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Abstract

This paper extends the analysis of in�nite dimensional vector autoregressive models (IVAR)

proposed in Chudik and Pesaran (2010) to the case where one of the variables or the cross section

units in the IVAR model is dominant or pervasive. This extension is not straightforward and

involves several technical di¢ culties. The dominant unit in�uences the rest of the variables in

the IVAR model both directly and indirectly, and its e¤ects do not vanish even as the dimension

of the model (N) tends to in�nity. The dominant unit acts as a dynamic factor in the regressions

of the non-dominant units and yields an in�nite order distributed lag relationship between the

two types of units. Despite this it is shown that the e¤ects of the dominant unit as well as

those of the neighborhood units can be consistently estimated by running augmented least

squares regressions that include distributed lag functions of the dominant unit. The asymptotic

distribution of the estimators is derived and their small sample properties investigated by means

of Monte Carlo experiments.

Keywords: IVAR Models, Dominant Units, Large Panels, Weak and Strong Cross Section

Dependence, Factor Models.

JEL Classi�cation: C10, C33, C51
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Non-technical Summary
This paper extends the analysis of in�nite dimensional VAR (IVAR) models considered in

Chudik and Pesaran (2010) to the case where one of the cross section units in the IVAR model is

dominant or pervasive, in the sense that it can in�uence the rest of the system in a way that results

in strong cross section dependence. For example in the context of global macroeconomic modelling

the assumption that world consists of many small open economies could not be satisfactory since

the US economy alone account for more than a quarter of world output and, in addition, the US

is found to have an important in�uence on �nancial markets around the globe, see for example

Pesaran, Schuermann, and Weiner (2004). This raises not only the question of how to model the

US macroeconomic variables, but also how to model the remaining economies. Another example

could be modelling of house prices in di¤erent regions in the UK, where the developments in London

region have large in�uence on many other regions in the UK, see Holly, Pesaran, and Yamagata

(2010) for recent application.

Allowing for the presence of a dominant unit is clearly important, but to date little is known

about the estimation of such systems. This paper contributes to the literature in this direction.

This extension is not straightforward and involves several technical di¢ culties. The dominant unit

in�uences the rest of the variables in the IVAR model both directly and indirectly, and its e¤ects do

not vanish even as the dimension of the model (N) tends to in�nity. The dominant unit acts as a

dynamic factor in the regressions of the non-dominant units and yields an in�nite order distributed

lag relation between the two types of units. Despite this it is shown that the e¤ects of the dominant

unit as well as those of the neighborhood units can be consistently estimated by running augmented

least square (ALS) regressions that include distributed lag functions of the dominant unit. The

asymptotic distribution of the estimators is derived and their small sample properties investigated

by means of Monte Carlo experiments.
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1 Introduction

The econometric theory of vector autoregressive (VAR) models is well developed when the dimen-

sion of the model (N) is small and �xed whilst the number of time series observations (T ) is large

and expanding. This framework, however, is not satisfactory for many empirical applications where

both dimensions N and T are large. Prominent examples include modelling of regional and national

interactions, the panel data analysis of a large number of �rms or industries over time. It is clear

that without restrictions the parameters of the VAR model can not be consistently estimated in

cases where both N and T are large, since in such cases the number of unknown parameters grows

at a quadratic rate in N . To circumvent this �curse of dimensionality�, several techniques have

been suggested in the literature that can be broadly characterized as: (i) data shrinkage, and (ii)

parameter shrinkage. Factor models are examples of the former (see Geweke (1977), Sargent and

Sims (1977), Forni and Lippi (2001), Forni et al. (2000), and Forni et al. (2004)). Spatial models,

pioneered by Whittle (1954), and further developed by Cli¤ and Ord (1973), Anselin (1988), and

Kelejian and Robinson (1995), and Bayesian type restrictions (e.g. Doan, Litterman, and Sims

(1984)) are examples of the latter.

