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Abstract

This paper builds an unobserved components model that combines a multivariate filter ap-

proach with a Cobb-Douglas production function. This combination allows potential output

estimates to incorporate more economic structure than the traditional production function

approach, while retaining the ability to conduct growth accounting exercises. The model

is a backward-looking state space model estimated with Bayesian methods employing the

Kalman filter to jointly decompose six key observable variables (real GDP, unemployment

rate, labour force participation rate, hours worked per person, a measure of core inflation

and wage inflation) into trend and cyclical components. To do so, it relies on several reduced

form relationships across the cyclical components, such as a wage and a price Phillips curve

and an Okun’s law type relationship, while it also assumes common trends for a few vari-

ables and allows for hysteresis effects. The model is estimated on aggregate euro area data

with Bayesian methods. The paper finds that the resulting output gap estimates have good

revision properties and reasonable forecasting performance in particular in terms of GDP

and core inflation vis-a-vis a set of benchmarks.

JEL classification: C32, D24, E32, E37

Keywords: state-space model, production function, Bayesian estimation
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Non-technical summary

The conduct of monetary policy relies on the assessment of the state of the economy which is often

defined as the deviation of activity from its long-run trend, or the business cycle. However, the

long-run trend of economic activity and thus the business cycle is unobservable, i.e. it cannot

be directly measured, but has to be inferred from the available data. Unfortunately, there

are infinitely many ways to decompose observable data into unobservable trend and cyclical

components. The researcher thus needs to find a way to ’discipline’ the decomposition by

making assumptions about the processes governing trends and cycles. For example, a typical

assumption is that the time series of the trend evolves in a smoother way than the cycle. In a

multivariate context, assumptions can be made on the basis of economic theory, such as imposing

a relationship between price and/or wage pressures and the business cycle.

This paper proposes a method for estimating the unobservable states of the economy that

are relevant for monetary policy, such as the output gap (i.e. the difference between actual

output and its potential level) or the unemployment gap (the difference between the actual

unemployment rate and its trend). In order to avoid the pitfalls of some widely-used trend-cycle

decomposition methods, the current approach uses a multi-variate set-up, according to which

the extraction of the unobservable states is guided by a set of economic relationships assumed

to drive the development of the sates over time, i.e. a model. The model is built around a

production function but allows for more economic structure than more traditional approaches

while retaining the ability to conduct growth accounting exercises. The model decomposes six

key observable variables (real GDP, unemployment rate, labour force participation rate, hours

worked per person, core inflation and wage inflation) simultaneously into their trend and cyclical

components. To do so, it relies on well-established relationships, such as a wage and a price

Phillips curve, connecting wage developments with labour market slack and price developments

with the output gap, as well as an Okun’s law type relationship connecting labour market slack to

the output gap. Importantly, the model also features connected trends and allows for hysteresis

effects, i.e. the possibility of transitory fluctuations exerting an effect on long-term trends. The

model is estimated on aggregate euro area data via Bayesian methods, a combination of prior

beliefs about the prevailing economic relationships and the information in the data.

Such estimates of the state of the economy are always surrounded by a high degree of

uncertainty and thus tend to be revised when new information becomes available, e.g the publi-
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cation of an additional quarter of national accounts data. Given their unobservability, it is not

straightforward to evaluate or choose between alternative estimates of the state of the economy.

Typically, the estimates are expected to provide a plausible narrative about the evolution of

the state of the economy, revised to a limited extent over time in response to incoming data

and have some predictive power with respect to the observable variables from which they were

derived. The model based estimates of the unobserved state of the economy introduced in this

paper are evaluated against the above criteria and are found to have good revision properties

and reasonable forecasting performance particularly in terms of GDP growth and core inflation

vis-a-vis a set of benchmarks.
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1 Introduction

Observable time series can be decomposed to unobservable trend and cyclical components in in-

finitely many ways. In order to achieve a specific decomposition one needs to impose restrictions

on the behaviour of the unobserved components of the observable series. These restrictions can

reflect some desirable statistical properties of the components, such as the smoothness or the

periodicity of the trend component relative to the cycle. In a multivariate setup the assumptions

about interrelationships between the unobserved components of interest can serve as additional

restrictions. For example, the output gap, the difference between actual and potential output,

is typically considered as a key determinant of inflationary pressures in an economy, thus ob-

servable inflation may contain useful information about the size of the output gap. Similarly,

the unemployment rate is often thought of as a reliable business cycle indicator, see e.g. Ball

et al. (2017), and can thus be leveraged to inform output gap estimates. The most widely used

methods for estimating the level of key unobservables of macroeconomic relevance, such as po-

tential output, are univariate filters, multivariate filters, semi-structural models such as Benes

et al. (2010) and fully-fledged structural models1.

