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Abstract

In this paper we present a methodology of model-based calibration
of additional capital needed in an interconnected financial system to
minimize potential contagion losses. Building on ideas from combina-
torial optimization tailored to controlling contagion in case of complete
information about an interbank network, we augment the model with
three plausible types of fire sale mechanisms. We then demonstrate
the power of the methodology on the euro area banking system based
on a network of 373 banks. On the basis of an exogenous shock leading
to defaults of some banks in the network, we find that the contagion
losses and the policy authority’s ability to control them depend on the
assumed fire sale mechanism and the fiscal budget constraint that may
or may not restrain the policy authorities from infusing money to halt
the contagion. The modelling framework could be used both as a crisis
management tool to help inform decisions on capital/liquidity infusions
in the context of resolutions and precautionary recapitalisations or as
a crisis prevention tool to help calibrate capital buffer requirements to
address systemic risks due to interconnectedness.

Keywords: Interbank networks, contagion, fire sales, stress testing,
macroprudential policy, optimal control

JEL: C61, D85, G01, G18, G21, G28, L14

ECB Working Paper Series No 2554 / May 2021 1



Non-technical summary

In the aftermath of the global financial crisis, it has become clear that a
main source of systemic risk is the high level of interconnectedness of the
financial system. Therefore, following the early and rather theoretical works
in the economic literature, regulators started to incorporate network analyt-
ical tools and models of financial system interconnections into their regular
analytical and policy framework.

In order to cater for the risks related to the interconnected nature of
the financial system, regulators and prudential authorities introduced new,
mainly capital-based instruments primarily focused on the most systemic in-
stitutions. Although in theory the aim of the introduced measures is exactly
to internalize the losses generated by financial institutions, the calibration
of some of these measures is still based on simplistic or rules of thumb ap-
proaches without bringing complex network models to the policy space.

Our work aims at providing an approach that not just quantifies potential
contagion losses but also serves as a tool that is able to calibrate the optimal
response of the policymaker either as an ex-ante or ex-post application of
the model. In other words, we aim to fill the gap between contagion models
and optimal policy responses in a rigorously proven manner.

We focus on the most classical example of direct interbank contagion
when bank balance sheets are directly connected via interbank loans. Ex-
ogenously defaulting banks are not able to pay back their outstanding obli-
gations which may lead to default cascades. In addition, institutions in
need of liquidity may decide to sell a fraction of their illiquid assets at fire
sale prices, resulting in further losses. At the same time, banks may decide
to withdraw their short-term assets from other banks which adds an addi-
tional liquidity shock to the system. All actions happen simultaneously in
the system due to the payment equilibrium approach used. An additional
amount of initial captital and/or liquidity (infusion) is able to minimise or
even eliminate contagion losses. To solve the optimization problem, we use
combinatorial optimization techniques to find the subset of banks which are
to be saved by this infusion.

The modelling framework is applied to a network of close to 400 euro
area banks. We run our simulations for several different types of fire sale
assumptions as well as with and without an upper bound on the amount of
infusion that the policy maker is able to provide.

Our main findings show that if the initial shock and the assumed fire
sale mechanism are severe enough, the benefit from preventing banks from
defaulting is higher than not intervening at all. When an upper bound on the

ECB Working Paper Series No 2554 / May 2021 2



infusion amount is assumed (e.g. due to a public budget constraint), gains
are much lower which shows a non-linear property of the optimal infusion.
This phenomenon is due to the fact that in case of a budget constraint, some
banks may be excluded from the possible set of infused banks. We also show
that the overall amount of contagion losses, and as a corollary the net benefit
of infusion, crucially depends on the assumed fire sale mechanism.

The framework provides a rigorous approach to calculate systemic con-
tagion losses in the context of tail risk events and how to minimise such
losses. The modelling framework could be applied to calibrate ex-post in-
fusion measures in the context of bank resolutions, such as a precautionary
recapitalisation or provision of emergency liquidity assistance to ensure the
resolution entity is able to honour its short-term payment obligations (i.e.
liquidity in resolution). The framework could also be used to inform calibra-
tion of ex-ante capital buffer requirements, such as G-SII/O-SII buffers or
Systemic Risk Buffers. In this context, we furthermore compare the model-
derived optimal capital support to defaulting banks with standard network
and regulatory-based measures of systemicness typically applied in the cali-
bration of such buffers. In line with other studies, we find that such simple
network metrics may not be sufficient to identify banks with the most sys-
temic footprint and that more complex methods, such as the one presented
here, can add value for policy assessments.
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1 Introduction

While interconnections between financial institutions might have a stabiliza-
tion property due to more diverse transferring of risk, it has been proven
that this may only be the case up to a certain magnitude of shocks hitting
the financial system (Acemoglu, Ozdaglar, and Tahbaz-Salehi 2015b; Ron-
coroni et al. 2019). The global financial crisis (GFC) was a clear illustration
of a shock of sufficient magnitude to trigger contagion across the system
requiring massive and costly taxpayer-financed policy interventions. Also
the more recent market turmoil in February-March 2020 illustrated the po-
tential for pernicious fire sales amplifying losses at the system level, again
necessitating reactive policy interventions.

Thus financial interconnectedness has been recognized as one key source
of systemic risk which in the aftermath of the GFC regulators have sought
to mitigate by imposing higher capital requirements, especially aimed at
systemically important financial institutions (BCBS 2012; BCBS 2013)1.

Against this background, in this paper we present a rigorous modelling
framework that allows for deriving the optimal response in the face of po-
tential contagion losses to a material adverse shock to the banking system.
The framework can be applied to help inform policy decisions aiming at op-
timally controlling (i.e. minimising) interbank contagion, while taking into
account different fire sale mechanisms and limitations on the use of public
resources.

Contagion models can be classified along several dimensions like the type
of recovery rate, the presence of uncertainty and the point at which losses
are triggered. Focusing on the recovery rate being a key feature since con-
tagion models exist, approaches can assume an exogenous recovery rate or
endogenous recovery rate. The latter one is widely known by the name of
the authors (Eisenberg and Noe 2001) where equilibrium payments are pro-
portional to the asset-to-debt ratio of financial institutions. This method
has been further developed by Rogers and Veraart (2013) with the inclusion
of bankruptcy costs. However, there are prominent examples for the appli-
cation of an exogenous recovery rate as well, see Cont, Moussa, and Santos
(2010) for a model applied to Brazil or Bardoscia et al. (2019) who focus on
the contagion channel of credit valuation adjustments in a forward looking
manner applied to the UK banking system. A more recent example for an
application on European data is Covi, Gorpe, and Kok (2021) who use large

1Other policy responses in the markets for derivatives and securities financing trans-
actions introduced mandatory clearing and more stringent collateral requirements.
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exposure data of the euro area banking system.
In this work, we use the endogenous loss given default (LGD) approach

inspired by Minca and Sulem (2014). Their key idea is that since payments
are proportional to the asset-to-debt ratio of banks (Eisenberg and Noe
2001; Rogers and Veraart 2013), the asset-to-debt ratio can be iterated by
a mapping to find an equilibrium value. By changing the value of cash
infusion, this asset-to-debt ratio increases to a target value and the optimal
value of additional cash needed to minimize interbank losses can be derived.
Amini, Minca, and Sulem (2017) show a similar procedure for the exogenous
recovery rate case.

Our application contributes to the two initial papers of Minca and Sulem
(2014) and Amini, Minca, and Sulem (2017) on the optimal control problem
in several aspects. First, we extend the model for three different types of fire
sale mechanisms widely used in the literature and provide simple analytical
solutions for the optimal amount of infusions. The way and degree to which
assets are fire sold are notoriously difficult to pin down. In this light, we
adopt a suite of model approach to ensure that our findings are robust to
specific fire sale model assumptions. Second, we apply the methodology
to a granular database of 373 euro area banks based on confidential ECB
supervisory reporting. Third, we impose a realistic stress scenario on the
network based on an official ECB stress test application. Fourth, we analyse
situations when it is not worth to save a bank, also considering situations
where the policy authorities have limited public funds available. Finally, we
elaborate on the possible policy applications of the methodology.

More specifically, to illustrate how the model works we obtain an ex-
ogenous shock to the banking system from the capital shortfalls derived in
the ECB’s macroprudential perspective of the 2018 EBA stress test (Budnik
2019; Budnik et al. 2019). Banks having a positive capital shortfall, meaning
its capital level falls below the regulatory minimum (defined by an assumed
threshold level) due to the stress imposed, might have difficulties in paying
back their obligations to other entities. At the same time, fire sale losses
may turn up at banks under distress or at banks who fund themselves from
banks in default when they are forced to sell an amount of their illiquid as-
sets at discounted prices. Particularly, we implement three types of fire sale
mechanisms well-known in the literature, namely: banks sell illiquid assets
to cover the liquidity shortfall from interbank losses, short-term funding is
withdrawn from defaulted banks and they need to sell some of their illiq-
uid assets, or the short-term funding is withdrawn by the defaulted banks
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and fire sales occur also at banks who have not defaulted yet.2 Actions
happen simultaneously and the final equilibrium can be interpreted as an
instantaneous equilibrium.