The analysis of in�nite dimensional VAR (IVAR) models is considered in Chudik and Pesaran

(2010), who propose an alternative solution to the curse of dimensionality based on an a priori

classi�cation of the units into neighbors and non-neighbors. The coe¢ cients corresponding to the

non-neighboring units are restricted to vanish in the limit as N ! 1, whereas the neighborhood
e¤ects are left unrestricted. Neighbors could be individual units or, more generally, linear combi-

nations of the units (such as spatial or local averages). Such limiting restrictions on the parameters

of the VAR model turns out to be equivalent to data shrinkage as N ! 1. Chudik and Pesaran
(CP) show that the properties of the IVAR model crucially depend on the extent of the cross

section dependence across the units. In the case where such dependencies are weak (in the sense

formalized by Chudik, Pesaran and Tosetti (2009)), CP establish that the IVAR model de-couples

into separate individual regressions that can be estimated consistently. They also consider the case

where the cross section units are strongly correlated, but con�ne their analysis to situations where

the source of strong cross section dependence is external to the model and originate from a �nite

set of exogenously given factors. For the latter case they propose a cross sectionally augmented

least squares (CALS) estimator that they show to be consistent and asymptotically normal.

The present paper extends the analysis of CP to the case where one of the cross section units in

the IVAR model is dominant or pervasive, in the sense that it can in�uence the rest of the system

in a way that results in strong cross section dependence.1 For example in the context of global

macroeconomic modelling the assumption that world consists of many small open economies could

not be satisfactory since the US economy alone accounts for more than a quarter of world output

and, in addition, the US is found to have an important in�uence on �nancial markets around the

globe, see for example Pesaran, Schuermann, and Weiner (2004). This raises not only the question

of how to model the US macroeconomic variables, but also how to model the remaining economies.

1Concepts of strong and weak cross section dependence, introduced in Chudik, Pesaran and Tosetti (2009), will
be applied to VAR models.
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2 The IVAR Model with a Dominant Unit

Suppose we have T time series observations on N cross section units indexed by i 2 S(N) �
f1; ::; Ng � N. Both dimensions, N and T , are assumed to be large. For each point in time, t,

and for each N 2 N, the N cross section observations are collected in the N dimensional vector,

x(N);t =
�
x(N);1t; x(N);2t; :::; x(N);Nt

�0, and it is assumed that x(N);t follows the VAR(1) model
x(N);t = �(N)x(N);t�1 + u(N);t, (1)

where �(N) is an N � N matrix of unknown coe¢ cients and u(N);t is an N � 1 vector of error
terms. To distinguish high dimensional VAR models from the standard speci�cations we refer to

the sequence of VAR models (1) of growing dimensions (N !1) as the in�nite dimensional VARs
or IVARs for short.3 The extension of the IVAR(1) to the pth order IVAR model where p is �xed,

is relatively straightforward and will not be attempted in this paper.

The explicit dependence of the variables and the parameters of the IVAR model on N is sup-

pressed in the remainder of the paper to simplify the notations, but it will be understood that

in general they vary with N , unless stated otherwise. In what follows we shall also focus on the

problem of estimation of the parameters of individual units in (1). In particular, we consider the

equation for the ith unit that we write as

xit =
NX
j=1

�ijxj;t�1 + uit; for t = 1; 2; :::; T: (2)

Clearly, it is not possible to estimate all the N coe¢ cients �ij , j = 1; ::; N , when N and T grow

at the same rate, unless suitable restrictions are placed on some of the coe¢ cients. One such

restriction is the �cross section absolute summability condition�,

NX
j=1

���ij�� < K for any N 2 N and any i 2 f1; ::; Ng , (3)

which ensures that the variance of xit conditional on information available at time t � `, for any

�xed ` > 0, exits for all N and as N !1. The Lasso and Ridge shrinkage methods also use similar
constraints.4 Condition (3) implies that many of the coe¢ cients are in�nitesimal (as N ! 1).
However, assuming a mere existence of an upper bound K in (3) need not be su¢ cient to deal

with the dimensionality problem and we impose additional restrictions below. We follow CP and

suppose that in addition to (3), it is possible, for each i 2 N, to divide the units into �neighbors�
3The sequence of models obtained from (1) for di¤erent values of N is compatible with both cases where

cov
�
x(N);it; x(N);jt

�
changes with N or is invariant to N . We allow for both possibilities since in some applica-

tions the covariance between individual units could change with the inclusion of a new unit - as it is likely to be the
case when modelling �rms or assets within expanding markets. For further details see Chudik and Pesaran (2010).

