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Abstract

This paper introduces the concepts of time-specific weak and strong cross section
dependence. A double-indexed process is said to be cross sectionally weakly
dependent at a given point in time, t, if its weighted average along the cross section
dimension (N) converges to its expectation in quadratic mean, as N is increased
without bounds for all weights that satisfy certain ‘granularity’ conditions.
Relationship with the notions of weak and strong common factors is investigated and
an application to the estimation of panel data models with an infinite number of weak
factors and a finite number of strong factors is also considered. The paper concludes
with a set of Monte Carlo experiments where the small sample properties of estimators
based on principal components and CCE estimators are investigated and compared
under various assumptions on the nature of the unobserved common effects.

Keywords: Panels, Strong and Weak Cross Section Dependence, Weak and Strong
Factors.

JEL Classification: C10, C31, C33.
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Nontechnical Summary

Cross section dependence is a rapidly growing field of study in panel data analysis. The aim of
this paper is to characterize the correlation pattern over the cross sectional dimension for a general
class of processes, regardless of whether they are represented by factor or spatial models or any
other process featuring cross section dimension proposed in the literature. Unlike in the case of
time series, data along the cross sectional dimension do not typically have a natural ordering.

This paper proposes a new characterization of cross section dependence into weak and strong,
which are more widely applicable than the existing definitions characterizing the pattern of cross
section correlation in the factor literature. We consider the asymptotic behaviour of weighted
averages at each point in time, which does not require any stationarity assumptions to be imposed
on the underlying time series processes. We define a process to be cross sectionally weakly dependent
at a given point in time if its weighted average at that time converges to its expectation in quadratic
mean, as the cross section dimension is increased without bounds for all weights that satisfy certain
‘granularity’ conditions. If this requirement does not hold, then the process is said to be cross
sectionally strongly dependent. Convergence properties of weighted averages is of great importance
for the asymptotic theory of various estimators and tests commonly used in panel data econometrics,
as well as for arbitrage pricing theory and portfolio optimization with a large number of assets.

In this paper we also investigate relationship with the notions of weak and strong common
factors and consider the problem of estimating the slope coefficients of large panels, where cross
section units are subject to a number of unobserved common factors that may rise with the number
of cross section units. It is established that Common Correlated Effects (CCE) estimator intro-
duced by Pesaran (2006) remains asymptotically normal under certain conditions on the loadings
of the infinite factor structure, including cases where methods relying on principal components fail.
A Monte Carlo study documents these theoretical findings by investigating the small sample per-
formance of estimators based on principal components and the CCE estimators under alternative
assumptions on the nature of unobserved common effects. In particular, we examine and compare
the performance of these estimator when the errors are subject to a finite number of unobserved

strong factors and an infinite number of weak and/or semi-weak unobserved common factors.
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1 Introduction

There exists a growing literature on econometric methods for representing and measuring cross section
dependence in panel data regression models. Conditioning on variables specific to the cross section
units alone typically does not deliver cross section error independence and it is well known that
neglecting cross section dependence can lead to biased estimates and spurious inference.

How to account for contemporaneous error correlations depends on the number of cross section
units, IV, relative to the time series dimension, 7', and in most cases on the nature and the degree
of cross section dependencies observed. When N is small relative to T', the nature of cross section
dependence is unimportant as long as the errors are not correlated with the regressors, in which
case the Seemingly Unrelated Regression Equations (SURE) approach can be used (Zellner (1962)).
But when N is large relative to T', the SURE procedure is not applicable and the nature of cross
section dependence needs to be taken into account. In such cases there are two main approaches to
modelling cross section dependence in panels : (7) spatial processes pioneered by Whittle (1954) and
developed further by Anselin (1988), Kelejian and Prucha (1999), and Lee (2004); and (i¢) factor
models introduced by Hotelling (1933) and first applied in economics by Stone (1947). Factor models
have been used extensively in finance (Chamberlain and Rothschild (1983), Connor and Korajzcyk
(1993); Stock and Watson (1998); Kapetanios and Pesaran (2007)), and in macroeconomics (Forni
and Reichlin (1998); Stock and Watson (2002)). While in principle, as we shall see, cross sectionally
dependent processes, including spatial and network processes, can be set up as an unobserved factor
structure with possibly infinite number of factors, the original idea for using latent factors is to
characterize co-movements of individual cross section units by a small number of latent factors plus a
white noise, in order to overcome the curse of dimensionality.

The aim of this paper is to characterize the correlation pattern over the cross sectional dimension
for a general class of processes, regardless of whether they are represented by factor or spatial models
or any other process featuring cross section dimension proposed in the literature. Unlike in the case
of time series, data along the cross sectional dimension do not typically have a natural ordering.
One way to characterize the correlation structure of double index processes has been proposed in
the factor literature. The idiosyncratic (or weak dependence) property, advanced by Forni and Lippi
(2001), applies to both dimensions and requires that the weighted average of a stationary process,
computed both over time and across sections, converges to zero in quadratic mean for all sets of
weights satisfying a certain condition. This notion is used by the authors to characterize dynamic factor
models. Their framework is a generalization of the static model for asset markets by Chamberlain
(1983) and Chamberlain and Rothschild (1983), and extends some of the results presented by Forni
and Reichlin (1998). Forni and Lippi (2001) show that a necessary and sufficient condition for a
process to be idiosyncratic (or weakly dependent over time and across the units) is the boundedness
of the largest eigenvalue of its spectral density matrix at all frequencies. Using this result, Anderson
et al. (2009) (see their Definition 4) formally define a double index stochastic process as weakly

dependent if the largest eigenvalues of its spectral density is bounded in N (at all frequencies), as
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opposed to a strongly dependent process, for which a finite, nonzero number of eigenvalues diverge
to infinity as N goes to infinity. We remark that these assumptions on the asymptotic behaviour of
eigenvalues of the spectral density are needed for identification of common factors and their loadings,
and their estimation by principal components analysis. Further, to ensure the existence of the spectral
density, this literature assumes that the underlying time series processes are stationary with absolutely
summable autocovariances.

This paper proposes a new characterization of cross section dependence into weak and strong, which
are more widely applicable than the definitions introduced by Anderson et al. (2009). We consider
the asymptotic behaviour of weighted averages at each point in time, which does not require any
stationarity assumptions to be imposed on the underlying time series processes. We define a process
to be cross sectionally weakly dependent at a given point in time if its weighted average at that time
converges to its expectation in quadratic mean, as the cross section dimension is increased without
bounds for all weights that satisfy certain ‘granularity’ conditions. If this requirement does not hold,
then the process is said to be cross sectionally strongly dependent. Convergence properties of weighted
averages is of great importance for the asymptotic theory of various estimators and tests commonly
used in panel data econometrics, as well as for arbitrage pricing theory and portfolio optimization
with a large number of assets. It is clear that the underlying time series processes in either of the two
literature need not be stationary, and concepts of weak and strong dependence that are more generally
applicable are needed.

In this paper we focus on the econometric literature and consider the problem of estimating the
slope coefficients of large panels, where cross section units are subject to a number of unobserved
common factors that may rise with N. It is established that Common Correlated Effects (CCE)
estimator introduced by Pesaran (2006) remains asymptotically normal under certain conditions on the
loadings of the infinite factor structure, including cases where methods relying on principal components
fail. A Monte Carlo study documents these theoretical findings by investigating the small sample
performance of estimators based on principal components and the CCE estimators under alternative
assumptions on the nature of unobserved common effects. In particular, we examine and compare the
performance of these estimator when the errors are subject to a finite number of unobserved strong

factors and an infinite number of weak and/or semi-weak unobserved common factors.

The plan of the remainder of the paper is as follows. Section 2 introduces the concepts of strong
and weak cross section dependence, and explores the relationship between the dependence structure
of processes. Section 3 focuses on cross section dependence in dynamic panels. Section 4 presents
common factor models and discusses the notions of weak, semi-strong and strong factors. Section 5
introduces the CCE estimators in the context of panels with an infinite number of common factors.
Section 6 describes the Monte Carlo design and discusses the results. Finally, Section 7 provides some

concluding remarks.

Notation: [A;(A)| > [A2(A)| > ... > |Au(A)] are the eigenvalues of a matrix A € M"™*" where
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M"™*™ is the space of n x n complex valued matrices. A~ denotes a generalized inverse of A. The spec-

tral radius of A € M™*" is p(A) = max [|A;(A)|], and its column norm is ||A|; = max > ., |a;l.
1<j<n 1<j<n =

The row norm of A is ||A|, = oax. > j=1laij|. The spectral norm of A is [|A[ = [p(AA')]I/Q, and

|Ally = [Tr (AA’)]l/Q. K is used for a fixed positive constant that does not depend on N.

2 Cross section dependence in large panels

In this section, we study the structure of correlation of the double index process {zi;, i € N, ¢ € Z} where
2zt are random variables defined on a probability space (€2, F, P); the index ¢ refers to an ordered set,
the time, while the index ¢ indicates the units of an unordered population. Our primary focus is
on characterizing the correlation structure of the double index process {z;;} over the cross sectional
dimension. We start by reviewing definitions provided in the existing literature to characterize the
correlation pattern of {z;}; and next we introduce our general notions of weakly and strongly cross

sectionally dependent processes.

2.1 Weak and strong dependence

Forni and Lippi (2001) introduce the notion of idiosyncratic process to characterize a weak form of
dependence that involves both time series and cross sectional dimensions under the following assump-

tion:

Assumption 1 (Forni and Lippi, 2001, Assumption 1) For each N € N, the process zy; =

;7 . . . . .
(2145 ..., 2Nt) 18 covariance stationary and the spectral measure of zny is absolutely continuous.

Notice that Assumption 1 guarantees the spectral density for the vector zy; to exist. Consider any

sequence of weights vectors wy = (wy, wa, ..., wy)’ such that
lim ||wyl = 0. 1
Nl ” N” ( )

Let F.n (w) denote the spectral density matrix for zy¢ and define the norm [[wy||g_, as

1 ™
ol = 55 [ WhEa (6) wds

Forni and Lippi (2001) define the process {z;} as idiosyncratic if, for all weights wy satisfying con-
dition (1), we have

i [[wilp_, =0.