In the next step, the policymaker (a central bank or the government)
is then assumed to calibrate an additional amount of liquid assets or capi-
tal to be injected for a bank to minimize contagion losses both from direct
exposures and from fire sale losses. Liquidity and solvency are in practice
different, but equivalent in our modelling framework: both capital buffers
and liquidity reflect absorption capacity and once any of them is exhausted,
the bank defaults. Practically, the policymaker’s action can materialize as
ex-post actions in the form of an emergency liquidity assistance provided by
a national central bank or as a government recapitalization (e.g. precaution-
ary recapitalization). To prevent such contagion losses, capital requirements
or liquidity requirements can also be used as ex-ante measures. We demon-
strate that it is possible to achieve no losses at all even if we do not save all
banks that have been initially defaulted. That is, letting an institution go
bankrupt does not necessarily have a systemic risk aspect if its default is not
generating further significant losses to other banks. As such, the framework
can also prove useful in ”public interest” assessments in the context of bank
resolution decisions. Throughout the paper we will refer to the additional
amount of liquidity or capital needed as infusion. Our results also point to
important non-linear contagion effects when the policymaker faces binding
budget constraints: when we are not able to save a highly contagious bank
due to the presence of a budget constraint, a contagion mechanism will still
deliver significant amount of losses, hence the benefit from an infusion is not
linear in the budget constraint. In such a scenario, also the specific fire sale
assumption is shown to have important implications for the infusion results
since infusions are a function of existing fire sale losses in the system3.

We assume the interbank network to be static and not responding to
changing market conditions. However, in principle it is possible to extend
the model with a block that endogenously adjusts the changes in the given
interbank network, like Ha laj and Kok (2015). An empirically estimated
application of an endogenous network formation block would mean a sub-
stantial step forward in the systemic risk literature.

The rest of the paper is structured as follows. In section 2, we introduce

2In reality, fire sales may be driven simultaneously by all three elements and a mech-
anism combining these components may be more realistic. However, in order to better
disentangle the different assumptions and to avoid pre-judging the exact mechanism at
play we study here each element in turn.

3In the absence of a budget constraint, fire sale losses are not present.
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the balance sheet interconnectedness through direct exposures and the fire
sale mechanisms of illiquid assets. In section 3, the optimisation procedure
for determining additional liquidity is described. We analyze our model
results in section 4. Section 5 discusses the possible policy applications.
Section 6 summarizes and concludes our findings.

2 Endogenous recovery rate and contagion

This section introduces the modelling approach. Banks’ recovery rates are
endogenously determined (Eisenberg and Noe 2001).

We have a network of banks with direct exposures like unsecured loans
among each other. An initial shock induces the failure of some banks which
leads to a cascade of failures. The policymaker may decide either to infuse
capital in some of the surviving banks after the initial shock (ex-post mea-
sure) to limit contagion effects or expect banks to hold additional capital
(ex-ante measure) to withhold contagion risk. The latter is not suitable
once the crisis hits but has to be built up in advance to improve the loss
absorption capacity.

Let N = {1, . . . , n} be the set of banks in the network. The bank has
capital ci and the threshold level of default is ci,th. Thus the bank is in
solvency default if ci < ci,th. Matrix L represents bilateral exposures: li,j is
the debt of bank i to j. Like in the usual way (see figure 1 for a graphical
representation),

∑
i li,j denotes interbank assets of bank j,

∑
i lj,i are the

interbank liabilities of bank j. We distinguish short-term liabilities of the
bank si that are a subset of total liabilities li =

∑
j li,j . γi is the loss

absorption or liquidity buffer of the bank. We assume that banks are able
to convert their high quality liquid assets (HQLA) to cash by pledging them
as collateral to a central bank. yi are illiquid (non-HQLA) financial assets.
These assets are subject to fire sale at a bank-dependent average price pi.
Let πi,j be the proportion of debt li toward bank j: li,j = πi,jli. Similarly,
lj,i = πj,ilj .

The initial asset-to-debt ratio of the bank is ri =
γi+

∑
j πj,ilj
li

. We note
that we did not take into account non-interbank loans and deposits, but we
show in appendix B that this setup is equivalent to a simplified iteration
procedure of Eisenberg and Noe (2001) introduced by Rogers and Veraart
(2013).

We make two further assumptions similarly to Ha laj and Kok (2013).
First, banks can use their liquid assets for interbank payments only up to the
amount of excess capital. Second, this excess capital base is adjusted with
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interbank assets and liabilities. These assumptions lead to the definition of
liquid assets like γi = min(ci − ci,th, HQLA) +

∑
j li,j −

∑
j lj,i. With this

definition of γi, our model will treat liquidity and solvency identically. In
Section 5, we elaborate on how this can be treated in policymaking. We say
that a bank is in fundamental default (initial default) if it is defaulted by the
exogenous shock to the system: γi < 0 or ci−ci,th < 0. The two assumptions
above lead to the following corollary linking the possible default thresholds.

Corollary 1. A bank is in fundamental default if ci − ci,th < 0 if and only if
ri < 1.

For the simple proof, see appendix A. Note that with the definition of γi,
we made it possible to track liquidity default as well besides solvency default
(see figure 1). However, the current EBA stress test methodology focuses
on solvency default and we follow this approach when we take exogenous
defaults in the system.

assets liabilities

ci − ci,thci − ci,th

∑
j li,j

∑
j lj,i

loans

illiquid
assets deposits

capitalliquid
assets

Figure 1: Balance sheet of banks and the use of liquid assets given an
exogenous shock to capital.

2.1 Direct exposures

We assume that the policymaker is able to infuse capital into the banks
in response to a shock. We call this an ex-post measure. Under infusion
of equity ξi in bank i, liquid assets of bank i becomes γi + ξi or we can
equivalently say that capital becomes ci+ ξi. We denote the vector of asset-
to-debt ratios by x. Then the equilibrium asset-to-debt ratio of bank i is
given by

Φ(x, ξ)i =

(
γi + ξi +

∑
j πj,ilj ·min{xj , 1}

)
li

, (1)
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where the minimum operation denotes that if a bank defaults, it can pay
only proportionally to its available liquid assets. When it does not default, it
can pay its obligations in total. Similarly to corollary 1 a bank is in default
if its asset-to-debt ratio is below 1, therefore the default threshold is Φ < 1.

The policymaker is also able to expect banks to hold a higher amount of
capital before a shock hits. We call it ex-ante application and can be based
on stress testing results. Consequently, higher capital buffers can alleviate
the need for ex-post infusions.

Corollary 2. The mapping in equation (1) is equivalent to a mapping of the
payment vector in an endogenous recovery rate (Rogers and Veraart 2013)
model.

See the proof in appendix B. The next lemma shows that an iteration of
Φ converges to a fixed point.

Lemma 1. Φ(x, ξ) is monotone and bounded in x for fixed ξ, and there
exists a largest fixed point which can be obtained via a fixed point iteration.

Proof. x 7→ Φ(x, ξ) is clearly a non-decreasing function of x and bounded

from below and above. Let qi0 =
(γi+ξi+

∑
j πj,ilj)

li
as the upper bound of Φ

and qn+1 = Φ(qn, ξ). Since qn+1 ≤ qn, limn→∞ qn = q∗ exists and is the
largest fixed point.

After the iteration, we denote the resulting equilibrium asset-to-debt
ratio of bank i by Ri(ξ). Now the loss suffered by bank i can be written as
the difference between original interbank obligations (lj) of its counterparties
and payments in equilibrium which are proportional to the asset-to-debt
ratios of the counterparties:

LIB,i(ξ) =
∑
j

πj,ilj −
∑
j

πj,ilj min{Rj(ξ), 1}.

Summing this over all banks i, the loss in the financial system due to inter-
bank exposures is given by
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LIB(ξ) =
∑
i

LIB,i(ξ)

=
∑
i

∑
j

πj,ilj −
∑
j

πj,ilj min{Rj(ξ), 1}


=
∑
i

∑
j

πj,ilj(1−min{Rj(ξ), 1})

=
∑
i

∑
j

πj,ilj (Rj(ξ)− 1)− . (2)

2.2 Fire sale mechanisms

Losses from direct interbank losses in the unsecured interbank market are
typically small (Glasserman and Young 2015; Bardoscia et al. 2019). For
theoretical results on overall losses and their comparison in different models
of contagion, see Visentin, Battiston, and D’Errico (2016) where Eisenberg–
Noe type models are shown to produce lower losses than other models in-
corporating uncertainty.4 At the same time, experience from the global
financial crisis shows that interbank markets might dry up and rolling over
the outstanding debt might become difficult for financial institutions either
for defaulted or non-defaulted banks. In this case, banks would need to
liquidate a fraction of their securities portfolio which would lead to a spiral
effect of fire sales (Brunnermeier 2009). It is also possible that as banks re-
ceive back less of their interbank assets when a shock hits the system, they
need to sell some of their illiquid assets to meet their obligations.