4These �data mining�methods attempt at estimating all the unknown coe¢ cients of the ith equation, �ij , j =
1; ::; N , by minimizing

PT
t=1 u

2
it subject to

PN
j=1

���ij�� � K (Lasso) or
PN

j=1 �
2
ij � K (Ridge). But the outcome,

perhaps not surprisingly, only yields a relatively small number of non-zero estimates. See Chapter 3.4.3 of Hastie,
Tibshirani, and Friedman (2001) for detailed descriptions of Lasso and Ridge regression shrinkage methods.
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The above set up can be generalized to two or more dominant units so long as the number of

such units is �xed and does not change with N . In this paper we focus on IVAR models with one

dominant unit and assume that the dominant unit is known a priori. The analysis of models with

more than one dominant units and the problem of how to identify such units will be outside the

scope of the present paper.

3 Large N Representations

The presence of a dominant unit in the IVAR model considerably complicates the analysis. This

is because the e¤ects of the dominant unit show up in all other units both contemporaneously as

well as being distributed over time in the form of in�nite order moving average or autoregressive

representations. For empirical analysis it is important that conditions under which such in�nite

order processes can be well approximated by time series models with a �nite number of unknown

parameters are met. To this end we introduce a number of further assumptions restricting the

behavior of � and R for a �nite N as well as when N !1.

ASSUMPTION 3 (Starting values and stationarity) Available observations are x0;x1; :::;xT with
x0 =

P1
`=0�

`u (�`), and there exists a real positive constant � < 1 (independent of N) such that
for any N 2 N

j�1 (�)j � �. (14)

ASSUMPTION 4 (Bounded variances and invertibility of large N ARMA representations) Sim-

ilarly to (9) let

� = �1s
0
1 +��1; (15)

where ��1 is obtained from � by replacing its �rst column with a column of zeros and �1 is the

�rst column of �. Assume that there exists a real positive constant � < 1 (independent of N) such

that for any N 2 N :
k��1k1 � �, k��1k1 � �, (16)

and

k�1k1 = max
1�i�N

j�i1j � �. (17)

Furthermore,

max i2N jri1j � 1. (18)

Remark 1 Condition (14) of Assumption 3 is a well known su¢ cient condition for covariance
stationarity for any �xed N 2 N. This condition, however, is not su¢ cient for V ar(xit) to remain
bounded as N ! 1. As shown in Chudik and Pesaran (2010), k�k � � < 1 would be su¢ cient

for bounded variances (as N ! 1), but in our set-up k�k is unbounded due to the presence of
a dominant unit in the IVAR model. Assumption 4 provides additional su¢ cient conditions for

bounded variances (as N ! 1) and also for the existence of an invertible large N AR(1) and
MA(1) processes for the dominant unit.
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which is a large N ARMA(1;1) representation of the process for the dominant unit.
The next lemma establishes invertibility of polynomials b1 (L) and c (L).

Lemma 2 Suppose Assumption 4 holds. Then inverses of the polynomials b1 (L) and c (L), de�ned
by (28) and (29), respectively, exist for any N 2 N, and coe¢ cients of polynomials b�11 (L) and

c�1 (L) decay at an exponential rate uniformly in N . Also, there exist real positive constants K <1
and � < 1 such that

ja`j < K�`, for any ` 2 f0; 1; 2; :::g and any N 2 N, (34)

where

a (L) =
1X
`=0

a`L
` = b�11 (L) c (L) . (35)

Proof. Coe¢ cients of the polynomial c (L) =
P1
`=0 c`L

`, as de�ned by equation (29), satisfy:

c0 = 1, and jc`j =
���s01�`�1�1 �1

��� � 


�`�1�1





1
k�1k1 for any ` 2 N. Conditions (16) and (17) of

Assumption 4 postulate that k��1k1 � � < 1 and k�1k1 � � < 1, which implies that jc`j � �` for

any ` 2 N. Invertibility of c (L) and exponential decay of the coe¢ cients in c�1 (L) now directly
follows from Lemma A.1. Exponential decay of the coe¢ cients in c�1 (L) is uniform in N , because

� does not depend on N 2 N.
Coe¢ cients of the polynomial b1 (L) =

P1
`=0 b1`L

`, as de�ned by equation (28), satisfy b10 = 1,

and jb1`j =
��s01�`�1r1�� � 

�`�1

1 kr1k1 for any ` 2 N. Conditions (16) and (18) of Assumption

4 imply


�`�1

1 kr1k1 � �`, which establishes jb1`j � �` for any ` 2 N. Invertibility of b1 (L)

and the exponential decay of the coe¢ cients in b�11 (L) now follows from Lemma A.1. Similarly to

c�1 (L), the coe¢ cients of b�11 (L) exponentially decay uniformly in N 2 N.
Noting that jc`j � �` for any ` = 0; 1; 2; ::, and that the coe¢ cients of b�11 (L) decay exponen-

tially, it follows that the coe¢ cients of a (L) = b�11 (L) c (L) must also decay at an exponential rate.

