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Abstract

In this paper we compare the in-sample fit and out-of-sample forecast-
ing performance of no-arbitrage quadratic and essentially affine term
structure models, as well as the dynamic Nelson-Siegel model. In total
eleven model variants are evaluated, comprising five quadratic, four
affine and two Nelson-Siegel models. Recursive re-estimation and out-
of-sample one-, six- and twelve-months ahead forecasts are generated
and evaluated using monthly US data for yields observed at maturities
of 1, 6, 12, 24, 60 and 120 months. Our results indicate that quadratic
models provide the best in-sample fit, while the best out-of-sample per-
formance is generated by three-factor affine models and the dynamic
Nelson-Siegel model variants. However, statistical tests fail to identify
one single-best forecasting model class.

JEL classification codes: C14, C15, G12
Keywords Nelson-Siegel model; affine term structure models; quadratic yield
curve models; forecast performance
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Non technical summary

This paper presents an extensive comparative study of the forecasting perfor-

mance of three main yield curve model classes, namely the affine, quadratic

and the dynamic Nelson-Siegel models.

The affine and dynamic Nelson-Siegel model specifications have been

investigated extensively in the literature, while relatively little attention has

been paid to the quadratic class. In the current paper we strive to close this

gap by conducting an extensive out-of-sample comparison of all three model

classes. To this end we rely on US yield curve data covering the period

from January 1970 to December 2000. Recursive re-estimations and out-

of-sample forecasts are generated for each model at forecasting horizons of

one, six and twelve months starting in January 1994 and ending in December

2000.

Our empirical results indicate that better in-sample fit is provided by the

quadratic model variants. Out-of-sample forecasts for the tested models are

compared to the random-walk forecasts, and here results indicate that all

tested model specifications tend to perform better than random-walk fore-

casts. Judged only by the size of the mean squared forecast errors, we find

that Nelson-Siegel and affine models perform better than their quadratic

counterparts, while this conclusion is somewhat weaker when actual statis-

tical tests are performed.
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1 Introduction

In this paper we compare the forecasting performance of the three main

classes of term structure models advocated by the financial literature: the

affine models, originally introduced by Duffie and Kan (1996), classified by

Dai and Singleton (2000) and extended to the ‘essentially’ affine specification

by Duffee (2002); the class of quadratic yield curve models classified by

Ahn, Dittmar and Gallant (2002) and Leippold and Wu (2002); and the

dynamic Nelson-Siegel model, introduced by Diebold and Li (2006) and

Diebold, Ji and Li (2006), which builds on Nelson and Siegel (1987). While

the forecasting performance of the affine and dynamic Nelson-Siegel models

have been investigated extensively in the literature, relatively little attention

has been paid to the quadratic class of yield curve models. In the current

paper we strive to close this gap by conducting an extensive out-of-sample

comparison of all three model classes. To this end we rely on US yield curve

data covering the period from January 1970 to December 2000. Recursive

re-estimations and out-of-sample forecasts are generated for each model at

forecasting horizons of one, six and twelve months starting in January 1994

and ending in December 2000. Our results indicate that quadratic models

provide the best in-sample fit, while the best out-of-sample performance

is generated by three-factor affine models and the dynamic Nelson-Siegel

models. However, statistical tests fail to identify one single-best forecasting

model class.

One reason for the scarce number of studies dealing with the forecasting

performance of the quadratic class of yield curve models is probably that it

is an arduous task to estimate such models. At least when compared to the

estimation of dynamic Nelson-Siegel models (DNSMs), the quadratic yield

curve models pose a serious econometric challenge. It is well-know that it
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can be difficult to obtain convergence of the likelihood function in affine

models given their richer parametric structure.

As suggested by their name, in quadratic term structure models (QTSMs),

the yield curve factors enter quadratically in the observation equation, and

as such, estimation by the regular Kalman filter technique is invalidated.

Instead, estimation can be carried out by an extended Kalman filter or

by other non-linear techniques. Our estimation approach relies on the un-

scented Kalman filter (UKF), developed by Julier and Uhlmann (1997).

Estimation time and model complexity is of interest in academic research

because it determines how long the researcher has to wait before the results

are available. Especially in a study like ours, which hinges on multiple

rounds of model re-estimation, the used computer-time is considerable.1

While estimation-time and model complexity is a tedious fact of life for

an academic researcher, it is of dire importance for a practitioner. On the

one hand, it is not feasible to use a model, which requires several days of

estimation time, if the results produced by the model are needed on a shorter

frequency e.g. daily. Similarly, if parameter estimates vary ‘too much’ from

re-estimation to re-estimation, or if convergence of the model is not obtained
1We re-estimate the included model variants (five quadratic, four affine, and two

Nelson-Siegel specifications), and perform out-of-sample forecasts for ninety six periods
for each model. Even when executing calculations on a high-speed computing network
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easily, decision makers using the output of the model probably would (and

should) be skeptical about how much reliance they can attach to conclusions

drawn on the basis of such a model. On the other hand, it is also necessary

to evaluate the added benefit to a decision making process, which a more

complex model may bring. For example, quadratic yield curve models may

be regarded ideal in a setting where long-term yield curve forecasts are

required, because, due to the way they are specified, QTSMs facilitate easy

incorporation of restrictions ensuring that simulated yields remain in the

positive quadrant. To obtain non-negative yield simulations by construction,

is, for example, much more difficult if one relies on affine or Nelson-Siegel

type yield curve models.2

The main contribution of our paper lies in the systematic comparison of

the forecasting performance of quadratic, affine and Nelson-Siegel yield curve

model specifications. Using US data from January 1970 to December 2000

we estimate and evaluate the performance of five quadratic models (three

three-factor and two two-factor models), four ‘essentially’ affine models (two

three-factor and two two-factor models), and two dynamic Nelson-Siegel

three-factor models. In addition, within each yield curve model class, we also

introduce variations with respect to how parsimonious the specifications are.

In the quadratic model class we include: a maximally flexible model, which

has the largest possible number of parameters to be estimated, allowing for

interactions among the factors governing yield curve’s dynamics; a medium

flexible model, which imposes zero restrictions on some of the parameters

but still allowing for factors’ interactions; and finally a minimal specification,

which is the most parsimonious specification included and which imposes
2In the current paper, however, no attention is paid to these practical aspects of yield

curve models: only the pure in-sample and out-of-sample forecast precision is assumed to
be relevant.
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independence on the yield factors. The same model variants (except for

the medium flexible one) are estimated for the affine and the Nelson-Siegel

model classes.

Our empirical results indicate that better in-sample fit is provided by

the QTSMs. Out-of-sample forecasts for the tested models are compared

to the random-walk forecasts, and here our results indicate that all tested

model specifications tend to perform better than the random walk. Simply

judged by the size of the mean squared forecast errors, we find that Nelson-

Siegel and affine models perform better than their quadratic counterparts,

while this conclusion is somewhat weaker when actual statistical tests are

performed. Our results do not declare a clear winner among three-factor

quadratic, affine and Nelson-Siegel models.

2 Review of Related Literature

The Nelson-Siegel model, first presented in Nelson and Siegel (1987), pro-

vides an intuitive description of the yield curve at each point in time. In con-

trast to the no-arbitrage term structure models, this model class is derived in

an ad-hoc manner and does not, theoretically, preclude arbitrage opportuni-

ties. However, extensions of the Nelson-Siegel model that are arbitrage-free

do exist, see Bjork and Christensen (1999), and Christensen, Diebold and

Rudebusch (2008a) and (2008b). The model is easy to estimate and fits

yield curve data well in-sample. Set in a dynamic context the model has

proven to produce good out-of-sample forecasts, see among others Diebold

and Li (2006) and Diebold et al. (2006). For example, using US data from

1994 to 2000 Diebold and Li (2006) show that the dynamic Nelson-Siegel

model performs better out-of-sample than the random-walk, and a large

number of time-series models on yields as well as slope-regression models.