For practical application, we introduce three separate channels of fire
sales to the framework which are applied in the literature. First, we assume
that banks having a liquidity shortfall from interbank losses start selling
their illiquid assets at predetermined prices. Second, short-term funding
is withdrawn from all defaulted banks. Third, short-term funding is with-
drawn by the defaulted banks. All assumptions are plausible and might
appear in reality as a mix, but here we assess them separately to keep calcu-
lations tractable. This modelling approach does not account for the similar
holdings of assets of banks. For this reason, fire sale losses might be under-
estimated. In a more detailed approach, fire sale prices could also depend on

4However, Bardoscia et al. (2019) incorporates uncertainty and reports low levels of
potential losses. On the other hand, recent market turmoils have shown the importance
of derivative markets which are not covered in this framework.
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the similarity of overlapping portfolios subject to fire sales, see e.g Roncoroni
et al. (2019) and Aldasoro, Hüser, and Kok (2020) for recent applications of
portfolio overlaps.

(A) The bank covers its liquidity shortfall from interbank losses
by selling illiquid assets (Ha laj and Kok 2013). From equation (2), the
bank with liquid assets γi has to cover a liquidity shortfall of(
γi −

∑
j πjilj(xj − 1)−

)−
, which has positive value if losses are higher than

the liquid assets of the bank. The bank cannot sell more than its illiquid
assets yi. Since these assets have average value pi < 1 on the market, the

bank has to sell
(γi−

∑
j πjilj(xj−1)−)

−

pi
amount of the illiquid assets. Finally,

after selling the bank suffers a loss due to a lower market price of the illiquid
assets. The loss is quantified by the multiplying factor (1− pi).

Therefore the fire sale loss of bank i is given by

δAi (xj,j 6=i) = min


(
γi −

∑
j πjilj(xj − 1)−

)−
pi

, yi

 (1− pi).

(B) Short-term funding is withdrawn from defaulted banks (Minca
and Sulem 2014). This process further decreases the liquidity position of
defaulted banks and endogenous LGDs become lower. If bank i is defaulted
(xi < 1), its counterparties decide to withdraw their funding si. In this
case, a liquidity shortfall of (γi−si)− has to be covered. The rest of the loss
function is similarly to (A) given by

δBi (xi) = min

{
(γi − 1(xi < 1)si)

−

pi
, yi

}
(1− pi).

(C) Short-term funding is withdrawn by defaulted banks (Covi,
Gorpe, and Kok 2021). Defaulted banks are not able to further fund other
banks. By withdrawing their funding from other banks, they spread distress
towards institutions that are not necessarily defaulted yet. The fire sale loss
of bank i is given by

δCi (xj,j 6=i) = min


(
γi −

∑
j πjisj1(xj < 1)

)−
pi

, yi

 (1− pi).
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We note that in all three cases the loss from fire sales depends only on
the asset-to-debt ratio of defaulting banks. If a bank is not defaulted, it has
no impact on the losses of others at all. Having defined these fire sale losses,
the new asset-to-debt ratios of banks become

Φ(x, ξ)i =

(
γi + ξi − δi(x) +

∑
j πj,ilj ·min{xj , 1}

)
li

, (3)

for which Lemma 1 also holds as δ is bounded.
The overall fire sales loss is then defined by

∆(ξ) =
∑
i

δi(γi + ξi). (4)

The presence of fire sales increases even the amount of interbank losses
in equation (2), see empirical results in section 4.

The total losses in the system is then obtained as the sum of interbank
and fire sale losses:

L(ξ) = LIB(ξ) + ∆(ξ). (5)

Optimisation results hold in the next section for a wide class of fire sale
loss functions. The only property used in further proofs is that the fire sale
loss of a bank depends only on the asset-to-debt ratio of defaulted banks.
Fire sale losses appear on the asset side of banks.

In our application, we apply fixed discounts on all prices. In this case,
portfolio overlaps do not play a role. On the contrary, when prices are
determined endogenously based on the reactions of individual banks decid-
ing to sell some of their securities, one needs to update prices based on
the amounts sold using a price impact function which is increasing in the
amounts sold (Cont and Schaanning 2019). This, in our example, would
need us to keep track of portfolio matrices and price changes at given ag-
gregation level within the iteration.

3 Optimisation

The goal of this section is to provide both economic intuition and a mathe-
matical framework to the problem of optimal control in the interbank net-
work. The policymakers’ goal is to minimize the contagion losses described
above that may arise in the stress situation. In this step, we assume that
the initial stress is completely known and banks’ balance sheets are also
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monitored in real time by the policymaker. Though this is not necessarily
the case in normal times5, in a crisis situation regulators might be able to
request special reports of banks on their solvency and liquidity positions and
interbank exposures from which contagion channels can be reconstructed.

It is clear that contagion losses could be minimized if all banks would
be given an infinite amount of liquidity, but we show that this solution is
far from optimal. What is laid down in the following formulae can be sum-
marized as follows. Once a shock hits, the policymaker decides how much
money it can give to which banks. The policymaker has to calibrate her
response taking into account various considerations. First of all, the set of
possible solutions to the policymaker’s optimization problem is introduced
by her budget constraint (e.g. the fiscal envelope or the amount of liquidity
that can be offered against eligible collateral). Second, the policymaker does
not infuse any amount into a bank which is not initially defaulted. This is
completely intuitive from an economic perspective: only banks which are
vulnerable need to be supported. Although this might be subject to criti-
cism from a mathematical perspective since other banks, which are assumed
to be healthy before contagion takes place, may also amplify the contagion
effect. Third, if given a constraint on the amount of total infusion, we are
not able to save a bank, then we do not infuse any amount in that bank. This
is the intuitive meaning of Assumption 1 below which in the end discretizes
the set of possible solutions to explore; there will be a subset of banks which
are saved while the remaining ones are not. As a consequence, the optimi-
sation is carried out by exploring all possible subsets of initially defaulting
banks, calculating the losses in the presence of infusions and choosing the
subset which yields the lowest losses while ensuring that the amount of total
infusion is below the budgetary threshold (see Proposition 1 below). Mean-
while, infusions are calculated in such a way that banks are pushed back to
the region of solvency/liquidity, whichever is breached without infusion.

Another main feature of the model is that despite being an equilibrium
payment algorithm, it is still possible to introduce an ordering of events
coming from the fact that all losses depend only on the asset-to-debt ratio
of defaulted banks (in equilibrium). By calculating first the asset-to-debt
ratio of those banks which are not saved and consequently of those which are
saved, we are able to optimise without the iteration of the asset-to-debt ratio
after we have found the payment equilibrium. This is formally described in

5Even in normal times, however, since the GFC central bank and supervisory data col-
lections have substantially improved allowing for better real-time surveillance of financial
sector interconnectedness. For instance, the data set used in this paper relies on quarterly
supervisory reporting that allows for constructing reliable interbank networks in real time.
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sections 3.1 and 3.2
The policymaker has a budget constraint as an upper bound of capital

infusion into the banks, we denote it by M . We will handle the problem
by deciding which of the banks should be saved based on the amount of
additional capital they should be provided.

The set of admissible intervention strategies is given by

AM =

{
ξ ∈ Rn

+

∣∣∣∣∑
i

ξi ≤M

}
. (6)

The problem that has to be solved is

min
ξ∈AM

L(ξ). (7)

The following assumption makes it possible to discretize the set of ad-
missible intervention strategies.

Assumption 1. There is no infusion into a bank which is defaulted under
an infusion ξ∗. That is, if Ri(ξ

∗) < 1 then ξ∗i = 0. It can be interpreted as
if the given bank can not be saved in the presence of an infusion constraint,
we do not infuse any amount into them.

Now assume that a subset S ⊆ N of banks are to be saved by infusion,
then the admissible strategies are given by

ASM = {ξ ∈ AM , i ∈ S : Ri(ξ) ≥ 1, i ∈ N \ S : ξi = 0} . (8)

Proposition 1. Assume that we have a solution in which a subset S of
banks are saved by infusion. The solution to Problem 7 can be found by
minimizing the loss function over all the possible subsets S of banks.

Proof.
min
ξ∈AM

L(ξ) = min
S⊆N ,ξ∈AS

M

L(ξ), (9)

where in the problem on the right side only a set of banks are saved by
infusion. By exploring all possible subsets, the global minimum can be
obtained.

Now we will handle banks based on whether they are in the set S or not,
differently. Since fire sales losses depend only on the asset-to-debt ratio of
defaulting banks, δi = δi(xj,j /∈S).

ECB Working Paper Series No 2554 / May 2021 14



3.1 Banks not assumed to become solvent

In this case, the asset-to-debt ratio of banks in N \ S are not depending on
ξ. Thus the equilibrium asset-to-debt ratio is given by the fixed point of

Φ(x, S)i,i∈N\S =
(γi − δi(x) +

∑
j∈S πj,ilj +

∑
j /∈S πj,ilj ·min{xj , 1})

li
,

(10)
where we used that banks in S are able to pay their obligations and banks
not in S may either default and pay only a proportion of their debt to their
creditors. As proved in Lemma 1, this mapping also converges and we denote
the equilibrium asset-to-debt ratio of bank i under infusion ξ by Ri(ξ). It is
clear that Ri(ξ) = RSi for i ∈ N \ S.

