explain economic growth. The literature review of Durlauf, 
Johnson, Temple (2005) finds as many as 145 different variables included in growth 
regressions in published papers. However, their relationship with long-run growth 
(over a horizon of 30 years or more) can usually be studied using a sample of at most 
100 country observations. An additional, crucial fact is the “theory open-endedness” 
(pointed out by Brock and Durlauf 2001 and Durlauf, Johnson, Temple 2005): the 
observation that all these growth theories tend to be mutually compatible.  Therefore, 
growth theory does not impose restrictions on the growth regression specification. 

This paper interprets theory open-endedness as suggesting that all the variables 
suggested by the theories should be included simultaneously in the growth regression. 
Including all variables simultaneously is crucial to avoid omitted variables bias. Given 
the limited available data, one cannot perfectly control for all variables proposed in 
the literature. However, this paper makes an effort to control as well as possible. 
Controlling for all variables turns out to be very important for the estimated 
coefficients. Empirically, it turns out that although many variables matter little 
individually, they matter a lot when taken together.  

Majority of empirical growth papers simply exclude many potentially relevant 
variables and these exclusion decisions are often ad hoc. In a seminal paper Levine 
and Renelt (1992) argue that most results of this literature are not robust to the choice 
of variables. Since Brock and Durlauf (2001), Fernandez, Ley and Steel (2001b) and 
Sala-i-Martin, Doppelhofer, Miller (2004) a large literature uses Bayesian model 
averaging (BMA). BMA involves estimating many growth regressions which only 
include few variables. Then results of interest are averaged across these small 
regression models. In this way, results are conditional on all these specifications 
simultaneously. BMA often performs very well in forecasting. However, in the 
context of growth regressions the focus is on the estimation of partial regression 
coefficients. All small models suffer from the omitted variables bias. It is not clear 
that averaging over such small models yields correct partial regression coefficients.  

This paper compares a range of Bayesian priors. It uses a general framework which 
nests BMA, adaptive ridge and ridge models as special cases.  The empirical part of 
this paper studies the well-known dataset of Sala-i-Martin, Doppelhofer and Miller 
(2004). A number of interesting empirical results are found: 
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First, the studied ridge-type models tend to fit the data better than standard 
specifications of BMA. The discussion above questions the a priori appeal of the 
exclusion restrictions in the BMA. Now it turns out that also a posteriori they are not 
attractive as they do not yield superior fit. 

Second, ridge-type models are much more robust to revisions of the growth data. This 
is important because Ciccone and Jaroci ski (2010) show that many published BMA 
results are not consistent across vintages of the datasets. Data uncertainty is inherent 
in empirical growth and it is crucial to have a model which is not excessively 
sensitive to it.   

Third, this paper selects a baseline prior which delivers both a good fit and a high 
degree of robustness to the dataset vintage. This prior turns out to be very close to the 
standard ridge regression. With the baseline prior, the conditional convergence of 
income is much slower and the effect of Primary Schooling is half of that found using 
BMA. However, more coefficients are economically relevant than when BMA is 
used. Most interestingly, various measures of trade openness, which has been hotly 
debated in the literature, are found to be positively related to growth.  This contrasts 
with the mixed but mostly negative evidence from BMA. Variables whose relation 
with growth is very weak regardless of the dataset vintage include Malaria 
Prevalence, Fertility, Population Density and the Fraction of Muslims. This contrasts 
with BMA results which, as shown in Ciccone and Jaroci ski (2010), include strong 
effects of these variables in some, but not all dataset vintages.  

The good news is that the approach advocated in this paper is computationally very 
simple. The bottom line of the paper is that a robust analysis of a large cross-country 
dataset can be performed with a simple ridge regression, which is available in most 
econometric packages and involves only one matrix inversion. This allows empirical 
growth researchers to shift their attention from computational issues to the other 
challenges facing empirical growth research, such as endogeneity of growth 
determinants, nonlinearity and new data collection.  
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1 Introduction

This paper estimates a cross-country growth regression with many explana-
tory variables. Since the number of coefficients is large, it is necessary to
impose some parsimony on the estimation. This paper compares a range of
approaches to achieve this. It shows advantages of a simple approach that
has not received enough attention before: shrinking the coefficients towards
zero with variants of the well known ridge regression.

Imposing parsimony in a convincing way is crucial, because hundreds of
theories have been developed to explain economic growth. The literature re-
view of Durlauf et al. (2005) finds as many as 145 different variables included
in growth regressions in published papers. However, their relationship with
long-run growth (over a horizon of 30 years or more) can usually be studied
using a sample of at most 100 country observations.1 What complicates mat-
ters further is that, as pointed out by Brock and Durlauf (2001) and Durlauf
et al. (2005), all these theories tend to be mutually compatible (“theory
open-endedness”).

This paper interprets theory open-endedness as suggesting that all the
variables suggested by the theories should be included simultaneously in the
growth regression. In coefficient estimation it is important to control for
all other variables to avoid the omitted variables bias. One cannot do this
perfectly in the available samples but it is worth going as far as possible.
This paper finds that although many variables matter little individually,
they matter a lot when taken together.

Most empirical growth papers simply exclude many potentially relevant
variables and these exclusion decisions are often ad hoc. Levine and Renelt
(1992) argue that most results of this literature are not robust to the choice
of variables. Since Brock and Durlauf (2001), Fernández et al. (2001b) and
Sala-i-Martin et al. (2004) a large literature uses Bayesian model averaging
(BMA). BMA imposes parsimony by specifying a prior according to which
every regression coefficient may be zero with a discrete probability, giving
rise to different regression specifications.2 BMA results are conditional on
all these specifications. Specifications with subsets of explanatory variables
may be attractive when forecasting is the goal. When several variables are

1Panel data can be used to increase the number of observations at the cost of reducing
the horizon, which is often deemed by researchers to be undesirable. Also, Hauk and
Wacziarg (2009) studies biases present in the panel estimation and argues for using a
single cross-section of long-term growth observations.

2There are also frequentist approaches where implicit priors have this feature. They
are applied to cross-country growth data eg, in Hendry and Krolzig (2004); Magnus et al.
(2010); Wagner and Hlouskova (2009).
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correlated it may be enough to include just one of them to forecast the
dependent variable well.3 However, when the interest is in partial regression
coefficients, this body of small specifications is less attractive because they
all suffer from omitted variables bias.

This paper compares a range of Bayesian priors. All these priors achieve
parsimony by assuming a prior mean of zero for all coefficients. The priors
differ in the prior variance. BMA results from one particular specification of
the variance. Another specification of the variance leads to the adaptive ridge
regression. By varying one of the prior hyperparameters, the adaptive ridge
models cover a wide range, from setups very close to BMA at one extreme
to the standard ridge regression at the other extreme.

The contribution of this paper is to state these alternative priors for
growth regressions and to use them empirically. It seems that ridge-type pri-
ors have not been used for growth regressions before, although they have a
long history. Ridge regression was introduced by Hoerl and Kennard (1970)
to deal with multicollinearity in the data. Adaptive ridge regressions have
been studied in many statistical papers since Strawderman (1978). Adaptive
ridge regression replaces a discrete set of models in BMA with a continuous
family of models, which nests that set. This is generally recommended when-
ever all the models in the continuous family also make scientific sense (as is
the case here), see eg, Gelman et al. (2003, ch.15.5) or Sims (2003).