 2010June



10
ECB
Working Paper Series No 1205

Coroneo, Nyholm and Vidova-Koleva (2008) show that the DNSM is not

statistically significantly different from the arbitrage-free ATSM. Although

forecast performance is not the primary objective of interest in that paper,

as a secondary objective, they demonstrate that the DNSM produces fore-

casts that are as good as a Gaussian affine arbitrage-free model on US data

covering the period from 1994 to 2000.

Arbitrage-free models, which include the affine and the quadratic spec-

ifications considered here, derive the dynamics of the yield curve under a

risk-neutral probability measure. The existence of the risk-neutral measure

implies that bond prices are arbitrage-free. The observed yield curve evolu-

tion is a result of the yields behaviour under a data-generating (historical or

physical) measure. The transition from the risk-neutral to the physical mea-

sure is established via a function called market price of risk. It determines

the risk premium on bonds’ returns.3

Affine arbitrage-free term structure models, as characterized by Duffie

and Kan (1996), have been extensively studied in the financial literature

both with respect to their theoretical underpinnings as well as to their

predictive abilities.4 Dai and Singleton (2000) provide the admissibility

conditions and suggest a classification scheme for ‘completely’ affine term

structure models. As noted by Duffee (2002), the ‘completely’ affine mod-

eling scheme is restrictive in terms of the allowed functional form used to

characterize the market price of risk, and as a result hereof, fails to match im-

portant features of observed yield curves. Duffee (2002) presents a broader

class of affine models, which he terms ‘essentially’ affine, and where the

market price of risk specification is more flexibly formulated. Using US
3In this respect the Nelson-Siegel model is not arbitrage-free and does not account for

risk pricing.
4Excellent surveys of the literature on affine yield curve models is offered by Piazzesi

(2004) and Dai and Singleton (2003).
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data from 1952 to 1994 as estimation period, and data from 1995 to 1998

as out-of-sample evaluation period, he shows that the ‘essentially’ affine

model specification performs better than its ‘completely’ affine counterpart

in terms of out-of-sample forecasting ability for yields measured at 6, 24 and

120 month maturities, when evaluated at forecasting horizons of 3, 6 and 12

months.5

In contrast to the numerous studies published on affine term structure

models, their in-sample fit and out-of-sample performance, only few studies

are concerned with the empirical performance of quadratic models. Exam-

ples of such studies comprise Ahn et al. (2002), Leippold and Wu (2002),

(2003) and (2007), Realdon (2006), Kim (2004) and Brandt and Chapman

(2003). Quadratic models claim to remedy some of the deficiencies that

pertain to the affine model class. For example, it is straightforward to guar-

antee positive interest rates in the quadratic specification, something that is

not easily achieved by the class of affine models. Also, better in-sample fit is

claimed by quadratic models due to the allowed more flexible interaction be-

tween yield curve factors. For example, Ahn et al. (2002) and Leippold and

Wu (2002) point out that affine models imply a certain trade-off between

modeling heteroscedasticity of yields and negative correlation between yield

curve factors. This relationship is relaxed in quadratic models. Similarly,

in quadratic models one can encompass both time-varying risk premia and
5Cheridito, Filipović and Kimmel (2007) relax further the affine modeling restrictions

by proposing an ‘extended’ specification for the market price of risk, which smooths the
tension between matching the time-series behavior of yields and their cross-sectional rela-
tionship at a given point in time, i.e. the yield curve’s location and shape. This is achieved
by specifying a more general market price of risk that allows the parameters governing the
time-series behaviour of yields (under the objective measure) to differ substantially from
the parameters governing the cross-sectional fit of the yield curve (under the risk-neutral
measure). While no out-of-sample forecasting comparison is conducted, the paper shows
that the suggested extension of the affine modeling framework improves the in-sample
fit, using US zero-coupon bond prices data covering the period from January 1972 to
December 2002.
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conditional heteroscedasticity of yields, which is not possible in the affine

class of yield curve models, see e.g. Kim (2004), Dai and Singleton (2002)

and Duffee (2002).

Ahn et al. (2002) describe the classification and canonical representation

of QTSMs analogously to the classification of affine models in Dai and Sin-

gleton (2000). They show that the quadratic model specification can capture

the conditional volatility of yields better than the affine class. In addition

they show that the projected yields derived from the quadratic models are

closer to observed yields, when compared to similar projections made from

an affine model.

While the main purpose of Kim (2004) is to investigate whether there is a

trade-off between volatility modeling and risk-premia modeling in quadratic-

Gaussian term structure models similar to the existing one in affine (pure-

Gaussian) models, he also performs an out-of-sample experiment comparing

the forecasting ability of the quadratic and affine models that he investigates.

The author uses a factor-augmented version of the Kalman filter, where the

state space is augmented by the squared state variables, to estimate three

quadratic-Gaussian term structure specifications. In an in-sample analysis,

the quadratic specifications, due to their flexibility, are able to capture bet-

ter different features of the data compared to their affine counterpart. In an

out-of-sample forecasting exercise covering two data periods, one from 1993

to 1995, and another from 1996 to 1998, he compares the performance of

these quadratic models to the pure-Gaussian term structure model in pre-

dicting the 6-, 12-, 24-, 60- and 120-month maturities on a 3 month and

1 year horizon. While on the first forecasting period results are somewhat

mixed and one of the quadratic specifications uniformly outperforms the

affine specification but only on the shorter forecasting horizon, for the sec-
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ond evaluation period, the only clear conclusion seems to be that the random

walk performs better than the affine and the three quadratic models. Over-

all, Kim (2004) concludes that there is not a clear winning model in terms of

forecasting. Our conclusions are similar to his comparing different model

specifications of the quadratic and affine classes.

The main point of Kim (2005) is to show that there is evidence of non-

linearity in the term structure of yields and that in general nonlinear models

perform better that affine models. In an out-of-sample experiment compar-

ing ATSMs and QTSMs, using zero-coupon bond yields of 3-, 6-, 12-, 60-

and 120-month maturities from 1959 to 1995 to estimate the models, and

data from 1996 to 1999 to produce the forecasts, he finds that the quadratic

model generates smaller root mean squared forecast errors than the affine

model class.

3 Discrete Term Structure Models

The model specifications we consider are set in a state-space framework.

The observed yields are assumed to depend on several unobserved factors.

A certain dynamic process is hypothesized for the evolution of the underlying

yield curve factors in the state equation. The translation of these factors

into a yield curve at each point in time, is obtained via an observation

equation. The functional form of the observation equation is dictated by

the specific yield curve model under investigation. In affine models this

‘translation’ of factors into yields is achieved through a linear function in

the yield curve factors. Quadratic models, in addition to the linear term also

include a term which is quadratic in the yield curve factors. Arbitrage-free

versions of affine and quadratic models impose additional constraints on the

functional relation between the coefficients of the observation equation and
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the parameters that govern the law of motion of the yield curve factors. Since

the entries in the factor-loading matrices in the observation equation depend

on maturity, the imposed structure (the no-arbitrage constraints) ensures

that the model is internally consistent, i.e. that the dynamic evolution of

the factors driving yield curve changes over time is appropriately reflected

in the shape and the location of the yield curve observed at any time. As

is clear from below, the class of dynamic Nelson-Siegel models does not, by

construction, impose such a no-arbitrage consistency and is in this sense not

arbitrage-free.