3.2 Banks assumed to become solvent

For banks guaranteed to be solvent, for i ∈ S the asset-to-debt ratio is given
by the fixed point of

f(x, ξ, S)i,i∈S

=
(γi + ξi − δi(γi + ξi, R

S
j ) +

∑
j∈S πj,ilj +

∑
j /∈S πj,ilj ·min{RSj , 1})

li
, (11)

where RSj are determined in section 3.1. In case of fire sales of type (B),
δi = 0 because the bank in S is not defaulting. Note that this function does
not depend on x, therefore the minimal infusion that makes i solvent is

ξS
i

= inf{ξi|f(·, ξi, S) ≥ 1}. (12)

This is a non-linear equation system. For details on the solution, see ap-
pendix C.

Since it is the minimal amount of infusion needed, it is clear that for a
given subset S, this is the only possible solution. If

∑
i ξi > M , then there

is no solution for the given subset.

Example (N=2, no fire sales). Figure 2 depicts the methodology for an
example of two banks. Both banks are initially defaulted, but only bank
X has interbank payment obligations towards bank Y; lX,Y = 100. Both
banks’ initial asset-to-debt ratio is below 1 as can be seen in the figure. The
asset-to-debt ratio of X is 1/2, therefore it can pay only 50 out of 100,
the interbank loss is 50. Y has no interbank obligations, but its liquidity
is negative. The policymaker can choose to save either X or Y , or both

ECB Working Paper Series No 2554 / May 2021 15



X and Y with budget constraint M = 50. Since bank Y has no interbank
obligations, it doesn’t need to be saved, while saving X costs 50 which is equal
to the budget constraint, therefore it is a solution. With an infusion of 50,
the asset-to-debt ratio of X becomes 1, hence it is able to pay its obligations
and there is no interbank loss. We note that in this simple example there
was no need to iterate the mapping of the asset-to-debt ratio Φ.

Y

Y

X

X

I. initial defaults: X and Y

II. optimal solution: X saved

lX,Y = 100

lX,Y = 100
infusion: ξX = 50
γX = 50

γX = 50

γY = −10

γY = −10

lX = 100

lX = 100

lY = 0

lY = 0
Φ∗X = 50

100

Φ∗X = 50·2
100

Φ∗Y = −10+50
0

Φ∗Y = 90
0

Figure 2: Example of optimisation for 2 initially defaulted banks.

3.3 Benefit from infusion

A main property of providing infusion is not only that it rescues a given bank,
but it also stabilizes the whole system by preventing distress propagation.
In the upcoming simulations and analysis we quantify prevented losses by
the following measure called ”benefit”. This is defined as the percentage
decrease in the sum of interbank and fire sale losses also taking into account
the amount of infusion:

benefit = 1−
IB lossesafter + FS lossesafter + infusion

IB lossesbefore + FS lossesbefore
, (13)

where subscripts ”before” and ”after” denote whether losses are calculated
for the network before or after the infusion. This amount expresses how
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much higher order losses are avoided and is similar to a multiplier(-1). If it
is close to zero, it means that the infusion was only able to eliminate first
order losses; these losses immediately appear at counterparties. Intuitively,
banks receive infusion by considering their capital shortfall. If losses after
infusion are 0 and the benefit is also 0, it means that the original losses
were very close to the sum of infusions. In this case, infusion could be
considered as not worthwhile, as not being systemically necessary. If this
benefit is larger than zero, it can be interpreted as a benefit of the (financial)
economy. It is important to note that the benefit can also be negative. That
would happen if the amount of infusion is higher than the amount of initial
shortfalls and interbank losses, e.g. the monetary cost of saving the banks
exceeds the benefits if the only goal is to minimize contagion losses.

The ”investment” can be done either by the banks themselves by holding
additional capital or the policymaker as emergency liquidity assistance or
private or public means of recapitalisation. For more details on ex-ante and
ex-post evaluation of the infusion, see section 5 later.

4 Results

4.1 Data

We join two different datasets for the analysis of contagion losses and the
optimal equity infusions to restrain such losses in the euro area banking
sector. One dataset collects balance sheet elements for banks, while the
second one is used to form the network.

First, we take capital levels for stressed banks from the output of the
macroprudential perspective of the 2018 EBA stress test of the euro area
banking sector (Budnik et al. 2019). The main contribution of this stress
test is that it assumes a dynamic balance sheet reaction of banks in response
to a shock and introduces a feedback loop between the banking sector and
the real economy. The stress test found that the euro area banking sector
was overall resilient and that only a small portion of banks would breach
their minimum capital requirements, i.e. ci < ci,th. We take results for the
adverse scenario of the stress test. We use the projections of capital levels
for the period 2019Q1 to 2020Q4. Banks that are not participating in the
EBA stress test or not part of the SSM’s so-called SREP sample are not
shocked in this setup.6

6Among the 119 significant institutions (SIs) that the ECB directly supervises, the
35 largest are part of the EBA stress test sample, while the ECB also conducts a parallel
stress test for the rest of the SIs (the so-called SREP banks).
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The second dataset is described in details in Covi, Gorpe, and Kok
(2021). It contains bilateral exposures between banks, minimum capital
requirements as mentioned above and amounts of high quality liquid assets
(HQLA) as well as illiquid assets (non-HQLA) retrieved from FINREP and
COREP templates. The reference date for this dataset is end of 2018. To
construct the interbank network, we use bilateral exposures extracted from
banks’ reports of large exposures and large liabilities (C67). We focus on the
interbank exposures reported, that is, non-financial corporations, general
governments, central banks and households are omitted. An exposure is
a large exposure if it exceeds 10% of an institution’s eligible capital or its
value is above EUR 300 million. The structure of the data is in line with the
standard unsecured lending literature as financial institutions have to report
collateral pledged for given exposures therefore one can simply calculate the
amount of net exposures. These net exposures are used as li,j in the model.
Short-term exposures si,j are obtained from exposures with less than 30 days
maturity. Fire sale prices pi of illiquid assets are calculated as weighted
averages of haircuts applied to the portfolios of non-central bank eligible
instruments.

Figure 3 shows a visual representation of our network of interbank ex-
posures as of end-2018.

Throughout the analysis the default threshold of capital adequacy is
assumed to be the sum of Pillar 1 requirement, Pillar 2 requirement and the
capital conservation buffer (P1R+P2R+CCoB). The modelling approach
allows for adjusting this threshold.

4.2 Analysis – Macro results

In this section we show the power of the methodology using the dataset de-
scribed above. We identify several important properties of the framework.
First, it is demonstrated that unconstrained infusions are able to eliminate
all losses in the interbank network, even without infusing all banks. Sec-
ondly, we find that the benefit from infusion can become negative when
saving a bank is not worth from a purely financial point of view. Lastly,
we highlight non-linear properties of the existence of a budget constraint on
the amount infusion, regardless of the fire sale mechanism assumed.

For illustrative purposes, we conduct the analysis for all quarters be-
tween 2019 Q1 and 2020 Q4 using the results of the macroprudential stress
test as a starting point. The analysis is done by assuming simultaneous
defaults in each quarter without feeding back the contagion results into the
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Figure 3: A visualisation of the large exposure network of banks in the
eurozone
Orange nodes are banks subject to SSM supervision, blue nodes are banks subject to
national supervision, sizes of nodes are proportional to the amounts of risk weighted
assets
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macroprudential stress test for the following quarter.7 Tables 1-4 in Ap-
pendix D report the results for the case without fire sales and for the three
different fire sale mechanisms. The reader can also find a detailed explana-
tion of results in Appendix D, while this section focuses on the key findings
of our analysis.

Losses without infusion. Figure 4 shows the distribution of inter-
bank losses and fire sale losses across all quarters of the simulation horizon,
assuming that there is no infusion at all (ξ = 0). The left panel shows
boxplots of LIB(0), the right panel depicts boxplots of ∆(0). Both fire sale
losses and interbank losses are different across the different fire sale assump-
tions: the higher the fire sale losses, the higher are interbank losses. This
fact is a consequence of the payment equilibrium approach of our model.
Since interbank payments are proportinal to the individual banks’ asset-
to-debt ratios and these ratios are depreciated by both fire sale losses and
potentially non-performing interbank loans (equation (3)). Hence, higher
fire sale losses decrease asset-to-debt ratios, this leads to higher interbank
losses which further decrease the asset-to-debt ratios and thus increase fire
sale losses. Consequently, we find similar interbank losses for the no fire
sales (0), fire sales type (A) and fire sales type (C), as in this case fire sale
losses are limited or even zero. There is a significant difference for fire sales
type (B), the higher values of which causing outstanding interbank losses as
well. In this specific fire sale assumption, short-term funding is withdrawn
from defaulted banks resulting in high fire sale losses for these defaulted
banks and given that the capital levels of defaulted banks are even further
depleted, their ability to pay back interbank obligations is even weaker.