A common feature of the above methods is that they have (at least an approximate) state-

space representation where the Kalman-filter or smoother can be applied to extract the unobserv-

able trend and cyclical components from the observable data. Furthermore, if the unobservable

state(s) are estimated with the help of a two-sided filter2 or smoother, as is the case in typical

applications, all the listed methods will suffer from the so-called end point problem: new obser-

vations added to the sample will have an impact on the entire path of smoothed state estimates.

The severity of revisions due to new observations added to the sample depend on how accurately

the model underlying the smoothing problem predicts the data releases, as shown e.g. by Kaiser

and Maravall (1999). This follows from the mechanics of the Kalman smoothing algorithm,

1New Keynesian DSGE models have been used to calculate the natural level of output, which is a counter-
factual concept that is similar to- but not identical to the concept of potential output. The natural level of
output refers to an output path under the assumption of no nominal rigidities (such as sticky prices or wages),
see e.g. Vetlov et al. (2011). As shown by Primiceri and Justiniano (2009) in an estimated new Keynesian
DSGE model, unless mark-up shocks are treated as measurement noise instead of underlying drivers of inflation
dynamics, natural output tends to be significantly more volatile than actual output. By assuming away exogenous
fluctuation in the monopolistic power of firms and workers (i.e. mark-up shocks) as underlying drivers of wage
and price developments, an otherwise standard new Keynesian model yields a relatively smooth path of natural
output, that is in line with more traditional definitions of potential output.

2A one sided filter in a sample size of τ provides estimate of the unobserved state at time t ≤ τ based on
sample information up until time t. A two-sided filter or smoother estimates the state at time t based on the full
sample τ information
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which recursively updates the entire path of smoothed states by a magnitude that depends on

the one-step-ahead prediction error. The smoothed state estimates at the end of the sample will

thus not change if the missing future observations are replaced by the model’s own forecasts.

Consequently, the closer the predictions of the underlying model beyond the end of the sample

to the incoming data, the less severe are the revisions to the past states. Importantly, the end-

point problem is not automatically mitigated by the inclusion of exogenous (off-model) forecasts

of the observables, but its severity will depend on the ex-post accuracy of these forecasts. This

is particularly important around business cycle turning points, where off-model forecasts can be

highly imprecise, compounding the end-point problem instead of mitigating it3.

As pointed out recently by Coibion et al. (2018) revisions to potential output estimates of

some institutions tend to be pro-cyclical, that is potential output growth is typically revised

upwards when actual GDP growth rates are strong, and downwards when actual growth is

perceived as weak. As suggested by Deroose et al. (2019), it is important to highlight the

difference between the pro-cyclicality of the ’true’ measure of potential output and the pro-

cyclicality of the revisions to potential output estimates. While the ’true’ level of potential

output or its growth rate can legitimately show a degree of pro-cyclicality, e.g. due to labour

market hysteresis as in Blanchard and Summers (1987) and its possible reversal as suggested

by Yellen (2016), the pro-cyclicality of the revisions to potential output estimates can indicate

that the estimation method used is affected by the end-point problem. Importantly, the pro-

cyclicality of the path of potential output or its components may - at least partly - explain the

missing disinflation puzzle after the financial crisis as in Blanchard et al. (2015), as well as the

missing inflation phenomenon in the more recent recovery phase.

International institutions such as the European Commission, the OECD or the IMF have

typically employed production function based methods4 to estimate the level or growth rate of

potential output, see Havik et al. (2014). The production function approach is not a stand-

alone method and can cover any of the trend-cycle decomposition methods mentioned above.

While projections are usually included in the estimation sample, potential output or output

3This is why it is generally a good idea to check the forecasting performance of the underlying models - that
are sometimes implicit in the applied filtering method - over an extended horizon with respect to the observables
included in the estimation.