In line with Dai, Le and Singleton (2006) we formulate our modeling

framework in discrete time. The affine model can be seen as a restricted

version of the quadratic one where the parameters corresponding to the

quadratic term in the observation equation are equal to zero. The dynamic

Nelson-Siegel model, although keeping the linear functional form of the ob-

servation equation, differs from the affine model by imposing a different

(ad-hoc) structure on the functional form of the yield curve factor loadings

in the observation equation, that does not conform with the no-arbitrage

restrictions. Below we rely on this relationship between the three classes

of yield curve models under investigation. First, we show the observation

equation for the quadratic model and then we impose the appropriate re-

strictions that allow us to obtain the affine and the dynamic Nelson-Siegel

models from the specification of the quadratic model. In the Appendix we

show the formal derivation of the discrete-time version of the quadratic yield

curve model. For more details on discrete QTSMs, see Realdon (2006), and

on quadratic models in continuous time, see Ahn et al. (2002) and Leip-

pold and Wu (2002). For a detailed derivation of the discrete ATSM see for

example Ang and Piazzesi (2003) and Ang, Piazzesi and Wei (2006).
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It is assumed that observed yields at time t, for the relevant maturities

τ , are a function of a vector of N unobservable state variables labeled by

Xt. It is further assumed that the vector Xt follows a first order Gaussian

VAR process under the objective measure:

Xt+1 = μ + ΦXt + Σηt+1, (1)

where ηt+1 is an N × 1 vector of i.i.d. N(0, I) errors, Φ is an N ×N autore-

gressive matrix, μ is an N × 1 vector and Σ is an N × N matrix.

It is also assumed that the short rate is a quadratic function of the factors:

r(Xt) = cr + b′rXt + X ′
tArXt, (2)

where Ar is an N × N matrix, br is an N × 1 vector and cr is a constant.

The market price of risk is assumed to be a linear function of the state

variables:

Λ(Xt) = λ0 + λ1Xt, (3)

with λ0 being an N × 1 vector and λ1 - a matrix of dimension N ×N . This

representation of the market price of risk is in the spirit of Duffee (2002) i.e.

it is ‘essentially’ affine.

The observed zero-coupon bond yield Y (Xt, τ), at time t for maturity τ ,

is then written as a quadratic function of the state variables,

Y (Xt, τ) = −cτ

τ
− b′τ

τ
Xt − X ′

t

Aτ

τ
Xt + εt,τ , (4)

where εt,τ ∼ N(0, R) and R is assumed to be a diagonal matrix, i.e. it

is assumed that the observation errors are not correlated across maturities

(cov(εt,τi , εt,τj ) = 0, τi �= τj for all i, j) and also across time (cov(εt,τ , εs,τ ) = 0
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for t �= s). For a given maturity τ , cτ is a constant, bτ is an N × 1 vector

and Aτ is an N × N matrix. These are found as solutions to the recursive

difference equations shown below

Aτ = − Ar + (Φ − Σλ1)
′ [Aτ−1 + 2 Aτ−1 Ψ−1Aτ−1

]
(Φ − Σλ1), (5)

bτ = − br + (Φ − Σλ1)′bτ−1 + 2 (Φ − Σλ1)′Aτ−1 Ψ−1bτ−1+

2 (Φ − Σλ1)
′ (Aτ−1 + 2 Aτ−1 Ψ−1Aτ−1

)
(μ − Σλ0) , (6)

cτ = − cr + cτ−1 + b′τ−1 (μ − Σλ0) − 1
2

ln
∣∣Ψ∣∣ − 1

2
ln

∣∣Σ Σ′∣∣
+ (μ − Σλ0)

′ (Aτ−1 + 2 Aτ−1 Ψ−1Aτ−1

)
(μ − Σλ0)

+
1
2

b′τ−1Ψ
−1bτ−1 + 2 b′τ−1Ψ

−1Aτ−1 (μ − Σλ0) , (7)

with boundary conditions c0 = 0, b0 = 0(N×1), A0 = 0(N×N) and therefore

c1 = −cr, b1 = −br, A1 = −Ar.6 We define Ψ ≡ (ΣΣ′)−1 − 2Aτ−1.

The corresponding no-arbitrage affine model can then be obtained by

setting Aτ = 0 in the recursive difference equations (5) - (7) and Ar = 0 in

equation (2).

The dynamic Nelson-Siegel model in its state-space form, as in Diebold

and Li (2006), is in our application assumed to have the same state dynamics

as those of the arbitrage-free models shown in equation (1). The observation

equation is, however, a special case of equation (4), where Aτ = 0, cτ = 0

and where the vector of factor loadings (corresponding to −bτ

τ
in equation

(4)) has the following specific functional form:
6The details of the derivation can be found in the Appendix.
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− bτ

τ
≡

(
1

1 − e−γτ

γτ

1 − e−γτ

γτ
− e−γτ

)
, (8)

which does not necessarily fulfill the no-arbitrage restrictions presented in

equations (5) - (7). The parameter γ is the so-called time-decay parameter.7

4 Estimation Results

We use U.S. Treasury zero-coupon yield curve data covering the period from

January 1970 to December 2000. The sample consists of monthly yield

observations for maturities of 1, 6, 12, 24, 60 and 120 months. These data

are also used in Diebold and Li (2006), and are based on end-of-month CRSP

government bond files.8

Similar to Leippold and Wu (2007) we rely on the unscented Kalman fil-

ter, developed by Julier and Uhlmann (1997), to estimate all models. Alter-

natively, the estimation of quadratic term structure models could be accom-

plished using the extended Kalman filter (EKF) or the method of moments

(MM): for example, simulated method of moments (SMM) like Brandt and

Chapman (2003); the efficient method of moments (EMM) as Ahn et al.

(2002); or the general method of moments (GMM) as Leippold and Wu

(2003).9 It is well-know that the EKF implies a significant amount of ap-

proximation error, while in the case of the MM one needs to specify which

are the most important statistical and economical moments of the data that

should be matched. For example, Leippold and Wu (2003) define three cate-

gories of properties of interest rates: general statistical properties (means of
7Naturally, no risk premium is specified for the Nelson-Siegel model.
8The data can be downloaded from Francis Diebold’s webpage:

http://www.ssc.upenn.edu/ fdiebold/papers/paper49/FBFITTED.txt.
9Kim (2004) uses the linear Kalman filter but augments the state space with the

quadratic function of the factors.
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the sample yields and first order autocorrelation of the short rate); forecast-

ing relations (the forward regression slope) and conditional dynamics (the

hump-shaped dynamics of the conditional volatility of bond yields). The

statistical properties they choose aim at matching the on-average upward

sloping yield curve, the large persistence of bond yields and the positive

skewness of the interest rate distribution. Brandt and Chapman (2003)

base their choice of moments primarily on economic relations. They use the

unconditional means and the residual standard deviations from a first-order

autoregressions of the level, slope and curvature; their contemporaneous and

first-order lagged correlations; the slope coefficients from linear projection of

yields (LPY) regression and from a conditional volatility (LPV) regression.10

Instead of using a particular MM technique, one could rely on the Kalman

filter in the estimation procedure as we do in the current setup. The em-

ployment of the UKF is not necessary for the estimation of the affine and

the Nelson-Siegel models, since the state and the measurement equations are

linear in the state vector. However, for comparison purposes, and to avoid

differences stemming from the estimation procedure, we apply the UKF to

all models. In this context it is also noted that the UKF has been shown to

produce more accurate results than linear techniques even in the estimation

of linear systems (see Wan and Merwe (2001)).

The UKF methodology is based on the idea that it is easier to approxi-

mate a distribution than it is to approximate a nonlinear function, see for ex-

ample Julier and Uhlmann (2004), Julier and Uhlmann (1997) and Wan and

Merwe (2001) and the references therein. As mentioned in the introduction,

we estimate eleven different models, which fall in the categories of affine,
10They define the six-month yield, Yt(6), to be the ‘level’ factor, the difference between

the ten-year and the six-month yield, Yt(120) − Yt(6) to be the ‘slope’ factor and Yt(6) +
Yt(120) − 2Yt(24) to be the ‘curvature’ factor.
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quadratic and dynamic Nelson-Siegel models. Within each model class we

differentiate the estimated models with respect to their degree of parsi-

mony. In particular, when referring to the included model variants we use

the notation Mn(k), where: M refers to the model class, M = {Q,A,NS},
corresponding to quadratic, affine and Nelson-Siegel models respectively;

n = {1, 2, 3} refers to the model variant, where 1 stands for the maximally

flexible representation of a model, 2 for the independent-factors model spec-

ification, and 3 is used only in the case of the quadratic model where it

denotes the ‘triangular’ specification - the market price of risk matrix in

equation (3) is triangular; finally, k counts the number of yield curve factors

included in the examined model variants, i.e. k = {2, 3}.
Table 1 summarizes the necessary identification restrictions for the dif-

ferent model classes. In addition to a characterization based on the number

of included factors, the model specifications are also differentiated by their

parametrization. Table 2 displays the parametrization of the investigated

model variants. As can be observed from that table, we estimate five specifi-

cations of quadratic models, four affine specifications and two Nelson-Siegel.