The idiosyncratic property implies that the variance of the weighted average of {z;;}, computed both

over time and across sections, vanishes to zero as N tends to infinity. The authors show that the
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sequence {z;} is idiosyncratic if and only if the largest eigenvalue of F,n (w), Aiy; (w), is bounded
in w and N. Further, a process {z;;} for which the (m + 1)th eigenvalue of F,y (w) is bounded in
w and N, and the mth eigenvalue diverges in N for all frequencies w, can be represented by the
so-called generalized factor structure, namely a linear combination of m dynamic factors, plus an
idiosyncratic process (see their Theorems 1 and 2). This is an extension to the dynamic case of the
static factor model used in arbitrage pricing theory as advanced by Ross (1976) and further developed
by Chamberlain (1983), Chamberlain and Rothschild (1983), and Ingersoll (1984).

Based on the above results, Anderson et al. (2009) define the concepts of weak and strong de-
pendence for processes {z;;} satisfying Assumption 1, on the basis of the asymptotic behaviour of the

eigenvalues of F,x (w).

Definition 1 (Weak and strong dependence) The double index processes {zit,i € N,t € Z} is weakly
dependent if Ay 1 (w) is uniformly bounded in w and N. The process {zi} is strongly dependent if
the first m > 1 (m < K) eigenvalues (Ay 1 (W) .-, Ay (w)) diverge to infinity as N — oo, for all

frequencies.

For further details on the above definitions we refer to Forni and Lippi (2001) (see their Assumption
1, Definitions 1, 6 and 9; Theorems 1 and 2), and Anderson et al. (2009) (see their Assumptions 4
and 5).

We note that the stationarity of the time series processes in zy; set in Assumption 1 is needed for
estimation by (dynamic) principal components analysis of common factors and their loadings in the
generalized factor structure. However, this assumption is likely to be quite restrictive and is unlikely to

hold in many applications, especially in finance where time series often exhibit time-varying volatility.

2.2 'Weak and strong cross section dependence

We now present our definitions of weak and strong cross section dependence at a given point in time.
For ease of exposition, in the following we omit the subscript N where not necessary. We make the

following assumptions:

Assumption 2 Let wyy = (w1, ..., wny)', fort € T C Z and N € N, be a vector of non-stochastic
weights. For any t € T, the sequence of weights vectors {wn.} of growing dimension (N — o0)

satisfies the following ‘granularity’ conditions:

[waill = O (N7%), (2)

and
wjt

1
=0(N "2 or any 7 € N. 3
] = O (N72) for amy ®)
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Assumption 3 Let Z; be the information set available at time t. For eacht € T, zZny = (214, .-y th)/

has conditional mean and variance

E(ZNt ‘Itfl) = 0, (4)
Var (ZNt |It71) = th, (5)

where Ty is a N x N symmetric, nonnegative definite matriz, with generic (i,§)™" element Oijt, and
such that 0 < 04 < K, fori=1,...,N, where K is a finite constant independent of N.

Assumption 2, known in finance as the granularity condition, ensures that the weights {w;;} are
not dominated by a few of the cross section units. Although we have assumed the weights to be non-
stochastic, this is done for expositional convenience and can be relaxed by requiring that conditional
on the information set the weights, wy;, are distributed independently of zp;. In Assumption 3
we impose some regularity conditions on the time series properties of {z;}. Assumption 3 is also
standard in finance and specifies that zy; has conditional means and variances. The first part, (4),
can be relaxed to E (zn¢ [Z¢-1) = My 1, With py;; being a pre-determined function of the elements
of Z;_1. But to keep the exposition simple and without loss of generality we have set py, 1 = 0.

To simplify the notations we suppress the explicit dependence of zy;, wy; and other vectors and
matrices on IV, unless this is needed to avoid possible confusions.

Consider now the weighted averages, Z,: = Zf\il witzit = Wizy, for t € T, where z; and wy satisfy
Assumptions 2 and 3. We are interested in the limiting behavior of Z,; at a given point in time t € 7

as N — oo.

Definition 2 (Weak and strong cross section dependence) The process {zit} is said to be cross sec-
tionally weakly dependent (CWD) at a given point in time t € T conditional on information set T;_1,
if for any sequence of weight vectors {w} satisfying the granularity conditions (2)-(3) we have
lim Var(wyz:|Z;—1) = 0. (6)
N—oo
{zit} 1s said to be cross sectionally strongly dependent (CSD) at a given point in time t € T conditional

on information set T;_1, if there exists a sequence of weights vectors {w} satisfying (2)-(3) and a

constant K independent of N such that for any N sufficiently large
Var(wiz,|Z;—1) > K > 0. (7)

The concepts of weak and strong cross section dependence proposed here are defined conditional
on an information set, namely the set 7;_; in the definition above. In this way we are able to consider
cross section dependence properties of {z;} without having to limit the time series features of the
process. Various information sets could be considered in practise, depending on applications. One

example is the set containing lagged realizations of the process {z;}, that is 7,1 = {zi—1, 212, ....}.
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In the context of dynamic models, it is useful to condition on the initialization of the dynamic process
(i.e. starting values) only. In stationary panels, unconditional variances of cross section averages could
be considered. In the remainder of the paper, if not stated explicitly, the concepts of CWD and CSD

are always defined on the information set Z;_1.

Remark 1 In contrast to the notions of weak and strong dependence advanced by Forni and Lippi
(2001) and Anderson et al. (2009), our concepts of CWD and CSD do no require the underlying

processes to be covariance stationary and have spectral density at all frequencies.

Remark 2 A particular form of a CWD process arises when pairwise correlations take non-zero values
only across finite subsets of units that do not spread widely as sample size increases. A similar case
occurs in spatial processes, where for example local dependency exists only among adjacent observations.
However, we observe that the notion of weak dependence does not necessarily involve an ordering of
the observations or the specification of a distance metric.

2.3 Properties of weakly and strongly cross sectionally dependent processes

The following proposition establishes the relationship between weak cross section dependence and the

asymptotic behaviour of the spectral radius of 3; (namely, \; (%¢)).
Proposition 1 The following statements hold:
(i) The process {zit} is CWD at a point in time t € T if A1 (X¢) is bounded in N.
(ii) The process {zy} is CSD at a point in time t € T if and only if imy .o £ A1 (Z¢) = K > 0.

Proof. First, suppose A1 (3;) is bounded in N. We have
Var(wiz |T;1) = wiSw; < (wiwy) A1 (Ze), (8)
and under the granularity conditions (2)-(3) it follows that

lim Var(wiz|Zy—1) =0,
N—oo

namely that {z;} is CWD, which proves (i). Now suppose that {z;;} is CSD at time ¢. Then, from
N

(8), it follows that A; (¥:) tends to infinity at least at the rate N. Noting that A\; (£;) < Zamt
i=1

where, under Assumption 3, 0;;; are finite, A; (2;) cannot diverge to infinity at a rate larger than N,
and hence it follows that under CSD limpy_ %)\1 (3¢) = K > 0. To prove the reverse relation, first
note that, from the Rayleigh-Ritz theorem?,

A () = v%aX1V£2tvt = v}y (9)
tVt=

'See Horn and Johnson (1985), p.176.
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Let wy = ﬁvf and notice that w; satisfies (2)-(3). Hence, we can rewrite A1 (2;) as

M (Z) =N -Var(w)'z |Ti—1 ). (10)

It follows that if limy_, o %)\1 (2;) = K > 0, then limy_,o Var(w;'z; |Z;—1) > 0, i.e. the process is
CSD, which proves (ii). m
Since 2

AL (Ze) < (1Zelly

it follows from (8) that if imy_eo A1 (2¢) > 0 then also limy_ 7 [ Z¢]l; > 0. Hence, both the
spectral radius and the column norm of the covariance matrix of a CSD process are unbounded in N.
This result for a CSD process is similar to the condition of not absolutely summable autocorrelations

that characterizes time series processes with strong temporal dependence (Robinson (2003)).
A number of remarks concerning the above concepts of CWD and CSD are in order.

Remark 3 The definition of idiosyncratic process by Forni and Lippi (2001) and our definition
of CWD differ in the way weights used to build weighted averages are defined. While Forni and
Lippi assume limy_,o ||W|| = 0, our granularity conditions (2)-(3) imply that, for any t € T,
lim 00 N2 |lwe|| = 0 for any € > 0. This difference in the definition of weights has some im-
plications on the properties of our processes. In particular, under (1), it is possible to show that the
idiosyncratic process (and hence also the definition of weak dependence & la Anderson et al. (2009))
imply bounded eigenvalues of the spectral density matrixz. Conversely, under (2)-(3), it is clear that if
A1 (Bt) = O(NY79) for any € > 0, then, using (8),

]\}EDOO (W;Wt) )\1 (2,5) = 0,
and the underlying process will be CWD. Hence, the bounded eigenvalue condition is sufficient but
not necessary for CWD. According to our definition a process could be CWD even if its maximum
etgenvalue is rising with N, so long as its rate of increase is bounded appropriately. In Section 3,
we investigate the relation between bounded eigenvalues of the spectral density matriz, and bounded

etgenvalues of the covariance matriz, X, in the case of dynamic panels.

One rationale for characterizing processes with increasing largest eigenvalues at the slower pace
than NV as weakly dependent is that bounded eigenvalues is not a necessary condition for consistent
estimation in general, although in some cases, such as the method of principal components, this con-
dition is necessary. More on this below in Section 5, where we consider estimation of slope coefficients
in panels with an infinite factor structure.

We conclude this section with two results concerning the relationship between strongly and weakly

cross sectionally correlated variables. Following Definition 2, we say that two processes {zjt o} and

?See Horn and Johnson (1985), pp. 297-298.
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{zitp} are weakly correlated at time ¢ if A}im E(ZwtaZwtp |Zt—1) = 0, for all sets of weights that satisfy
— 00

the granularity conditions. The next proposition considers correlation of two processes with different

cross dependence structures. We then investigate the correlation structure of linear combinations of

strongly correlated and weakly correlated variables.