4The production function approach in its most basic form typically assumes a Cobb-Douglas functional form
and yields potential output estimates by independently extracting the trend components of production factors,
such as labour, capital and total factor productivity via uni-variate, two-sided filters (or smoothers), for example
the Hodrick-Prescott filter. The production inputs are then aggregated based on the assumption that their
contributions to output growth equal their respective income shares
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gap estimates have often revised over time particularly around turning points in the business

cycle. Indeed, real-time output gap vintages of the euro area5 from these three institutions show

consistently lower output gap estimates between 1999 and 2013 than in more recent vintages

(Figure 1). The discrepancy is particularly large in the run-up to the 2008 crisis, between the

mid-2000s and 2007, where real time estimates indicated a degree of slack or a close to neutral

cyclical position, while more recent estimates show massively positive output gaps. Provided

that the more recent vintages are better approximations of the ’true’ cyclical position in this

period, these methods and the projection errors made in the same period contributed to overly

optimistic assessments of the state of the euro area economy at a crucial juncture.

Figure 1: Range of real time and latest vintage output gap estimates of the EC, OECD and the
IMF for the euro area
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Notes: Real time estimates refer to output gaps entailed in each year’s autumn fore-
cast exercise rounds. The red band indicates the latest (Autumn 2018) estimates,
while the blue band the real time ones.

The current paper introduces a procedure to estimate potential output in a state-space

framework with an embedded production function aiming at diminishing the end-point prob-

lem. The advantage of this approach is that it combines a growth accounting framework with

the joint identification of key trends and cyclical components in a single system of equations.

5The relationship between real time and latest vintage estimates are similar to that of a one-sided vs a two-sided
filter, with the important caveat that the underlying model can change between vintages.
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Consequently the system properties of the model underlying the estimation of potential output

can be thoroughly checked. A set of connections between cyclical components ensures that the

information content of several macroeconomic time series with respect to the state of the busi-

ness cycle is exploited in a way that is consistent with some key economic relationships. On top

of this the model adds inter-dependencies not only across cyclical components but also across

trends. The stochastic trends in the model are disciplined via anchors relating them to observ-

able variables (such as an inflation ‘target’ in case of trend inflation) and long-run relationships

(such as a link between trend wage inflation, trend inflation and trend productivity growth).

The approach introduced in this paper is similar to Proietti et al. (2007) and Proietti and

Musso (2012) with a number of key differences. The richer economic structure provides more

discipline over key trends in the current model, such as trend productivity growth and allows for

the consideration of hysteresis effects. The Bayesian approach applied enables the estimation of

the model over a historical data sample without relying heavily on back-data. Jarociński and

Lenza (2018) also estimate and evaluate output gaps for the euro area, however neither of their

model specifications include a production function - which would allow for assessing the drivers

of potential growth - or feature relationships across the trend components.

The paper is organised as follows: Section 2 spells out the structure of the underlying state-

space model that will be used to decompose observable variables to trend and cycle components,

section 3 describes the data that enter the filtering/smoothing exercise as observations, section 4

provides the details of the Bayesian estimation procedure that is used to parametrise the model

and the application of the Kalman-filter (and smoother). Section 5 discusses the key results of

the exercise as well as the sources of uncertainty around the estimated states. Section 6 conducts

an evaluation exercise focusing on revision properties of the estimated output gap measure and

the forecasting performance of the underlying state-space model. Section 7 concludes.
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2 The Model

The model introduced in this paper is a state-space model that is built around a production

function and a set of equations representing well-known economic relationships. The model

does a joint trend-cycle decomposition of six observable variables (real GDP, unemployment

rate, core inflation, wage growth, labour force participation rate, hours worked per person)

and uses additional two observables (the level of the capital stock and working age population)

to directly inform the corresponding trend components. The model features a price- and a

wage Phillips curve, as well as an Okun’s law type equation that are written in terms of the

cyclical component of GDP and the unemployment rate. The trend component of output is

decomposed according to a Cobb-Douglas production function. Trend inflation is pinned down

by a - possibly time varying - long-term anchor, while trend wage growth is assumed to be the

sum of trend inflation and trend (labour) productivity growth. In contrast with more structural

approaches such as DSGE models, the equations of the current model are not directly derived

from theoretical first principles which admittedly yields a lower degree of internal consistency.