In this respect we use the three levels of parsimony referred to above: max-

imally flexible; minimal (independent-factors); and triangular (only in the

case of 3-factor QTSM), as mentioned above.

Table 1 AROUND HERE

Table 2 AROUND HERE

Table 2 reports the corresponding imposed parameter restrictions that

define the selected specifications. All possible model permutations are how-

ever not investigated. For example, we do not include two-factor versions of

the Nelson-Siegel model, and we do not investigate ‘triangular’ affine mod-

els. We have chosen the included model variants on the basis of the trade-off
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between generality of results and computation time. Factors’ interactions

have two transmission channels. One is through the direct covariances which

are accounted for by the autoregressive matrix Φ in the state equation (1).

The other is through the market prices of risk, i.e. matrix λ1 in the market-

price-of-risk equation (3). Table 2 shows that for the quadratic model class,

the maximally flexible specification, for example, is based on the identifying

restrictions from Table 1 (i.e. the matrix of autoregressive parameters, Φ, in

the state equation (1) is triangular and the error-term variance matrix Σ, is

diagonal,) without imposing any further constraints on the parameters. The

flexibility of this model hence stems from the specification of a full (unre-

stricted) market price of risk, λ1 matrix, in equation (3). The independent-

factors quadratic model deviates from the maximally flexible specification

by imposing a diagonal structure on λ1 (in addition to the diagonality im-

posed on the factors’ autoregressive matrix Φ in equation (1)), whereas the

‘triangular’ model variant imposes a triangular structure on λ1.11 In defin-

ing the affine model variants we follow the pattern used for the quadratic

models, however we do not consider a ‘triangular’ affine model specification.

Since the Nelson-Siegel model class is formulated directly under the empir-

ical measure, it does not require a characterization of the market price of

risk.12 In effect, the maximally flexible Nelson-Siegel specification imposes

only the appropriate identification restriction of a triangular structure on

the error-term variance Σ. The minimal flexible version of this model class

assumes a diagonal structure for both Φ and Σ as in the quadratic and affine

independent-factors cases.
11The canonical formulation of quadratic models in Ahn et al. (2002) defines λ1 as a

triangular matrix. However, as Kim (2004) points out this is not necessary for identifica-
tion purposes. Instead it guarantees that the autoregressive matrix in the factors’ law of
motion is triangular under both the physical and the risk-neutral measures.

12For this reason Table 2 contains ‘n.a.’ entries for λ0 and λ1 under the Nelson-Siegel
model variants.
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4.1 In-sample fit

Tables 3 to 7 report the parameter estimates of the analyzed model variants.

Table 3 shows the estimates of the state equation (1), Table 4 displays the

estimates of the market price of risk equation (3), Table 5 contains parameter

estimates of the equation for the short rate (2). The parameter describing

the time-decay of the loading structure in the Nelson-Siegel model from

equation (8) is presented in Table 6. The estimated standard deviations of

the error terms in the observation equation (4), for each of the estimated

model variants, are shown in Table 7.

Table 3 AROUND HERE

Table 4 AROUND HERE

Table 5 AROUND HERE

Table 6 AROUND HERE

Table 7 AROUND HERE

To facilitate in-sample fit comparisons of the estimated models, Table

8 displays statistics on the error-terms from the yield curve observation

equation (4) at maturities of 1, 6, 12, 24, 60 and 120 months. The mean,

standard deviation, min, max, autocorrelation of first, second and twelfth

order, and mean absolute deviation (MAD) of the errors are shown for each

of the estimated model variants.

Table 8 AROUND HERE

Figure 1 AROUND HERE

Figure 2 AROUND HERE

Figure 3 AROUND HERE

Table 8 demonstrates that all models in general fit the data well, as also

confirmed by Figures 1 to 3. The well-known phenomenon, stemming from
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the near integration of the time-series of yields, of relatively high error-term

autocorrelation, is found for all models. At lag one, the autocorrelation

ranges from 0.3 to 0.7, approximately, and it almost disappears at lag 12.

When investigating how the mean errors and the MAD depend on maturity

across the models, it seems that better fits are provided for the medium part

of the maturity spectrum, whereas yields for short and long maturities are

fitted slightly worse, with the worst fit produced for the shortest maturities.

Another pattern that emerges from Table 8 is that, as expected, the more

flexible models fit the data better than the less flexible models do. Judging

the in-sample fit by the MAD, the overall best fitting model is the maximally

flexible three factor quadratic model Q1(3), which produces the smallest

MAD for all maturities. The best fitting model class is the quadratic model

that uses three factors, followed by the affine three-factor model, the Nelson-

Siegel model class, the quadratic two-factor model, and the worst fitting, in

relative terms, is the affine two-factor model.

Table 9 AROUND HERE

Table 9 displays the characteristics of the estimated latent factors and

Figure 4 presents time series plots of these factors. It is difficult to give an

economic interpretation to latent factors directly. Thus we report in Table 9

the correlations between the latent factors and the principal components as

well as their correlation with the level, the slope and the curvature. In the

latter case we consider as level the long end of the curve, Yt(120), as slope

the difference between the long and the short end, [Yt(120) − Yt(1)], and

as curvature - [Yt(120) + Yt(1) − 2Yt(24)]. In general, the most persistent

factor is most highly correlated with the first principal component, and with

the yield curve level. The least persistent factor is most highly correlated

with the third (second) principal component and with the curvature (slope)
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in the case of three- (two-) factor models. In the case of quadratic models

the less and the least persistent factors are cross correlated and in this case

the correlation with the second and the third PC (and with the slope and

the curvature) is not so high and clearly distinguished as in the case of the

other model specifications.

Figure 4 AROUND HERE

Figure 5 AROUND HERE

Figure 6 AROUND HERE

4.2 Out-of-sample fit

To compare the out-of-sample forecast performance of the investigated model

classes we reestimate the model recursively and produce forecasts using ex-

panding data samples starting in January 1994 and ending in December

2000. We first estimate the models on a sub-sample covering January 1970

to January 1993, and produce forecasts for the 1, 6 and 12 month hori-

zons; then, one observation is added to the data sample, and the models are

re-estimated, after which a new set of forecasts is generated, again for the

horizons of 1, 6 and 12 months. This process is repeated until the full data

sample is covered and a total of 96 forecasts are generated for each model.

As Kim (2004) suggests, the forecasting performance of a given model

could be highly sensitive to the chosen out-of-sample forecasting period, the

forecasting horizon and even the method of estimation. We estimate all the

models with the UKF, although this is not necessary for the affine models.

We reserved the last seven years of data for the forecasting exercise, in order

to perform tests on the produced forecast statistics.

As a gauge to compare the out-of-sample performance of the models we

rely on the mean squared prediction errors (MSPEs) of each model, divided
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by the MSPEs produced by the random walk. In order to perform statistical

test to identify which model(s) out-perform other models, at a given level

of confidence, the Diebold-Mariano (DM) test (see Diebold and Mariano

West (2006)) are used. The latter test is needed when the tested models

are nested, and the former test is used when models are non-nested.13 Table

10 documents when one or the other test is used. The null hypothesis of

the DM test is that the models have equal MSPEs. The null hypothesis

under the CW test is that the more general model has a MSPE greater than

or equal to the one of the more parsimonious model (the nested model),

while the alternative is that the larger model has a smaller MSPE than the

parsimonious one.

