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Abstract

The rank of the Hankel matrix, corresponding to a system transfer function, is equal to the order
of its minimal state space realization. The computation of the rank of the Hankel matrix is
complicated by the fact that its block elements are rarely given exactly but are estimated instead.
In this paper, we propose new statistical tests to determine the rank of the Hankel matrix. We also
provide a Monte Carlo study on the reliability of these tests compared to existing procedures.

Keywords: Tests of Rank, Model Reduction, Hankel Operator, Monte Carlo.
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1 Introduction

Multivariate time series procedures are very commonly used in Applied Economics studies.
Atheoretical or unrestricted multivariate time series models are not meant to be a replace-
ment to structural econometric models in the context of policy analysis or conditional fore-
casting, but they are usually the preferred choice in the context of unconditional forecasting.
There are two main linear multivariate representations for a vector series: a VARMA rep-
resentation and a State Space representation. Under certain parametric restrictions these
representations are equivalent. In this paper we focus on the SS representation. State Space
multivariate modeling has been used to model exchange rates, Dorfman (1997), economic
interdependence between countries, Aoki (1987), and build a small macroeconometric model
for the Dutch economy, Otter and Dal (1987).

A discrete stationary multivariate input-output system can be characterised by a system
transfer function matrix G(z) = > -, G,27', where G; are the impulse response matrices.
Corresponding to the transfer function matrix G(z) above, the infinite dimensional Hankel

matrix is defined as:

G G, G
G. Gs
(1)

Gs

Kronecker’s theorem can be used to show that given a system transfer function matrix, G(z),
the order of the system is equal to the rank of the Hankel matrix (see Kailath (1980)). The
order of the system, G(z), is defined as the order of the minimal state-space realization,
i.e. the minimal dimension of the state vector. The computation of the rank of the Hankel
matrix is not an easy task, as it is unlikely that the impulse response matrices are given
exactly, and in a majority of cases they are estimated. An alternative characterisation of the
system in terms of a Hankel matrix of the covariances of the m-dimensional output vector,

Y,, 1s given by

A A, Aj
A, Aj
H- |5 2)

where A; denotes the i-th autocovariance of y, (see, e.g., Aoki (1987, pp. 62-67)). Given
Y, t =1,...,T, an estimator for a finite truncation of the Hankel matrix, H, is denoted by

H and defined as follows!:
. 1
H = Ty+/y7 (3)

IThroughout the note we use hats to indicate estimated quantities.
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where YT and Y~ are defined as:

1

y:l 0, 0 y; Ys .. y;H
Y, y, .. 0 = e e e
Y o=| v5 ¥y, .. 0 Y'=\|yr yry - O (4)
- e y,TI—1 y'T .. 0
Y71 Y12 - Y71 Yr 0 .. 0

The above formulation enables the computation of the Hankel matrix without the need
to calculate covariance matrices. The rank of H gives the number of states required to
approximate the autocovariance sequence arranged in H. For more details see Kung and
Lin (1981), Kailath (1980) and Aoki (1987). In this paper, we propose new statistical tests
to determine the rank of the Hankel matrix. We also provide a Monte Carlo study on the
reliability of these tests compared to existing procedures.

Section 2 presents different procedures to determine the rank of the Hankel matrix. Two
of those procedures are formal statistical tests, one is a rule of thumb with unknown statistical
properties, and a further two are based on information theoretic arguments. Section 3
describes the design of the Monte Carlo simulations computed to assess the performance of
the procedures. Section 4 presents the results of the Monte Carlo experiments, and section

5 concludes.

2 Testing the rank of the Hankel matrix H

The rank of H is the focus of the investigation. Under the assumption of stationar-
ity of the input-output multivariate system, it can be shown? that \/Tvec(f{ — H) is
asymptotically distributed as N(0,V). One of the statistical tests of rank requires an
estimator of the covariance matrix of \/Tvec(f-I —-H), V. A consistent® estimator of
V is given by: V = 7150k (vec(zt) - vec(f[)) (U@C(Zt) — Uec(ﬂ)>/ where Z; =
(v, Y1) (yty[_z)’,...(y,,y;k)’)l and Y; denotes the ¢-th row of Y. Note that by
construction both the asymptotic covariance matrix and its finite sample estimator are of
reduced rank.

The procedures to test for the rank of H, denoted as rk(H), consider the following
hypothesis*, Hy : rk(H) = r* against the alternative hypothesis, H; : rk(H) > r*. Starting
with the null hypothesis of r* = 1, a sequence of tests is performed. If the null is rejected,

r* is augmented by one and the test is repeated. When the null cannot be rejected, r* is

adopted as the estimate of the rank of H. For each test, a test statistic is constructed. This

ZSee e.g. Brockwell and Davis (1991, Ch. 7)

3An estimator for a quantity is consistent if the estimate tends to the true value of the quantity in
probability, asymptotically.