Yt = AtLt
νKt

1−ν

According to a common specification of the Cobb-Douglas production function observed real

GDP (Yt) can be written in terms of the contribution of production factors, such as labour

(Lt), capital (Kt) and a residual term (At) often interpreted as total factor productivity (TFP).

Under some regularity conditions (e.g. production factors being paid their marginal products)

the labour elasticity (ν) of the production function corresponds to the observable labour income

share. Taking natural logarithms, the production function takes the following linear form (where

lowercase letters denote the natural logarithms of their uppercase counterparts):

yt = at + νlt + (1− ν)kt

Labour input, defined as total hours worked (lt), can be further decomposed to working age

population (wpt), the labour force participation rate (lpt), the (un)employment rate (ut)
6 and

hours worked per person or average hours worked (aht).

6Since the aim is to keep the model linear, for practical purposes instead of ln(1 − ut), the natural logarithm
of the employment rate expressed in terms of the unemployment rate, its first order approximation −ut is used.
This allows for the direct estimation of trend unemployment rate or the NAIRU
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lt = wpt + lpt − ut + aht

Assuming that (log) GDP and the (log) production factors can be decomposed into the sum

of trend and cyclical components, potential output can be written as the sum of trend TFP and

the contributions of trend labour and capital, where the trends of working age population and

the capital stock are assumed to equal their observable counterparts. It also follows that the

cyclical component of real GDP (or the output gap) can be decomposed as the sum of the TFP

cycle and the contribution of the cyclical component of labour input.

ȳt + ŷt = āt + ât + ν(l̄t + l̂t) + (1− ν)kt

It is important to stress, that the cyclical and trend component of the level of TFP, ât and

āt, respectively, are not directly modelled, but can always be recovered by using the accounting

identity of the production function and the respective cyclical or trend components that are

directly modelled. The cyclical component of TFP, defined as above, can be considered as a

proxy for factor utilisation that is not explicitly captured by the model. It may thus implicitly

account for cyclical developments in the capital stock and working age population, or changes in

labour utilisation that is not captured by adjustment over the typical extensive (employment)

or intensive (hours worked per person) margins, see Fernald and Wang (2016).

ât = ŷt − νl̂t and āt = ȳt − νl̄t + (1− ν)kt

Building on the above considerations, the model can be expressed as the following system

of equations, where lower case letters refer to natural logarithms, except for variables explicitly

defined in percentage (change) terms.

yt = ȳt + ŷt

ŷt = α1ŷt−1 + α2ŷt−2 + εŷ,t

ȳt = ȳt−1 + ν∆l̄t + (1− ν)∆kt + ãt

ãt = ãt−1 + εã,t

(1)

Observed real GDP (yt) is decomposed into a trend (ȳt) and a cyclical component (ŷt), the
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output gap. To allow for richer cyclical dynamics, the output gap is assumed to follow an AR(2)

process. Trend output is determined by a Cobb-Douglas type production function, where l̄t is

trend total hours worked, kt is the capital stock, ã is trend TFP growth, ν corresponds to the

labour income share and ∆ is a first difference operator. Trend TFP growth (ã), is assumed

to follow a random walk, thus the level of TFP is I(2), or an integrated random walk7. Trend

labour input, lt (total hours), can be broken down to wpt + lpt− ūt + aht, where wpt is working

age population, lpt is the trend of the participation rate, −ūt is a linear approximation of the

trend employment rate represented in terms of the trend unemployment rate (or NAIRU), while

aht is the trend component of average hours worked.

lpt = l̄pt + l̂pt

l̂pt = −γ4ût−1 + ε
l̂p,t

lpt = lpt−1 + l̃pt−1

l̃pt = l̃pt−1 + εl̃p,t

(2)

The trend-cycle decomposition of the labour force participation rate (lpt) entails a trend

component that follows an integrated random walk. It is assumed that the cyclical component

is related to the unemployment gap, capturing possible discouraged (or added-) worker effects.

ut = ūt + ût

ût = γ1ût−1 − γ2ŷt−1 + εû,t

ūt = ūt−1 + κ1∆ût + εũ,t

(3)