Table 10 AROUND HERE

Table 11 AROUND HERE

Table 11 contains the main results of our analysis. It documents the

ratios of MSPE ratios of the model under consideration to the random walk

for each of the investigated models. The bold entries in the table show the

‘best’ model in terms of the smallest MSPE for a given forecasting horizon

at a given maturity segment. For example, the first bold entry in Table 11

is 0.701, observed at the one-month forecasting horizon for the one-month

segment of the yield curve. This entry signifies that the more parsimonious

Nelson-Siegel model (NS2(3)) performs best at this forecasting horizon for
13The quadratic class of models is more general than the affine, and one could be tempted

to think that the affine model class is fully nested by the quadratic one. However, this is
not necessarily so. Looking at the maximally admissible specifications defined by Dai and
Singleton (2000) and Ahn et al. (2002) for affine and quadratic models, respectively, and
consulting Table 1 it can be seen that the estimated affine models specifications cannot be
obtained from the quadratic model class simply by setting the qudratic terms’ coefficients
equal to zero. For example, while br in equation (2) is estimated in the affine specifications,
it is set equal to zero in the qudratic ones for identification purposes.
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that yield curve segment, judging by the ratio of MSPEs of NS2(3) to the

RW. Identifying the ‘best’ (smallest) MSPE ratios for each maturity and

forecasting horizon, we perform the corresponding test (see Table 10) to

determine whether the MSPE of the referenced model is statistically dif-

ferent from the others. We also test whether the MSPE of each model is

significanlty different from the MSPE of the random walk with the Diebold-

Mariano test. A star ‘*’ in Table 11 indicates that a given model’s MSPE

ratio with the random walk’s MSPE is significantly different from unity.

Meaning that the model under consideration performs significantly better

(worse) than the random walk, if the ratio is lower (higher) than unity. The

applied level of confidence for all tests performed in this analysis is 95%.

Based on the results presented in Table 11 no clear winner of the fore-

casting experiment emerges. It is also not possible to find a model that

dominates other models at a given set of maturities or at a given fore-

casting horizon. However, some tendencies seem apparent. First, all mod-

els perform better as the forecasting horizon is extended. For example,

all three-factor quadratic specifications, realize a higher number of perfor-

mance ratios below unity as the forecasting horizon is increased from 1 to 6

months. Similarly, the Nelson-Siegel model class presents a noticeable im-

provement in the forecast ratios when extending the forecast horizon from

1 month to 6 months and from 6 to 12 months. Second, at the one-month

forecast horizon, the performance of the quadratic three-factor models and

the affine and quadratic two-factor models, exhibits a U-shaped pattern,

indicating that these model classes, judged in isolation, are relatively bet-

ter at forecasting yields from the medium maturity spectrum. Third, affine

three-factor models and the Nelson-Siegel models show a generally better

performance at forecasting short maturities than forecasting medium-term
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maturities, and the forecasting performance further deteriorates for longer

maturities. Forth, the affine three-factor models and the Nelson-Siegel based

models overall seem to perform better than the quadratic three-factor mod-

els and the quadratic and affine two-factor models. Fifth, it seems that the

Nelson-Siegel model class produces slightly better forecasts than all compet-

ing models for the longest maturity, regardless of the forecasting horizon.

However, when judged across all tested forecasting horizons and included

maturities the performance of the three-factor affine model class and the

Nelson-Siegel model class is indistinguishable.

Table 12 AROUND HERE

Table 13 AROUND HERE

Table 14 AROUND HERE

Table 15 AROUND HERE

Tables 12 to 15 display all forecasts that the performed statistical tests

fail to reject as equally good. For a given maturity and forecasting horizon,

we test each model’s forecast against the ‘best’, i.e. the one with the smallest

MSPE. In the cases where we apply the Diebold-Mariano test, we report

in the tables only the values for which the zero hypothesis of equal MSPEs

cannot be rejected. In the cases where the appropriate test to apply is Clark-

West we keep in the tables only the values for which the test is rejected,

i.e. the zero hypothesis that the larger model has also larger MSPE than

the more parsimonious model is rejected (the alternative is that the larger

model has a smaller MSPE). All test results we report are at the 95% level

of significance. Table 12 presents the statistical test for all models and

confirms the conclusions highlighted above. The rest of the tables slices-

and-dices the model forecasts according to the imposed model specification.

Table 13 shows the equally good forecasts among three-factor models. Table
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14 presents similar results among the maximally flexible models and Table

15 among the diagonal models.

5 Conclusion

An extensive out-of-sample forecasting experiment is conducted among quadratic,

affine and dynamic Nelson-Siegel models. Using US data covering the period

from January 1970 to December 2000 a recursive re-estimation and out-of-

sample forecasting methodology is implemented for eleven model specifica-

tions falling in the three main yield curve modeling categories. Forecasts

are generated on the basis of the estimated models at forecasting horizons

of 1, 6 and 12 months, for each model specification.

Our results show that while quadratic three-factor models provide the

best in-sample fit, the conclusion as regards the out-of-sample comparison of

the tested models is less clear. A tendency emerges, showing that all models

perform better the longer the forecasting horizon; and that the dynamic

Nelson-Siegel models seem to perform best among the tested models, for

longer maturity segments of the yield curve, especially at longer forecasting

horizons.

The main qualitative conclusion of the model comparison conducted in

the current study is that affine three-factor model and the dynamic Nelson-

Sigel models perform equally well in the out-of-sample forecasting exper-

iment, and they perform better than the quadratic three- and two-factor

models.
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APPENDIX

Assume that the dynamic evolution of the vector of N state variables, Xt, under
the risk-neutral measure, Q, is described by

Xt+1 = μQ(Xt) + Σξt+1, (A-1)

where ξt+1 ∼ N(0, I), μQ(Xt) is a vector of N × 1 functions of the state variables
and Σ is an N × N matrix. Assume also that the state variables follow a VAR(1)
process under the objective measure

Xt+1 = μ + ΦXt + Σηt+1, (A-2)

with ηt+1 ∼ N(0, I). Note that the variance-covariance matrix, Σ, is the same under
both measures. Further we specify the market price of risk as a linear function of
the state

Λ(Xt) = λ0 + λ1Xt, (A-3)

where λ0 is an N × 1 vector and λ1 is N × N matrix. Then

μQ(Xt) =μ + ΦXt − ΣΛ(Xt)
=ΦXt + μ − Σλ0 − Σλ1Xt

=(Φ − Σλ1)Xt + μ − Σλ0 (A-4)

The price of a zero-coupon bond is an exponential quadratic function of the
state variables

Pt,τ (Xt) = exp [cτ + b′τXt + X ′
tAτXt] , (A-5)

and the yield on a zero-coupon bond with τ periods to maturity is then

Yt,τ (Xt) = − lnPt,τ (Xt)
τ

= − cτ

τ
− 1

τ
b′τXt − 1

τ
X ′

tAτXt.

In quadratic models the short rate is a quadratic function of the state

r(Xt) = cr + b′rXt + X ′
tArXt, (A-6)

with Ar an N × N matrix, br N × 1 vector and cr is a constant.
The price of a zero-coupon bond at time t with τ periods to maturity satisfies

Pt,τ = EQ
t

[
exp

(
−

t+τ−1∑
i=t

ri

)]
= EQ

t [exp (−rt)Pt+1,τ−1] , (A-7)

where EQ
t denotes the expectation under the risk-neutral probability measure.

The system of difference equations (5) - (7) is obtained in the following way.
Substitute (A-5) and (A-6) in (A-7):
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exp (cτ + b′τXt + X ′
tAτXt) (A-8)

= EQ
t

[
exp (−cr − b′rXt − X ′

tArXt) exp
(
cτ−1 + b′τ−1Xt+1 + X ′

t+1Aτ−1Xt+1

)]
= exp (−cr − b′rXt − X ′

tArXt) EQ
t

[
exp

(
cτ−1 + b′τ−1Xt+1 + X ′

t+1Aτ−1Xt+1

)]
.