4Referred to as the null hypothesis in the statistical literature.
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statistic is shown to follow a given statistical distribution under the null hypothesis. When
a comparison of the statistic with chosen percentiles of the distribution indicate that the
statistic is unlikely to be a realisation of that distribution the null hypothesis is rejected.
Usually in statistical applications using one-sided statistical tests, the chosen percentile of
the statistical distribution, denoted by 1 — «, is the 95% percentile, where « is referred to as
the significance level and it is assumed that large values of the test statistic provide evidence
for rejecting the null hypothesis. Nevertheless, the rank estimate provided by this approach
will not converge in probability to the true value of the rank of the Hankel matrix, denoted

0

by r%. The reason is that even if the null hypothesis tested is true, the testing procedure

will reject it with probability a. The rank estimate will converge to its true value, r°, as
T goes to infinity, if « is made to depend on T and goes to zero as T goes to infinity but
not faster than a given rate. We denote this o by ag, where the subscript T now denotes
dependence of the significance level on the sample size. Hosoya (1989) shows that if ar goes
to zero as the sample size T' goes to infinity and also limy_o Inaz/T = 0, then the rank

estimate provided by the sequential testing procedure will converge in probability to r°, see

also Cragg and Donald (1997).

2.1 Cragg and Donald (1996)

The procedure proposed by Cragg and Donald (1996) is based on the transformation of

*

the matrix H using Gaussian elimination with complete pivoting®. r* steps of Gaussian

elimination with full pivoting on matrix H amounts to the following operations:

Hy,(r") Hiy(r) ]

QT*RT*QT*—IRT*—l"'QlRlHCI G Crv = |: 0 Hzg(r*)

where R, and C; are pivoting matrices for step ¢ and @, are Gauss transformation matrices.
The pivoting matrices used to perform the first r* steps of Gaussian eliminination are applied

to H to obtain the following relation

R.R._,.. RHC,.C,._,C,..—= RHC — F — { Fu(r) Fi() ]

le(r*) F22(r*) (5)

where F' is partitioned accordingly, i.e. Fy1(r*) is of dimension r* x r*. Note that in this
case F'1;(r*) has full rank, under the null hypothesis that r* = r°. It then follows, (see Cragg
and Donald (1996)), that Fay(r*) — Fay (r*)F1] (r*)F12(r*) = 0. The estimated counterpart
of the above relation, i.e. Fzz — F21F;11j7’12 = Azz(r*), may be used as a test statistic of the

hypothesis that the rank of H is r*. Under regularity conditions, including the requirement

5For details on Gaussian elimination with complete pivoting see Cragg and Donald (1996) or Golub and

Loan (1983).
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that the covariance matrix of the asymptotically normally distributed matrix \/Tvec(ff—H)

has full rank, the following result can be shown, under Hy.

VTvee(Ap(rv)) % N(O,TVT)

At A —1'

where I' = &, @ ®; and ®; = [—F21F;11 I | R ®y = [_F12F11 Imp_r*] C’ and %
denotes convergence in distribution. Then,

¢ = Tec Azg(r*)'(fo,)_lvec Azz(r*) N X?mk_,*)(mp_,,*)
where T" and V are the sample estimates of I' and V' and x} denotes the x? distribution
with [ degrees of freedom.

The procedure uses the inverse of the covariance matrix of the Hankel matrix. However,
this is not available. Therefore, we modify the existing procedure and use a generalised
inverse instead. We distinguish between two cases. In the first case, the rank of the estimated
covariance matrix is, by construction or otherwise, equal to that of the asymptotic covariance
matrix. This is the case for the estimated covariance matrix of the Hankel matrix described
above. In the second case, the rank of the estimated covariance matrix is larger than that
of the asymptotic covariance matrix. Nevertheless, the estimated covariance is a consistent

estimate. The following proposition covers both cases.

Proposition 1 Let \/Tvec(f{—H) be asymptotically distributed as N(0,V') where V' can be
of reduced rank and H s of full rank. Let V be a consistent estimate of V. Further, assume
that R; and C;, i =1,...,1" in (5) are uniquely defined and, without loss of generality, that
R,=IC,;,=1,i=1,...,r*. Then, the following result holds under the null Hy : r = r*,

é: TU@C A22(7‘*)'(f“7f‘/)+vec AzQ(T*) i) X?g

if additionally the rank of V' is known and

rk[V] = rk[V], VT (6)
where T denotes the Moore-Penrose inverse of a matriz, and the number of degrees of free-
dom (3 is given by the minimum between the number of rows in I and the rank of V; i.€.

min{(mp — r*) x (mk —r*),(k+p—1)xm}.