A number of interesting results emerge when a range of parsimony priors
is applied to the well-known dataset of Sala-i-Martin et al. (2004).

First, the studied ridge-type models tend to fit the data better than stan-
dard specifications of BMA.4 The discussion above questions the a priori
appeal of the exclusion restrictions in BMA. A superior fit might justify such
restrictions nevertheless. However, it turns out that they do not guarantee
superior fit.

Second, ridge-type models tend to be much more robust to revisions of
the growth data. This is important because Ciccone and Jarociński (2010)
show that many published BMA results are not consistent across vintages
of the datasets. Data uncertainty is inherent in empirical growth and it is
crucial to have a model that is not excessively sensitive to it.

Third, the discussion focuses on a baseline prior that delivers both a good

3However, dropping variables does not necessarily lead to better forecasting models:
De Mol et al. (2008) find that a ridge regression with all candidate variables forecasts as
well as approaches that select variables or principal components, while its coefficients are
much more stable. Denison and George (2001) find that adaptive ridge predicts better
than BMA.

4This finding confirms and extends the results of Eicher et al. (2009) who find that
BMA specifications with stronger shrinkage and larger prior model size fit the data better.
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fit and a high degree of robustness to the dataset vintage. This prior turns
out to be very close to the standard ridge regression. With this prior, the
conditional convergence of income is much slower and the effect of Primary
Schooling is half of that found using BMA. However, more coefficients are eco-
nomically relevant than when BMA is used. Most interestingly, various mea-
sures of trade openness, which has been hotly debated in the literature, are
found to be positively related to growth. This contrasts with the mixed but
mostly negative evidence from BMA. Variables whose relation with growth
is very weak regardless of the dataset vintage include Malaria Prevalence,
Fertility, Population Density and the Fraction of Muslims. This contrasts
with BMA results which, as shown in Ciccone and Jarociński (2010), include
strong effects of these variables in some, but not all dataset vintages.

Another novelty of this paper is the focus on the economic significance
of the estimated coefficients. The quoted literature, in contrast, places much
weight on the statistical significance indicated by variables’ inclusion proba-
bilities.

Section 2 discusses the econometric specification of alternative parsimony
priors. Section 3 describes the data and the model space. Section 4 reports
the fit of the models and their robustness to data uncertainty. Section 5
reports the growth determinants found with the baseline specification, com-
pares them with the findings of the BMA approach and performs an extensive
sensitivity analysis. Section 6 concludes. Computational details and some
additional results are reported in the Appendix.

2 Parsimony Priors for Linear Regressions

GDP growth (y) is related to K explanatory variables gathered in matrix X
through the gaussian linear regression model:

y = ια +Xβ + ε ε ∼ N
(
0, σ2I

)
(1)

where the number of observations is N , ι is a vector of 1s, I is an N ×N
identity matrix and (α, β, σ2) are unknown parameters. The explanatory
variables in X are standardized (they have zero mean and unit standard
deviation) to facilitate interpretation of the coefficients.

I use the usual noninformative priors for the constant term α and the
error variance σ2:

p(α) ∝ 1, p(σ2) ∝ σ−2 (2)

It remains to specify a prior about β. While subjective priors about β
may be available, they may also be contentious. Therefore, empirical growth
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researchers are also interested in lessons that can be drawn from the data
using agnostic priors.

Unfortunately the usual noninformative prior (the flat prior p(β) ∝ 1) is
not a viable option here because of the large number of potential explanatory
variables. When the number of variables (K) is large relative to the number
of observations (N) then the data alone is not sufficient for reliable inference
about β. One way to see this is to consider the flat-prior posterior, which is
normally centered on the OLS estimate of β, (X ′X)−1X ′y and has a variance
proportional to (X ′X)−1. When K > N the X ′X matrix is not invertible.
In this case the posterior mean does not exist and the variance is infinite.
When K is smaller, but close to N , the matrix X ′X is badly conditioned.
This implies that the posterior mean is very sensitive to small changes in the
data and the posterior variance is hopelessly large.

To get more constructive results with large K we need to introduce some
parsimony. The standard agnostic approach is to specify a prior for β that
is centered on zero and thus constrains coefficients’ absolute sizes. It is
convenient to use the conjugate prior, which is gaussian, with the variance
proportional to the error variance:

p(β) = N(0, σ2V ) (3)

Equations (1), (2) and (3) define the framework for the whole paper. The
following subsections discuss alternative specifications of V in (3). I use two
quantities to understand the effect of different assumptions on V : shrinkage
adaptivity (defined later in this section) and effective model size.

The effective model size gives the effective number of estimated coeffi-
cients. A shrinkage prior reduces the effective model size because it restricts
the coefficients. One exact restriction reduces by one the number of coeffi-
cients effectively estimated. The restrictions imposed in (3) are stochastic,
not exact, and a given value of V implies the following effective model size:5

J = tr
(
X(X ′X + V −1)−1X ′) (4)

2.1 Ridge Regression

The prior that gives rise to the ridge regression is:

p(β) = N
(
0, σ2 diag(τ)−1

)
(5)

5This expression is equal to the trace of the ‘hat matrix’ that projects y onto its
fitted values. It is usual in linear models to take this quantity as the effective number of
parameters. For an in-depth discussion of counting the effective parameters see eg, Hodges
and Sargent (2001) or Spiegelhalter et al. (2002), who justify and generalize (4) in various
ways. Notice that when the prior for β is noninformative and V −1 is a matrix of zeros we
have that J = K ie, the effective number of parameters equals the number of variables.
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where diag(τ) denotes a matrix with τ on the main diagonal and zeros else-
where, and τ = (τ̄ , . . . , τ̄) is a vector with K constant elements τ̄ . Parameter
τ̄ determines shrinkage strength, which is fixed and common for all variables.
Given X, the parameter τ̄ can be specified to deliver any desired effective
model size.

2.2 Adaptive Ridge Regression

An adaptive ridge regression emerges when the shrinkage strength is adapted
for each coefficient based on the data. In the present context, instead of
making τ a fixed constant vector, I assume it is unknown and specify a prior
for it. In the computation of the posterior the data update this prior. A
posteriori good explanatory variables are shrunk more and poor explanatory
variables are shrunk less.

The prior is that elements of τ , denoted τk, k = 1 . . . K have independent
and identical gamma densities with shape parameter a > 0 and inverse-scale
parameter b > 0:

p(τk) ∝ τa−1k exp(−bτk) (6)

To specify the parameters a and b it is useful to consider two features
of the prior: the effective model size and shrinkage adaptivity. Shrinkage
adaptivity determines how strongly shrinkage is adapted a posteriori to each
variable’s performance.

Shrinkage adaptivity is related primarily to the shape parameter a. In-
creasing a takes probability mass away from zero and from the right tail, and
shifts it towards the center of the distribution. Therefore, holding the mean
of the density constant, as a increases the variance of the density decreases
and thus shrinkage adaptivity also decreases.

Another way to think about shrinkage adaptivity is to note that a controls
the kurtosis of the marginal prior for β, which is a Student’s t-density. Low a
means that the prior for β is very leptokurtic and thus puts much probability
on zero and in the tails.