This completes the proof.

It is worth noting that conditions k��1k1 � � < 1 and k�1k1 � � < 1 of Assumption 4 are

su¢ cient to ensure that c (L) is invertible and the coe¢ cients of c�1(L) decay exponentially. On

the other hand conditions k��1k1 � � < 1 and maxi2N jri1j � 1, are su¢ cient in ensuring that

b1 (L) is invertible and the coe¢ cients of b�11 (L) decay exponentially. The exponential decay of the

coe¢ cients in these polynomials will be relevant for the selection of truncation lags in empirical

applications as discussed below.

3.1 Large N AR and MA representations for the dominant unit

Multiplying both sides of (27) by b�11 (L) we obtain

a (L)x1t = "1t + #bt, (36)
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where #bt = b�11 (L) �1t. By Lemma 2 the coe¢ cients of b�11 (L) decay exponentially and hence are

absolute summable, and in view of (31) we have

V ar (#bt) = O
�
N�1� . (37)

Also since E (#bt) = 0, it follows that

#bt = b�11 (L) �1t = Op

�
N�1=2

�
. (38)

Using this result in (36) yields the following large N AR(1) representation for the dominant unit,

a (L)x1t = "1t +Op

�
N�1=2

�
. (39)

Similarly, multiplying both sides of (27) by c�1 (L) we obtain

x1t = a�1 (L) "1t + #ct, (40)

where a�1 (L) = c�1 (L) b1 (L), and #ct = c�1 (L) �1t. Using similar arguments as in derivation of

(37)

V ar (#ct) = O
�
N�1� , (41)

and since E (#ct) = 0, then

#ct = c�1 (L) �1t = Op

�
N�1=2

�
; (42)

and we have the following large N MA(1) representation for x1t,

x1t = a�1 (L) "1t +Op
�
N�1=2

�
. (43)

3.2 Large N representation for the non-dominant units i > 1

Consider now the equation for unit i > 1. Using (1) we have (noting that uit = ri1"1t + eit)

xit = �iixi;t�1 + �
0
�1;�ixt�1 + �i1x1;t�1 + ri1"1t + eit. (44)

Multiplying both sides of (21) by �0�1;�i yields

�0�1;�ixt = pi (L)x1;t�1 + ki (L) "1t + �
0
�1;�i�t, (45)

where

pi (L) =

1X
`=0

�
�0�1;�i�

`
�1�1

�
L`, (46)

and

ki (L) =

1X
`=0

�
�0�1;�i�

`
�1r1

�
L`. (47)
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0 < � < 1 such that

j�i`j < K�` for any ` 2 f0; 1; 2; :::g , any N 2 N and any i 2 f1; 2; :::; Ng , (57)

where �i` is de�ned by the coe¢ cients of polynomial �i (L) =
P1
`=0 �i`L

` in (49).

Proof. Existence of real positive constants K < 1 and 0 < � < 1 (independent of N) such

that ja`j < K�` was established in Lemma 2. Coe¢ cients of polynomials pi (L) =
P1
`=0 pi`L

` and

ki (L) =
P1
`=0 ki`L

`, as de�ned by equations (46) and (47), respectively, satisfy:

jpi`j �



�0�1;�i�`�1�1


1 < K�`, and jki`j �




�0�1;�i�`�1r1


1 < K�`, (58)

where


�0�1;�i

1 =

P
j 6=1;i

���ij�� < K by (6) of Assumption 1,


�`�1

1 � �` < 1 by (16) of

Assumption 4, k�1k1 � � < 1 by (17) of Assumption 4, and kr1k1 = maxi=1;::;N jri1j � 1 by (18)
of Assumption 4. Result (57) now directly follows by noting that linear combinations and products

of polynomials with exponentially decaying coe¢ cients are also polynomials with exponentially

decaying coe¢ cients.