Proof: Given the remarks following Assumption 2 of Cragg and Donald (1996) it suffices to
consider the case where I' is a function of submatrices of H as given in page 1304 of Cragg and
Donald (1996). Following Andrews (1987), the Proposition holds if (f‘Vf")+ vt

But by (6), V = YEY' where = is the estimate of the variance of the distinct elements of

\/Tvec(ff — H) and is of full rank and Y is a matrix of ones and zeros which duplicates
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elements of Z. Therefore, VD = TY=YT = f[Vﬂl, where IT = I'Y. Note that IT is
simply obtained from T by adding the columns of I corresponding to the identical elements
of H. Forall T > M, where M is large number, IT is of full row or column rank (whichever is
smaller). This would not be the case only if two columns of I' added up to a vector of zeros.
If that were the case, linear combinations of distinct elements of H would be converging to
their true values at a rate faster than T/2 which is not allowed by the central limit theorem
for stationary processes. Therefore, the Propostion holds by Theorem 2 of Andrews (1987).

Note that, as shown in Cragg and Donald (1996), the assumption concerning the identi-
fication of R; and C;, 1 = 1,...,7*, is not neccesary for the above result to hold. Trivially,
condition (6) is satisfied for V since its rank is equal to that of V for all T. We will denote
the test by GE,.

2.2 Bartlett (1947)

An alternative method to estimate the rank of the Hankel matrix is based on the com-
putation of canonical correlations. A well known result in canonical correlation analysis
is that given two random vector series #; and @, of dimensions k and p respectively, the
rank of the covariance matrix between those two random vectors is equal to the number of
nonzero canonical correlations, see Anderson (1984) for further details. The Hankel matrix,
defined in (3), is the covariance matrix between two random vectors y; and y; defined as
y = (y;_i_l, e ,y;+k)/ and y; = (y;, cee y;_p_,_l)’. Compute the QR decomposition of the
matrices Y* and Y~ given in (4), ie. YT = Q*R" and Y~ = Q" R™. The canonical
correlations between the vectors y; and y;, are the singular values of Q"JQ_. We denote
the canonical correlations as p;, ¢ = 1,...,min(k, p)m. Bartlett (1947) provided a likelihood

ratio criterion for testing the null hypothesis that the last r — r* — 1 canonical

min(k,p)m
correlations are zero, i.e., Huyx @ pprgg = -+ = Prin(k,p)m = 0. Under the null hypothesis
and assuming stationarity of the input-output multivariate system

min(k,p)m

E+p)+1 .
BA- M_T}ln I (1-p) %

i=r*41
Bartlett’s test was developed under independence and normality assumptions, but his result
remains valid asymptotically following arguments by Kohn (1979) on the likelihood ratio
tests for dependent observations. We note that the Cragg and Donald procedure is a more
general procedure for determining the rank of a matrix since it only requires that an estimate
of that matrix exists having a normal asymptotic distribution with a covariance matrix whose
rank is known. The Barlett procedure is applicable in this context because the problem can

be recast in terms of canonical correlations.
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2.3 Akaike (1976)

Akaike (1974) and Akaike (1976) showed that the number of linearly independent compo-
nents of the projections of the previously defined y; onto the linear space spanned by the
components of y; is identical to the number of nonzero canonical correlations between y;-
and y; . When y, is Gaussian, canonical correlation analysis between ;" and y; is equiva-
lent to maximum likelihood estimation of the linear model: y; = Wy, + €;, see Anderson
(1984). The number of free parameters for this model is: F(r*) = {[s*(st +1)]/2} +
{[s7(s7 +1)]/2} + r*(sT + s~ —r*) where sT denotes the dimension of the vector y; and s~
denotes the dimension of y; . The first two terms are the number of free parameters of the
covariance matrices of y; and y; respectively, and the last term gives the number of free
parameters in matrix W. Akaike (1976) defined an information criterion for model fitting,

and by extension rank determination, as:
AIC(r TlnHlf )4 2F(r*)

where p; are the estimated canonical correlation coefficients previously defined. This criterion
penalises models with a large number of parameters, and by extension large rank, and favours
parsimonious representations. Note that, as discussed in Anderson (1984, pp. 499), when
pi = 0 then p? = O,(T™"), implying that In(1 — p?) = O,(T~"') where O,(.) denotes order in
probability. This suggests that there is a positive probability that AIC will be minimised for
im0y In(1 = p7) < 2(F(r°) — F(r*)) is greater

than zero. Therefore, the estimated rank will not converge in probability to r® when AIC is

some r* > r" since the probability that T Z

used.