Given a value of a and the matrix X, the value of b can be adjusted to
deliver a desired prior expected effective model size. (4) gives the effective
model size for a fixed V . In the adaptive ridge model V is random and
its distribution implies a distribution of the effective number of parameters.
This distribution is nonstandard but can be easily simulated by Monte Carlo
(cf. Hodges and Sargent, 2001).

Panel A of Figure 1 illustrates the effect of changing parameter a. It shows
prior densities of a diagonal entry of V corresponding to different values of a
(these densities are the same across all diagonal entries - see (6)). In all cases
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Figure 1 – Prior distributions of diagonal entries of V implying expected effec-
tive model size of 7 in the PWT6.0 dataset. A: Prior densities of 1/τk in the
adaptive ridge model and the fixed value 1/τ̄ in the ridge model. B: Prior dis-
tribution of V(1,1) in BMA. g = 1/K2, approximation on the basis of 100,000
models drawn from the prior distribution of models.

b has been adjusted to produce the mean model size of 7 (the data X are
taken from the baseline dataset, described later). The vertical line denotes
the value of 1/τ̄ in the ridge regression corresponding to the prior model size
7.

2.3 Bayesian Model Averaging

Bayesian model averaging (BMA) assumes dropping variables from X. The
resulting regressions with subsets of the original K variables will be called
submodels. In BMA prior probabilities are attached to submodels. These
prior probabilities are updated with information about submodel fit (mea-
sured by submodel marginal likelihood) to obtain posterior probabilities of
submodels. Results of interest are then computed as weighted averages across
all submodels, with the weights equal to the posterior submodel probabili-
ties.6

Let Mj denote submodel j ie, a regression with a subset of regressors col-
lected in a matrix Xj. BMA uses two sets of assumptions: prior probabilities
of submodels p(Mj) and priors about submodel parameters p(α, β, σ2|Mj).

I use the parameters priors proposed by Fernández et al. (2001a) and ap-
plied to cross-country growth regressions by Fernández et al. (2001b). These
priors are symmetric for all submodels. Priors for α and σ2 satisfy (2) and

6Good references on BMA are eg, Leamer (1978) or Hoeting et al. (1999).
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priors for β satisfy:

p(βj|α, σ2,Mj) = N(0, σ2(gX ′
jXj)

−1) (7)

where βj is the coefficient vector of Xj. The remaining entries in β are
set to 0 in submodel Mj. The term (X ′

jXj)
−1 in the variance is introduced

for technical reasons, to simplify computations (see Fernández et al., 2001a,
p.390). g is a small positive scalar which ensures that the prior variance is
large, in line with the agnostic character of the exercise. Specification of g is
discussed in Fernández et al. (2001a). I take g = 1/K2 as in Fernández et al.
(2001b) and g = 1/N as in Sala-i-Martin et al. (2004).7

I set prior probabilities of submodels p(Mj) following Sala-i-Martin et al.
(2004) (which nests the priors of Fernández et al. (2001b) as a special case).
All subsets of the K variables are assigned positive probabilities, which gives
rise to 2K submodels. Each variable is included with probability p and its
coefficient is set to zero with probability 1− p. This implies that

p(Mj) = pKj(1− p)(K−Kj), (8)

where Kj is the number of variables in submodel Mj. The prior expected
number of variables is pK and the effective model size is8

E(JBMA) =
1

1 + g
pK (9)

Another way of looking at the BMA approach is to note that it corre-
sponds to a particular prior about matrix V in (3). According to this prior
V is a random matrix which takes 2K discrete values Vj with probabilities
p(Mj). Each Vj is aK×K matrix composed of zeros and entries of (gX ′

jXj)
−1

at appropriate positions. In other words, BMA amounts to using a shrinkage
prior for β that is a mixture of densities.9

The BMA approach reflects the prior belief that the coefficient should
either be zero or should be hardly shrunk at all. To see this, consider the k-th
diagonal entry of V , denoted Vk,k, which is proportional to the prior variance
of βk. Vk,k takes the value of 0 with probability (1 − p). The remaining
probability p is distributed among the 2K−1 submodels that include variable

7The priors of Sala-i-Martin et al. (2004) are not precisely of the form (7). However,
Ley and Steel (2009) show that their approach is basically equivalent to using prior (7)
with g = 1/N .

8Note that combining (4) with (7) implies that the effective number of parameters in
the model with Kj regressors is trXj((1 + g)X ′

jXj)
−1X ′

j = 1/(1 + g)Kj .
9Papers which explicitly formulate BMA as a mixture shrinkage prior include Geweke

(1996) and Stock and Watson (2005).
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k. When g is small the diagonal entries Vk,k are large and thus correspond
to a very weak shrinkage.

Figure 1 serves to compare the BMA prior for V with the ridge and
adaptive ridge priors discussed earlier. Panel B shows the distribution of
a diagonal entry of V when g = 1/K2 and the data X is taken from the
baseline dataset discussed later. For the sake of example, the distribution of
the first diagonal entry is presented, but any other one compares similarly
to panel A. The comparison is striking: the BMA prior of Fernández et al.
(2001b) is extreme in putting all weight on either zero or on values far in the
right tail of the adaptive ridge priors of the previous subsection. Note the
difference of scales of panels A and B!

The comparison of the adaptive ridge model with BMA yields two obser-
vations. First, BMA is similar to an extremely adaptive ridge model. This
is so, because the prior for the variance of the shrinkage prior has all its
mass at zero and far in the right tail. This is similar to what happens in
the adaptive ridge model in the limit, as we decrease parameter a. Second,
benchmark BMA priors introduce off-diagonal terms in the variance of the
prior for β, while the variance of beta in the above adaptive ridge model is
diagonal. However, the off-diagonal terms enter for technical reasons only
and not because of substantial prior considerations.

The computation of the posterior is easiest in the case of the ridge regres-
sion. The computational cost of a ridge regression is the same as that of an
OLS regression. The adaptive ridge model requires a Monte Carlo simula-
tion. However, the convenient gamma prior for τk ensures that the efficient
Gibbs sampler can be used. See the Appendix for details.

BMA is computationally most challenging, because the parameter space is
discrete with an enormous support. This requires somewhat more advanced
tools for simulation and for convergence diagnostics (see eg, Fernández et al.,
2001a, and references therein). The trick is to sample only models that have
high posterior probability, and not waist time on models with negligible pos-
terior probability. As discussed eg, in Ley and Steel (2009), the convergence
of the BMA posterior simulation is quickest when g and the prior model
size are both small. In this case small submodels receive most posterior
weight. Then it is enough to sample small submodels, which are relatively
few. However, when both the prior model size and g are large, posterior
weight is spread towards larger submodels. Then more time is needed to
cover the space of relevant submodels and thus convergence is slower. This
puts practical limits on increasing g and prior model size.
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3 Data and Model Space

The data studied in this paper are based on the dataset created by Sala-i-
Martin et al. (2004), which is referred to as the SDM dataset. The SDM
dataset consists of 67 variables observed for 88 countries (K = 67, N =
88). The dependent variable is the average growth rate of per capita GDP
(gross domestic product) over the period 1960-1996. Following Ciccone and
Jarociński (2010), three versions of this dataset are used. In the original
SDM dataset, the initial per capita GDP (which is among the explanatory
variables) and the per capita GDP growth rate are taken from Penn World
Table (PWT) version 6.0. I use these original values and as alternatives I
also update these two variables using data from two more recent versions of
PWT (6.1 and 6.2), which reduces the number of country observations to
84 and 79 respectively. This gives rise to three different versions of the data
(X, y).