Unconstrained infusion. As reported in the second blocks of Tables
1-4, unconstrained (M =∞) optimal infusions are able to completely elimi-
nate contagion losses in the system. This is not surprising and in particular
we will show in the following section that when there is no budget constraint,
optimal infusions are identical across different fire sale assumptions. In or-
der to quantify how much it is worth to save the initially defaulted banks, in
Figure 5 we look at the functional relationship between our defined benefit
measure (equation (13)) and the total amount of optimal infusions. Our
most interesting observation is that the benefit from an infusion can also
be negative. This is particularly the case when the sum of fire sale and
interbank losses are smaller, e.g. for some quarters in fire sale types (0) and

7This could lead to an underestimation of overall losses, and hence the number of
defaults at the end of the stress test horizon. This notwithstanding, the end-of-horizon
results assume a simultaneous default of institutions and could be used as a worst case
scenario.

ECB Working Paper Series No 2554 / May 2021 20



FS (0) FS (A) FS (B) FS (C)
0

0.05

0.1

0.15

0.2

%
 o

f R
W

A

Interbank losses

FS (0) FS (A) FS (B) FS (C)
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Fire sale losses

Figure 4: Distributions of interbank and fire sale losses without infusion, for
the different fire sale assumptions (FS (0) denotes no fire sales).
Distributions are across all quarters: 2019Q1–2020Q4. Interbank and fire sale losses
are reported in percentage of risk weighted assets of the stress tested banks.

(C) simulations, and for fire sale type (A) in one case. Though the levels
of total infusions are equal across fire sale assumptions as seen in the fig-
ure (horizontal lines), benefits are lower when eliminated losses are too low
compared to initial capital shortfalls. Equivalently, the higher the contagion
losses across fire sale types, the higher benefit the policymaker can achieve
by the infusion. In Appendix D in the second blocks of the tables it can
also be seen that not all initially defaulting banks were needed to be saved
only those banks need to be saved which create contagion losses.8 Thus,
optimization makes sense even if infusions are equal to the capital shortfalls
of banks which create contagion losses.

Constrained infusion. In this exercise we set the budget constraint
M to be equal to half of the total infusion needed without any constraint.
These simulations show how contagion losses, infusion amounts and benefits
change when there is a binding constraint on infusions. Figure 6 shows the
distribution of total losses (L(ξ∗), where ξ∗ is the optimal infusion) across
the quarters for all fire sale mechanisms. Still, fire sale type (B) delivers the
highest contagion losses. Contrary to unconstrained infusions previously, we

8Obviously, there could be other reasons for wanting to save those banks. Here we
only focus on the need to limit systemic effects due to interbank contagion losses.
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Figure 5: Relationship between our defined benefit measure and total
amount of infusions for different fire sale assumptions. Infusions are un-
constrained.
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are naturally not able to eliminate all losses in the system as infusions cannot
cover the total initial capital shortfalls of banks due to the budget constraint,
thus we are not able to save all systemically important banks. This property
implies major non-linearities of the modelling framework which are intro-
duced via Figure 7. One would intuitively think if the budget constraint is
decreased to one half, the amount of infusions in the optimal control prob-
lem and the benefits also become one half. However, as explained above, as
we may not be able to save some systemically important banks due to the
budget constraint, they may still trigger contagion in the network. Thus,
the amount of infusion with half budget constraint is at most half of original
infusions as the right panel of the figure confirms. On the other hand, our
defined benefit measure is a function of infusion and contagion losses with
and without infusion (equation (13)). We have seen that infusion becomes
at most half of the original amount, and our simulations show that not sav-
ing some systemic banks results in more than half of contagion losses than
originally (Tables 1-4). All this together implies that our benefit measures
are also non-linear and the constrained benefit becomes at most half of the
original benefit, as depicted in the left panel of Figure 7.
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Total losses, constraint = 0.5

Figure 6: Distributions of total losses in case of constrained infusion for
different fire sale assumptions.
Distributions are across all quarters between 2019Q1 and 2020Q4. Losses are re-
ported in percentage of risk weighted assets of the stress tested banks.
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Figure 7: Non-linear properties of optimal infusions and benefits for the
different fire sale assumptions.
All infusions and benefits for all quarters between 2019Q1 and 2020Q4. Infusions
are reported in percentage of risk weighted assets of the stress tested banks.

In conducting the optimisation, the exploration all possible subsets of
initially defaulted banks is a time-consuming exercise because the number
of calculations increases exponentially with the number of defaults. We have
found in practice for a banking system of size 373 that calculations up to 26
exogenous defaults can be completed within 6 hours for one setup, while 11
defaults need less than 0.2 minute running on one CPU core.9

4.3 Analysis – Bank-level results

In this section we aim to understand our capital infusion results by looking
at the original capital shortfall (ci,th−ci) of banks from the macroprudential
stress test model and compare these to the infusions (ξ∗i ) needed from the
solution of (7). By looking at bank-level results, we are also able to shed
further light on macro results from the previous section. The main takeaway
from this section are the following. Unconstrained infusions are identical to
initial capital shortfalls regardless of the fire sale mechanism, while when a
constraint is binding, solutions can be different. We also give an explanation

9Calculations could be boosted by using parallelization or GPU computing.
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of the non-linear property of the infusion as a function of budget constraint.
Bank-level Figures 8 and 9 show capital shortfalls and infusions needed

for the different quarters of the 2018 stress test. Figures in the left panel
are the solutions when there is no constraint on the infusions, while the
right panels show the constrained solutions (there was no solution for the
constrained infusion for 2019 Q1). These figures confirm the theoretical
reasoning in the previous section that when there is no constraint on the
amount of infusion, capital infusions are equal for all types of fire sale losses.
Furthermore, they are equal to the exact amounts of capital shortfalls. This
result is not surprising, but we emphasize that not all banks necessarily need
to be saved from a contagion perspective. Those banks which are not very
active on the interbank market may not need to be rescued as they do not
generate material contagion effects. In the constrained case, if there is a
bank where an infusion is not possible, it might cause immediate interbank
and fire sale losses to other banks in the network. These losses could further
reduce the capital adequacy ratio of those banks that are being rescued and
their capital shortfall would be higher than the initial shortfalls. Therefore,
it is possible that infusions are higher than capital shortfalls from the stress
test. Such examples can be seen in all figures for the constrained solutions.
This happens for example in 2020 Q1 for bank 6 where fire sale type (C)
infusion is above the capital shortfall, in 2020 Q3 for bank 6 and in 2020
Q4 for bank 7 and 9.10 Finally, it can be noted that if there is a budgetary
constraint, infusions can be different across fire sale types (right panel in
Figures 8 and 9). These differences could not have been explored without
the analytical approach presented here.

In addition to the previous results which focused on the practical proper-
ties of the methodology, in Appendix E we present a comparison to standard
measures applied in network analysis or in the assessment of systemically
important institutions. It is shown that our methodology provides added
value.

10The numbers of banks are not IDs, just an enumeration of the initially defaulted
banks.
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Figure 8: Capital shortfalls and infusions for different fire sale types in
quarters of 2019
Measures are in percentage of risk weighted assets of the individual banks. * means
that there was no solution for fire sale type (A)
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Figure 9: Capital shortfalls and infusions for different fire sale types in
quarters of 2020.
Measures are in percentage of risk weighted assets of the individual banks.
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5 Discussion: Policy applications

This section elaborates on the possible policy applications of the optimal
contagion model. It is possible to apply the methodology in several ways
and it will be useful to distinguish between ’ex post’ crisis management
actions and ’ex ante’ preventive measures.

It should be emphasized that the model treats solvency and liquidity
identically. In fact, both the capital buffer and the liquidity buffer of the
bank is assumed to serve as a loss absorption capacity. Hence, the opti-
misation can be performed jointly within the model. This means that it
is possible in theory that in a banking system there are both liquidity and
solvency distressed banks. The optimization in this case would need the
cooperation of the competent authorities. In principle, after running the
contagion algorithm, one can easily identify which constraint (solvency or
liquidity) was binding for a given bank. By doing so, it can be decided
whether any given bank is in need of liquidity or additional capital.

5.1 Ex-post application: Crisis management

For what concerns ex-post crisis management the optimal contagion ap-
proach presented in this paper could be a valuable tool for decisions on
whether to liquidate or bring into resolution a bank, or group of banks. By
determining which banks needs to be saved or not if the aim is to minimise
contagion losses in the financial system the tool can be used in ’public in-
terest’ assessments (i.e. whether failing or likely to fail banks should be
resolved or liquidated). Furthermore, in the case of potential resolution the
approach described here can be useful for assessments of whether financial
stability would be endangered which may require targeted measures to cater
for systemic liquidity shortages or situations where a solvent bank would be
unable to raise capital privately in the markets. Such measures could include
precautionary recapitalisation or government guarantees to issue new liabil-
ities or to assess central bank funding (see Art. 32.4 of the Bank Resolution
and Recovery Directive, BRRD).