2.4 Schwarz (1978)

Schwarz (1978) suggested an alternative penalty on increasing the number of parameters,
and in the present paper we explore also the performance of this criterion in searching for

the rank. The information criterion is:
T*

BIC(r) =T [](1 - 4}) + In(T)F(r)
i=1
The penalty used by BIC is much more severe than that used by AIC. In fact, it is easy to
see that the rank estimate obtained by BIC will converge in probability to 7°. Nevertheless,

BIC is likely to underestimate the rank in small samples.
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2.5 Rule of Thumb
This method, suggested in Aoki (1987), is based on the singular value decomposition of the

estimated Hankel matrix, H, given by H = Tjﬁ]f/, where U and V are orthogonal matrices,
and 3 is a rectangular matrix of zero nondiagonal elements, with diagonal elements equal
. The rule of thumb suggests that

to the singular values of f-I, 01> 09> ... > &min(k p)m
the rank is equal to r* if
(3'7«*4_1 1 é’,’ 1 .
— <— and —>—, ¢1=1,...,1" 7
\/T &1 \/T7 ) 5 ( )

01
where T is the number of observations available for the vector series y,. Clearly, the number

of nonzero singular values of H will be equal to the rank of H. Since the Hankel matrix
is the covariance matrix between y; and y;, its singular values will also be the canonical
Therefore, as discussed in subsection 2.3 above, the

correlations® between y and y; .
estimated singular values will be O,(T~'/?). This remark is the motivation behind (7) as a

rule of thumb.
3 Monte Carlo Design
(8)

We concentrate on the state space model
y,=Cs,+e, s =As + Be,
where A, B and C are r X r, ¥ X m and m X r parameter matrices respectively, s; is an
r-vector of unobservable state variables, and e; is an m-vector of random variables with

mean zero and positive definite covariance matrix €2.
The dimension of the vector series y, is fixed to three. The rank of the Hankel matrix
is equal to the dimension of the state vector s, which is fixed to three as well. Matrices A,
B, C and €2 are built as follows. B and C are (3 X 3) matrices of values drawn from a
standard normal distribution; € is fixed to an identity matrix of dimension (3 x 3). Note
that A is a key matrix to explain the dynamics of the series; the degree of persistence of
shocks will depend on the eigenvalues of A. To control the experiment for this, we have

chosen to build A = EAE'. Aisa3 x 3 quasi upper triangular matrix; the last element of
the diagonal corresponds to the modulus assigned to that experiment, and the 2 x 2 block
matrix in the left upper corner is computed in such a way that the modulus of the complex

pair of eigenvalues of this 2 x 2 block is also equal to the modulus assigned to the eigenvalues

of that experiment; the remaining values are fixed to a value of one. E is an orthonormal
matrix generated from a standard normal matrix using Gram-Schmidt orthogonalisation.

6 Assuming for simplicity that both y?’ and y; have identity covariance matrices.
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For the Monte Carlo experiments presented below, 3 different moduli making 3 alternative
experiments will be used, namely 0.8, 0.4 and 0.2.

Using A, B, C' and random normal disturbances generated by a random number gener-
ator with an identity covariance matrix” a sample from a process following (8) is obtained.
The sample sizes considered are: 250, 500 and 2000. For each simulated sample, 200 initial
observations have been discarded, to minimise the effect of starting values which are set to
zero. Each simulated sample is normalised to have zero mean and an identity covariance
matrix. For each Monte Carlo experiment 2000 replications have been carried out. For all
experiments, the Hankel matrix is computed for £ = p. We consider k¥ = 2,3,4. Finally,
it is of interest to study the performance of the tests when the output series is observed
with noise. Two sets of data are used, one is generated from (8) above, and the second is
obtained by adding an extra noise component from a standard normal distribution to the
output generated from (8). We refer to these experiments as Noise Free Data and Noisy
Data respectively. Following Cragg and Donald (1997), we have specified ar = &/1In(T)
where & 1s chosen so that asg = 0.05. All computations were carried out using the GAUSS
programming language. We note that the computational demands of the statistical testing
procedures are small. Indicatively, on a 400Mhz IBM-compatible PC running Windows 98,
for T' = 250, a system of dimension 3 and k = p = 4, the GE, procedure took 1.43 sec to

provide a rank estimate whereas the BA procedure took 0.93 sec.

4 Monte Carlo Results on Rank Estimation

Tables 1 and 2 present the mean and root mean square error (RMSE) of the estimated
ranks over the Monte Carlo simulations for all experiments. Additionally, tables 3 and 4
display the distribution of the estimated rank. The results on RMSE are in accordance with
expectations. Performance worsens when the dimension of the Hankel matrix increases,
when data are contaminated with added noise, when experiments with smaller eigenvalue
moduli are considered, and when the sample size is small. But there are some interesting
disparities in the relative performance of the alternative procedures.

Both statistical tests and procedures based on information criteria perform much better
than the rule of thumb. When looking at the size of the RMSE, it is clear that the per-
formance of the rule of thumb is very bad in a number of cases. In terms of RMSE, the
rule of thumb never performs better than all the other procedures, in the 54 experiments
run. Unlike the statistical testing procedures, its performance worsens as the number of

observations increases for a number of cases indicating that asymptotically this procedure is

"Limited experimentation with alternative covariance matrices has been undertaken. The main conclu-
sions were not affected.
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flawed.