I consider these three versions of the data in order to check the sensitivity
of the results to different PWT data versions. Ciccone and Jarociński (2010)
found, using the same data, that many results of empirical growth studies
using BMA are very sensitive to the PWT version used.10 Moreover, Johnson
et al. (2009) argue that historical data in newer versions of PWT are not
necessarily better than in older versions, but simply use different assumptions
in the purchasing power parity adjustments. Methodological dilemmas and
data availability problems are inherent in the construction of these figures.
Therefore, it is important to know to what extent empirical findings are
robust to the inevitable data uncertainty.

The space of models considered is indexed by two dimensions: prior effec-
tive model size and shrinkage adaptivity. Shrinkage adaptivities considered
are: BMA (the most adaptive shrinkage), adaptive ridge regressions with
parameter a equal to 0.3, 0.5, 1 and 5, and ridge regression (non-adaptive
shrinkage). Prior effective model sizes considered are 7, 15, 20, 30 and 40.
The smallest model size is 7, as in many classical empirical growth papers
(Levine and Renelt, 1992; Sala-i-Martin et al., 2004). Model sizes beyond 40
seem to be impractical with the available number of observations. Fernández
et al. (2001b), Ley and Steel (2009) and some other BMA papers use the
prior effective model size of K/2. Therefore, in the case of BMA the prior
effective model size is always taken to be 33.5 instead of 30, to enable direct
comparison with these published results.

10The robustness of techniques other than BMA is studied in Hanousek et al. (2008)
and Johnson et al. (2009). They find that PWT revisions affect most panel regressions,
but also some cross-country regressions.
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4 Fit and Robustness

4.1 Fit: Marginal Likelihoods

This subsection reports the fit of the alternative models to the cross-country
growth data. I use the standard Bayesian measure of model fit that has a
rigorous decision-theoretic justification: the marginal likelihood of the data.
The marginal likelihood concisely summarizes the predictive performance of
a model in all the out-of-sample forecasting exercises one can perform by
splitting the available sample.11 Ratios of marginal likelihoods have an in-
terpretation of the odds that guide the optimal choice or weighting of models.
Also BMA, used extensively in the empirical growth literature, is based on
the marginal likelihood as a measure of submodel fit. It is therefore con-
sistent to use marginal likelihoods also when comparing BMA with other
procedures.

Table 1 reports the marginal likelihoods of all models for each of the three
versions of the dataset. Three main conclusions emerge from this table.

The first conclusion is that in terms of fit, adaptive ridge and standard
ridge models are attractive alternatives to the BMA specifications used in
the most cited papers in the growth literature. In Table 1 BMA marginal
likelihoods are lower than the best adaptive ridge marginal likelihoods in
each of the three datasets.

The overall fit of the BMA procedures turns out to be quite low in spite
of the fact that some of the small submodels have very good fit (marginal
likelihoods and sizes of the best submodels are reported in Table A.1 in the
Appendix). However, BMA procedures consider billions (267) of submodels,
many of which are very poor, and the prior probability is spread over all such
submodels. As a result, the overall fit of the BMA procedures turns out to
be quite low. Someone obsessed just with fit might be tempted to use only
the best submodel. But this would mean ignoring model uncertainty, while
the whole appeal of BMA is that it accounts for model uncertainty.12

11See eg, Geweke (2005, section 2.6.2). Predictive performance is measured by the value
of the predictive density at the actual data. The computation of marginal likelihoods in
the present paper is explained in the Appendix.

12BMA marginal likelihoods could probably be improved by using coefficient priors with
stronger shrinkage. The fit with g = 1/N is always higher than with g = 1/K2 so it may
help to increase g even further. Also Eicher et al. (2009) find that cross-country growth
BMA procedures with stronger shrinkage and larger prior model size have a better out-of-
sample forecasting performance. The disadvantage of high g is that the computational cost
of BMA becomes larger and it may even be infeasible in some cases. A second potential
improvement of the BMA is to use diagonal variance in the prior for βj , instead of the
g-prior. I compared two versions of the model with all 67 variables: the ridge model and
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Table 1 – Marginal likelihoods of alternative models in PWT6.0, 6.1, 6.2

prior BMA adaptive ridge ridge
mod.size g=1/K2 g=1/N a=0.3 a=0.5 a=1 a=5

PWT6.0
7 1.1E+73 1.9E+76 8.2E+76 1.6E+77 2.2E+76 1.4E+73 5.5E+72
15 1.6E+70 8.8E+74 2.8E+77 2.8E+78 5.9E+78 3.6E+77 1.4E+77
20 1.0E+68 2.3E+73 1.3E+77 4.4E+78 2.8E+79 1.1E+79 6.1E+78
30* 2.3E+60 - 3.9E+75 5.1E+77 2.0E+79 9.2E+79 9.7E+79
40 2.3E+55 - 7.3E+71 5.0E+74 1.4E+77 1.1E+78 2.1E+78
PWT6.1
7 9.1E+69 5.0E+75 1.0E+75 2.5E+74 9.3E+72 5.5E+70 2.5E+70
15 2.6E+68 1.9E+75 6.1E+75 7.2E+76 9.9E+75 2.6E+74 1.3E+74
20 6.4E+66 9.2E+73 1.5E+76 1.7E+77 1.1E+77 5.4E+75 3.2E+75
30* 1.7E+60 - 1.8E+75 8.4E+76 6.0E+77 7.9E+76 4.3E+76
40 4.0E+55 - 5.2E+71 2.6E+74 1.2E+76 1.2E+76 4.9E+75
PWT6.2
7 8.5E+74 6.8E+79 3.2E+78 9.0E+77 1.7E+76 2.2E+72 7.3E+71
15 1.5E+73 7.6E+78 1.8E+79 8.5E+79 4.6E+78 8.2E+75 2.8E+75
20 2.3E+71 2.5E+77 1.8E+79 9.9E+79 3.0E+79 8.1E+76 3.6E+76
30* 1.9E+64 - 6.5E+77 9.0E+78 2.6E+79 1.9E+77 7.5E+76
40 2.6E+59 **- 2.1E+73 9.6E+75 1.2E+77 8.3E+75 1.5E+75

* For BMA the prior effective model size is 33.5 instead of 30.
** Results for model sizes higher than 20 are not reported because they do not converge
using the Ley and Steel (2009) software. Also Ley and Steel (2009) report convergence
problems in this dataset when g = 1/N and prior model size is 33.5.

The second conclusion from Table 1 is that when fitting the growth data
there is a tradeoff between shrinkage adaptivity and model size. More adap-
tive shrinkage specifications (BMA and adaptive ridge models with low pa-
rameter a) perform better when the effective model size is small, while less
adaptive shrinkage schemes perform better with larger effective model sizes.
To highlight this fact, the highest marginal likelihood of the adaptive ridge
and overall, in each row of the table is printed in bold font. In all three
datasets the bold numbers are lined up roughly along a diagonal from the
top left to the bottom right of the tables. As argued in the Introduction to
this paper, to avoid omitted variables bias it is important to use possibly
large model size. Table 1 suggests that when effective model size is high, less
adaptive shrinkage delivers better fit.