4 Asymptotic Distribution of the Augmented Least Squares Esti-

mator

4.1 Speci�cation of Augmented Regressions

Based on the large N representation (39) for the dominant unit, and the representation (56) for

the non-dominant units (i > 1), we consider the following regressions:

xit = g
0
it�i + �it, for i = 1; 2; :::; N , (59)

where

git =

(
(x1;t�1; x1;t�2; :::; x1;t�m)

0 , for i = 1

(xi;t�1; x1t; x1;t�1; :::; x1;t�m)
0 for i > 1

, (60)

�i =

(
� (a1; a2; :::; am)0 , for i = 1

(�ii; �i0; �i1; :::; �im)
0 for i > 1

, (61)

�it =

(
 m1t + #bt + "1t, for i = 1

 mit + �it + eit for i > 1
, (62)

and

 mit =

(
�
P1
`=m+1 a`x1;t�`, for i = 1P1
`=m+1 �i`x1;t�` for i > 1

. (63)

Note that there are m regressors (and m unknown coe¢ cients) in the regression for the dominant

unit i = 1, and m+ 2 regressors in the regressions for the non-dominant units, i > 1.

The error term �it in (62) is decomposed into three parts: the component  mit is due to the
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truncation of the in�nite order lag polynomials a (L) in the case of the dominant unit and �i (L),

for i > 1. Since the coe¢ cients in these polynomials are absolutely summable, we have

 mit
q:m:! 0, as m!1,

for any N 2 N, any i 2 f1; 2; :::; Ng and any t 2 f1; 2; :::; Tg. The second terms, #bt (in the case
of the dominant unit), and �it, for i > 1 , are Op

�
N�1=2�. (See (38) and (55)). These terms arise

from aggregation of weak dependencies in the individual-speci�c equations of the IVAR model,

(1). The third terms in (62) are serially uncorrelated errors, with "1t being orthogonal to eit for

any i > 1. Also as noted above eit are cross sectionally weakly dependent, although ignoring such

dependencies does not adversely impact the consistency of the estimators to be proposed here.

For future references, let

hit =

( �
�1;t�1; �1;t�2; :::; �1;t�m

�
for i = 1�

�i;t�1; �1t; �1;t�1; :::; �1;t�m
�
for i > 1

, (64)

and

Ci = E
�
hith

0
it

�
, (65)

where

a (L) �1t = "1t, (66)

and

(1� �iiL) �it = �i (L) �1t + eit, for i = 2; 3; :::N . (67)

Process f�itg is large N counterpart of fxitg in the following sense,

xit � �it = Op

�
N�1=2

�
, for any i 2 N. (68)

Note that for any i; �it is a linear stationary process with absolute summable autocovariances.

4.2 Consistency of the Augmented Least Squares Estimator

In what follows we focus on the estimation of the parameters of the non-dominant units, i > 1. The

results for the dominant unit can be derived in a similar way and are not included to save space.

We denote the least squares estimator of the vector of unknown coe¢ cients �i as

b�1
m�1

=

0BBBB@
�ba1
�ba2
...

�bam

1CCCCA and b�i
(m+2)�1

=

0BBBB@
b�iib�i0
...b�im

1CCCCA , for i > 1,

where b�ii refers to the augmented least squares (ALS) estimator of the own lag coe¢ cient �ii,b�i`, ` = 0; 1; 2; :::;m, denote the estimators of the �rst m + 1 coe¢ cients in �i(L), and ba` for
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that is b�i de�ned by equation (74) is a consistent estimator of �i.
Proof. Suppose i > 1. Taking maximum absolute row-sum matrix norms of both sides of equation
(78), we have

kb�i � �ik1 �






�
G0
iGi

T

��1
�C�1i







1





G0
i�i�
T






1

+


C�1i 

1�



(Gi �Hi)

0 ei�
T






1
+





H0
iei�
T






1
+





G0
i�i�
T






1
+





G0
i i�
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where


C�1i 

1 = O (1) since �it is a stationary invertible process with absolute summable auto-

covariances. The desired result (112), for i > 1, now follows using Lemmas 4-8 and noting that

kH0
iei�=Tk1

p! 0 by results (A.15) and (A.16) of Lemma A.4 in Appendix. Consistency of b�1 can
be established in a similar manner.

4.3 Asymptotic Distribution of b�i
We continue to focus on the estimates b�i for i > 1. Derivation of the asymptotic results for b�1 can
be established in a similar manner.