The performance of the GE, test is very good when k£ = 2,3. This result is relatively
unaffected by the number of observations, whether the data are contaminated with added
noise or not, or how large the moduli of the eigenvalues are. The bad performance of the
GE, for Hankel matrices with £ = 4 should come as no surprise. This test relies on the
estimated covariance matrix, V, which is a 144 x 144 matrix for k& = 4. The large dimension
of the covariance matrix implies that it is likely to be poorly estimated.

BA and AIC appear to be less sensitive than the other procedures to all dimensions
explored in the Monte Carlo exercises. In particular, both BA and AIC are much more
robust to large numbers of blocks in the Hankel matrix and to small samples. Of these two
procedures, the performance of BA, both in terms of mean and RMSE, is usually much
better. The performance of B is either the best or is close to the best for every experiment.

The performance of BIC doesn’t deteriorate much, when the number of blocks in the
Hankel matrix increases. Nevertheless, it appears to be more sensitive than the other pro-
cedures to sample size. For example, for a sample size of 250 BIC is the best in terms of
RMSE only in two out of eighteen experiments, whereas it is the best in eight out of eighteen

experiments when the sample size is 2000.

5 Conclusion

Alternative methods to test the rank of a Hankel matrix have been described. A recently
proposed statistical test of rank has been extended to deal with the peculiarities of this
problem. The performance of the alternative procedures has been studied. This study
was conducted by means of a Monte Carlo exercise which served to assess the sensitivity
of different procedures to four dimensions: 1) Number of blocks in the Hankel matrix, ii)
sample size, iii) size of the moduli of the eigenvalues of matrix A in model (8) and iv) the
presence of added noise in the output series. BA and AIC are less sensitive than the other
procedures to these dimensions. Statistical tests of rank like the GE,; and B and information
criteria like AIC and BIC were shown to have a better performance than the rule of thumb
whose statistical properties are unknown. GE; performs well when the number of blocks in
the Hankel matrix is small, but its performance deteriorates for a large number of blocks.

The performance of BIC is sensitive to the sample size.
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Mean and RMSE of Estimated Rank. Noise Free Data.