The third conclusion is that, among the models considered in this pa-

the model with a g-prior. The ridge model strongly dominates the g-prior for all effective
model sizes and all datasets. Adaptive ridge marginal likelihoods could be increased too,
for example by replacing the convenient gamma prior for τ with a prior that puts less
weight on extremely weak shrinkage.
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per, models with 20 - 30 effective parameters have the highest marginal
likelihoods. With PWT6.0, the best fitting model is the simple ridge regres-
sion with 30 effective parameters (marginal likelihood of 9.7E+79). With
PWT6.1, the best fitting model is the adaptive ridge with a = 1 and 30
effective parameters (marginal likelihood of 6.0E+77). With PWT6.2 the
best fitting model is the adaptive ridge with a = 0.5 and 20 effective param-
eters. To sum up: when general shrinkage models are used, the data favor
the view that growth is a complex phenomenon affected simultaneously by
many country characteristics. Only the imposition of the restriction that
coefficients should either be very large or very small (as in BMA) pushes the
posterior towards small models.

4.2 Robustness to Penn World Table Revisions

This subsection studies how coefficients from alternative shrinkage models
differ across versions of the dataset. I generate the posterior distribution of
the coefficients of all 67 variables using each model.13 These computations
are performed three times, once for each version of the dataset.

I focus on the posterior mean of the coefficients. This is the key indicator
of the economic significance of a variable’s relationship with growth.14 All
variables are standardized and therefore the coefficients are interpretable as
the difference in the average growth rate of a country, in percentage points per
annum, associated with a one standard deviation difference in the underlying
variable.

Tables 2a and 2b report three statistics about changes in results across
datasets: the greatest absolute change in a posterior mean across datasets

13The BMA results are generated with the Markov Chain Monte Carlo Model Compo-
sition sampler of Ley and Steel (2009), using software downloaded from the Journal of
Applied Econometrics archive. The chain length and other settings of the sampler are
left unmodified. I take g = 1/K2. Correlations of visits and posterior odds are 0.98 in
PWT6.0 with model size 40, 0.97 in PWT6.2 with model size 40 and well in excess of
0.99 in all remaining cases, signaling excellent convergence. The adaptive ridge results are
generated with the Gibbs sampler described in the Appendix and implemented in R (R
Development Core Team, 2009). 10,000 draws from the sampler are generated and every
10th draw is retained. Convergence is confirmed using the geweke.diag function from the
coda package (Plummer et al., 2007). The posterior of the ridge model is the multivariate
Student density provided in the Appendix for reference.

14The posterior mean of the regression coefficients is well defined in all considered mod-
els. Some BMA studies focus instead on the posterior probabilities of inclusion of individ-
ual variables and on the posterior means of the coefficients conditional on their inclusion.
The posterior mean in BMA is the product of these two quantities. In ridge-type models
the posterior inclusion probability is not defined.
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Table 2a – Coefficient changes between PWT6.0 and PWT6.1.

prior BMA adaptive ridge ridge
mod.size g=1/K2 g=1/N a=0.3 a=0.5 a=1 a=5

A. Greatest absolute change
7 1.02 0.89 0.97 0.86 0.18 0.03 0.02
15 1.08 0.70 0.85 0.88 0.75 0.07 0.05
20 1.03 0.65 0.79 0.80 0.84 0.13 0.08
30* 0.82 0.65 0.70 0.72 0.79 0.31 0.15
40 0.75 - 0.68 0.70 0.77 0.50 0.26

B. Third greatest absolute change
7 0.53 0.26 0.33 0.31 0.15 0.02 0.02
15 0.47 0.20 0.20 0.20 0.18 0.04 0.04
20 0.34 0.15 0.19 0.17 0.14 0.05 0.06
30* 0.26 0.21 0.17 0.16 0.15 0.08 0.09
40 0.23 - 0.21 0.19 0.21 0.16 0.14

C. Correlation
7 0.39 0.85 0.63 0.61 0.90 0.98 0.98
15 0.55 0.93 0.84 0.80 0.74 0.97 0.97
20 0.71 0.94 0.88 0.86 0.78 0.95 0.96
30* 0.90 0.90 0.92 0.90 0.86 0.91 0.94
40 0.93 **- 0.90 0.89 0.86 0.87 0.91

*,** See the notes below Table 1. BMA coefficients for g = 1/N
and model size 33.5 have been similar in repeated simulations, so
they are reported in spite of failed convergence diagnostics.

PWTi and PWTj ie,

max
k∈{1...K}

∣∣E(βk|yPWTi)− E(βk|yPWTj)
∣∣ ,

the third greatest absolute change of a posterior mean across datasets and
the correlation coefficient of posterior means across datasets.

The first conclusion from Tables 2a and 2b is that more adaptive shrinkage
models are less robust. In the ridge and adaptive ridge model with a = 5 (the
last two columns of the tables) coefficients changes are by far the smallest in
every row of panels A and B. The same lesson emerges from panels C, which
show correlations. The correlations of coefficients of the ridge and adaptive
ridge model with a = 5 (the last two columns of the tables) are the highest in
every row of panels C. Only in models of size 40 the correlations are roughly
constant across shrinkage adaptivities.

The second conclusion from Tables 2a and 2b is that the disagreements



20
ECB
Working Paper Series No 1234
August 2010

Table 2b – Coefficient changes between PWT6.0 and PWT6.2

prior BMA adaptive ridge ridge
mod.size g=1/K2 g=1/N a=0.3 a=0.5 a=1 a=5

A. Greatest absolute change
7 1.21 0.82 1.01 0.95 0.36 0.06 0.04
15 1.12 0.60 0.80 0.87 0.83 0.12 0.10
20 1.00 0.57 0.74 0.80 0.84 0.17 0.14
30* 0.72 0.66 0.68 0.71 0.81 0.31 0.22
40 0.64 - 0.70 0.73 0.81 0.54 0.31

B. Third greatest absolute change
7 0.67 0.49 0.45 0.37 0.14 0.04 0.03
15 0.63 0.39 0.36 0.35 0.22 0.07 0.06
20 0.57 0.42 0.36 0.34 0.25 0.10 0.08
30* 0.42 0.47 0.37 0.35 0.32 0.17 0.13
40 0.39 - 0.41 0.40 0.38 0.24 0.21

C. Correlation
7 0.19 0.62 0.49 0.51 0.79 0.92 0.93
15 0.34 0.77 0.72 0.69 0.63 0.89 0.89
20 0.47 0.80 0.77 0.75 0.68 0.85 0.87
30* 0.69 0.76 0.81 0.79 0.75 0.79 0.82
40 0.75 **- 0.78 0.77 0.74 0.72 0.76

*,** See the notes below Tables 1 and 2a.

in BMA and highly adaptive ridge are economically meaningful, while the
disagreements in ridge and weakly adaptive ridge models are not. To see
that these disagreements are big, note that in BMA the greatest coefficient
changes are close to 1 in many cases. This means that a one standard devia-
tion difference in some of the variables is associated with a growth difference
of x% per annum in one dataset and x+1% per annum in another. A 1%
disagreement about growth rates implies after 36 years (which is the span of
the sample) a disagreement of more than 40% about final GDP levels. This
is a substantial disagreement.