Theorem 2 (Asymptotic normality) Suppose xt is given by model (1) and Assumptions 1-5, B1,
and B3 hold. Then for any sequence of (mT + 2)�1 dimensional vectors a such that kak1 = O (1),

we have p
T
1

�i
a0C

1
2
i (b�i � �i) d! N (0; 1) , for any i 2 f2; 3; :::g , (113)

where b�i and Ci are de�ned by (74) and (65), respectively, and �2i = V ar (eit). In addition, for

any sequence of mT � 1 dimensional vectors b such that kbk1 = O (1), we have

p
T
1

�"1
b0C

1
2
1 (b�1 � �1) d! N (0; 1) , (114)

where b�1 and C1 are de�ned by (74) and (65), respectively, and �2"1 = V ar ("1t).

Proof. Suppose i > 1.
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where
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where the convergence follows from Lemmas 4-8. Furthermore,

1

�i
a0C

� 1
2

i

H0
iei�p
T

d! N (0; 1) (117)

is a standard time series result, which can be established using the martingale di¤erence array

central limit theorem (Theorem 24.3 of Davidson (1994)) in the same way as Lemma 6 of Chudik and

Pesaran (2010). Equations (115)-(117) establish result (113), as desired. Asymptotic distribution

of b�1 can be established in a similar manner.
4.4 Extensions

Straightforward relaxation of Assumption 1 would be to incorporate more general neighborhood

e¤ects with a priori known spatial weights matrix or a priori known selection matrix that selects

neighbors for unit i. This extension is straightforward along the lines of CP and we provide below

some Monte Carlo evidence in case of three neighbors per unit. The presence of deterministic terms

or observed and unobserved common factors could also be tackled along the same lines as in CP. It

is also possible to allow for more than one dominant unit in the IVAR model so long as the number

of dominant units is �xed and the identity of the dominant units is known a priori.

5 Monte Carlo Experiments

In this section we report some evidence on the small sample properties of the augmented least

squares estimator b�i. The data generating process (DGP) is given by the following stationary
IVAR featuring the dominant unit and augmented by an unobserved common factor.

(xt � 
ft) = � (xt�1 � 
ft�1) + ut, (118)

where

ut = R"t = r1"1t + et, (119)

which corresponds to model (1) augmented by unobserved common factor ft and residuals corre-

spond to (8) and (20). Our focus is on estimation of the lagged own coe¢ cient in equation for the
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with �e1 = �2be; �e2 = b2e and be =
�
1�

p
1� a2e

�
=ae, generates the same autocorrelations as the

bilateral SAR(1) scheme (120). The error terms are generated using the unilateral scheme (121)

with 50 burn-in data points (i = �49;�48; :::; 0), and the initializations e�51 = e�50 = 0. The

spatial AR parameter, ae; is set to 0:4, which ensures that the process feitg is cross sectionally
weakly dependent. �2�e = V ar (�eit) is chosen so that the variance of errors eit is equal to 0:1.

8

"1t � IIDN (0; 0:15) and r11 = 1, which implies that V ar(u1t) = 0:15. The second element of r1
in (119) is set to r21 = 0:1 and the remaining elements are generated as ri1 � IIDU (0; 0:2) for

i = 3; 4; :::; N .

We consider three di¤erent types of augmentation. In addition to the lagged neighbor unit 3,

the regression for unit i = 2 is augmented by the following set of regressors: (i) the current and

lagged values of the dominant unit, fx1;t�`gmT

`=0, (ii) the simple cross section averages fxt�`g
mT
`=0,

and (iii) fx1;t�`; xt�`gmT

`=0. In all the three cases mT is set to the integer value of T 1=3, which we

denote by
�
T 1=3

�
.9 For example, under case (i) the ALS regression for unit i = 2 is speci�ed as:

x2t = c2 + �22x2;t�1 + �23x3;t�1 +

[T 1=3]X
`=0

b1`x1;t�` + �2t. (122)

5.1 Monte Carlo results

We report results for experiments without the unobserved common factor �rst. Table 1 summarizes

the results for the own coe¢ cient �̂22, and Table 2 summarizes the results for the neighbor coe¢ -

cient, �23. Each table gives the bias and the root mean squared error (RMSE) of the estimator as

well as the empirical size and power of tests based on it. The results for �̂23 are a little better but

overall similar to those for �̂22. The bias and RMSE of these estimators decline as N and T are

increased irrespective of the augmentation procedure adopted. This is because in the absence of a

common factor the dominant unit and the cross section averages are asymptotically equivalent and

either set of variables (with long enough lags) are su¢ cient to deal with the cross section depen-

dence and the omitted variable problems in the IVAR model. The augmentation by cross section

averages has the advantage that it works regardless of whether strong cross section dependence is

due to a dominant unit, or due to a di¤erent source such as an unobserved common factor. Full

augmentation by the dominant unit as well as the cross section averages is not necessary in the

absence of a common factor, and yields worse outcomes in terms of RMSEs. See the third panel of

Tables 1 and 2.