Proposition 2 Suppose that {z1.} and {2t} are CSD and CWD processes, respectively. Then for
all sets of weights {w&} and {w} satisfying conditions (2)-(3), we have

lim E(Zwt,aZwtp |Z—1) = 0.
N—oo

Proof. Let {wl‘-l’tfl} and {w?,tq} be two sets of weights satisfying conditions (2)-(3). For t € T, we
have
[E(ZutaZutp | T2 < E(Zhy o | Te1 ) E(Zhyy [Ti-1)-

wt,a

Further, under Assumption 3 the process z;;, satisfies

E(22;,|T1) < K,

wt,a

where K is a finite constant. Also from (6), and considering that z;; is a CWD process we have
lim E(z2,,|Zi-1) = 0.
N—oo ’
Therefore, for all sets of weights satisfying (2)-(3), we obtain

lim E(gwt,(zzwt,b |It—1) = 0.
N—oo

Proposition 3 Consider two independent processes {zito} and {zitp}, and their linear combinations
defined by

Zit,e = BaZit,a + ByZitp, (11)
where B, and B3 are non-zero fizved coefficients. Then the following statements hold:
(i) Suppose {zito} and {2z} are CSD, then {zi} is CSD,
(it) Suppose {zitq} and {zirp} are CWD, then {zy .} is CWD,
(111) Suppose {zit.o} is CSD and {zip} ts CWD, then {zy .} is CSD.

Proof. Let 3, , and X, j, be the covariance matrices of z¢ 4 = (2114, -, 2Nt,a)’ and 21 p = (Z11.by -, ZND) s
and X; . the covariance of their linear combination that is, given the assumption of independence be-
tween z;, and zqp

Yie= BiZt,a + B§2t,b-
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The variance of the weighted average wjz; . satisfies
Var(wyzic|Ti—1) > B?Var(wgzt,j |Z—1), J=a,b,

which implies that, if there exists a weights vector w; satisfying the granularity conditions such
that either Var(wyz:q|Zi—1) or Var(wiz.,|Z;—1) or both are bounded away from zero, then also
Var(wizi|Z;—1) is bounded away from zero and {z; .} is cross sectionally strongly dependent (this

proves (i) and (iii)). Also, we know that
Var(wizyc|Ti—1) = Var(wizyo |Ti—1) + Var(wizep, | Ti—1 ).

Noting that Var(wiz.q [Z;—1) and Var(wiz.p |Z;—1) satisfy (6), then imy_.oo Var(wizec|Zi—1) = 0,
and hence {z; .} is cross sectionally weakly correlated (this proves (ii)). m

The above result can be generalized to linear functions of more than two processes. In general,
linear combinations of independent processes that are strongly (weakly) correlated is strongly (weakly)
dependent, while linear combinations of a finite number of weakly and strongly correlated processes
is strongly correlated, since on aggregation only terms involving the strong component will be of any

relevance. This result will be employed in Section 4.

3 Dynamic panels

Suppose that for each N € N, cross section units collected into the vector z; = (214, 22t ..., th)' are

generated from the following VAR model,
zt = Pz 1 + wy, (12)

where ®; is a N x N dimensional matrix of unknown coefficients, which could be time-varying, the

vector w; of reduced-form errors has mean and variance
E (ut) = 0, E (utu;) = Et, (13)

where ¥, t = 1,...,7, are N x N symmetric, nonnegative definite matrix, and u; is independently
distributed of uy for any t # ¢'. The initialization of the dynamic process could be from a finite
past, t € T ={-M +1,..,0,..} C Z, M being a fixed positive integer; or we can let M — oo, as in
Chudik and Pesaran (2009). The infinite-dimensional spatio-temporal model (12) can also be viewed
more generally as a ‘dynamic network’, with 3; and ®; capturing the static and dynamic forms of
inter-connections that might exist in the network. All linear dynamic panel data models existing in
the literature could be written as special cases of (12). Sequence of models (12) of growing dimension
(N — o0) is non-nested since the dependence between unit i and j could change with the inclusion
of new unit(s). For this reason, the process {z;, N € N;i € {1,..,N},t € T} given by (12) is a triple
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index process, but we continue to omit subscript N (were not necessary) to simplify the exposition.
Object of this section is to investigate the correlation pattern of {z;} across the cross sectional

units in the dynamic setting given by (12). In our analysis, we set Z; to contain only the starting

values, z_ps, i.e. Zy = Z = {z_p}. Consider the following assumptions on the coefficient matrices,

®,, and the error vector, uy:

Assumption 4 There exist a constant K < co and an arbitrarily small positive constant € > 0 such
that for any fired t € T and any N € N, we have

@ < K, (14)

and
|24 < K - N'e. (15)

Remark 4 Equation (15) of Assumption 4 implies that {u;} is CWD. The initialization of a dy-
namic process could be from a non-stochastic point or could have been from a stochastic point, possibly

generated from a process different from the DGP of {u}.

Proposition 4 Consider model (12) and suppose Assumption 4 holds. Then for any sequence of
weight vectors {wy} satisfying condition (2), and for a fized M and a fizedt € T,

lim Var (wyzs | z_p) = 0. (16)

N—oo

Proof. The vector difference equation (12) can be solved backwards, taking z_j; as given:

t+M—1 t+M—1
Z; = ( H i’ts) Z_\ + Z (H P, s> ;.
s=0 £=0

The variance of z; (conditional on initial values) is

t+M—1 !
Qth VCLY’(Zt‘Z M Z (Hq)t 5) Et [(H@t s) .

=0 s=0

For any ¢t € T, || _ || is under Assumption 4 bounded by

t+M—1
I uml< S (H 1% sn)nzt_euzo(zvl—e).

=0 s=0

It follows that for any arbitrary vector of weights satisfying (2),

Var (wiz | z-n) = Wi —pwe < p () (Wiwy) = 0 (1), (17)
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where p () < || Q|| = O (N'79), and wiw, = |[we|* = O (N~!). m

Hence, the dynamic process {z;} given by (12) under Assumption 4 is CWD at any point in
time ¢ € 7, conditional on starting values z_j;. The result of the above proposition can be readily
extended to situations where M and/or ¢ — co. In such cases we need the stronger requirement that
|®:|| < 1—¢, forallt € 7. It is then easily seen that the VAR(1) model, (12), yields a cross sectionally
weakly dependent process if for all t and N, || ]| < K - N'7¢, and [|®;| < 1 — ¢, irrespective of the
values of t and M.?> There are several interesting implications of this finding. Consider the following
additional assumption on the coefficients matrix ®;, which states that for some units the off-diagonal

elements of the matrix ®; are small.

Assumption 5 Let K C N be a non-empty index set. Define vector

/ .. . . .
b _i = ((Z)til,...,¢t7i7i_1,0,¢t7i7i+1,...,¢t72~N) where ¢y;; for i,j € {1,2,...,N} is the (i,j) element of
matriz ®¢. For any i € K and any t € T, vector ¢, _; satisfies

N 1/2
_1
lendl={ X ¢ts| =o(n73). (18)
=1,
Remark 5 Assumption 5 implies that for i € K, Z£17i¢j brij < Hgf’t7—iH1 = O (1).* Therefore, it is
possible for the dependence of each individual unit on the rest of the units in the system to be large.

However, as we shall see below, in the case where {zy} is a CWD process, the model for the ith cross

section unit de-couples from the rest of the system as N — oo.

Corollary 1 Consider model (12) and suppose Assumptions 4 and 5 hold. Then, a fixred M, a fizved
teT, and anyi € K,

lim Var (zit — ¢izit—1 — it | z—pnr) = 0. (19)
N—o0

If, in addition to Assumptions 4 and 5, ||®¢|| <1 —€ and M — oo, we have

]\}im Var (zit — ¢izit—1 —uig) =0 for any i € K and any t € T. (20)
—00

3Under these assumptions the unconditional variance of z; is bounded by

(oo}

-1
IVar (z)| = 19 < <H ||‘I>t—s||2> 15—l
£=0 \s=0

< = - 1—e* =0 (N'9).
sup || ZZ:;( ©) (N'79)

*Note that ||¢t,—i”1 < \/NHqSt,ZH See Horn and Johnson (1985, p. 314). An example of vector ¢, _; for which
limy oo ZZ]-V:LZ-# ¢y;; 7 0 is when ¢,;; = k/N for i # j and any fixed non-zero constant k.
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Proof. Assumption 5 implies that for i € K, vector ¢, _; satisfies condition (2). It follows from

Proposition 4 that
A}im Var (¢; 2| z—p) =0 for any i € K and any t € 7. (21)
— 00

Similarly, under the assumption ||®;|| < 1 — € and M — oo, we have ||[Var (z;)| = O (N'™¢) (see

Footnote 3), which implies

J\}im Var (gb;’_izt) =0 for any i € K and any t € 7. (22)
— 00
System (12) implies

Zit — GpiiZip—1 — Wit = @y _;2zq, for any i € {1,.., N} and any t € T (23)

Taking conditional variance of (23) and using (21)-(22) now yields (19)-(20). =

Strong dependence in infinite-dimensional VAR models could arise as a result of CSD errors {u;},
or could be due to dominant patterns in the coefficients of ®;, or both. An example of the former is
the residual common factor model where the weighted averages of factor loadings do not converge to
zero. Further examples of CSD IVAR models, featuring also dominant unit, are provided in Chudik
and Pesaran (2009).

The following proposition presents sufficient conditions for the VAR(1) process to be weakly de-
pendent in the sense of Anderson et al. (2009). Since the concept of weak dependence by Anderson
et al. (2009) is defined only for stationary processes, we have to assume that ®; and ¥, are time

invariant.

Proposition 5 Consider model (12) with time invariant coefficient matriz ®; = ®, and suppose that
for each t € T, u; satisfies E (u;) = 0, E (wu)) = X where X is a time invariant N x N symmetric,
nonnegative definite matriz, w; is independently distributed of uy for any t # t', and p (®) < 1, so
that z; 1s a covariance stationary process. Then z; is weakly dependent, in the sense of Anderson et al.
(2009), if p(£) < K < o0 and ||®]| <1 —e.