mod Tests 250 500 2000
T R T R T R

GE, 2.96 0.25]2.99 0.17|3.00 0.09

BA 3.04 0.313.06 0.29 | 3.06 0.26

0.8 AIC 3.18 0.51]3.19 0.50 | 3.20 0.50
BIC 2.92 0.29 | 2.97 0.18 | 2.99 0.10

Thumb || 2.81 0.49 | 290 0.36 | 2.98 0.22

GE, | 287 050|297 041 3.0l 024

BA 2.86 0.49 | 2.96 0.39 | 3.03 0.28

0.4 AIC 3.05 0.55|3.14 0.54 | 3.16 0.49
BIC 2.52 0.73|2.72 0.55|2.90 0.31

Thumb || 3.34 0.73 | 3.42 0.78 | 3.50 0.79

GE, 290 0.44 | 296 0.34 | 3.01 0.19

BA 2.93 0.46 | 3.00 0.36 | 3.04 0.26

0.2 AIC 3.10 0.56 | 3.16 0.52 | 3.18 0.51
BIC 2.65 0.61 | 2.81 0.44 | 2.95 0.23

Thumb || 3.06 0.62 | 3.14 0.58 | 3.22 0.55

GE, 3.11 0.39 | 3.09 0.33|3.07 0.28

BA 3.10 0.40 | 3.09 0.35| 3.10 0.35

0.8 AIC 3.23 0.56 | 3.21 0.52 ] 3.22 0.55
BIC 2.88 0.35|2.96 0.20 | 3.00 0.05

Thumb || 2.99 042 | 3.03 0.38 | 3.06 0.30

GE, 3.41 0.743.37 0.70 | 3.34 0.63

BA 2.89 0.58 | 2.98 0.46 | 3.07 0.36

0.4 AIC 3.12 0.64 | 3.13 0.54 | 3.20 0.53
BIC 2.43 0.82]2.67 0.59|2.89 0.33

Thumb || 4.68 1.92 | 4.73 1.96 | 4.86 2.07

GE, 3.36 0.70 | 3.34 0.64 | 3.29 0.56

BA 2.96 0.51 | 3.03 045 | 3.09 0.34

0.2 AIC 3.14 0.59]3.20 0.58 |3.19 0.51
BIC 2.58 0.68 | 2.77 0.49 | 2.95 0.22

Thumb || 3.95 1.35 | 4.05 1.41|4.10 1.44

GE, 491 2.01 | 490 1.97|4.92 1.96

BA 3.12 0.50 | 3.13 0.44 | 3.14 0.45

0.8 AIC 3.28 0.68 | 3.25 0.60 | 3.24 0.59
BIC 2.79 045294 0.24 | 3.00 0.07

Thumb || 3.25 0.70 | 3.23 0.65 | 3.24 0.65

GE, 5.11 2.19 | 5.07 2.14 | 5.09 2.13

BA 2.87 0.68 | 3.00 0.54 | 3.13 0.47

0.4 AIC 3.09 0.68 | 3.18 0.62 | 3.23 0.60
BIC 2.32 0.93 258 0.692.89 0.34

Thumb || 5.99 3.23 | 6.16 3.38 | 6.31 3.52

GE, 5.06 2.15 ] 5.01 2.08 | 5.04 2.07

BA 295 0.62 | 3.05 0.53 | 3.14 047

0.2 AIC 3.18 0.69 | 3.19 0.60 | 3.25 0.61
BIC 246 0.79 | 2.67 0.9 | 2.90 0.32

Thumb || 5.09 2.43 | 5.16 2.48 | 5.36 2.65

“mod’ refers to the size of the eigenvalues of matrix A, see the text for
details; k& denotes the number of blocks used to build the Hankel matrix;
z and R denote respectively the mean and RMSE of the estimated rank
over the Monte Carlo samples. The numbers 250, 500 and 2000 refer to the
different sample sizes
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Mean and RMSE of Estimated Rank.Noisy Data.

mod ¢ | k| Tests 250 500 2000
T R T R T R
GE, ‘ 2.91 0.34]2.96 0.23]2.99 0.12
BA 2.99 0.34 ] 3.02 0.25| 3.04 0.23
0.8 2 | AIC 3.17 0.54 ] 3.18 0.50 | 3.20 0.51
BIC 2.82 0.44 ] 2.92 0.29 | 298 0.15
Thumb || 2.82 0.51 | 2.93 0.39 | 3.00 0.25
GE, 2.63 0.67 | 2.80 0.52]2.96 0.31
BA 2.60 0.69 | 2.79 0.52 | 2.97 0.32
0.4 2| AIC 2.88 0.64 | 3.03 0.57 | 3.15 0.51
BIC 2.14 1.05 | 2.44 0.80 | 2.79 0.46
Thumb || 3.60 0.97 | 3.65 0.98 | 3.74 1.02
GE, 2.70 0.61 | 2.83 0.45 | 2.98 0.24
BA 2.71 0.60 | 2.86 0.46 | 3.00 0.28
0.2 2| AIC 2.96 0.59 | 3.07 0.54 ] 3.17 0.51
BIC 2.31 0.90 | 2.56 0.69 | 2.88 0.35
Thumb || 3.19 0.74 | 3.29 0.75 | 3.39 0.73

GE, [3.04 035]3.05 0.28]304 023
BA | 3.00 042]3.05 032 3.07 0.30
08 | 3| AIC | 3.21 058319 052 3.23 0.55
BIC | 2.67 0.59 | 2.89 0.34 298 0.12
Thumb | 3.07 0.55 | 3.08 0.51 | 3.11 0.46
GE, | 317 0.63 317 0.55|322 0.52
BA | 251 080 275 0.62 3.00 0.41
04 |3 AIC | 283 070 3.03 061 3.15 0.54
BIC | 1.84 1.31 221 1.00 271 0.55
Thumb | 5.12 2.38 | 526 2.51 | 5.33 2.57
GE, | 317 056317 0.51]3.19 0.47
BA | 268 0.69|288 052 3.04 035
02 |3 AIC || 298 065310 0.583.20 0.55
BIC || 2.07 1.09 | 2.40 0.82 | 2.83 0.41
Thumb | 431 1.73 | 439 1.77 | 439 1.76

GE, ‘ 484 196|485 1.94 492 1.96
BA 3.02 0.51 310 042]3.10 0.37
0.8 4| AIC 3.27 0.67 | 3.25 0.63| 3.22 0.56
BIC 249 0.74 281 0.45] 298 0.13
Thumb | 3.40 0.93 | 3.40 0.89 | 3.39 0.93
GE, 4.88 2.04 492 2.00|5.01 2.05
BA 242 092|272 0.70 | 2.99 0.44
0.4 4| AIC 2.82 0.75 299 0.66 | 3.14 0.55
BIC 1.63 149|199 1.17|261 0.64
Thumb || 6.71 4.00 | 6.86 4.13 | 7.08 4.33
GE, 4.87 2.01]4.93 2.00] 499 2.03
BA 2.59 0.81 ] 2.83 0.64] 3.05 0.43
0.2 4| AIC 2.96 0.74 | 3.08 0.64 | 3.20 0.57
BIC 1.84 1.28 | 2.21 098] 2.74 0.52
Thumb | 5.63 3.06 | 5.79 3.20 | 5.89 3.27