The empirical size of the tests for values of T > 50 are also close to the 5 percent nominal level.

For smaller values of T , however, there is a negative bias and the tests are oversized. This is the

familiar time series bias where even in the absence of cross section dependence the LS estimators of

autoregressive coe¢ cients are biased in small T samples. But the size of the tests does not change

much with N , which is in the line with the �ndings reported in CP. Overall, these �ndings suggest

that N need not to be very large for the ALS estimator to work.

8The variance of errors feitg is given by �2 = (1 + �e2)
��
1� �2e2

�
� �2e1

�
= (1� �e2).

9mT = 2; 3; 4; 4; 5 for T = 25; 50; 75; 100; 200, respectively.
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Results for b�20 are reported in Table 3. The top panel summarizes the results when the regres-
sion is augmented with fx1;t�`gmT

`=0, as suggested by the theory. In this case the bias and RMSE

of b�20 declines with N and T , and the empirical size is close to the nominal value of the test, very

much in line with the results reported for �̂22 and �̂23. In contrast, the estimates at the bottom

panel of Table 3 that are based on regressions augmented by fx1;t�`; xt�`gmT

`=0, behave less well and

for a given T the RMSEs deteriorate as N increases. The inclusion of cross section averages lead to

a multicollinearity problem since fx1;t�`gmT

`=0 and fxt�`g
mT
`=0 will be asymptotically equivalent. But

this asymptotic multicollinearity problem does not a¤ect the estimation of �22 and �23.

Results for the experiments with the unobserved common factor are reported in Table 4 (own

coe¢ cient �22) and Table 5 (neighbor coe¢ cient �23).
10 Theory suggests that augmentation by the

dominant unit or by the cross section averages alone is not enough for consistent estimation in the

presence of a dominant unit as well as a common factor, ft. This is con�rmed by the MC results

in Tables 4 and 5, which indeed show substantial biases and signi�cant size distortions in cases

without the full augmentation (the empirical sizes are in the range 17%� 70% for N = T = 200).

The ALS estimator based on the full augmentation is correctly sized for larger values of N and

T and overall its performance is very similar to the experiments without the unobserved common

factor.

6 Concluding Remarks

This paper has extended the analysis of in�nite dimensional vector autoregressive (IVAR) models

by Chudik and Pesaran (2010) to the case where one variable or a cross section unit is dominant in

the sense that it has non-negligible contemporaneous and/or lagged e¤ects on all other units even as

the cross section dimension rises without a bound. We showed that the asymptotic normality of the

augmented least squares (ALS) estimator continues to hold once the individual auxiliary regressions

are correctly speci�ed. Satisfactory �nite sample performance was documented by means of Monte

Carlo experiments.

How to specify the individual regressions is an important topic, and the correct speci�cation

depends on a number of assumptions, namely the presence of dominant units, observed and un-

observed common factors and spatiotemporal neighborhood e¤ects. How to identify the dominant

unit(s), the number of the unobserved common factors (if any), and the nature of (spatial) contem-

poraneous dependencies are issues of utmost importance that lie outside the scope of the present

paper. These topics together with the extension of the analysis to nonstationary IVAR models

must be left to future studies.

10Results for b�20 are not reported in this case since only in the absence of common factor, coe¢ cient �20 corre-
sponding to the contemporaneous value of the dominant unit equals r21, as shown in equation (69).
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A Supplementary Lemmas and Proofs

Lemma A.1 Let  (L) =
P1

`=0  `L
`,  0 = 1 and there exists a real positive constant 0 < � < 1 such that j `j � �`

for any ` 2 N. Then there exists polynomial � (L) =
P1

`=0 �`L
` such that  (L) � (L) = 1,

j�`j �
�
1 +

` (`� 1)
2

�
�` for any ` 2 N, (A.1)

and there also exist real constants K <1; and 0 < �1 < 1 such that

j�`j � K�`1 for any ` 2 N. (A.2)

Proof. We have

�0 = 1,

�1 = � 1,

�2 = � 1�1 �  2,

�3 = � 1�2 �  2�1 �  3,

�4 = � 1�3 �  2�2 �  3�1 �  4.