Proof. The spectral density of z, is given by (i = /—1)

F.(w) = % (Iy — e @®) 7' 3 (Ty — “d') "

For each N € N, we have
plFz(w)] = [F:(w)]

and
7o)l < 5 || = m=@) 1) [y - @) 7|
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Under the assumption that p(®) < 1,
(Iy — e @) =TIy + ¢ “Bte 24P 1 ..
Now we assume ||®|| < 1, and since ’e_ijw‘ =1, it follows

1+ |8+ [|®]* + .....
1

1— @

[ —ea)

IN

Similarly

) -1 1 1
IN_e’LLU@/ H S — ,
I VS e T 1o

If, in addition, p (3) < K < co we have

plF-w)] < o [ — @) [ 1m]| @y - ea) 7|
1

B

1 1)
< %P(Z) <1—M’|) =0(1),

which is bounded in N since both p (3) and ﬁ\‘ﬂ\ are bounded. This completes the proof. m

Remark 6 Notice that under the assumption that ||®|| < 1 — e and if, for at least one frequency wy,
the matriz (Iy — e*i“JO(I))_l(IN —etwo <I>’)_1 s non-singular, it is possible to show that weak dependence
in the sense of Anderson et al. (2009) implies p(X) < K < oco. To prove this, first notice that if A, B

are two n X n complex valued matrices then®

1/2
|AB| > [[A] A (BB)"2, (24)
1/2
JAB| > [B Amin (AA")2. (25)
Applying (24)-(25) to p[F.(wo)], we obtain
1 —iw — w —
pIE-(wo)] = [Falwo)ll = 5= ||y —e70@) ' By — 0 @') |
1 —iw -1 iw n—1 —iw —1 1/2
> _ 0 . _ pwo _ 0
> o H(IN w0 ) EHAmm [(IN 0 @) NIy — e o) }
1 4 4 1/2 4 4 1/2
> 13 dmin [Ty = 0 @) Ly = 0@) 7 A [(Iy — €0@) ! (Ly — e 0 @) |
Y5

1

30 (2) A [(Ty = ¢ 02) 1y = o) 1] >0
m

Given that p [F,(w)] < K < oo at all frequencies w, it must follow that p (X) < K < co.

’See Bernstein (2005), page 362.
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4 Common factor models
Consider the following infinite factor model for {z;}:
zit = Vi Ju + Viofor + o vinINe t e, i=1,..N, (26)

where the common factors, fs, and the idiosyncratic errors, g4, satisfy the following assumptions:

Assumption 6 The N x 1 wvector f; is a covariance stationary process, with absolute summable

autocovariances, distributed independently of € for all i,t,t', and such that E(fft |Zi—1) = 1 and
E(feefpt |Zt—1) =0, for £ #p=1,2,...,N.

Assumption 7 Var (e |Zi-1) = 02 < K < oo, and g4, ej¢ are independently distributed for all
1 # j and for all t.

The process z;; in (26) has conditional variance

Var(zig|Zi—1) = Var (uy | Zi—1) + Var (e | Zi—1) Z vir + 0

Finiteness of the conditional variance of z;; as stated in Assumption 3 implies that

N
Y 4 <K <oo, fori=1,..N. (27)

=1

This could arise if, for example,
Yo = O(),forl=1,..m;i=1,...,N, (28)
1

w = Ol—=|,forlf=m+1.,N;i=1..,N, 29
v = 0() (29

where 0 < m < 0o does not depend on N.

We now introduce the definition of weak and strong factors.

Definition 3 (Weak and strong factors) The factor fyu is said to be strong if

DBl = K20 £
The factor fu is said to be weak if
N
lim ZE |70l = K < 0. (31)

N—oo
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In the case where the loadings attached to f;; do not satisfy either of the above conditions (30)-
(31), we refer to the corresponding common factor fy; as semi-weak (or semi-strong). For example, a
factor is semi-weak when the the absolute sum of its loadings, Zf\; 1 E |7i¢], increases at a rate slower
than N.

There exists a relationship between the notions of CSD and CWD and the definitions of weak and

strong factors. This is provided in the following theorem.

Theorem 1 Consider the factor model (26), and suppose that Assumptions 3-7 hold and factor load-
ings are non-stochastic. Then under the condition that limy_, Zévzl |7iel = K < 00 (for any i € N),
the following statements hold:

(i) The process {zy} is cross sectionally weakly dependent at a given point in time t € T if fy is
weak for £ =1,...,N.

(ii) The process {zit} is cross sectionally strongly dependent at a given point in time t € T if and

only if there exists at least one strong factor.
Proof. In matrix form, the covariance of z; = (21, ..., z2n¢) is
3, =TI+ A..

where A. is a diagonal matrix with elements o?. If fy is weak for £ = 1,..., N then [T, is bounded
in NV, and

AL(Ze) < ||TT + Acf], < Ty |TY)|, + 0fax < K, (32)

Iy

and, from Proposition 1, {z;;} is CWD, which proves point (i). Now suppose that {z;:} is CSD. Then

1 o1 / N
0< Jim A (B) < Jim < T[T+ Jin o
Given that, by assumption, ||[I'||; is bounded in N, it follows that limy_.o % |T|l; = K > 0, and
there exists at least one strong factor in (26). To prove the reverse relation, assume that there exists

at least one strong factor in (26) (i.e., imy_. + ||T'[|; = K > 0). Noting that’

1/2 1/2 HI‘H
A2 (2) > A2 (TT) > \/Nl (33)

it follows that limy_.c +A1 (%) = K > 0 and the process is CSD, which proves point (ii). m

Under (30)-(31), z;; can rewritten as

Zit = Uit + €4, (34)

%See Bernstein (2005), p.368, eq. xiv.
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where

m N
wie = Yl ew= Y Vil +eu, (35)
=1 (=m+1

and 7, satisfy conditions (30) for £ = 1,...,m, and (31) for £ =m + 1,..., N. In the light of Theorem
1, it follows that u; is CSD and e;; is CWD. Also, notice that when m = 0, we have a model with an

infinite number of weak factors.

Remark 7 Consider the following general spatial process
z: = Rvy, (36)

where R is an N X N matriz and v¢ is an N x 1 vector of independently distributed random variables.
Pesaran and Tosetti (2009) have shown that spatial processes commonly used in the empirical literature,
such as the Spatial Autoregressive (SAR) process, or the Spatial Moving Average (SMA), can be written
as special cases of (36). Specifically, for a SMA process R = I + S, where § is a scalar parameter
(10] < K) and S is N x N nonnegative matriz that expresses the ordering or network linkages among

-1

errors, while in the case of an invertible SAR process, we have R = (Iy —S)™ . Standard spatial

literature assumes that R has bounded column and row norms. It is easy to see that under these
conditions the above process can be represented by a factor process with infinite weak factors (i.e., with

m = 0), and no idiosyncratic error (i.e., £ = 0). For example by setting

N
Zit = Z YieSets
=1

where v,p = Tip, and fp = ve for i, € =1,...,N. Clearly, under the bounded column and row norms of

R, the loadings of the above factor structure satisfy (31) and hence carry weak cross section dependence.

Remark 8 Consistent estimation of factor models with weak or semi-weak factors may be problematic.

To see this, consider the following single factor model where suppose that loadings are known
_ 2
zit = Vit + €, € ~ 11D (0,07).

The least squares estimator of fi, which is the best linear unbiased estimator, is given by
2

. Z]\il v, Zit . o
ftzizjv 12 ) VC”“(ft)ZiN 2"
dim1 i dim1 Vi

If for example sz\il ’y? is bounded, as in the case of weak factors, then Var (ft) does not vanish as

N — o0, for each t.

In the literature on factor models, it is quite common to impose conditions on the loadings or on

the eigenvalues of the conditional covariance matrix, X, of wy = (uyy, ...,uNt), that constrain the
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form of cross section dependence carried by the factor structure. For example, Bai (2009) imposes
that factor loadings satisfy imy_.cc + PR 7%, >0, for £ =1,...,m. Onatski (2006) and Paul (2007)
consider the case where the idyosyncratic errors are independent with a homogeneous variance, o2,
and consider the ¢th factor as strong if Zf\; 173 > \/co?, and weak if Zfi 175 < Vco?, where c is
such that % —c=o0 (N -1/ 2). In the literature on asset pricing models, one common assumption is
that A, () is bounded away from zero at rate N (Chamberlain (1983); Forni and Lippi (2001)).
Consider now factor model (34)-(35). Since rank (2,:) = m, and X\; (3y¢) > 0, for i = 1,2, ..,m, and

Xi(Bwt)=0,fori=m+1,m+2,....N, we have
)\m (2t) Z )\m (Eut)>

and

Amt1 (B4) < Ag1 (Bur) + A1 (Ber) = A1 (Zet) -

Under the assumption that A, (3,;) is bounded away from zero at rate N, and noting that, under
(31), A1 (Xet) = O(1), it follows that Ay (24), ..., Ay (£¢) increase without bound as N — oo, while
A1 (Be) ..., An (3) satisfy the bounded eigenvalue condition. Most factor structures yield eigen-
values that increase at rate N. But as shown by Kapetanios and Marcellino (2008), it is possible to

devise factor models that generate eigenvalues that rise at rate N¢, for 0 < d < 1.

Remark 9 Our concepts of weak and strong cross section dependence are related to the notion of
diversifiability provided by the asset pricing theory (Chamberlain (1983)). In this context, ¥ represents
the covariance matrix of a vector of random returns on N different assets, and wg, fori=1,2,..., N,
denotes the proportion of investor’s wealth allocated to the it asset. From Definition 2 it follows that
the part of asset returns that is weakly (or semi-weakly) dependent will be fully diversified by portfolios
constructed using w; as the portfolio weights, and as N — oo. Suppose that the asset returns {ry}
have the factor structure

Tit = M1 +’Y;~ft +eir, 1=1,2,..., N,

where ji; ;1 is the conditional mean returns, fiis an m x 1 vector of unobserved factors, ~; is the
associated m x 1 vector of factor loadings, and {e;} is a CWD process distributed independently of f;
and ;. It is assumed that for each i, e;; is distributed independently of v;, whilst f; follows a general
time series process with the conditional m X m covariance matriz, €, also distributed independently

of e;t. The return on a portfolio constructed with the granular weights w; is given by
N
P = Doimy WitTit = Wipy_y + W, Tf; + wiey,
where py_1 = (U141 Hog—15 - fNg—1)'s € = (et €ty ent)’, and T'= (v, vg, ..., yn)'- 1t is easily

seen that
Var (p;|Zi—1) = w,TQIw, + Var (wieg|Z—1)
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and since by assumption {e;;} is a CWD process, then

lim Var (p;|Zi-1)

= li Q. .
N—o00 Ngnoo (Wt t Wt)
First consider the case where the factors are weak or semi-weak, and note that
wilQ M w; < (wiwy) A (TRIY) < (wiwe) [T 192, [|T)|, -
Since m is finite then |4, |T’|l; < K, and the portfolio is fully diversified for all granular weights if

(wiwe) [Tl — 0.