From the equation for the state process under the risk-neutral measure, (A-1), we
obtain

X ′
t+1Aτ−1Xt+1 =

[
μQ(Xt) + Σξt+1

]′
Aτ−1

[
μQ(Xt) + Σξt+1

]
= μQ(Xt)′Aτ−1μ

Q(Xt) + ξ′t+1Σ
′Aτ−1Σξt+1 + 2μQ(Xt)′Aτ−1Σξt+1

= M + K ′Σξt+1 + ξ′t+1Σ
′Aτ−1Σξt+1

where M ≡ μQ(Xt)′Aτ−1μ
Q(Xt) and K ′ ≡ 2μQ(Xt)′Aτ−1. Next from (A-1) it

follows also that

b′τ−1 Xt+1 = b′τ−1

[
μQ(Xt) + Σ ξt+1

]
= b′τ−1μ

Q(Xt) + b′τ−1Σ ξt+1.

Substituting these in (A-8) and taking logs it follows that

cτ + b′τXt + X ′
tAτXt

= − cr − b′rXt − X ′
tArXt + cτ−1 + b′τ−1μ

Q(Xt) + M

+ ln
{

EQ
t

[
exp

(
b′τ−1Σξt+1 + K ′Σξt+1 + ξ′t+1Σ

′Aτ−1Σξt+1

)]}
= − cr − b′rXt − X ′

tArXt + cτ−1 + b′τ−1μ
Q(Xt) + μQ(Xt)′Aτ−1μ

Q(Xt)

+ ln
{

EQ
t

[
exp

(
b′τ−1Σξt+1 + K ′Σξt+1 + ξ′t+1Σ

′Aτ−1Σξt+1

)]}
. (A-9)

Then notice that

ln
{

EQ
t

[
exp

(
b′τ−1Σξt+1 + K ′Σξt+1 + ξ′t+1Σ

′Aτ−1Σξt+1

)]}

= ln
exp

{
1
2

(
b′τ−1 + K ′) [

(ΣΣ′)−1 − 2Aτ−1

]−1

(bτ−1 + K)
}

∣∣∣ΣΣ′
∣∣∣ 1
2
∣∣∣(ΣΣ′)−1 − 2Aτ−1

∣∣∣ 1
2

=
1
2

(bτ−1 + K)′
[
(ΣΣ′)−1 − 2Aτ−1

]−1

(bτ−1 + K)

+ ln
∣∣∣(ΣΣ′)−1 − 2Aτ−1

∣∣∣− 1
2 − ln

∣∣∣ΣΣ′
∣∣∣ 1
2

=
1
2

[
b′τ−1 + 2μQ(Xt)′Aτ−1

] [
(ΣΣ′)−1 − 2Aτ−1

]−1 [
bτ−1 + 2Aτ−1μ

Q(Xt)
]

− ln
∣∣∣(ΣΣ′)−1 − 2Aτ−1

∣∣∣ 1
2 − ln

∣∣∣ΣΣ′
∣∣∣ 1
2

=
1
2
b′τ−1Ψ

−1bτ−1 + 2b′τ−1Ψ
−1Aτ−1μ

Q(Xt) + 2μQ(Xt)′Aτ−1Ψ−1Aτ−1μ
Q(Xt)

+ ln
∣∣∣Ψ∣∣∣− 1

2 − ln
∣∣∣ΣΣ′

∣∣∣ 1
2
, (A-10)
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where Ψ ≡ (ΣΣ′)−1 − 2Aτ−1.14 Substitute this in (A-9)

cτ + b′τXt + X ′
tAτXt

= − cr − b′rXt − X ′
tArXt + cτ−1 + b′τ−1μ

Q(Xt) + μQ(Xt)′Aτ−1μ
Q(Xt)

+
1
2
b′τ−1Ψ

−1bτ−1 + 2b′τ−1Ψ
−1Aτ−1μ

Q(Xt) + 2μQ(Xt)′Aτ−1Ψ−1Aτ−1μ
Q(Xt)

+ ln
∣∣∣Ψ∣∣∣− 1

2 − ln
∣∣∣ΣΣ′

∣∣∣ 1
2
. (A-11)

Next substitute for μQ(Xt) in (A-11) from (A-4) and group the terms corre-
sponding to the different degrees of Xt

cτ + b′τXt + X ′
tAτXt

= − cr − b′rXt − X ′
tArXt + cτ−1 + b′τ−1 (Φ − Σλ1) Xt + b′τ−1 (μ − Σλ0)

+ X ′
t (Φ − Σλ1)

′ (
Aτ−1 + 2Aτ−1Ψ−1Aτ−1

)
(Φ − Σλ1)Xt

+ X ′
t (Φ − Σλ1)

′ (
Aτ−1 + 2Aτ−1Ψ−1Aτ−1

)
(μ − Σλ0)

+ (μ − Σλ0)
′ (

Aτ−1 + 2Aτ−1Ψ−1Aτ−1

)
(Φ − Σλ1)Xt

+ (μ − Σλ0)
′ (

Aτ−1 + 2Aτ−1Ψ−1Aτ−1

)
(μ − Σλ0)

+
1
2
b′τ−1Ψ

−1bτ−1 + 2b′τ−1Ψ
−1Aτ−1 (Φ − Σλ1)Xt

+ 2b′τ−1Ψ
−1Aτ−1 (μ − Σλ0) − 1

2
ln

∣∣∣Ψ∣∣∣ − 1
2

ln
∣∣∣ΣΣ′

∣∣∣.
Finally the difference equations become

Aτ = − Ar + (Φ − Σλ1)
′ [

Aτ−1 + 2Aτ−1Ψ−1Aτ−1

]
(Φ − Σλ1),

bτ = − br + (Φ − Σλ1)′bτ−1 + 2(Φ − Σλ1)′Aτ−1Ψ−1bτ−1+

2 (Φ − Σλ1)
′ (

Aτ−1 + 2Aτ−1Ψ−1Aτ−1

)
(μ − Σλ0) ,

cτ = − cr + cτ−1 + b′τ−1 (μ − Σλ0) − 1
2

ln
∣∣∣Ψ∣∣∣ − 1

2
ln

∣∣∣ΣΣ′
∣∣∣

+ (μ − Σλ0)
′ (

Aτ−1 + 2Aτ−1Ψ−1Aτ−1

)
(μ − Σλ0)

+
1
2
b′τ−1Ψ

−1bτ−1 + 2b′τ−1Ψ
−1Aτ−1 (μ − Σλ0) .

with the boundary conditions c0 = 0, b0 = 0(N×1) and A0 = 0(N×N) and therefore
c1 = −cr, b1 = −br, A1 = −Ar.

The one-period yield

14The expression after the first equality sign in equation (A-10) follows from the fact
that if If ξ ∼ N(0, I), i.e. Σξ ∼ N(0, ΣΣ′), then

E
[
exp

(
ξ′Σ′AΣξ + b′Σξ

)]
=

exp

{
1
2
b′

[
(ΣΣ′)−1 − 2A

]−1

b

}
∣∣∣ΣΣ′

∣∣∣ 1
2
∣∣∣(ΣΣ′)−1 − 2A

∣∣∣ 1
2

.
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Yt(1) = − lnPt,1(Xt) = −c(1) − b(1)′Xt − X ′
tA(1)Xt

=cr + b′rXt + X ′
tArXt = r(Xt)

The corresponding difference equations of the affine model can be easily ob-
tained by substituting for Aτ = Ar = 0.