Note that

j�1j = j 1j ,

j�2j � j 1j j�1j+ j 2j ,

j�3j � j 1j j�2j+ j 2j j�1j+ j 3j ,

j�4j � j 1j j�3j+ j 2j j�2j+ j 3j j�1j+ j 4j ,

and by recursive substitution

j�1j = j 1j ,

j�2j � j 1j j�1j+ j 2j = j 1j
2 + j 2j ,

j�3j � j 1j j�2j+ j 2j j�1j+ j 3j � j 1j
�
j 1j

2 + j 2j
�
+ j 2j j 1j+ j 3j ,

j�3j � j 1j
3 + 2 j 2j j 1j+ j 3j ,

j�4j � j 1j
4 + 3 j 1j

2 j 2j+ 2 j 1j j 3j+ j 2j
2 + j 4j .

Suppose that j ij � �i and 0 < � < 1. Then in general

j�sj �
 
1 +

s�1X
j=1

j

!
�s,

j�sj �
�
1 +

s(s� 1)
2

�
�s;

Choose a positive real constant � > 0 such that � < 1� �. We have

j�sj �
�
1 +

s(s� 1)
2

�
(1� �)s

�
�

1� �

�s
,

j�sj �
��
1 +

s(s� 1)
2

�
�s2

�
�s1,

where �1 � �= (1� �), �2 � 1� �, and note that 0 < �1 < 1, 0 < �2 < 1. Also,�
1 +

s(s� 1)
2

�
�s2 ! 0; as s!1,
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dimensional vector � such that k�k1 = O
�
N�1�,
E
�
s0i�t�p�

0�t�1
�
= O

�
N�1� , (A.46)

and

E
�
s0i�t�p�1t

�
= O

�
N�1� , (A.47)

where si is an N � 1 dimensional selection vector with sij = 0 for j 6= i and sii = 1, and �t is de�ned by equation

(22).

Proof. We have

s0i�t�p�
0�t�1 = s

0
i�t�p�

0
t�1� =

1X
`=0

s0i�
`
�1R�1"t�p�`

1X
`=0

"0t�1�`R
0
�1�

0`
�1�. (A.48)

Taking expectations of (A.48) and noting that "t is independently distributed of "t0 for any t 6= t0, we obtain

E
�
s0i�t�p�

0�t�1
�

=
X

`=maxf1;pg

s0i�
`�p
�1 R�1E

�
"t�`"

0
t�`
�
R0
�1�

0`�1
�1 �

� kR�1k1 kR�1k1 k�k1 kV ar ("t)k1
X

`=maxf1;pg

k��1k`�p1 k��1k`�11 ,

where kR�1k1 kR�1k1 = O (1) by condition (11) of Assumption 2, k�k1 = O
�
N�1�, kE ("t"t)k1 = kV ar ("t)k1 =

O (1) by condition (10) of Assumption 2, and k��1k1 � � < 1, k��1k`1 � � < 1 by condition (16) of Assumption 4.

It follows that E (s0i�t�p�
0�t�1) = O

�
N�1�, as required.

To establish result (A.47), we make use of equation (A.33). We have

E
�
s0i�t�p�1t

�
= E

�
s0i�t�pr

0
�1"t

�
+ E

�
s0i�t�p�

0
�1�t�1

�
.

Noting that


��1

1 = O

�
N�1� by condition (5) of Assumption 1, result (A.46) (for � = ��1) implies E �s0i�t�p�0�1�t�1� =

O
�
N�1�. Furthermore,

E
�
s0i�t�pr

0
�1"t

�
=

(
0 for p > 0

s0iR�1E ("t"
0
t) r�1 for p = 0

,

where

s0iR�1E
�
"t"

0
t

�
r�1 � kR�1k1 kV ar ("t)k1 kr�1k1 = O

�
N�1� ,

using the same arguments as in derivation of (A.46) and noting that kr�1k1 = O
�
N�1� by condition (12) of

Assumption 2. It follows that E (s0i�t�p�1t) = O
�
N�1�, as required.
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