“mod’ refers to the size of the eigenvalues of matrix A, see the text for
details; k& denotes the number of blocks used to build the Hankel matrix;
Z and R denote respectively the mean and RMSE of the estimated rank
over the Monte Carlo samples. The numbers 250, 500 and 2000 refer to the
different sample sizes o
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Distribution of Estimated Rank. Noise Free Data.

mod® | k| Tests Sample Size
250 500 2000
1 2 3 4 1 2 3 4 1 2 3 4
GE, 0.0 52 940 0.8 (00 1.8 973 09 |00 04 994 0.2
BA 0.0 24 919 53 |00 08 932 57 |00 02 943 5.2
08 |2 AIC |00 14 815 153 /0.0 0.5 8l.5 162 |0.0 0.1 825 152
BIC |01 82 918 00 |00 31 969 00 00 11 989 0.0
Thumb | 1.2 18.0 79.6 1.2 /0.3 10.7 87.9 1.0 [0.1 3.0 958 1.1
GE, 0.2 184 758 54 |01 93 849 53 |00 23 948 2.7
BA 0.1 184 773 39 (0.0 93 8.3 51 |00 22 930 45
04 |2 AIC | 0.1 107 753 123|00 48 792 14000 1.6 829 13.6
BIC |26 422 551 00 |09 269 722 0.1 01 97 903 0.0
Thumb | 0.1 6.3 56.0 34.7 0.0 4.0 553 35400 09 534 40.6
GE, 0.2 13.8 81.7 40 00 7.5 893 29 |00 1.1 967 21
BA 0.0 13.1 813 49 |00 59 8.3 54 |00 1.1 946 3.9
02 | 2| AIC |00 76 774 129|00 34 798 14600 0.5 838 13.1
BIC 1.1 329 66.0 0.0 |01 193 80.7 0.0 |01 51 948 0.0
Thumb || 0.1 142 66.9 173 /0.1 7.8 720 184 |0.0 1.8 76.8 19.4

GE, 04 04 873 116/(02 01 901 93 |01 01 927 7.2
BA 00 18 874 98 |00 06 908 7.7 00 01 915 7.3
08 | 3| AIC 00 05 793 170|00 0.3 81.8 153 |0.0 0.1 81.7 14.4
BIC 0.1 11.7 8.3 00 |01 40 960 0.0 |00 03 99.7 0.0
Thumb | 0.3 7.1 871 45 03 3.6 90.0 54 [0.0 0.6 94.0 4.5
GE, 03 26 571 364|011 18 636 30601 0.1 676 30.1
BA 0.5 194 715 74 |01 103 818 7.0 |00 1.8 903 7.0
04 | 3| AIC 03 98 721 143|01 54 780 14100 09 815 149
BIC 53 46.5 483 0.0 |11 304 685 0.0 |02 103 89.5 0.0
Thumb | 0.0 04 73 373 /00 01 67 358[/00 00 3.7 318
GE, 03 19 632 315(01 13 653 314]00 01 719 27.0
BA 0.1 134 781 73 |00 70 89 82 |00 07 907 7.8
02 | 3| AIC 01 70 749 154(00 26 785 156|00 0.2 834 135
BIC 19 384 59.7 00 |04 227 770 0.0 |00 51 950 0.0
Thumb | 0.0 3.2 31.1 404 0.0 1.3 281 43.1|/0.0 04 269 44.0

GE, 1.8 07 00 40|09 08 01 5005 04 00 54
BA 0.0 34 838 105(00 08 875 9.6 |00 01 8.0 9.9
08 | 4| AIC 00 11 763 17100 0.1 79.7 16.0| 0.0 0.0 803 158
BIC 0.1 203 796 0.0 |00 55 945 0.0 |00 04 996 0.0
Thumb | 0.3 3.5 74.0 167 /0.0 1.7 79.9 14.1/0.0 0.1 820 13.6
GE, 04 01 04 51|04 01 01 5501 00 01 35
BA 1.1 233 655 82 |01 125 76.7 92 |00 19 861 9.3
04 | 4| AIC 0.4 13.0 683 146|011 53 755 150]00 1.1 793 158
BIC 9.2 49.6 41.1 0.0 |29 358 614 0.0 |0.1 11.2 887 0.0
Thumb | 0.0 00 09 81 00 00 04 42 00 00 01 3.2
GE, 08 03 01 42|05 01 01 5301 00 01 37
BA 0.3 182 697 100|011 80 812 88 |00 13 861 10.5
02 | 4| AIC 01 78 717 158|011 35 778 15300 05 794 155
BIC 42 454 505 0.0 |11 303 685 0.0 |00 10.0 90.0 0.0
Thumb | 0.0 05 7.1 249,00 03 64 22400 0.0 42 191

%“mod’ refers to the size of the eigenvalues of matrix A, see text for details; & denotes the number of
blocks used to build the Hankel matrix. The numbers 250, 500 and 2000 refer to the different sample

sizes.
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Table 4

Distribution of Estimated Rank. Noisy Data.