The cyclical component of the unemployment rate (ût) is subject to an Okun’s law type

relationship, i.e., the unemployment gap is connected to the output gap. As shown by Christiano

et al. (2020) an Okun’s relationship written in terms of the output and unemployment gaps can

be derived from a slightly modified, basic new Keynesian DSGE model. The trend unemployment

rate or NAIRU (ūt) is assumed to follow a random walk process with a drift term, where the latter

captures changes in the unemployment gap, enabling hysteresis-type effects. This modelling

choice reflects the observation that temporary shocks to (un)employment can have persistent

effects due to skill-erosion, see Pissarides (1992). It also implies that possible hysteresis effects

7While the notation could be further simplified, its current form highlights the similarities to the local linear
trend model, as applied e.g. by Clark (1987)
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are symmetric, i.e. not confined to economic busts but can occur in booms as well, as suggested

by Yellen (2016). For example, in the mature phase of the business cycle emerging labour

shortages can make firms more willing to hire unemployed with low-employability characteristics

and upgrade their skills via e.g on-site training. For a somewhat different implementation of

labour market hysteresis in a multivariate filter framework see Alichi et al. (2019).

aht = āht + âht

âht = γ6ŷt + εâh,t

āht = āht−1 + ãht−1

ãht = −κ2 l̃pt−1 + εãh,t

(4)

Hours worked per person (or average hours, aht) is decomposed similarly to the labour

force participation rate. The cyclical component (âht) is assumed to be driven by the contem-

poraneous output gap reflecting that hours worked per person is typically the first margin of

adjustment to shocks affecting the labour market, in particular in the euro area. In the absence

of regulatory changes, it is assumed that changes in trend hours worked per person (āht) are due

to changes in the labour market participation of demographic groups with preferences towards

part-time work, such as female or elder workers, see e.g. Bodnár (2018). This is consistent with

the presence of the growth rate of the trend participation rate in the trend average hours growth

(ãht) equation.

wpt = w̄pt

w̄pt = w̄pt−1 + w̃pt−1

w̃pt = w̃pt−1 + εw̃p,t

(5)

kt = k̄t

k̄t = k̄t−1 + k̃t−1

k̃t = k̃t−1 + εk̃,t

(6)

Developments in working age population (wpt) and the capital stock (k̄t) are assumed to be

observable and are not decomposed to trend and cycle within the model, which is standard in

the literature. The applied modelling framework requires however to define their unobservable

counterparts that enter the state equations. The latter are modelled as integrated random walk

processes and are directly linked to their observable counterparts.
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The model is rounded up by connections between the real and nominal side. A measure of

(core) inflation is decomposed to trend and cyclical components, where the latter is assumed to

have some intrinsic persistence, i.e. a dependence on past cyclical inflation due e.g. to the price-

setting mechanism as described in Angeloni et al. (2006). The cyclical component of inflation is

connected to the output gap via a Phillips curve-type relationship.

πt = π̄t + π̂t

π̂t = β1π̂t−1 + β2ŷt−1 + επ̂,t

π̄t = (1− φ)π∗ + φπ̄t−1 + επ̄,t

(7)

where πt is a measure of core inflation, π̄t is trend inflation, π̂t is the inflation gap and π∗

is an inflation anchor. Introducing trend and cyclical components, as e.g. in Stock and Watson

(2007), allows for separating the impact of temporary and permanent shocks to inflation where

the latter may capture developments possibly related to structural factors, such as globalisation

or (unobservable) inflation expectations that are relevant for price setting. From a different

angle, trend inflation can be thought of as a time-varying intercept term in a traditional Phillips

curve setup. If φ < 1 core inflation is backward looking, but is anchored by a constant. Setting

φ = 1 yields a random walk trend which allows for shocks with permanent effects on inflation.

wt = w̄t + ŵt

ŵt = β3ŵt−1 + β4ût−1 + εŵ,t

w̄t = π̄t + ∆ȳt −∆l̄t + εw̄,t

(8)

To connect the labour market cycle with wage growth, a wage Phillips-curve is added to

the model. The cyclical component of wage growth (ŵt) has an AR(1) term reflecting intrinsic

persistence, e.g. due to wage rigidity or indexation. Furthermore, the wage growth cycle is

partly explained by the unemployment gap while trend wage growth (wt) is assumed to be the

sum of trend inflation and trend labour productivity growth (∆ȳt−∆l̄t)
8, capturing a long run

relationship connecting these variables. The trend wage growth equation implies that over the

long run real wage growth equals labour productivity growth, in other words the trend growth

rate of real unit labour costs is zero. This equation is key for disciplining the behaviour of trends

in the model since it connects all of them.