Even the third greatest changes in BMA coefficients are economically
important. In small BMA models (which fit the data better than larger
BMA models), the third largest coefficient change entails a 0.5% disagree-
ment about growth rates between PWT6.0 and PWT6.2, which implies a
disagreement of approximately 20% about final GDP levels.

In contrast to BMA and strongly adaptive ridge models, the absolute size
of changes in less adaptive ridge models and simple ridge models is small
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and economically not very significant. For example, the greatest coefficient
difference between PWT6.0 and PWT6.1 using ridge regression with the
effective model size of 20 is 0.08. This translates into a disagreement about
the GDP level after 36 years of only around 3%. Therefore, data uncertainty
is a serious concern for an econometrician using very adaptive shrinkage
models, such as BMA, and hardly any concern at all for an econometrician
using a simple ridge model of moderate size.

5 Empirical Results From the Baseline Model

This section focuses on one baseline specification: the adaptive ridge model
with effectively 30 parameters and shrinkage adaptivity parameter a = 5.
The first subsection discusses empirical results and compares them with the
BMA results. The second subsection studies the sensitivity of the baseline
results to prior specification.

The choice of the baseline model is justified as follows. As argued in the
introduction, it is important to control as well as possible for all variables
suggested by the theory. Therefore, first, the prior effective size of the model
should be rather large. Second, the prior probability of any variables drop-
ping out is not large, since all variables are justified by growth theory which
is “open-ended”. This suggests the ridge model or the adaptive ridge model
with weak adaptivity.

Given these broad guidelines, the baseline model strikes a balance between
fit and robustness to data revisions. Based on the robustness considerations
and given the data uncertainty, only effective model sizes below 40 and adap-
tive ridge models with at least a = 5 are appealing. The specification with
a = 5 and effective size 30 is also quite close to the best fitting models in
PWT6.0 and PWT6.1.

5.1 Posterior Means of Coefficients

Table 3 reports posterior means of regression coefficients obtained with the
three datasets. The first columns show the baseline model coefficients and
their standard deviations. The last three columns show the BMA coefficients
using the Fernández et al. (2001b) priors ie, g = 1/K2 and effective model size
of 33.5. This table shows 21 variables that have a coefficient of at least 0.15
in at least one case. The coefficients of the remaining variables are available
from the author upon request. The first 14 rows show all variables that have
a baseline model coefficient of at least 0.15 in at least one of the datasets. The
subsequent 7 rows show the remaining variables that have a BMA coefficient
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of at least 0.15 in at least one of the datasets. The threshold of 0.15 is chosen
arbitrarily, to retain only variables with an economically noticeable impact.
A coefficient of 0.15 means that a two standard deviations difference in the
variable in question is associated with a difference of roughly 11% in the
GDP level after 36 years.

Of all the variables, the initial GDP has the strongest impact on growth
across all datasets and all models. Higher initial GDP is associated with
lower growth, consistently with conditional convergence. The weakest con-
vergence is found in the PWT6.0 dataset (coefficient of -0.24 in the baseline
model). The effect of initial GDP on growth is twice as strong in PWT6.1 and
PWT6.2 (-0.56 and -0.53 in the baseline model). The BMA coefficients are
about twice as large (-0.57, -1.35 and -1.28). Overall, in the baseline model
the conditional convergence is economically significant but slower than in
BMA and considerable disagreement exists across datasets.

The effect of the next six variables in the baseline model exceeds the
0.15 threshold and is consistent across datasets. Primary Schooling has a
coefficient of above 0.3, which is the second largest in absolute value. Primary
Schooling is also the second most important variable in BMA, where its
coefficients are two to three times larger (ranging from 0.63 in PWT6.0 to
0.95 in PWT6.1).

The results for East Asian Dummy and Fraction Confucius are a good
illustration of the intuitive advantage of less adaptive shrinking over BMA in
presence of correlated variables. East Asian Dummy and Fraction Confucius
are very similar: they are both zero in all but nine observations. A weakly
adaptive ridge estimation deals with such multicollinearity by shrinking both
coefficients. The posterior effect on growth gets distributed roughly equally
between the two highly correlated variables. Their coefficients are stable
across datasets, ranging from 0.2 to 0.3. In contrast, BMA tries to choose the
better one of the two variables, which is difficult and leads to unstable results
in the presence of data uncertainty. In BMA only East Asian Dummy matters
in the PWT6.0 and PWT6.1 data while Fraction Confucius is irrelevant,
but only Fraction Confucius matters in the PWT6.2 data while East Asian
Dummy is irrelevant.
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Fraction Buddhist is another variable that captures the rapid growth of
Asian countries. Its effect on growth is positive, with a coefficient of about
0.2 consistently across datasets. This contrasts with much smaller coefficients
in BMA (0.04 to 0.09).

The effect of Life Expectancy is 0.16 with all datasets. This contrasts
with the BMA results, where the coefficient is 0.23 for PWT6.0, but only
0.01 for PWT6.2. The Sub-Saharan Africa Dummy is negative, with a value
between -0.17 and -0.24. In contrast, in BMA the coefficient varies between
-0.12 with PWT6.1 and -0.55 with PWT6.2. Overall, the coefficients of these
six variables are not only among the largest in absolute value but are also
very stable across datasets.

There is considerable disagreement across datasets about the next two
variables, both in the baseline model and in the BMA. First, a one standard
deviation increase in the relative Investment Price is associated with 0.29
and 0.33 lower growth rate according to PWT6.0 and PWT6.1, but it is
irrelevant in PWT6.2. These coefficients and their disagreement are similar
to the BMA results (coefficients of -0.36, -0.46 and 0). Second, a one standard
deviation increase in the Fraction of GDP in the Mining sector is associated
with a 0.17 and 0.23 higher growth rate according to PWT6.0 and PWT6.1,
but is irrelevant according to PWT6.2. This differs from BMA where the
coefficient of this variable never exceeds 0.1.

The subsequent five variables: Civil Liberties, Openness Measure 1965-
74, Years Open 1950-94, Primary Exports in 1970 and Real Exchange Rate
Distortions have individually small coefficients, which are around the thresh-
old value of 0.15 and rather consistent across datasets. In contrast, the BMA
coefficients of these variables are below 0.05 in all cases except Primary Ex-
ports, which has a negative coefficient of up to 0.1 in absolute value, but
inconsistently across datasets.

This contrast between insignificance in BMA and moderate significance
in the baseline model is even stronger when considering that three of these
variables capture commitment to free trade. Openness Measure 1965-74 and
Years Open 1950-94 are just different measures of openness, and Real Ex-
change Rate Distortions is another proxy for trade policies. These variables
would usually co-move in practice, so it is interesting to consider their joint
effect on growth. A country that has one standard deviation higher mea-
sures of openness and a one standard deviation lower Real Exchange Rate
Distortions will grow 0.46 percentage point per annum faster according to
PWT6.0, 0.39 according to PWT6.1 and 0.26 according to PWT6.2. The
corresponding figures in BMA are only 0.1, 0.04 and 0.06. Thus, in contrast
to BMA, the baseline model detects an economically significant association
between trade openness and growth.
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The BMA results for the subsequent seven variables disagree widely across
datasets. The largest difference is for Fertility: its BMA coefficient is -0.67
with PWT6.2 and only -0.01 and -0.10 with PWT6.0 and PWT6.1. The ef-
fect of Fertility is also negative in the baseline model, but smaller and much
more consistent (between -0.05 and -0.12). Fraction of Tropical Area has
BMA coefficients of -0.39, -0.45 and only -0.01 with the three datasets. In
contrast, its baseline model coefficients are again smaller and more consis-
tent (ranging from -0.12 to -0.08). Other variables with large differences in
BMA coefficients across datasets are Population Density, Population Density
Coastal, Malaria Prevalence, Air Distance to Big Cities and Fraction Mus-
lim. These and other disagreements in BMA and their sensitivity to various
assumptions are studied in detail in Ciccone and Jarociński (2010). In con-
trast to these BMA results, the baseline model coefficients are rather small
and hence fairly consistent across datasets.