This condition holds if |||, = O(N'¢) for some positive fized €, namely if the factors are weak or
semi-weak. In general, however, the portfolio is not fully diversifiable if there is at least one strong
factor (see Theorem 1). In the presence of strong factors full diversification is only possible with

portfolio weights that are dependent on the factor loadings. One such portfolio weights is given by
w*= N1 [IN - MTI‘(I"MTI‘)_lI"] N,

where M, = Iny — 7N (T/y7N) Yy, and 75 = (1,1,...,1). It is easily seen that the weights w* add

up to unity and are granular in the sense that’

1 T\ /T'M.T\ ! /T'r
w ok N T N
ww =l () (%) (5)

It is also easily seen that T'w* = 0. Hence, limy_,o, Var (w*ry |Z;—1) = 0, as required.

— 0, as N — oo.

5 CCE estimation of panel data models with infinite factors

In this section we focus on consistent estimation of a regression model where the error term has a
factor structure with infinite factors.
Let y;; be the observation on the ith cross section unit at time ¢, fori =1,2,..., N,and t = 1,2, ..., T,

and suppose that it is generated as
yir = cqdy + Bixir + wit, (37)

where d; = (di¢,dat, ..., dnt) is a n X 1 vector of observed common effects, and x;; is a k X 1 vector
of observed individual specific regressors. The parameter of interest is the mean of individual slope
coefficients, 8 = E(3;).8

"When the factors are strong N 'IYrx and N"'T"M, T are O(1). If some of the factors are weak the columns of T'

associated with the weak factors can be removed when constructing the weights, w*.
8We assume that individual slope coefficients are drawn from common distribution with mean B. In the case
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The error term, u;, is given by the following general factor structure,

mi mo
wir =Y Yoo+ Y Nieger + €, (38)
/=1 /=1

where we distinguish between two types of unobserved common factors, f; = (fiz, ..., fry¢) and gy =
(g1ts s gmgt),'
latter are not correlated with the regressors. Define for future reference the vectors of factor loadings
!/
’Yi — (’7@17 ...,'Y,L'ml) and A’L — ()\117 ceey >\im2),.
To model the correlation between the individual specific regressors, x;;, and the innovations w,

The former are factors that are possibly correlated with regressors x;, while the

we suppose that x;; can be correlated with any of the factors in f,
xit = Ajdy + Tify + vy, (39)

where A} and I, are n x k and m; x k factor loading matrices with fixed components, and v;; is the
individual component of x;;, assumed to be distributed independently of the innovations u;;, and of
the common factors.

Equations (37) and (39) can be written more compactly as

Zit = ( Yit ) = B;dt + C;ft + éit, (40)
Xit
where
B;, = (ai A; >DiaCi:(’)’i T, )Di,

D, = 10 £, = gt + eir + Bivit ‘
B; Ix Vit

Similar panel data models have been analyzed by Pesaran (2006), Kapetanios, Pesaran, and Yagamata
(2009), and Pesaran and Tosetti (2009). Pesaran (2006) introduced CCE estimators in a panel model
where my is fixed and mg = 0, and ~.f; represents a strong factor structure. Contrary to what
Bai (2009) (see page 1231) suggests, CCE estimators are valid even in the rank deficient case where
mq could be larger than k + 1. Kapetanios, Pesaran, and Yagamata (2009) extended the results of
Pesaran (2006) by allowing unobserved common factors to follow unit root processes. In both papers,
innovations {e;; } are assumed to be cross sectionally independent although possibly serially correlated.
This assumption is relaxed by Pesaran and Tosetti (2009) who assume that {e;;} is a weakly dependent
process, which includes spatial MA or AR processes considered in the literature as special cases. In this

paper, we focus explicitly on cross-correlations modelled by general factor structures - weak, strong, or

where Bis are assumed to be non-stochastic, the object of interest would be cross section mean of 3;, defined by

,8 =limy—eo (N71 Zf\il Bz)
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somewhere in between. Our model is thus an extension of Pesaran (2006) to infinite factor structures.

The special case where both m; and meo are fixed has already been analyzed in the above cited
papers. The case where fi4, ..., fm,: are strong factors and m; = m; (V) — oo as N — oo, is not that
meaningful as the variances of u; rise with N. However, it would be possible to let mg, the number
of the weak factors, to rise with N, whilst keeping m; fixed. We show below that the CCE estimators
continue to be consistent and asymptotically normal under this type of infinite-factor error structures.

We make the following assumptions on the common factors and their loadings:

Assumption 8 (Common factors) The (n+mq)x1 vector (d}, f]) is a covariance stationary processes,
with absolute summable autocovariances, distributed independently of gy, e;v and vy for all i,t and
t'.9 For each i, common factor gy follows a linear stationary process with absolute summable autoco-
variances, zero mean, unit variance, and finite fourth moments. Individual factors collected in vector

g: are distributed independently of each other and of ey and vy for all i,t and t'.

Assumption 9 (Factor loadings) Factor loadings v;, T';, and A; are non-stochastic. In addition, we

assume that the following conditions hold.

(a) The unobserved factor loadings, ~v; and T'; are bounded, i.e. ||v;|y, < K and ||T||, < K, for all

1.

(b) The unobserved factor loadings A; satisfy the following absolute summability condition for each

ndividual unit,
ms

lim Y [ M| < K < o0, (41)
/=1

N—oo

where mg = my (N) is a nondecreasing function of N and the constant K does not depend on i

nor on N.

Remark 10 Factor structure vif; could be strong, weak or neither strong nor weak. Note that the
number of strong factors cannot increase with N for variance of u; to exists as N — oo. We do not

impose that Zévzl Aieger 18 a weak factor structure.
Remark 11 Condition (41) is required for Var ()\ggt) to exist as N — oo. Note that the matriz of
factor loadings A = (A1, Az, ..., )\N)' 18 not required to have bounded column norm as N — oo.

Remark 12 [t is straightforward to extend the analysis to stochastic factor loadings distributed in-
dependently of the errors e, vir and the individual coefficients B;. In case where factor loadings are

non-stochastic, the following rank condition

rank (C) =my for all N, (42)

This assumption can be relaxed to allow for unit roots in the common factors, along the lines shown in Kapetanios,
Pesaran, and Yagamata (2009).
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where C = N1 Zf\;l C;, would have to hold for the consistent inference about B. Regardless of
whether the rank condition (42) holds or not, it is straightforward to show, along the same lines as in
Pesaran (2006), that the CCE estimators continues to be valid in the case when the factor loadings
i, fori =1,..,N, are stochastic and distributed independently from the common factors with mean

~. Also see Kapetanios, Pesaran, and Yagamata (2009).

The remaining assumptions are similar to Pesaran (2006):

Assumption 10 (Errors) The individual-specific errors ey and vjp are distributed independently for
all 1, j, t and t', and for each i, vy follows a linear stationary process with absolute summable auto-

covariances given by

o0
vie= > My g

=0
where for each i, ¢;; is a k x 1 vector of serially uncorrelated random wvariables with mean zero, the
variance matriz Iy, and finite fourth-order cumulants. For each i, the coefficient matrices IL; satisfy

the condition

o0
Var(vir) = Y LIl = By,
£=0

where Xy, is a positive definite matriz, such that sup; ||Xy,||, < K. Errors ey, fori=1,..,N, follow

a linear stationary process with absolute summable autocovariances,

o0
Eit = g Ais€it—1,
=0

where €;s ~ 11D (0,1) with finite fourth moments.

Assumption 11 (Random coefficients) The slope coefficients follow the random coefficient model
Bi =B+ vi, v; NIID(OvﬂU)7 fOTi: L..,N,

where [|B], < K, ||, < K, 2, is symmetric non-negative definite matriz, and the random devia-

tions v; are distributed independently of x;;, d¢ and ;s for all 1,5 and t.

Assumption 12 Consider the cross section averages of the individual specific variables ziy = (i, xit)’,

defined by z; = % Efil zie and let M =Ip — H (ﬁ,ﬁ) - H H= (D,Z), where D and Z are, respec-

tively, the matrices of observations on d; and z;. Then the following conditions hold:
(a) The matriz imy_. Zf\il 3y, is finite and nonsingular.

— \—1
(b) There exists Ty and Ny such that for all T > Ty and N > Ny, the k x k matrices (%)

-1
and (%) exist for all i, where My = Iy — G(G'G)” G, with G = (D,F), F and
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X, are matrices of observations on f; and x;. Furthermore, sup; ||E (vitvi,)| < K < oo and
sup; | E (wiwl,)|| < K < oo, where Vi, and w/, are t-th rows of the matrices V, = M,V,and

/ N —1
W; =M,V; (Vil\;"v’> , respectively, and V; = (Vi1, Vig, ..., viT) .

Remark 13 For ease of exposition in this section we consider augmentation by arithmetic cross sec-
tion averages. However, it is straightforward to relax this assumption along the lines of Pesaran
(2006) and consider cross section averages that are constructed using more general weights satisfying

granularity conditions (2)-(3).

The idea underlying the CCE approach is that as far as estimation of the slope coefficients are
concerned the unobservable common factors can be well approximated by the cross section averages
of the dependent variable and individual specific regressors. The common correlated mean group
estimator (CCEMG) is given by

N
Becpme = % Z Beor (43)
i=1
where the estimates of the individual slopes are
Boow, = (X{MX;) " X/My;.
The common correlated pooled (CCEP) estimator is defined by

N -1 N
Bccrp = (Z X;MXZ> > X[My;. (44)
i=1

=1

Theorem 2 (CCE estimation) Consider the panel data model (37) and (39) and suppose that As-
sumptions 8-12 hold, my does not vary with N, and the rank condition (42) holds. Then for the

common correlated mean group estimator /@CCEMG given by (43), as mg, N,T s 0, such that
N2 M < K < oo, we have

VN (BCCEMG - /3) — N (0,XccEma) (45)

where Zccpma = Q. If in addition, ||| > 0, then for the common correlated pooled estimator
Becpp given by (44) we have

VN (Becer — B) = N (0, cepr), (46)

where
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with

1 N
U* = lim NZ vis

N—oo

R* :]\}EHOONZEWQ DIN

Proof. Proof is relegated to Appendix. =

Consistent estimators for the variances of BCC eve and BCC pp are given equation (58) and (69)
of Pesaran (2006), respectively. In case of homogenous slopes, namely Q, = 0, BCOEP continues to
be consistent, but in this case BCC gp — B should be multiplied by v/ NT instead of v/ N, to obtain a

non-degenerate asymptotic distribution. See Pesaran (2006) for more details.