8if wage growth and inflation is defined in annualised quarterly growth rates this term needs to be multiplied
by 4
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Given the Cobb-Douglas production function, trend labour productivity growth can be fur-

ther decomposed to trend TFP growth and capital deepening:

∆ȳt −∆l̄t = ãt + (1− ν)(k̃t −∆l̄t).

The disturbance terms in the state equations of the model are assumed to have a mean zero

Gaussian distribution with a diagonal covariance matrix, Σε, with σ2
i denoting the variance of

the i-th state disturbance. In the following sections two different specifications of the above

model are reported, reflecting modelling choices related to trend inflation (Table 1). In terms of

modelling trend inflation (7) one specification features an AR(1) process with a constant mean

(π∗) set to a value consistent with the ECB’s inflation objective, adjusted for the difference in

the historical averages of headline and core inflation (model A). The other specification has a

stochastic trend (φ = 1), allowing for permanent shocks affecting trend inflation (model B). In

the rest of the paper, model A will be considered as the baseline specification.

Table 1: Model versions

Feature Model A Model B

φ < 1 = 1
π∗ target equivalent n.a.

3 Data

The model introduced in Section 2 is estimated on publicly available data collected from Eurostat

and the European Commission’s AMECO database. The estimation sample is constrained by the

availability of national accounts data for the euro area aggregate which typically starts in 1995

Q1. While the common currency was non-existent before 1999, it can be reasonably assumed

that starting from the mid-1990s, after the ratification of the Maastricht treaty, expectations

and policies became increasingly aligned with the approaching formation of the monetary union.

On the other hand, backdated euro area data going back far before 1995 include periods in

which future EA countries had more severe heterogeneity in terms of nominal developments and

economic structures (e.g. West vs. East Germany). On top of this, the time series properties of

a purely backdated subsample would reflect that of the backdating method and not necessarily

the data generating processes. Due to the above issues the estimation of the model is conducted
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on actual historical euro area data that is typically available from 1995, and backdating is used

only when a time-series has missing values at the beginning of the sample. The source of the

backdated data is the Area-Wide Model database, see Fagan et al. (2001).

The model is estimated on aggregate euro area data at a quarterly frequency. The output

measure in the model corresponds to the volume of chain linked real GDP. Core inflation is

HICP inflation excluding food and energy, measured in terms of annualised quarter-on-quarter

(q-o-q) growth rates. Wage growth corresponds to the annualised q-o-q growth rate of hourly

compensation. The unemployment rate is the harmonised unemployment rate as defined by

Eurostat, the ratio of the number of unemployed workers to the labour force. The participation

rate is the ratio of the labour force (i.e. the number of people who are in employment or

unemployed) and the working age population, defined as the population at least 15 years old

but younger than 75 years.

All quarterly series are seasonally and working day adjusted by the disseminating authority,

except for HICP excluding food and energy which is adjusted with the US Census Bureau’s x13-

ARIMA package. Data on the capital stock and working age population are from the European

Commission’s Annual Macro-economic (AMECO) database and interpolated to quarterly fre-

quency using a piecewise cubic Hermite interpolation method, to minimise spurious oscillations.

Since the latter two variables are slowly moving and less volatile time series, interpolation is

not expected to introduce any significant distortions. Table 2 summarises the data set and the

applied transformations.

Table 2: Data description

Alias Description Freq. Range Source Transformations

y Real GDP, chain linked, bln
euros

Q 1995Q1-2019Q3 Eurostat natural logarithm

π HICP excluding food and
energy, index

Q 1996Q1-2019Q3 Eurostat nat. log., seasonal
adjustment, 4*first
differencew Hourly compensation, index Q 1995Q1-2019Q3 Eurostat
nat. log., 4*first difference

u Unemployment rate,
Eurostat definition

Q 1997Q1-2019Q3 Eurostat divided by 100

ah Hours worked per employed
person

Q 1995Q1-2019Q3 Eurostat nat. log.

lp Labour force per working age
population (15-74 yrs)

Q,A 1997Q1-2019Q3 Eurostat,
AMECO

nat. log.

k Net capital stock A 1995-2019 AMECO nat. log., interpolated to
quarterly freq.

wp Working age populataion
(15-74 yrs)