Overall, Table 3 illustrates with concrete examples the advantage of the
baseline model over BMA in terms of robustness to data revisions. The
findings of the baseline model are also nontrivially different from the BMA
findings. Controlling for more variables we obtain partial regression coeffi-
cients which are never as big in absolute value as the largest BMA coefficients.
However, a number of widely discussed variables that are irrelevant in BMA
have a noticeable effect in the baseline model. Proxies for open foreign trade
regimes are the most notable case.

5.2 Sensitivity to Prior Specification

This section studies the sensitivity of the baseline results to prior specifi-
cation. Table 4 shows correlation coefficients of baseline model posterior
means with other models’ posterior means. These correlations are calculated
for each of the three datasets. Unsurprisingly, the correlations fall as the
distance from the baseline model (a = 5, J = 30) increases.

Assessing the sizes of these correlations is tricky, but we have seen in Table
3 that the differences between the baseline model and the BMA of Fernández
et al. (2001b) are quite substantive. The correlations in these cases are 0.75
(in PWT6.0), 0.77 (in PWT6.1) and 0.83 (in PWT6.2). Judging by this
standard, all models with prior model size of 7 might differ by even more
and so will many of the models with prior model size 15.

Table 5 gives a more direct idea of the economic sizes of the disagreements.
It reports, for each model and each dataset, the three largest absolute dif-
ferences of posterior means from the baseline model. Each entry contains
three pieces of information: first, the respective model coefficient minus the
baseline model coefficient; second, the acronym of the variable name (the
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Table 4 – The correlation of model coefficients with the baseline model coeffi-
cients.

prior BMA adaptive ridge ridge
mod.size g=1/K2 g=1/N a=0.3 a=0.5 a=1 a=5

PWT6.0
7 0.40 0.73 0.72 0.73 0.71 0.84 0.83
15 0.56 0.78 0.87 0.90 0.91 0.93 0.92
20 0.65 0.80 0.89 0.92 0.96 0.97 0.96
30* 0.75 0.81 0.90 0.92 0.97 1.00 1.00
40 0.77 - 0.91 0.92 0.95 0.97 0.98

PWT6.1
7 0.75 0.77 0.83 0.84 0.80 0.77 0.77
15 0.75 0.80 0.84 0.86 0.90 0.89 0.88
20 0.75 0.82 0.86 0.87 0.90 0.95 0.92
30* 0.77 0.84 0.88 0.89 0.91 1.00 0.98
40 0.79 - 0.89 0.90 0.91 0.97 0.98

PWT6.2
7 0.81 0.82 0.85 0.87 0.86 0.69 0.71
15 0.81 0.84 0.87 0.88 0.91 0.84 0.83
20 0.82 0.84 0.88 0.89 0.91 0.92 0.89
30* 0.83 0.84 0.88 0.89 0.91 1.00 0.97
40 0.84 **- 0.88 0.89 0.90 0.96 0.97

*,** See the notes below Tables 1 and 2a.

acronyms are explained under the table) and third, the respective model’s
coefficient itself.

The first lesson from this table is that in the majority of cases the largest
and second largest coefficient differences involve the initial GDP and Primary
Schooling. The effect of the initial GDP ie, the conditional convergence tends
to be stronger in larger and more adaptive models. Similarly, in larger and/or
more adaptive models the effect of Primary Schooling on growth is stronger.

As regards other variables, in PWT6.0 the top three differences often
involve the East Asia Dummy (in 12 cases out of 30) and Investment Price
(nine cases). East Asia Dummy has a stronger positive effect in smaller
and more adaptive models. Relative Investment Price has a weaker negative
effect in smaller models.
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In PWT6.1 the top three differences often involve Sub-Saharan Africa
Dummy (nine cases) and Civil Liberties (eight cases). Sub-Saharan Africa
Dummy has a stronger negative effect in large models. Civil Liberties have
a weaker negative effect in more adaptive models.

In both PWT6.0 and 6.1 Tropical Area has a stronger negative effect in
more adaptive models, while the Fraction of GDP in Mining has a weaker
positive effect in smaller models.

In PWT6.2 the top three differences often involve Fertility (18 cases) and
again Sub-Saharan Africa Dummy (ten cases). Fertility has a very strong
negative effect in more adaptive shrinkage models, while it has no such effect
in the baseline. Sub-Saharan Africa Dummy has a weaker effect in smaller
models.

The overall conclusion from Table 5 is that effective model size and shrink-
age adaptivity matter a lot for the results. The lessons from more adaptive
and smaller models are often quite different regarding the most important
variables. However, researchers who agree that model sizes should be at least
20 and shrinkage adaptivity a at least one will find reasonably similar results,
except for a slight disagreement about convergence and Primary Schooling.

The simple ridge model is the closest one to the baseline model. Re-
searchers using the ridge model would draw virtually the same conclusions
from the data, except for a slightly lower convergence speed.

6 Conclusions

This paper proposes a new approach to the empirical growth research. In
contrast to much of the literature, this paper does not view this research
as a competition of small models. Instead, it models growth as a product
of many mutually canceling or reinforcing factors. The Introduction argues
that this view is consistent with the existing growth theory. The rest of the
paper shows that this view is also empirically plausible. Moreover, it delivers
results robust to the measurement error inherent in the data.

The good news is that the approach of this paper is computationally very
simple. This paper shows that a robust analysis of a large cross-country
dataset can be performed with a simple ridge regression, which is available
in most econometric packages and involves only one matrix inversion. This
allows empirical growth researchers to shift their attention from computa-
tional issues to the other challenges facing empirical growth research, such as
endogeneity of growth determinants, nonlinearity and new data collection.
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Appendix: Computation details

A.1 The Posterior of the Ridge Model

The kernel of the posterior of the ridge model is given by the standard text-
book formula, provided here for completeness:

p(β|y) ∝ (
(β − β̄)′(X ′X + diag(τ))(β − β̄) + s

)−N+K−3
2 (A.1)

where β̄ = (X ′X+diag(τ))−1X ′y and s = y′y−y′X(X ′X+diag(τ))−1X ′y−
Nȳ2. (A.1) is a kernel of the multivariate Student density with mean β̄ and
variance:

Var(β) =
s

N − 5
(X ′X + diag(τ))−1

A.2 Gibbs Sampler for the Adaptive Ridge Model

The joint posterior of all parameters is proportional to the product of the
kernels of the likelihood, the Normal prior for β, the gamma prior for τk and
the noninformative priors for σ2 and α. Since α is not of interest, I integrate
it out analytically. The posterior kernel of the remaining parameters is:

p(β, σ2, τ1 . . . τK) ∝ (σ2)−(N−1)/2 exp
(
−1

2

(ỹ −Xβ)′(ỹ −Xβ)