Remark 14 Besides the absolute summability condition in Assumption 9.b, additional restriction on

factor loadings { A} in Theorem 2 is that for each i,

mao .
NZX@)\i4<K<oo, as ma, N, T L 0o, (47)
£=0

where mg = mgo (N) and the constant K does not depend on i and /or N. These conditions rule
out strong factor structures, but allow for (possibly) an infinite number of weak of semi-weak factors
influencing y;z. In particular, we do not necessarily require bounded column norm of the factor loading
matriz A.10 For example, \y = O (Nfl), mo = VN and \iy = O (N*1/2) satisfy condition (47) and
Assumption 9.b. In Monte Carlo experiments below, we also investigate performance of CCE esti-
mators in case of infinite semi-strong (weak) factor structures where condition (47) is not necessarily
satisfied.

Remark 15 As mentioned in Remark 12, rank condition (42) can be relaxed, along the lines of
Pesaran (2006) or Kapetanios, Pesaran, and Yagamata (2009), at the expense of requiring the factor
loadings, ~;, to be random and distributed independently of the common factors and the individual
specific errors. Hence CCE estimators are valid for any finite (fized) number of possibly strong common
factors, which are correlated with regressors, and, in addition, innovations could follow a general
infinite weak factor structure, or a certain semi-strong (semi-weak) infinite factor structure, or, as

shown in Pesaran and Tosetti (2009), could simply follow a spatial model.

6 Monte Carlo experiments

We consider the following data generating process

Yit = oidry + By %ine + BioTioe + Uit (48)

"The bounded row and column norms of A are sufficient (but not necessary) for condition (47) and Assumption 9.b
to hold.
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fori=1,2,..,N and ¢t = 1,2,...,T. We assume heterogeneous slopes, and set 5;; = §; + 71;;, with
n;; ~ IIDN (1,0.04) [for i = 1,2,..., N and j = 1,2, varying across replications.

The errors, u;, are generated as

Ui = Zi’zl Viefer + 2202 Nieger + €at,

where et ~ N(0,02), 02 ~ IIDU (0.5,1.5), for i = 1,2,..., N (the MC results will be robust to serial
correlation in ), and unobserved common factors are generated as an independent AR(1) processes

with unit variance.

fo = 05fu_1+vy,, €=1,.3; t=-49,..,0,1,.,T,
v, ~ IIDN(0,1-0.5%), fi_ 5 =0,

g = 0.5gu_1+vg,, (=1,.,my; t=-49,..,0,1,.,T,
Vg, ~ IIDN(0,1—0.5%), g _50=0.

The first three factors will be assumed to be strong in the sense that their loadings are unbounded in
N and are generated as
Yo ~ IIDU(0,1), fori=1,..,N,{=1,23.

The following two cases are considered for the remaining mg factors gy;:
Experiment A {gy} are weak, with their loadings given by

Aip = e
i — N
2 21:1 Mie

It is easily seen that for each £, SN |\i¢| = O(1) and for each i, S0 A2 = O(m/N?). There-

fore, asymptotically as N — oo, the RZ2 are only affected by the strong factors, even if mg — oo.

, Mg ~ IIDU(0,1), for £ =1,...,mg, and i = 1,2, ..., N.

Experiment B As an intermediate case we shall also consider semi-strong (weak) factors where the

loadings are generated by
Nie
N
V32 ik U,

In this case, for each ¢, sz\il |Aie] = O(NY/2), and for each i, > ;"% \?, = O(mz/N), and the

signal-to-noise ratio of the regressions deteriorate as mq is increased for any given N. In Section

Aig = , for£=1,...mo,and i =1,2,...,N.

6.1, we will investigate this issue further, to check if the effect of mg on R? for a given N impacts

on the performance of our estimators.

The remaining variables in the panel data model are set out as follows: regressors x;;; are assumed
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to be correlated with strong unobserved common factors and generated as follows:
Tije = a;j1dis + azjodas + 23:1 Yijefer + vije, §=1,2,

where
Yije ~ I11DU(0,1), fori=1,..,N,£=1,2,3;j = 1,2.

Vijt = Py, Vigt—1 + 191']'15, 1=1,2,...,N;t=-49,...,0,1,..,T,
Dije ~ IDN(0,1—pj ), vij—50 =0,
po, ~ IIDU(0.05,0.95) for j = 1,2.

The observed common effects are generated as

dlt = 1;d2t :0-5d2t—1+vdt7 = _497"'70717"7T7
vge ~ IIDN(0,1—0.5%), dg 50 =0,

When generating v;;; and the common factors fy, gy and dg; the first 50 observations have been
discarded to reduce the effect on estimates of initial values. The factor loadings of the observed

common effects do not change across replications and are generated as

a; ~ IIDN(1,1), i=1,2,..,N,
(@i11, aion, it2, ain2) ~ IIDN(0.574,0.514),

where 74 = (1,1,1,1)" and 14 is a 4 x 4 identity matrix.

Each experiment was replicated 2,000 times for all pairs of N and T = 20, 30, 50, 100, 200. For each
N we shall consider m = 0, N/5,3N/5, N. For example, for N = 100, we consider m = 0, 20, 60, 100.
We report bias, RMSE, size and power for six estimators: the FE estimator with standard variance, the
CCEMG and CCEP estimators given by (43) and (44), respectively, the MGPC and PPC estimators
proposed by Kapetanios and Pesaran (2007), and the PC estimator proposed by Bai (2009). The
MGPC and PPC estimators are similar to (43) and (44) except that z; = (7,,X,) is replaced by F
computed as the T' x (m + n) matrix of observations on ft, the vector of (m + n) principal components
extracted from z; = (yit, x},)’. In the PC iterative estimator by Bai (2009), (f)pc, f‘) is the solution

to the following set of non-linear equations:

R N -1 N
bpc = (Z XiMﬁ'Xi> > XMy,

i=1 i=1

N
1 N N I o~
NT Z (Yi - XibPC) (Yi - Xz'bPC> F=FV,

i=1
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POV AN SN ~
where My = Ip — F (FF,) F’, and V is a diagonal matrix with the m largest eigenvalues of the

~ ~ /
matrix ﬁ Zf\il (yi - X;b Pc> (yi - X;b Pc) arranged in decreasing order. The demeaning operator
is applied to all variables before entering in the iterative procedure, to get rid of the fixed effects. The

variance estimator of bp¢ is

1

Var (ch) = 7Dy DDy,

where
1 N
_ 7/
Dy = N{glzzzl.,
1=

1 (1w
DZ = NZ ([712T2zltz;t> 5
=1 t=1
PN -1 o
with 62 = L3 182 Z; = M X, — & S, [ﬁ; (L’L/N) %] M Xy, and L = (91, ..., 4y)" is the
matrix of estimated factor loadings. When T/N — p > 0, bpg is biased and, following Bai (2009),

we estimate the bias as

A\
N (X, =Vi) F /i) "
) 1. .41 ( g l) L'L .
bzas:—NDU N;_l T N 4:6%,

N n A —1
where V; = £ 2N | 4/ (L’L/N) X,

6.1 Results

Results on the estimation of the slope parameters for the Experiments A and B are summarized in
Tables 1-11. In what follows, we focus on the estimation of §;; results for 85 are very similar and are
not reported. Notice that the power of the various tests is computed under the alternative H; : 3
= 0.95.

Results reported in Tables 1 and 2 show that, as expected, the fixed effects estimator performs
very poorly, is substantially biased, and is subject to large size distortions for all pairs of N and T,
and for all values of mgy. Tables 3-6 show the results for the CCE estimators. The bias and RMSE of
CCEP and the CCEMG estimators fall steadily with the sample size and tests of the null hypothesis
based on them are correctly sized, regardless of whether the factors, {ge,¢ = 1,2,...,ma}, are weak
or semi-weak, and the choice of my. Further, we notice that the power of the tests based on CCE
estimators is not affected by mg, the number of weak (or semi-weak) factors. This is also confirmed
by Figure 1, which shows that the power curves of tests based on the CCEP estimator do not change

11

much with me."* The Monte Carlo results clearly show that augmenting the regression with cross

U Similar curves were obtained for CCEMG estimatos, which are not reported due to space considerations.

Working Paper Series No 1100



section averages seems to work well not only in the case of a few strong common factors, but also in
the presence of an arbitrary, possibly infinite, number of (semi-) weak factors.

Tables 7-10 report the findings for the MGPC and PPC. First notice that these estimators, since
they estimate the unobserved common factors by principal components analysis, only work in the case
where the factors, {gg}, represent a set of weak factors, or when mgy = 0 (i.e., in Experiment A). In
fact, in the case of a semi-weak factor structure the covariance matrix of the idiosyncratic error would
not have bounded column norm, a condition required by principal components analysis for consistent
estimation of the factors and their loadings. However, as shown in Tables 7-8, even for Experiment
A, these estimators show some distortions for small values of N (i.e., when N = 20, 30). One possible
reason for this result is that the principal components approach requires estimating the number of
(strong) factors via a selection criterion, which in turn introduces an additional source of uncertainty
into the analysis. Therefore, not surprisingly tests based on MGPC and PPC estimators are severely
oversized when a semi-weak (semi-strong) factor structure is considered.

Finally, Table 11 gives the results for the Bai (2009) PC iterative estimator. The bias and RMSE
of the Bai estimates are comparable to CCE type estimators, but tests based on them are grossly
over-sized, even when mo = 0. The problem seems to lie with the variance of the Bai estimators, an
issue that clearly needs further investigation. In his Monte Carlo experiments, Bai does not provide

size and power estimates of tests based on his estimator.

7 Concluding remarks

Cross section dependence is a rapidly growing field of study in panel data analysis. In this paper we
have introduced the notions of weak and strong cross section dependence, and have shown that these
are more general and more widely applicable than other characterizations of cross section dependence
provided in the existing econometric literature. We have also investigated how our notions of CWD
and CSD relate to the properties of common factor models that are widely used for modelling of
contemporaneous correlation in regression models. Finally, we have provided further extensions of
the CCE procedure advanced in Pesaran (2006) that allow for a large number of weak or semi-weak
factors. Under this framework, we have shown that the CCE method still yields consistent estimates

of the slope coefficients and the asymptotic normal theory continues to be applicable.
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3 strong factors and varying number of
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Figure 1: Power curves for the CCEP t-tests in experiments with N = 100, T' = 100, 3 strong factors, and a
varying number mg of weak factors (left chart) and semi-weak factors (right chart).