According to the BRRD, the recapitalisation amount should be deter-
mined on the basis of an adverse scenario of a stress test and/or asset quality
review. This, however, would typically ignore second-round effects such as
direct and indirect (fire sale-related) contagion losses and thus potentially
lead to biased estimates of the true recapitalisation needs in the system. The
estimated infusion amount derived using the optimal contagion approach
presented here, could therefore be used to inform the recapitalisation cali-
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bration by providing a more holistic perspective.
In principle, the optimal contagion tool could also be useful for assessing

liquidity needs in an ongoing resolution, which could occur even if the bank
had been recapitalised.11 Such temporary liquidity support, assuming that
private funding sources would not be available, could either be provided
through emergency liquidity assistance (ELA) provided by the national cen-
tral banks or from a government guarantee. Specifically, in case of ELA, a
national central bank provides central bank money against suitable collat-
eral for a bank which should be proven solvent or there should be a credible
prospect of restoration of its capital position. Therefore, to apply our frame-
work for such circumstances the solvency condition would be replaced by a
liquidity condition for the given banks which are considered to receive ELA
(the definition of γi does this already). Owing to the fact that banks are
also expected to pledge collateral against ELA, the infusion constraint in the
optimisation problem could be chosen considering the availability of central
bank eligible collateral.

5.2 Ex-ante application: Crisis prevention

The framework could, however, also be applied by a macroprudential au-
thority taking an ex-ante view with the aim of preemptively ensuring the
resilience of the financial system to adverse shocks that may trigger system-
wide contagion losses. Using this methodology, the policymaker is able to
determine capital levels needed in the banking system in case of a stress
event. These could be interpreted as macroprudential capital requirements
to mitigate the risk of contagion. Capital requirements could be calibrated
such as to minimise the need for capital infusions later on and our framework
could be useful to inform such calibration.

For the purpose of making the financial system resilient to contagion, an
ex-ante perspective could for instance be reflected in the calibration of ad-
ditional capital requirements, such as the G-SII/O-SII buffer requirements
targeting the systemicness due to interconnectedness of individual banks or
a more broad-based Systemic Risk Buffer. Though the goal is clear, it is still
not fully crystallized how capital requirements addressing risks due to inter-
connectedness should be optimally calibrated. Currently, G-SII and O-SII
buffer calibration is implemented with simple size-based measures which do

11Experience suggests that banks in, or recently out of, resolution often may not be able
to obtain sufficient liquidity to maintain critical operational tasks and meet margin calls.
This could, for example, be due to a lack of adequate collateral to access market-based or
central bank funding; see e.g. Amamou et al. (2020); Grund, Nomm, and Walch (2020).
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not account for network dimensions. In the EU context, current O-SII guide-
lines EBA (2014) measure interconnectedness with a simple indicator-based
method to derive a so-called O-SII score for interconnectedness. Capital
calibration is then based on a simple mapping between scores and capital
buffers. However, the suggested capital buffer calibration methods disregard
any structural mechanism of the interconnected system and some recent
studies have documented that O-SII scores to be only partially effective in
quantifying contagion effects in Fink et al. (2016), Alter, Craig, and Rau-
pach (2015) and Covi, Kok, and Meller (2018). Alter, Craig, and Raupach
(2015) recalibrate capital requirements in the German banking system based
on the centrality measures of individual banks in the interbank network also
quantifying losses from correlated credit exposures. They find that this ex-
ercise leads to a more resilient system and identify some centralities that
are the most effective. Fink et al. (2016) use a different approach allowing
for losses triggered by the change in probabilities of defaults (PD) of banks
in distress. These PDs give rise to losses in the credit valuations of the
counterparties. They find that banking system level losses correlate with
some centrality measures better than the O-SII scores themselves. Covi,
Kok, and Meller (2018) show that network based measures of systemicness
provide value added compared to size-based interconnectedness indicators.12

The framework presented in this paper, however, goes a step beyond the
application of standard centrality measures and attempt instead to derive
the optimal solution for contagion loss minimization purely based on theo-
retical considerations. This can then be used to determine the level of capital
buffer that banks should hold to prevent systemic losses when tail events
occur. In practice, the capital buffer needs being optimally determined by
the model could therefore be used to complement standard-metrics (such
as size-based indicators and network centrality measures) and help inform
decisions on G-SII/O-SII or Systemic Risk Buffer calibrations. See also Ap-
pendix E for a comparison of standard interconnectedness metrics and the
infusion results derived from our framework. Notably, the results presented
in this paper are based on one specific adverse scenario outcome. To avoid
scenario-dependency it might be more prudent to employ an array of scenar-
ios and then evaluate the ranges of optimal contagion control derived using
the model.

One deficiency of using the framework for calibrating capital require-
ments is that it does not take into account that banks’ behaviour might

12The application of centrality measures is challenged theoretically and numerically in
Fukker (2018) and in Siebenbrunner (2019).
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change in response to additional requirements. To address this, one could
apply a dynamic model of endogenous bank behaviour on the interbank
market in the spirit of Ha laj and Kok (2015). Incorporating dynamic be-
haviour into our optimal contagion model is not straightforward, however,
and remains a problem for possible future research.

5.3 Possible extensions

This section enumerates possible extensions or future challenges. As ac-
knowledged previously, our current modelling framework does not take into
account portfolio overlaps for in banks’ balance sheets as we take fixed prices
for marketable illiquid assets. A possible extension of the model could be to
take into account these common exposures (Cont and Schaanning 2019).

Another interesting avenue was laid down by Barucca et al. (2020) and
Bardoscia et al. (2019) who introduce a generalized network valuation of
interbank claims incorporating uncertainty in banks’ assets. These models
encompass several other well-know interbank contagion models, thus, a next
step could be the extension of the optimisation procedure to such classes of
models.

A newer area in state-of-the-art stress testing is the inversion of models,
also called reverse stress testing (Henry 2021). That is, we are interested
in the severity of risk factors that lead to given level of capital shortfalls
instead of calculating the outcomes of scenarios. Assuming that the endoge-
nous variables in a stress test model are differentiable functions F of possibly
lagged endogenous and exogenous variables, one can try to find the inverse
of the model of the form F−1 by applying the Newton–Raphson method, see
for example Hansen (2021). This method is useful when a model is based
on linear regressions and therefore model equations are linear and of course
differentiable. However, typically interbank contagion modelling equations
are highly non-linear and non-differentiable and the researcher should ap-
proximate non-linear equations with smooth functions. An attempt on this
approximation is done in Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015a)
but a Taylor expansion is not proven to be efficient in numerical experiments
(Fukker 2018). Also, these methods work robustly only if there is only one
inverse. If the function F is not a bijection, there might be several possible
inverses. Furthermore, in this kind of model inversion, there is no optimi-
sation. For example, it could find a solution where there are no contagion
losses, but that solution could be an upper bound of the optimal solution.
Keeping these in mind, interbank contagion losses can be minimized rig-
orously by using methods similar to the one presented in this paper, and
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given the solution from this procedure can be fed into the Newton–Raphson
method to invert a differentiable equation system (macroprudential stress
test). This topic remains an avenue for possible future research.

6 Conclusion

We have studied the problem of the control of interbank contagion. This
problem can be stated as the calibration of capital infusion in defaulted
banks to mitigate contagion losses in the financial system. We have shown
for this purpose a quantitative method that could also be used to calibrate ei-
ther additional capital requirements or emergency liquidity assistance (ELA)
provided to financial institutions. We also implemented three possible types
of fire sale mechanisms to study the optimisation procedure. This optimi-
sation can be done easily by the analytical solutions we derived. We found
that the policymaker could be able to optimise its behaviour in a tail event
of simultaneous banks under distress.

The method proved to be efficient in decreasing interbank and fire sale
losses in an optimal manner. We have also seen that the unconstrained
amount of infusion is independent from the fire sale mechanism itself and
the possible benefit is very high when the assumed fire sale mechanism is
conservative. Another important observation is that it may not be needed
to save all of the defaulted banks to eliminate contagion losses, only banks
with potential to amplifying contagion losses need to be saved. Introducing
infusion constraints lead to different infusions depending on the fire sale
mechanism and the potential benefit of an infusion becomes much lower.
The drop in the benefit was explained by the fact that a budget constraint
might be so binding that more contagious banks may not be saved and
therefore the effect of those banks will not be proportional to the change in
the constraint.

While we do not think that any model is able to perfectly describe the
behaviour of an economic system, we find the approach a useful additional
tool to analyse a problem from several points of view. Possible future work
could be an introduction of endogenous network formation. Financial net-
works change endogenously (Ha laj and Kok 2015) in time and in response
to shocks. Introducing capital requirements on interbank exposures would
lower interbank market activity. Recalculating buffers with lower interbank
activity would also lead to lower capital requirements.
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A Proof of Corollary 1: Linking default thresholds

The initial asset-to-debt ratio of a defaulted bank i can be rearranged equiv-
alently

ri =
γi +

∑
j πj,ilj

li
< 1

min(ci − ci,th, HQLA) +
∑

j li,j −
∑

j lj,i +
∑

j πj,ilj

li
< 1

min(ci − ci,th, HQLA) +
∑

j li,j

li
< 1

min(ci − ci,th, HQLA)

li
+ 1 < 1

min(ci − ci,th, HQLA)

li
< 0

⇐⇒ ci − ci,th < 0

where in the last step we used that HQLA and interbank liabilities are
strictly non-negative while ci − ci,th < 0 for a bank under distress.