σ2

)

×
K∏
k=1

(σ2)−
1
2 τ
−1/2
k exp

(
−1

2

β2
kτk
σ2

)
×

K∏
k=1

τa−1k exp (−bτk)× 1

σ2
(A.2)

where ỹ is demeaned y. I assume throughout the paper that X has been
demeaned already. Denoting the set of all parameters to be estimated as
Θ ≡ {β, τ1, . . . , τK , σ2} the conditional posteriors are as follows:

p(β|y,X,Θ\{β}) ∝ exp

(
−1

2

(
β′
X ′X
σ2

β − 2
β′X ′ỹ
σ2

+ β′
diag(τ1 . . . τK)

σ2
β

))

∝ N
(
(X ′X + diag(τ1 . . . τK))

−1X ′ỹ, σ2(X ′X + diag(τ1 . . . τK)
(A.3)

p(τk|y,X,Θ\{τk}) ∝ τ
a+ 1

2
−1

k exp

(
−

(
b+

β2
k

2σ2

)
τk

)
∝ G

(
a+

1

2
, b+

β2
k

2σ2

)

(A.4)
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p(σ2|y,X,Θ\{σ2}) ∝ (σ2)−(N+K−1)/2 exp
(
−1

2

(y −Xβ)′(y −Xβ) + β′ diag(τ1 . . . τK)β
σ2

)

∝ IG2 ((y −Xβ)′(y −Xβ) + β′ diag(τ1 . . . τK)β,N +K − 3)
(A.5)

A sample from the posterior is easily generated with the Gibbs sampler
ie, by repeatedly drawing in turn from (A.3), (A.4) and (A.5).

A.3 Computation of Marginal Likelihoods

This subsection explains the computation of the marginal likelihoods. Special
care is taken in the computation to make sure that marginal likelihoods are
comparable across models. Because of the improper priors in (2), the levels
of marginal likelihoods are not interpretable. Marginal likelihoods are only
determined up to an arbitrary multiplicative factor coming from the improper
part of the prior. However, the improper part of the prior is common to all
models considered in this paper and therefore it does not affect comparisons
across models. Second, because of the common structure of all models given
in (1), (2) and (3), there are other common factors which can be omitted. The
computations below ensure that any omitted multiplicative factors are the
same. Therefore the ratios of these marginal likelihoods (Bayes factors) are
meaningful and allow model comparisons. This is the same as in the BMA of
Fernández et al. (2001a) or Sala-i-Martin et al. (2004): the levels of marginal
likelihoods are not interpretable, but their relative sizes are meaningful and
determine model weights.

Models satisfying (1), (2) and (3) differ only in the V matrix. Therefore,
the factor of the marginal likelihoods that does not cancel in the odds ratio
for any pair of such models is:

p(y) ∝ |X ′X+V −1|−1/2|V |−1/2 (y′y − y′X(X ′X + V −1)−1X ′y −Nȳ2
)−(N−1)/2

(A.6)
This expression is obtained by computing

p(y|V ) =

∫
p(y|α, β, σ2, X)dp(α)p(β)p(σ2)

and dropping all terms that do not depend on V and therefore cancel in an
odds ratio. See Fernández et al. (2001a) for a similar expression.

Ridge regression. The marginal likelihood of a ridge regression is com-
puted directly by evaluating (A.6).
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When V is stochastic then in order to compute the marginal likelihood
we need to integrate it out using its prior distribution.

Adaptive ridge. In the adaptive ridge regression we have V = diag(τ)−1

where τ is a vector of gamma random variables. I integrate out τ with Monte
Carlo ie, repeatedly drawing τ from its prior distribution and averaging the
values of (A.6) across draws. This procedure converges very quickly when
parameter a is high, but for a < 1 many draws are needed. The results in
Table 1 are obtained with 10 million draws. The reason is that when a is
low, the distribution of τ is more spread out, so that it covers models with
very different fit and it takes more time to explore it.

BMA. In principle, one could use the same Monte Carlo computation as
before. However, in BMA the distribution of V is discrete over 2K points.
When K is large this Monte Carlo computation would converge too slowly.
Therefore, the weight of the BMA procedure as a whole was computed in a
different way, utilizing the output of the BMA software provided by Ley and
Steel (2009).15

Let us define some notation first. As discussed in section 2.3, a BMA
procedure depends on a number of specifications: priors about parameters
given submodels and prior probability of submodels. Let B denote a particu-
lar specification of all these assumptions. Let M1 denote the submodel with
the highest marginal likelihood. The posterior probability of submodel M1

conditional on the BMA procedure B satisfies:

p(M1|y,B) = p(M1|B)p(y|M1,B)∑2K

j=1 p(Mj|B)p(y|Mj,B)
=

p(M1|B)p(y|M1,B)
p(y|B)

where p(Mj|B) is the prior probability of submodelMj in the BMA procedure
B and p(y|Mj,B) is the marginal likelihood of submodel Mj. This implies
that

p(y|B) = p(M1|B)p(y|M1,B)
p(M1|y,B) . (A.7)

I compute the marginal likelihood of BMA using (A.7). I take the posterior
probability of the best submodel p(M1|y,B) from the output of the BMA
software of Ley and Steel (2009). This software reports also which vari-
ables enter the best submodel M1. Knowing the composition of M1 the two
remaining quantities are easy to compute. I compute the marginal likeli-
hood p(y|M1,B) using (A.6), replacing X with Xj and V with (gX ′

jXj)
−1. I

compute the prior probability p(M1|B) using (8). Table A.1 reports all the
quantities used to compute the entries of Table A.6.

15This software uses advanced Monte Carlo methods to explore only the most relevant
part of the space of 2K models - see their paper and the literature quoted therein.
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Table A.1 – BMA best submodels (M1): marginal likelihood p(y|M1,B), pos-
terior probability p(M1|y,B) and number of regressors K1

prior g = 1/K2 g = 1/N
mod.size p(y|M1,B) p(M1|y,B) K1 p(y|M1,B) p(M1|y,B) K1

PWT6.0
7 4.8E+77 0.3772 2 7.9E+83 0.0664 6
15 4.8E+77 0.1088 2 7.9E+83 0.0219 6
20 2.3E+79 0.0644 6 7.9E+83 0.0099 6
33.5 2.3E+79 0.0657 6 -
40 2.3E+79 0.0373 6 -
PWT6.1
7 6.0E+77 0.1031 6 1.7E+85 0.0725 8
15 1.5E+79 0.1161 7 7.8E+85 0.0246 9
20 1.5E+79 0.1215 7 7.8E+85 0.0188 9
33.5 1.5E+79 0.0599 7 -
40 1.2E+79 0.0369 7 -
PWT6.2
7 8.2E+82 0.1503 6 2.0E+87 0.0451 6
15 8.2E+82 0.1338 6 2.0E+87 0.0063 6
20 8.2E+82 0.1015 6 2.5E+89 0.0040 11
33.5 8.2E+82 0.0297 6 -
40 8.2E+82 0.0118 6 **-

Notes: p(M1|y,B) and K1 are taken from the output of the BMA software of Ley and
Steel (2009). p(y|M1,B) is computed using (A.6). ** See the notes below Table 1.
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