Following Julier and Uhlmann (1997) we rely on the UKF method to esti-
mate the parameters for the tested models. The general idea of the UKF is to
chose some points of the distribution of the state variable (called sigma points),
e.g. the mean and points spread around it, where the spread is a scaling of the
standard deviation. The points are propagated then through the non-linear sys-
tem. First through the dynamic state function, the state variable is updated and
then its new weighted mean and covariance estimates are computed. The sigma
points are redrawn and then propagated through the measurement function. The
observed variable that corresponds to each of these sigma points is computed using
the specified non-linear measurement function. The mean and the covariance of
the observed/measured variable are then approximated as weighted sample mean
and covariance of the posterior sigma points. The weights depend on exogenous
parameters which adapt according to the distribution of the state variable. The
exogenous weights can shrink or expand the points about the mean thus decreasing
or increasing respectively the effect of higher order moments. The advantages of the
UKF over the EKF are that the unscented filter does not require derivative com-
putations and calculates the mean to a higher order of accuracy than the extended
one, whereas the covariance is calculated to the same order of accuracy in the case
of the UKF, as in the EKF. At the same time the UKF is not computationally
more complex that the EKF.
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Table 1: Conditions for Identification

model Restrictions
quadratic Φ - triangular, Σ - diagonal, br = 0, Ar - symmetric

affine Φ - triangular, μ = 0, Σ - diagonal

This table shows admissibility conditions for affine and quadratic term structure models.

The variables μ, Φ and Σ are the vector of constants, the matrix of autoregressive param-

eters, and the matrix of error-term co-variances in the equation of the yield curve factor

dynamics, Xt+1 = μ + ΦXt + Σηt+1. The variables, br and Ar are the constant and the

parameter matrix corresponding to the quadratic term in the equation for the short rate

process r(Xt) = cr + b′rXt + X ′
tArXt.
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Table 2: Estimated Models’ Specifications

Model Parameters to estimate Restrictions
k = 3 factors k = 2 factors Φ Σ λ1

Q1(k) 33 20 triang diag full
(maximally flexible)

Q2(k) 21 16 diag diag diag
(minimal)

Q3(k) 30 triang diag triang
(triangular)

A1(k) 30 19 triang diag full
(maximally flexible)

A2(k) 21 16 diag diag diag
(minimal)

NS1(k) 25 full triang n.a.
(maximally flexible)

NS2(k) 16 diag diag n.a.
(minimal)

This table presents the evaluated model specifications and the imposed parameter re-

strictions. The variables Φ and Σ are the matrix of autoregressive parameters and the

matrix of error-term co-variances in the equation for the yield curve factor dynamics,

Xt+1 = μ + ΦXt + Σηt+1. The variable λ1 is the matrix of parameters that load on the

yield curve factors Xt in the equation for the market price of risk, Λ(Xt) = λ0 + λ1Xt.

The model classification scheme Mn(k) denotes M = {Q, A, NS} referring to Quadratic,

Affine and Nelson-Siegel models, with n = {1, 2, 3} denoting the model variant: maxi-

mally flexible; independent-factors or ’triangular’ specification, respectively. k counts the

number of yield curve factors included in the examined model variants, i.e. k = {2, 3}.
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Table 3: Estimated parameters - state equation

Φ μ ∗ 100 Σ ∗ 100
Q1(3) 0.96 -0.69 0.21

-0.20 0.66 -2.18 0.18

-0.02 -0.04 0.99 -0.41 0.15

Q2(3) 0.96 -0.20 0.46

0.98 -0.13 0.22

0.63 41.53 0.01

Q3(3) 0.96 -0.35 0.21

0.04 0.65 0.25 0.04

0.04 -0.41 1.00 0.18 0.21

A1(3) 0.99 1.17

0.27 0.92 18.01

-0.02 0.00 0.93 1.68

A2(3) 0.98 0.59

0.93 0.78

0.91 5.07
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Estimated parameters - state equation (continued)
Φ μ ∗ 100 Σ ∗ 100

NS1(3) 0.99 0.01 -0.01 0.01 0.02

-0.04 0.93 0.01 0.01 -0.01 0.04

-0.01 0.02 0.96 0.01 0.02 0.00 0.07

NS2(3) 0.98 0.01 0.02

0.93 -0.01 0.04

0.95 0.00 0.08

Q1(2) 0.98 0.20 0.23

0.03 0.94 0.07 0.37

Q2(2) 0.94 0.28 0.49

0.99 0.09 0.22

A1(2) 0.97 0.43

0.74 0.91 9.96

A2(2) 0.97 0.20

0.92 1.51

This table shows the parameter estimates of the state equation Xt+1 = μ + ΦXt + Σηt+1.

The variables μ, Φ and Σ are the vector of constants, the matrix of autoregressive pa-

rameters, and the matrix of the error term co-variances. The model classification scheme

Mn(k) denotes M = {Q, A, NS} referring to Quadratic, Affine and Nelson-Siegel models,

with n = {1, 2, 3} denoting the model variant: maximally flexible; independent-factors or

’triangular’ specification, respectively. k counts the number of yield curve factors included

in the examined model variants, i.e. k = {2, 3}. Standard errors are not reported due to

the computational burden.
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Table 4: Estimated parameters - market price of risk

λ1 λ0

Q1(3) 8.92 -5.85 6.97 3.02

-1.21 4.46 3.61 -0.28

3.94 -0.59 -2.25 0.18

Q2(3) 4.76 0.34

-8.34 -0.55

3.08 -3.87

Q3(3) 15.89 1.50

-1.36 -1.96 0.55

-8.26 2.39 -0.53 -0.55

A1(3) -1.07 1.13 4.03 0.13

1.50 0.87 1.91 -0.07

-1.60 1.05 2.02 0.25

A2(3) -3.09 0.03

-1.16 0.19

4.93 -0.11
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Estimated parameters - market price of risk (continued)
λ1 λ0

Q1(2) -6.80 -2.06 0.88

5.03 0.80 -0.47

Q2(2) 1.81 -0.20

-5.68 0.37

A1(2) -6.27 -0.15 0.06

7.63 -0.31 -0.15

A2(2) -11.84 0.02

-1.63 0.19

This table presents the parameter estimates of the market price of risk equation Λ(Xt) =

λ0 + λ1Xt. The variables λ0 and λ1 are the constant and the matrix of parameters

that load on the yield curve factors Xt. The model classification scheme Mn(k) de-

notes M = {Q, A, NS} referring to Quadratic, Affine and Nelson-Siegel models, with

n = {1, 2, 3} denoting the model variant: maximally flexible; independent-factors or ’tri-

angular’ specification, respectively. k counts the number of yield curve factors included

in the examined model variants, i.e. k = {2, 3}. Standard errors are not reported due to

the computational burden.
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Table 5: Estimated parameters - short rate

Ar br cr

Q1(3) 1 -2.45 -1.02 0.00

-2.45 1 2.09

-1.02 2.09 1

Q2(3) 1 -1.29

1

1

Q3(3) 1 10.19 1.01 0.00

10.19 1 8.91

1.01 8.91 1

A1(3) -0.02 0.01

0.00

-0.02

A2(3) -0.06 0.01

-0.06

0.01
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Estimated parameters - short rate (continued)
Ar br cr

Q1(2) 1 -0.94 0.00

-0.94 1

Q2(2) 1 0.00

1

A1(2) -0.07 0.01

0.00

A2(2) -0.16 0.01

-0.03

This table shows the parameter estimates for the short rate equation r(Xt) = cr + b′rXt +

X ′
tArXt. The variables, cr, br and Ar are the constant, the vector of parameters that load

linearly on the yield curve factors Xt and the parameter matrix corresponding to the term

that is quadratic in Xt. The model classification scheme Mn(k) denotes M = {Q, A, NS}
referring to Quadratic, Affine and Nelson-Siegel models, with n = {1, 2, 3} denoting

the model variant: maximally flexible; independent-factors or ’triangular’ specification,

respectively. k counts the number of yield curve factors included in the examined model

variants, i.e. k = {2, 3}. Standard errors are not reported due to the computational

burden.