B Proof of Corollary 2: Equivalence with endoge-
nous recovery rate models

We show equivalence with Rogers and Veraart (2013). We denote by l
the vector of interbank liabilities. The standard mapping determining the
interbank payments is

φ(l)i =

{
li if li ≤ γi +

∑
j πj,ilj

γi +
∑

j πj,ilj else,

where in the first line the bank is able to fulfill all of its obligations while in
the second line the bank is able to pay only the available amount of liquid

assets. The asset-to-debt ratio of the bank is
γi+

∑
j πj,ilj
li

the value of which
around 1 is a tipping point in the recovery rate, therefore by introducing

min
{
γi+

∑
j πj,ilj
li

, 1
}

the above mapping can be written like

φ(l)i = min

{
γi +

∑
j πj,ilj

li
, 1

}
li = min {xi, 1} li,
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which shows the equivalence with the mapping of the asset-to-debt ratio in
equation (1).

C Finding the optimal solution

Analytical solution of the non-linear equation system (12). We have to find
a ξ for which

f(x, ξ, S)i,i∈S

=
γi + ξi − δi(γi + ξi, R

S
j ) +

∑
j∈S πj,ilj +

∑
j /∈S πj,ilj ·min{RSj , 1}

li
≥ 1.

Actually, it is enough to find ξi for a fixed i. For fire sale type (B), xi = 1
implies that δi = 0. Note that the two sums on the left side are constants as
they do not depend on ξi and all RSj are known from the iteration in section
3.2. After rearranging constants to the right side we get

ξi − δi(γi + ξi, R
S
j ) ≥

Ei︷ ︸︸ ︷
li − γi −

∑
j∈S

πj,ilj −
∑
j /∈S

πj,ilj min{RSj , 1} .

For fire sale type (B), ξi = Ei is a solution. By following the definitions of
δ functions,

ξi −min

{
(max {γi + ξi, 0} −Di)

−

pi
, yi

}
(1− pi)− Ei = 0,

where Di is a fire sale type specific constant. We apply max {γi + ξi, 0}
because if γi + ξi < 0, there would be instant fire sale loss even without
interbank losses or withdrawn funding. Multiplying by Ai = pi

1−pi ,

Aiξi −min {−min {max {γi + ξi, 0} −Di, 0} , piyi} −AiEi = 0.

Now depending on whether the first or second term applies in the min and
max functions, one can find four different possible solutions:

ξi,1 = Di+AiEi
Ai

, ξi,2 = piyi+AiEi

Ai
,

ξi,3 = Ei, ξi,4 = Di+AiEi−γi
Ai+1 ,

from which the correct solution is easy to be identified for all i.
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D Detailed simulation results

Focusing first on the case without capital or liquidity infusions (Table 1-4,
upper panels), the number of exogenous defaults (”exodef”) from the stress
test increases from 5 to 11 during the time horizon. The number defaults
after contagion is between 6 and 16 depending on the fire sale mechanism,
i.e. the maximum number of contagious defaults is 5.

When there are no fire sales, there are 1-4 additional institutions that
default due to contagion (”defaults” in Table 1). Losses on interbank ex-
posures span between 0.09 and 0.19% of the total risk exposure amount of
stress tested banks.

In the second block of the table (”infused, no constraint”) there is no
constraint on the amount of infusion (M =∞). We can see that obviously
in this case a certain amount of equity infusion is able to completely elim-
inate interbank losses. We do not need to save all banks that are initially
defaulted. Indeed, there are 0 interbank losses despite the fact that 3-5
banks remain defaulted. The reason for this is that there is no need to save
banks which do not have any interbank obligations because saving them
would not decrease interbank losses. In the last column ”benefit” is com-
puted as in equation (13). One can observe that as the amount of infusion
needed inreases, the benefit decreases and when exceeding the amount of
the corresponding contagion losses without infusion, the benefit even goes
into negative. In these cases, it is not worth saving the defaulted banks be-
cause the size of their interbank positions do not justify the need for capital
infusion.

In the third block (”infused, constraint 1/2”), in order to illustrate the
importance of the budget constraint, we report results that are obtained
with a constraint on infusion half the amount needed in the second block
(without constraint). Benefits are close to but below the previous exper-
iment, and it is clear that since the constraint is smaller than in the ”no
constraint” experiment, we still have defaults and interbank losses in the
infused network. By the end of our time horizon, interbank losses in the
presence of this constrained infusion increases to nearly the amount of losses
without any infusion. We also note that the number of infused banks and
the number of defaulted banks cannot be higher than the number of total
defaults after contagion and without infusion.

The following Tables 2-4 quantify the same effects assuming the differ-
ent fire sale mechanisms (A), (B) and (C). We can immediately infer that
interbank losses are different across the different mechanisms. This is the
consequence of the endogenous recovery rate as different fire sale mecha-
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nisms affect the balance sheets differently (as can be seen from equation
(2)). Therefore, the asset-to-debt ratios driving the ability to pay the inter-
bank obligations will be different across fire sale mechanism (A), (B), and
(C), respectively.

As a consequence, in Table 2 the interbank losses are very close to Table
1 losses since fire sale losses are very small except for the last two quarters.
This means that interbank losses in this case are so low that the value of
banks’ assets is just slightly deteriorated and they sell illiquid assets only to
a limited extent except in 2020Q3 and 2020Q4 where fire sale losses increase
to 0.04-0.06 percent of RWA of the stress tested banks. With unconstrained
infusion, benefits are positive between 1 and 20 percent, except for 2020Q1
which means that in this quarter the initial capital shortfalls were higher
than the contagion losses that would be contained by the infusion. But in
general, results show that original contagion losses were so high that they
dominated capital shortfalls, hence providing infusions up to the amount
of shortfalls induce positive benefits in most cases for this fire sale type.
The constrained infusions resulted in negative benefits in most of the cases.
This also shows the non-linear nature of contagion. The provision of half
the amount of infusions leads to at most half the amount of decrease in
losses. We will point to the fact in the next subsection that a decrease in
the budget constraint might immediately entail that it will not be possible
to rescue banks with relatively high capital shortfalls and therefore the in-
fusion benefit decreases by much more than the decrease in the amount of
budget constraint. In this case, fire sale losses remain high in the constrained
infusion experiment.

Table 3 shows results for fire sale type (B) where short-term funding
is withdrawn from defaulted banks. Given that direct interbank losses are
fairly limited in general, these type of fire sales lead to the highest amount
of fire sale losses13 because defaulted banks’ capital shortfall is already high
compared to the interbank losses and since short-term funding is withdrawn,
the asset side is further depleted by the fire sales of illiquid assets of those
banks which are already in default. These fire sale losses amount to 0.04-
0.06 percent of total risk exposure amount. The benefit of infusion is highest
in this case for unconstrained infusion clearly due to the fact that interbank
and fire sale losses without infusion were the highest in this case and a
smaller amount of infusion caused almost up to 60% benefits in the analysed
quarters. Constrained results are less spectacular; for the first three quarters
benefits are above 20%, and it goes into negative afterwards: the capital

13For the no infusion case
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shortfalls are so high later that they go above the amount of contagion
losses.

In Table 4, results are reported for fire sales (C) where short-term funding
is withdrawn by the defaulting banks themselves. The results show that
these withdrawals do not lead to further spread of contagion onto healthier
banks, because the number of defaults do not exceed the number of defaults
without any fire sales. Fire sale losses are therefore most limited in this case.
The unconstrained infusions’ benefit is slightly below 20% for the first three
quarters and goes below zero from 2020 Q1. Constrained benefits are also
mostly negative in this case.

These results confirm that infusions without a constraint are exactly the
same for all fire sale mechanisms. The theoretical reason is the following.
Since there is no constraint, infusions are enough to eliminate all losses in
the network. In this case, there are no fire sale losses, therefore the amount
of infusion is equal to the capital shortfall of banks. However, since we do
not need to infuse all of the defaulted banks, it is still worth to explore all
possible subsets of the defaulted banks. It is important to note that infusions
are still fairly close comparing different fire sales mechanisms in the presence
of a constraint. The reason is clear again for type (B) losses: fire sale losses
of a bank are only the function of the given defaulted banks’ asset-to-debt
ratio which are going to be saved. Hence, if this bank is saved then there is
no fire sale loss and the infusion is independent from other banks’ fire sale
losses. This explanation is not reasonable for type (A) and (C) losses and
points to the fact that fire sale losses occur mostly at banks that are not
saved by these infusions. Looking at the solution method in appendix C, it
is obvious that providing the amount of capital shortfall is not a solution
as defaulted banks might suffer additional fire sale losses which should also
be covered. An example can be seen in Figure 9 in the 2020Q1 constrained
chart in the top right corner. Bank 6 needed higher infusion than its initial
shortfall for fire sale type (C). This is due to the fact that it suffers fire sale
losses as a consequence of other banks’ failure that could not be saved in
the presence of the budget constraint. The following section confirms that
constrained infusions are depending on the fire sale mechanisms and not just
on the original capital shortfalls.
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no infusion

qtr exodef defaults
IB losses
(RWA%)