Table 11: MC results for Bai estimator.!2

Experiment A and B: : m; = 3 strong factors and ma weak or semi-weak factors.

Bias (x100) | RMSE (x100) | Size (x100) | Power (x100)
me N/T 20 100 20 100 20 100 20 100
Weak factor structure {\;g:}

0 20 | 047 -0.30 9.78 5.72 | 37.90 48.00 | 45.60 61.40

0 100 | -0.01 0.02 3.57 2.50 | 21.50 47.20 | 58.70 91.10

4 20 | 0.62 -0.15 9.80 5.83 | 40.10 50.50 | 48.30 63.20
20 100 0.07  -0.09 3.48 2.47 | 21.40 44.90 | 56.20 91.50
20 20 | 0.30 0.09 9.91 6.07 | 37.90 52.40 | 46.50 64.20

100 100 0.10 0.03 3.47 2.42 | 21.10 45.30 | 59.80 91.90
Semi-weak factor structure {\jg:}

4 20 | 045 -0.23 9.40 6.08 | 35.50 52.10 | 42.70 65.10
20 100 | -0.09  -0.17 3.70 2.60 | 23.60 46.80 | 58.30 88.70
20 20 1.28 -0.28 | 10.47 6.27 | 41.70 52.40 | 49.40 60.50

100 100 | 0.02 0.03 3.50 2.46 | 20.90 44.50 | 56.20 90.20

2Based on R = 1000 replications.
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Appendix

Let Q = GP, with

— I, B
P= — 1,

and note that H=Q+U", U" = (0,U), and X; = GII; + V;.For any random variable z, llzll,, = E|z| denotes L1
norm of z. For any k x 1 vector of random variables x; = (21, ...,7x)’, xkllz, = SF Bz, We use X to denote

convergence in L1 norm. We now provide some lemmas useful for proving Theorem 2.

Lemma 1 Consider the panel data model (87) and (39) and suppose that Assumptions 8-12 hold, and m1 does not vary
with N. Then as ma, T, N <> 0o, such that N )\g < K < 00, we have:

o
\/N% “o, (49)
o
\/NL i Ly, (50)
\FL Q1 0, (51)
VNIV 1 (52)
,,
\/N% Ly, (53)
—
N% L1, (54)
N”Te o, (55)
and
N”"’ NZA?SO (56)
=1
If in addition N> ;"% Aedie < K < 00,
—y mo
N% ~ N XA o (57)
=1

Proof. Let Ty = T (N) and ma, v = ma2 (N) be any non-decreasing integer-valued functions of N such that limy o Tn =
o0, and NZZ"ZXj < K < 0.

(a) Consider now the following two-dimensional vector array {{rn¢, ft}i_m}j\?zl, defined by
\/Ni m2 N
KNt =~ T Vie = Z Neget Vit

where \; = % Z;V:l Aje and {.7-',5} denotes an increasing sequence of o-fields (Fi—1 C F%) such that F; includes all
information available at time ¢ and k¢ is measurable with respect to F; for any N € N. Set ¢yt = ﬁ for all
t € Z and N € N. We have

m2,N
E(K/NtK,Nt) N. E Z )\e’

e

where E (vitviy) = X; and E (g?t) = 1. It follows that

ma N
H ("‘N“‘Nt) H < =N YN <K < oo (58)
=1
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Consider now ,
oz (7 ) 2 (i) fl =
CNt C
Equation (58) implies that ¢o < K < oo and by covariance stationarity of v and ge:, we have ¢, — 0 as s — oc.

By Liapunov’s inequality, E|E (knt | Fin)| < \/E{[E (ke | Fin))?} (Davidson, 1994, Theorem 9.23) and

the two-dimensional vector array {{mvt, ft}zfoo};}:l is Li-mixingale with respect to the constant array {cn¢}.

Equation (58) established that {kn+/cnt} is uniformly bounded in Lz norm, which implies uniform integrability.13

Finally, note that the constant array {cny:} satisfy the following conditions
Tn

]\}ijrlecNt: lim Z%:1<oo,

and
Tn Tn 1
. 2 . _
dim > = lim Y =0
t=1 t=1
It follows that array {{m\zt, ft}fi_oo};o:l satisfies conditions of a mixingale weak law (Davidson, 1994, Theorem
19.11)., which implies S>7% kn; 23 0, that is
.
VNIV Ly
T
as ma, T, N ER 00, such that N ;" X? < K < oo. This completes the proof of result (49). Results (50)-(51) can
be proved in the same way.'! Remaining results are proved below using the similar logical arguments.
(b) Next we establish result (52). Let
VN
KNt = 1Vt (59)
Tn

and as before consider the two-dimensional vector array {{HNt,ft}fi,oo}]o\,ozl defined by (59) and the same

constant array cn¢, namely eyt = ﬁ for all t € Z and N € N. We have

ma N N
KNtk 1
HE( ! Nf)H<N<Z z2 >.WZ||2i||<K<oo.

CNt i=1

Using similar arguments as before, {{nNt7ft}Z7m}jV°:1 is Li-mixingale with respect to constant array {cn:},

and a mixingale weak law (Davidson, 1994, Theorem 19.11) imply 22"1 KNt Ly 0, that is
'
x/N"TJ Lo,

as ma, T, N ER 0o, such that N )" X? < K < o0, which concludes the proof of result (52). Proof of result (53)
is identical to the proof of result (52), but this time we set k¢ = ‘T/—fnitét.

(¢) Next we establish results (54) and (55) in a similar way. Define

N _ _
T

KNt =

As before, set eyt = ﬁ for all t € Z and N € N. Examining variance of kn¢k/; /i yields

m2,N N
~ < 1
H (nNmm)H (N S Ai) T < K < oo,
e =1

=1

13SQufficient condition for uniform integrability is L14. uniform boundedness for any e > 0.
“Define ke = @ﬁteit to prove result (50) and Kyt = gﬁtﬂ to prove result (51)
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Using the same arguments as before, {{nNt, ft};’ifoo}jovozl is Li-mixingale with respect to constant array {cn¢},
and a mixingale weak law (Davidson, 1994, Theorem 19.11) establishes result (54). Result (55) easily follows by
noting that Var (&) and ||[Var (v¢)|| are both of order O (N™').

(d) Next we prove equation (56). Set

1 _2 1 2
KNt = EN% - EE (Nm) )
and eyt = ﬁ for all t € Z and N € N. Note that
ma N )
E(N7) =N > X <K <oo.
(=1
Furthermore,
KN 2 T v v 2
E [(CNI) :| = Z Z )\ As AL A E (gergst ghigre) — [ (Nﬁf)]

2»—!

2, 2,N 2,N
< N? XﬁE(gz*t)+4N2 ZX? ZX§<K<OO.
=1 =1 s=1

3~

Using the same arguments as before, {{nNt, ft};’i_m}m is Li-mixingale with respect to constant array {cn},
and a mlxlngale weak law (Davidson, 1994, Theorem 19.11) imply>_ /Y, kn¢ 4 0, namely N" 1N )\3 4 0,

as ma, T, N 5 0o, such that N )\g < K < co. This completes the proof of result (56).
(e) To establish result (57), define

1 _
B (NTny)

1
— ~ Ni.n., —
KNt T MMie = 7

and set again cyt = ﬁ for all t € Z and N € N. We have

ma N
E (Nmn;) = N Z Aedie < K < oo,
=1
and
mo N M2 N M2 N M2 N

D AedishnAirE (gergsegnigre) — [E (NT,)]

s=1 h=1 r=1

(]

P 2
<Nt)] _ N
CNt
2,

m2 N ma2 N
N? NALE (g8) + 3N? (Z )\[)\1@) +N2 Y A% < K < oo.

/=1 =1

3
2»—\

IA

Using the same arguments as before, {{m\rt, Tt}fi_oo}?zl is L1-mixingale with respect to constant array {cn+},

and a mixingale weak law (Davidson, 1994, Theorem 19.11) imply result (57).

The following lemma collects several results presented in Pesaran (2006), Kapetanios Pesaran and Yamagata (2009),
and Pesaran and Tosetti (2009).

Lemma 2 Consider the panel data model (37) and (39) and suppose that Assumptions 8-12 hold, and m1 does not vary
with N. Then as T, N 5 co (at any rate) we have:

INT. >

\/JVQTV X, \/NQTG Yo, (60)
1= IXT

\/N% L, \/N% Yo, (61)
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INF y—
\/NV"V Ly o, \/NE Lo, (62)

feeLlo f—VVL_%o WﬂL—%o (63)
and
\/Ne%e I, WGV“ . (64)

Proof. Lemma 2 follows directly from Pesaran (2006), Kapetanios Pesaran and Yamagata (2009), and Pesaran and

Tosetti (2009). These results can also be established in the same way as Lemma 1 by using a mixingale weak law. m

Lemma 3 Consider the panel data model (37) and (39) and suppose that Assumptions 8-12 hold, and m1 does not vary
with N. Then as ma,T, N 2> 0o, such that N2 i < K < 0o, we have:

IEV? !
\/ﬁxilj\:[m _ \/inl\j/fgm Ly (65)
L

\/NX’;YIF Yo (66)

'MX ! .
JNEMX: XM X L (67)

T T

X! Me; X! M,e;

VN ’Te —\/N’Tgei%o. (68)

Proof. Throughout this proof we consider asymptotics ma, T, N - oo, such that N2 M < K < co. We start by
establishing result (65). Consider

— N1 _
it - x| = Y i (R) B - X (@Q) @
— ey -1
VNX;(H-Q) (HH\ Hn, N
- T T T
X/Q VN (@ -H)
2
\/7 -1 ’ -1 ﬁlnl
* TT<( w) - @a)) (69)
We examine each of the three terms below. We have
VNX; (ﬁ_ Q) . VN (GII; + Vi)/ﬁ*
T o T '
Equation (49) of Lemma 1 and equation (62) of Lemma 2 establish
—
\/ﬁ% X, (70)
In addition, equation (51) of Lemma 1 and equation (61) of Lemma 2 establish
—
VN GTU Lo, (71)
Equations (70) and (71) imply
NX, (H -
X 1, ™
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—=—=\ —1 =/
and noting that (HTH) = 0, (1), and 2% = O, (1), establish

— 0.