Table 6: Estimated parameters - NS time-decay parameter

γNS

NS1(3) 0.072

NS2(3) 0.066

This table shows the parameter estimates of the time-decay parameter in the Nelson-

Siegel factor loading matrix, − bτ
τ

≡
(
1 1−e−γτ

γτ
1−e−γτ

γτ
− e−γτ

)
. The model clas-

sification scheme Mn(k) denotes M = {Q, A, NS} referring to Quadratic, Affine and

Nelson-Siegel models, with n = {1, 2, 3} denoting the model variant: maximally flexible;

independent-factors or ’triangular’ specification, respectively. k counts the number of yield

curve factors included in the examined model variants, i.e. k = {2, 3}.
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Table 8: In-sample fit

τ mean st.dev. min max ρ1 ρ2 ρ12 MAD
Q1(3) 1 -0.04 0.23 -1.47 0.68 0.56 0.38 0.02 0.05

6 0.03 0.19 -0.73 0.96 0.53 0.38 0.16 0.04
12 -0.01 0.09 -0.42 0.58 0.43 0.26 0.08 0.01
24 -0.01 0.13 -0.50 0.70 0.48 0.34 0.13 0.02
60 0.01 0.06 -0.20 0.63 0.41 0.31 0.20 0.00
120 -0.01 0.23 -0.77 0.59 0.74 0.65 0.24 0.05

Q2(3) 1 -0.05 0.26 -1.76 0.41 0.64 0.37 0.09 0.07
6 0.04 0.20 -0.60 0.95 0.48 0.36 0.13 0.04
12 0.02 0.14 -0.80 1.25 0.40 0.10 0.14 0.02
24 0.02 0.16 -0.57 1.38 0.48 0.22 0.15 0.03
60 0.02 0.10 -0.31 0.58 0.55 0.33 0.34 0.01
120 0.00 0.23 -0.68 0.76 0.72 0.62 0.20 0.05

Q3(3) 1 -0.03 0.31 -1.66 3.40 0.40 0.27 0.04 0.10
6 0.02 0.27 -0.97 3.47 0.36 0.24 0.07 0.07
12 -0.02 0.19 -0.53 3.27 0.13 0.09 0.02 0.04
24 -0.03 0.20 -0.48 3.14 0.19 0.16 0.01 0.04
60 0.00 0.17 -0.23 3.03 0.07 0.06 0.04 0.03
120 -0.02 0.25 -0.79 2.25 0.57 0.50 0.18 0.06

A1(3) 1 -0.02 0.34 -1.95 1.88 0.44 0.11 0.00 0.12
6 0.09 0.33 -1.55 1.78 0.61 0.35 0.22 0.11
12 0.04 0.27 -1.51 1.70 0.55 0.18 0.08 0.07
24 0.01 0.24 -1.35 1.52 0.59 0.21 0.05 0.06
60 0.01 0.12 -0.56 0.75 0.56 0.23 0.12 0.01
120 -0.03 0.27 -0.86 1.02 0.74 0.62 0.22 0.07

A2(3) 1 -0.02 0.24 -1.87 1.32 0.33 -0.01 0.01 0.06
6 0.07 0.26 -1.32 1.50 0.58 0.32 0.22 0.07
12 0.03 0.22 -1.69 1.74 0.50 0.08 0.10 0.05
24 0.01 0.20 -1.21 1.62 0.54 0.13 0.08 0.04
60 0.01 0.10 -0.71 0.68 0.54 0.15 0.23 0.01
120 -0.02 0.25 -0.79 0.89 0.75 0.63 0.26 0.06

NS1(3) 1 -0.23 0.45 -2.57 2.36 0.49 0.23 -0.03 0.20
6 0.08 0.31 -1.36 1.96 0.62 0.35 0.07 0.10
12 0.09 0.28 -1.19 1.69 0.54 0.28 0.08 0.08
24 0.04 0.20 -0.77 1.10 0.62 0.31 0.04 0.04
60 0.03 0.17 -0.48 0.80 0.65 0.52 0.18 0.03
120 0.04 0.14 -0.68 0.75 0.51 0.31 -0.03 0.02
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In-sample fit (continued)
τ mean std. min max ρ1 ρ2 ρ12 MAD

NS2(3) 1 -0.25 0.41 -3.02 1.79 0.45 0.23 0.04 0.17
6 0.06 0.25 -1.53 1.38 0.54 0.29 0.07 0.06
12 0.06 0.25 -1.63 1.29 0.50 0.26 0.13 0.06
24 0.03 0.17 -1.04 0.86 0.55 0.25 0.05 0.03
60 0.01 0.16 -0.84 0.74 0.63 0.53 0.17 0.03
120 0.03 0.12 -0.35 0.69 0.48 0.29 0.02 0.01

Q1(2) 1 -0.37 0.51 -2.85 1.64 0.63 0.49 0.05 0.26
6 0.00 0.22 -0.84 1.04 0.62 0.45 0.08 0.05
12 0.04 0.14 -1.04 0.75 0.50 0.26 0.08 0.02
24 0.02 0.15 -0.61 0.85 0.58 0.29 0.03 0.02
60 0.00 0.06 -0.44 0.26 0.52 0.40 0.15 0.00
120 0.04 0.23 -0.65 0.74 0.76 0.65 0.27 0.05

Q2(2) 1 -0.37 0.55 -3.01 1.24 0.66 0.52 0.10 0.30
6 -0.01 0.21 -0.86 0.89 0.60 0.40 0.02 0.05
12 0.03 0.10 -0.97 0.53 0.43 0.16 0.02 0.01
24 0.02 0.13 -0.55 0.76 0.57 0.30 0.02 0.02
60 0.00 0.06 -0.43 0.34 0.47 0.32 0.06 0.00
120 0.04 0.21 -0.65 0.61 0.75 0.64 0.26 0.05

A1(2) 1 -0.36 0.56 -3.06 2.25 0.65 0.49 0.01 0.31
6 -0.01 0.31 -1.04 1.48 0.66 0.45 0.12 0.10
12 0.03 0.22 -1.21 1.36 0.57 0.27 0.10 0.05
24 0.02 0.22 -0.90 1.35 0.62 0.30 0.07 0.05
60 0.01 0.10 -0.44 0.47 0.59 0.34 0.14 0.01
120 0.04 0.27 -0.69 1.02 0.77 0.67 0.30 0.07

A2(2) 1 -0.35 0.55 -2.90 1.56 0.64 0.52 0.08 0.30
6 0.00 0.25 -1.16 1.07 0.61 0.44 0.07 0.06
12 0.03 0.16 -1.33 1.08 0.49 0.20 0.12 0.03
24 0.02 0.17 -0.82 1.18 0.61 0.30 0.11 0.03
60 0.00 0.08 -0.60 0.36 0.52 0.28 0.21 0.01
120 0.03 0.25 -0.68 0.85 0.78 0.68 0.30 0.06

The table reports summary statistics for the in-sample fit of the evaluated models. The

in-sample fit refers to the properties of the error-term εt,τ in the yield curve observation

equation Y (Xt, τ) = − cτ
τ
− b′τ

τ
Xt−X ′

t
Aτ
τ

Xt +εt,τ , where εt,τ ∼ N(0, R) and R is assumed

to be diagonal. ‘mean’ is the average, ‘st.dev’ is the standard deviation, ‘min’ is the

minimum and ‘max’ is the maximum estimation error. ρp denotes the autocorrelation

at lag p and ‘MAD’ is the mean absolute deviation. The model classification scheme

Mn(k) denotes M = {Q, A, NS} referring to Quadratic, Affine and Nelson-Siegel models,

with n = {1, 2, 3} denoting the model variant: maximally flexible; independent-factors or

’triangular’ specification, respectively. k counts the number of yield curve factors included

in the examined model variants, i.e. k = {2, 3}.
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Figure 1: Fitted and observed yield curves on randomly selected dates -
quadratic three- and two-factor models
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Figure 2: Fitted and observed yield curves on randomly selected dates -
affine three- and two-factor models
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Figure 3: Fitted and observed yield curves on randomly selected dates -
three-factor Nelson-Siegel models
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Figure 4: Standardized factors and principal components - quadratic models
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Figure 5: Standardized factors and principal components - affine models
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Figure 6: Standardized factors and principal components - Nelson-Siegel
models
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