FS losses
(RWA%)

infusion
(RWA%) benefit

19q1 5 6 0.0898 0
19q2 5 6 0.0916 0
19q3 8 10 0.0971 0
19q4 7 10 0.1047 0
20q1 7 10 0.1189 0
20q2 8 12 0.1391 0
20q3 10 12 0.1644 0
20q4 11 13 0.1845 0

infused, no constraint
infused

19q1 2 3 0 0 0.0855 4.73%
19q2 2 3 0 0 0.0865 5.54%
19q3 5 3 0 0 0.0920 5.26%
19q4 4 3 0 0 0.1111 -6.06%
20q1 4 3 0 0 0.1321 -11.10%
20q2 5 3 0 0 0.1566 -12.61%
20q3 6 4 0 0 0.1887 -14.76%
20q4 6 5 0 0 0.2241 -21.48%

infused, constraint 1/2
infused

19q1 1 5 0.0500 0 0.0390 0.86%
19q2 1 5 0.0659 0 0.0252 0.54%
19q3 4 5 0.0827 0 0.0151 -0.66%
19q4 3 6 0.1011 0 0.0100 -6.09 %
20q1 3 6 0.1146 0 0.0176 -11.18%
20q2 4 7 0.1295 0 0.0298 -14.56%
20q3 5 6 0.1458 0 0.0475 -17.59%
20q4 5 7 0.1642 0 0.0651 -24.32%

Table 1: Losses in the original and infused network, no fire sales.
Interbank losses, fire sale losses and infusions are reported in percentage of risk
weighted assets of the stress tested banks.
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no infusion

qtr exodef defaults
IB losses
(RWA%)

FS losses
(RWA%)

infusion
(RWA%) benefit

19q1 5 8 0.0939 0.0127
19q2 5 8 0.0977 0.0143
19q3 8 11 0.1041 0.0158
19q4 7 11 0.1107 0.0161
20q1 7 11 0.1191 0.0114
20q2 8 13 0.1432 0.0155
20q3 10 13 0.1670 0.0373
20q4 11 16 0.1927 0.0576

infused, no constraint
infused

19q1 2 3 0 0 0.0855 19.79%
19q2 2 3 0 0 0.0865 22.70%
19q3 5 3 0 0 0.0920 23.22%
19q4 4 3 0 0 0.1111 12.39%
20q1 4 5 0 0 0.1321 -1.17%
20q2 5 3 0 0 0.1566 1.28%
20q3 6 4 0 0 0.1887 7.65%
20q4 6 5 0 0 0.2241 10.50%

infused, constraint 1/2
infused

19q1 0 * 8 0.0940 0.0127 0 0%
19q2 1 6 0.0319 0.0091 0.0302 5.97%
19q3 4 6 0.0431 0.0112 0.0209 4.09%
19q4 3 7 0.0549 0.0149 0.0101 -4.11%
20q1 3 7 0.0632 0.0101 0.0176 -9.17%
20q2 4 7 0.0720 0.0109 0.0327 -9.14%
20q3 4 7 0.0815 0.0297 0.0489 -9.94%
20q4 4 10 0.0918 0.0499 0.0663 -14.67%

Table 2: Losses in the original and infused network, fire sales A.
Interbank losses, fire sale losses and infusions are reported in percentage of risk
weighted assets of the stress tested banks. *: there was no solution
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no infusion

qtr exodef defaults
IB losses
(RWA%)

FS losses
(RWA%)

infusion
(RWA%) benefit

19q1 5 7 0.1368 0.0450
19q2 5 8 0.1523 0.0578
19q3 8 11 0.1607 0.0623
19q4 7 11 0.1667 0.0629
20q1 7 10 0.1575 0.0406
20q2 8 12 0.1786 0.0450
20q3 10 12 0.1850 0.0454
20q4 11 13 0.1871 0.0458

infused, no constraint
infused

19q1 2 3 0 0 0.0855 52.97%
19q2 2 3 0 0 0.0865 58.82%
19q3 5 3 0 0 0.0920 58.73%
19q4 4 3 0 0 0.1111 51.63%
20q1 4 3 0 0 0.1321 33.31%
20q2 5 3 0 0 0.1566 29.93%
20q3 6 4 0 0 0.1887 18.14%
20q4 6 5 0 0 0.2241 3.82%

infused, constraint 1/2
infused

19q1 1 5 0.0727 0.0227 0.0406 25.22%
19q2 1 5 0.1010 0.0352 0.0277 22.01%
19q3 4 6 0.1183 0.0356 0.0175 23.13%
19q4 3 7 0.1607 0.0587 0.0102 0.01%
20q1 3 6 0.1508 0.0363 0.0176 -3.36%
20q2 4 7 0.1616 0.0367 0.0305 -2.35%
20q3 5 6 0.1631 0.0370 0.0480 -7.66%
20q4 5 7 0.1647 0.0373 0.0652 -14.67%

Table 3: Losses in the original and infused network, fire sales B.
Interbank losses, fire sale losses and infusions are reported in percentage of risk
weighted assets of the stress tested banks.
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no infusion

qtr exodef defaults
IB losses
(RWA%)

FS losses
(RWA%)

infusion
(RWA%) benefit

19q1 5 7 0.0927 0.0100
19q2 5 7 0.0957 0.0117
19q3 8 11 0.1012 0.0130
19q4 7 11 0.1068 0.0131
20q1 7 10 0.1189 0.0068
20q2 8 12 0.1399 0.0075
20q3 10 12 0.1652 0.0098
20q4 11 13 0.1850 0.0122

infused, no constraint
infused

19q1 2 3 0 0 0.0855 16.72%
19q2 2 3 0 0 0.0865 19.43%
19q3 5 3 0 0 0.0920 19.40%
19q4 4 3 0 0 0.1111 7.39%
20q1 4 3 0 0 0.1321 -5.08%
20q2 5 3 0 0 0.1566 -6.28%
20q3 6 4 0 0 0.1887 -7.78%
20q4 6 5 0 0 0.2241 -13.62%

infused, constraint 1/2
infused

19q1 1 5 0.0500 0.0079 0.0417 3.04%
19q2 1 5 0.0659 0.0080 0.0280 5.22%
19q3 4 5 0.0827 0.0080 0.0178 4.93%
19q4 3 7 0.1032 0.0119 0.0105 -4.75%
20q1 4 5 0.1146 0.0056 0.0384 -26.14%
20q2 4 7 0.1295 0.0057 0.0301 -12.13%
20q3 5 6 0.1458 0.0070 0.0477 -14.56%
20q4 6 6 0.1642 0.0090 0.0958 -36.36%

Table 4: Losses in the original and infused network, fire sales C.
Interbank losses, fire sale losses and infusions are reported in percentage of risk
weighted assets of the stress tested banks.
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E Optimal infusions and interconnectedness mea-
sures

Usual measures used in the identification and calibration of capital buffers
are either some simple network centralities or size-based measures. All these
kind of measures reflect the systemic importance of the institutions but as
seen in the presentation of our methodology, contagion losses are driven not
only by the network structure but also by the capital or liquidity shortfalls
arising when a shock hits the banking system (or from the opposite perspec-
tive, conditional on how resilient the banks are to shocks). While previous
theoretical studies point out that high levels of interconnections can have
a stabilisation property, once the shock is severe enough dense interconnec-
tions can propagate the shock in the network. However, such detrimental
propagation effects will only materialise if interconnected banks are severely
hit by the shock to an extent that their solvency and/or liquidity positions
deteriorate to a point where they fall below regulatory minima.

In order to illustrate how the optimised infusions derived from our model
compares with traditional network metrics, we use the optimal infusion
amounts using the results of the macroprudential stress test (at the last
projection point, which indicates the highest number of defaults and capital
shortfalls). We compare the optimal infusions to eigenvector centralities, in-
degrees (interbank assets) and out-degrees (interbank liabilities) and OSII
interconnectedness scores of the originally defaulting eleven nodes in 2020
Q4. The correlation of eigenvector centralities, and the different degrees is
above 80%. OSII interconnectedness scores exist only for 55 banks in the
consolidated bank network, but its correlation is only around 20% with the
other network measures.14 Interestingly, one can see from Figure 10 that re-
gardless of the infusion constraint applied and the specific centrality metric,
the optimal infusions have no functional relationship to the other measures.
This corroborates previous findings of Fink et al. (2016), Alter, Craig, and
Raupach (2015) and Covi, Kok, and Meller (2018) which suggest that simple
network characteristics may only provide a partial perspective on the sys-
temicness of individual institutions. Obviously, the optimal infusions derived
here are a function of our modelling framework but also of the specific stress
scenario imposed. Other scenarios may give a different picture. However,
the point remains that to truly gauge the systemicness of individual banks
it is crucial to go beyond simple metrics and interconnectedness scores.

14It should be noted however that these scores are calculated at country level and
therefore banks from different countries are not comparable.
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Figure 10: Optimal infusions compared to systemic importance measures in
the different constraint and fire sale exercises.
The measures from top to bottom are OSII interconnectedness score, eigenvector
centrality, in-degree (interbank assets) and out-degree (interbank liabilities). Opti-
mal infusions are in percentage of total risk weighted assets of stress tested banks.
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