VX[ (H-Q) (HH) Hau,
T T T

Ly

Now we focus on the second term of (69). Equations (52),(53) and (57) of Lemma 1 imply

It follows that

T . ’ ’ -1
M 50 and since X2 = O, (1) and (Q Q) = Op (1), we have

T T

— 0.

xiq (@) VN (@ -H)n
T ( T > T
Ly

In order to establish the last term of (69), we write

((rm) - @) - (HH) VNV (QQ - 1H) (29)",

T T T T

where (note that H=Q +U")

VN(QQ-HH)  zU"U" /NQU JNU'Q

T T T T

Equations (54),(55) and (56) of Lemma 1 and equation (63) of Lemma 2 imply

VNU'U" 1,

Similarly, equation (51) of Lemma 1 and equation (61) of Lemma 2 imply

I ——x/
M e 0, as well as m U, (73)
T T
’ 0/ —r=\ —1 ’ -1
Noting that X2 = 0, (1), T2 = 0, (1), (HTH) =0, (1) and (QTQ) = 0, (1), it follows that
—,—\ —1 _
\/TN ((H’H) - (Q'Q) 1) Ly, (74)

and therefore

— 0.

XéQg ((ﬁ'ﬁ)*l - (Q’Q)’l) ﬁT"

Ly
This completes the proof of result (65).
In order to establish result (66), note that MyF = 0 and therefore (66) is equivalent with the following statement,

INA /
VNI N b
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Using similar steps as in deriving equation (69), we have:

— —y—\ —1 __
N . VNX;(H-Q) (HH\ HF
7 IXIMF - XIMGF||, - < T ) T *
Ly
xe @ay V(@ -m)F|
T T T
Ly
XIQVN ()" (oroy-1) HE
5T ()T @) 5 (5)
Ly
Since ﬁT/F = O, (1), convergence of the first and the last term of (75) to zero directly follows from earlier results, in

particular equations (72) and (74). Furthermore, equation (73) implies

\/N(QIT— ﬁl) F _ \/W*,F L_1> 0.

and it follows that also the second term of (75) converges to zero. This establishes that ‘/Tﬁ HX;MF — XQMQFHL1 — 0,
which completes the proof of result (66).

Result (67) is established next in a similar fashion. Consider

_ N\ -1 —,
VN . VNX; (H- Q) HH HX,
i [XiMX,; — XngxiHL1 < T 7 7
Ly Ly Ly
L= o@ay| YA (@-m)x|
T ||, T T
1 Ly
X'Q VN ([ ferey 1 -1 HX,
+H T |, T((HH) - (@Q) T (76)
1 1 Ly
Using equations (72) and (74), and noting that the remaining elements are bounded, we have
g [XiMX; — XM X, — 0,
which completes the proof of result (67).
Finally, consider
_ N\ -1 _
VN . VNX! (H-Q) HH He;
T | XiMe; — XngeiHLl < T T T +
L I L1
L= reey| [YA(Q-E)e| |
T ||, T T
L1 I
X;Q \/N ===\ 1 ’ -1 ﬁ,ei
+H | T ((H H) -(QQ) T (77)
1 1 Ly
Equation (50) of Lemma 1 and equation (64) of Lemma 2 imply
—
VN (Q’ -H ) e JNT e
— —| = 0 (78)
Ly Ly
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Equations (72), (74) and (78) imply HX Me; — XéMgeiHLl
Proof of Theorem 2. We prove Theorem 2 in two parts. First, we establish result (46) for the CCE pooled estimation

— 0, which completes the proof of result (68). m

and in the second part we establish result (45) for the CCE mean group estimation.

Let n;, = Yy Aieger and consider

. VoM, ) 1 XM (Xv; +F ;
\/N(BCCEP—ﬂ)—<1 Z%) Zﬁ ( vU; +T%+Th+e)7 (79)
: i—1

We focus first on the new term SN

el T\F which is introduced by possibly infinite factor structure {ge:},-3 and

which is not present in previous studies by Pesaran and Tosetti (2009), Kapetanios Pesaran and Yamagata (2009), and

Pesaran (2006). Equation (65) of Lemma 3 implies

N o
1 XiMmn, ViMyn; L,
— t - — =0 80
S X Ly VML 1y (0

as ma, T, N ER oo, such that N >-7" Mhi < K < oo, Let V; = M,V; and denote ¢-th row of matrix V,; as vi,. Using

this notation we write,

Let Tv = T (N) and mo,y = ma (N) be any non-decreasing integer-valued functions of N such that limy .o Ty = o0
and such that Assumption 9.b holds, namely limy_ oo Zmz N A%, < K. Consider now the following two-dimensional

vector array {{K’Nt’]:t}t*—oo}]\r i defined by

ma, N

KNt = TN\FZ Vit = 7o \/—szt Z Aieget, (81)

and {F:} denotes an increasing sequence of o-fields (Fi—1 C F¢) such that F; includes all information available at time
t and k¢ is measurable with respect to F; for any N € N. Let {{cNt}fifoo}]OVozl be two-dimensional array of constants
and set cy¢ = ﬁ for all t € Z and N € N. Note that

/
KNtR VitV
B (%) — E (VitV;t"htnjt)
Nt

==
-
M=

<
Il
-

<
Il

j=1

E (Vu¥i) E (n},)

I
2=

Il
—

7

where the second equality follow from independence of v;; and v;: for any ¢ # j. E (viVi,) = X; and by Assumption
10 there exists a constant K; < oo, which does not depend on ¢ nor on N and such that ||X;|| < Ki. Further, using
independence of factors ge; and gy, for any £ # £’ and noting that E (g?t) =1, we have

ma N

E(n}) =Y M < Kz < oo,
=1
where the existence of uniform upper bound K32, which does not depend on i, N is assumed in Assumption 9. It follows

that
|z (e )| < < . (52)
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where the constant K = K7 K2 and it does not depend on N. Consider now

|z (7 2 (1)}l =
CNt C

Equation (82) implies that ¢o < K < oo and by stationarity of v;: and get, we have ¢; — 0 as s — oo. By Liapunov’s
inequality, E |E (knt | Feen)| < \/E {[E (kn¢ | Fi—n)])?} (Davidson, 1994, Theorem 9.23) and the two-dimensional array
{{rnt, ft};i_oo}le is L1-mixingale with respect to the constant array {cy¢}. Equation (82) established that {kn¢/cne}

is uniformly bounded in L» norm, which implies uniform integrability.'® Finally, note that the constant array {cn}

satisfies the following conditions
Tn

hm ZC]\” hm ZTL:l<OO,
N

t=1

TN Tn 1
Jim > = Jim > gz =0
t=1 t=1 "N
It follows that array {{ﬁm, ft}z_m}le satisfies conditions of a mixingale weak law (Davidson, 1994, Theorem 19.11).,
which establish ngl KNt e 0, that is:

N T
#ﬁ gj sz Vi 20, (83)

as ma, N, T RIS (at any rate) or mg is fixed and N, T ERSS Equations (80) and (83) imply

fZ XiMn, 1y,

as ma, T, N ER 0o, such that N >," Aedi < K < oco. Convergence results for the remaining terms on the right side of
equation (79) can be established in the same way as in Pesaran and Tosetti (2009) or Pesaran (2006). In particular,
results (66)-(68) of Lemma 3 imply

MoK ) a1 X(MXiws 1L XM, X ) IXMX’U»LLIO
z:: T ZT\J T N; T Z ’

2 \

and

as meo, T, N 4, 00, such that NE:Z12 Aedi < K < oo. Tt follows that
VN (BCCEP - 5) =Y (0,XccEpr),

as ma, T, N ER oo, such that N > 7" A\¢A; < K < oo. This completes the proof of result (46).
Next we establish result (45) for the CCE mean group estimation. Let again n,, = > ;% Xirges and consider

VE (Bocows—B) - LZUﬁ%Z@ZfT (WXMF) 1 EN: (me)+

N =1 i=1 N i=1
1 =~ _q (X;Me,)
5" , 84
Y v o

15 SQufficient condition for uniform integrability is Li4. uniform boundedness for any e > 0.
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where W;p = T~ 'X/MX,. Compared to Pesaran (2006), and Pesaran and Tosetti (2009), equation (84) has the extra

= ML : . . . .
term Tlﬁ Ei\;l \I’;Tl (X"l;/[m), not encountered pepreviously. We focus on this new term first. Lemma 3 implies

N — N —1
1 ~ _; (X!Mn, 1 ViM,V; ViM,n,\ L,
W i 7 _ v g9 K 9l =20 (85)
VN Zi:l E ( T VN ;1 T T ’

. _ ’ o\ —1
as ma, T, N <> 0o, such that N2 A < K < co. Let Wi, = (%) VM, and denote the tth row of matrix

W,;. as w;;. Using this notation we write:

N , 1 , N N T

1 ViIM,V; Vngn-) 1 , 1
— = =Y Win = —=> wun,
VN &= ( T > ( T VN & T N it

i=1 t=1

o]

Using the same method as in the first part of the proof, we define two-dimensional vector array {{M,Nh.7-',5}1?1700}]\]:17

as
ma2 N

N
1
KNt = —— E Wit E AiegGet, (86)
InVN i=1 =1

which is identical to (81) except that wy; is used instead of v;;. Following the same steps as in the first part of this

proof, we have that {{nm,}}}zfoo}le

law (Davidson, 1994, Theorem 19.11) establishes 3"/, 5 0, that is:

is L1-mixingale with respect to constant array {cn:}, and a mixingale weak

1 N X L
— wirn,, — 0, 87
T D D Wit (87)

i=1 t=1

as ma, T, N ER oo, such that N }_7"2 ApA; < K < oo. It follows from equations (85) and (87) that

as ma, T, N ER o0, such that N Y ;" Aedi < K < oco. Convergence results for remaining terms on the right side of
equation (84) can be established in the same way as in Pesaran and Tosetti (2009) or Pesaran (2006). In particular, we

have

N
ZvigN(O,Qu), as N — oo,

and Lemma 3 implies

and

as mo, T, N ER 0o, such that N > )" e < K < oo. This completes the proof of result (45). m
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