mod® | k| Tests Sample Size
250 500 2000

1 2 3 4 1 2 3 4 1 2 3 4

GE, 01 99 891 08 | 01 45 947 08 |00 1.4 985 0.1
BA 0.1 53 900 43 | 0.0 20 948 29 |00 06 953 4.0
1 2| AIC 0.1 28 79.7 152| 0.0 09 828 142 |00 0.3 827 145
BIC 04 173 823 00 | 0.0 &1 918 0.1 0.0 23 978 0.0
Thumb | 09 192 773 25 | 0.3 102 8.6 26 |00 3.0 942 26

GE, 1.3 367 594 25 | 03 226 741 3.0 01 6.8 90.6 25
BA 1.6 392 573 18 | 0.1 235 738 25 0.1 62 908 28
0 2| AIC 0.7 227 658 96 | 0.1 119 747 11.7|0.0 2.5 82.0 13.2
BIC |124 615 26.1 0.0 | 42 479 479 0.0 |04 19.8 79.8 0.0
Thumb | 0.1 4.3 424 42.0/| 0.0 27 419 439|0.0 0.7 37.9 488

GE, 0.7 314 655 23| 01 184 799 16 |0.0 3.5 948 14
BA 0.7 301 671 19 | 0.1 167 804 26 |00 3.6 928 34
1 2| AIC 03 170 7v1.1 103| 0.1 85 774 124|0.0 1.7 819 14.0
BIC 6.2 56.8 37.0 00 | 1.8 403 579 0.0 |00 123 87.6 0.0
Thumb | 0.2 125 59.7 231 | 0.0 7.3 624 249|00 13 650 278

GE, 09 11 908 71 |04 04 933 59 01 01 952 45
BA 01 73 8.7 60| 00 23 913 59 |00 01 932 6.1
1 3| AIC 0.1 21 7788 159 0.0 1.1 817 14.8|0.0 0.0 81.1 15.7
BIC 0.9 313 6v.8 00 | 0.2 109 8.9 0.0 |00 1.6 985 0.0
Thumb | 04 58 838 73 |03 36 873 6.1 |00 08 905 6.3

GE, 04 72 692 209| 0.1 48 741 19900 1.1 77.5 203
BA 3.3 46.1 471 3.1 | 09 285 651 53 |00 7.7 857 5.7
0 3| AIC 1.3 274 599 100/| 0.1 143 70.7 128 | 0.0 3.8 80.0 13.7
BIC |285 587 128 0.0 |10.7 581 31.3 0.0 | 0.7 27.6 718 0.0
Thumb | 0.0 0.1 50 249| 0.0 00 35 21.7/00 00 24 196

GE, 04 53 729 203 0.1 40 753 201|00 0.7 80.5 18.1
BA 1.1 358 580 45 | 02 182 758 54 0.0 32 90.1 6.0
1 3| AIC 0.2 184 672 120/| 0.0 92 748 138 |00 1.1 812 15.0
BIC |13.6 655 21.0 0.0 | 3.7 521 441 0.0 | 0.1 16.5 834 0.0
Thumb | 0.0 21 223 379| 0.0 09 209 359|00 03 21.1 377

GE, 21 07 01 65|12 10 00 78|03 04 00 59
BA 0.0 10.1 79.8 86 | 0.0 19 884 7.8 |00 02 906 7.8
1 4| AIC 0.0 21 747 181| 0.0 04 793 152 |00 0.1 81.6 14.6
BIC 2.0 473 507 0.0 | 03 187 810 0.0 0.0 18 983 0.0
Thumb | 0.1 25 685 199| 0.0 1.1 706 194|0.0 0.1 752 16.0

GE, 23 01 12 10706 01 05 10501 00 04 5.9
BA 6.6 503 37.8 47 | 1.7 328 584 6.4 |00 9.6 8.0 6.5
0 4| AIC 1.5 30.1 553 108 | 04 178 67.5 11.2|0.0 43 80.5 123
BIC |426 523 5.1 0.0 | 181 648 17.1 0.0 | 1.1 369 62.0 0.0
Thumb | 00 00 04 39|00 00 01 35|00 00 01 1.1

GE, 23 02 07 10005 02 04 9202 00 01 5.5
BA 3.3 428 466 66 | 0.8 249 665 6.2 |00 4.8 872 6.7
1 4| AIC 1.1 224 599 135| 01 118 720 127]0.0 1.7 80.3 14.5
BIC |244 668 88 0.0 86 617 298 0.0 |06 251 743 0.0
Thumb | 00 06 56 177 00 01 39 16.0|/0.0 00 29 132

“mod’ refers to the size of the eigenvalues of matrix A, see text for details; & denotes the number of
blocks used to build the Hankel matrix. The numbers 250, 500 and 2000 refer to the different sample

sizes.
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