A 1995-2019 AMECO nat. log., interpolated to
quarterly freq
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4 Estimation strategy

The unobserved states and the parameters of the model are both estimated with the support

of the Kalman filter, a recursive algorithm that can be applied in a straightforward way to

the state-space representation of the model. Denoting by αt the vector of unobservable states,

yt the vector of measurement variables, εt the shock vector of state equations with normally

distributed mean zero shocks and covariance matrix Σε and by ηt the measurement shock vector

with covariance matrix Ση, the general state space form can be written as follows:

αt = Tαt−1 +K +Rεt

yt = Zαt +Hηt

εt ∼ N(0,Σε)

ηt ∼ N(0,Ση)

Given measurements yt, the initial state vector α0 and initial state covariance P0 and

matrices T , K, R, Z, H, Σε, Ση the Kalman filter provides optimal (in terms of mean squared

error) linear estimates of the unobserved states and their covariance (see Appendix A for the full

state-space representation of the model). In case of a linear model and Gaussian disturbances the

state estimates will also have a multivariate Gaussian distributions. The Kalman filter provides

state estimates for any time t, based on information available up to time t. However, in economic

applications such as this paper, one typically wants to consider the full sample (τ) information

when inferring the state of the economy at time t ≤ τ . Therefore, the state estimates reported

in this paper refer to smoothed - or two-sided - estimates derived using a fixed interval smoother

algorithm that is directly related to the Kalman filter (Anderson and Moore, 1979, Ch. 7.4).

To be able to estimate the states, the Kalman filter needs to be initialised via assigning values

to α0 and P0. For stationary state variables, such as the cyclical components, the Kalman filter

can be initialised at their model-implied distribution, i.e. their unconditional mean and state

covariance. In case of the state variables that are modelled as non-stationary stochastic processes

the initialisation of the Kalman filter is less straightforward. One way to initialise non-stationary

series is to apply a diffuse prior, with zero mean and infinite (in practice a very large, but

finite) variance. In the current case a diffuse initialisation would entail excessively large initial

uncertainty, given that the initial non-stationary states cannot be too far from their observable
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counterparts at the beginning of the sample or in the last pre-sample periods. For example, it

would be unreasonable to admit the possibility that the level of potential GDP or the NAIRU

were 0 - or even negative - in the last pre-sample period. An alternative is to initialise the Kalman

filter with a vector of fixed, but unknown scalars that are treated as parameters and estimated in

a likelihood maximising way utilising the one-step ahead prediction errors with respect to the first

observations in the sample as described e.g. in Harvey (1990), section 3.4.4. Since this approach

uses sample information, it is controversial in a Bayesian estimation context. A third alternative

is to initialise the non-stationary states with a proper prior distribution, that can be based e.g.

on some pre-sample information. The results reported in the following sections the initialisation

of the Kalman filter will be based on the third approach. In particular, the stationary states

are initialised at zero, while the ones defined as non-stationary are assumed to correspond to

the last pre-sample values of their observable counterparts, taken (and interpolated to quarterly

frequency) from the AMECO database. The initial state covariance matrix is assumed to be

diagonal, with the diagonal elements corresponding to approximately 5 percentage (points)

standard deviations (see Appendix A).

Besides the unobserved states and their covariance, the parameters of the model can also

be estimated with the help of the Kalman-filter. It is well known that under some regularity

conditions the one-step ahead prediction errors and their covariance provided by the Kalman-

filter can be used to calculate the sample likelihood function. This enables the application of

numerical optimisation methods to find the extrema of the (log-) likelihood function in case of

more complex problems, where a closed form solution is not available. Bayesian methods that

combine prior beliefs and the information in the data (the likelihood function) to learn about

model parameters (θ) can be particularly useful when the number of parameters to be estimated

is large but the size of the sample is relatively small. Furthermore, Bayesian methods can help

to overcome identification problems, i.e. the likelihood surface being flat or irregular in certain

dimensions, at the cost of having informative priors which can make the results sensitive to the

choice of prior distributions. Due these considerations, the model parameters are estimated with

Bayesian methods9.

Applying Bayes’ theorem and assuming away the normalising constant that does not depend

on θ, the log of the posterior distribution, F (θ), can be expressed as the sum of the log likelihood

of the data and the log prior:

9The model is estimated with the help of the Iris toolbox for Matlab, see Benes et al. (2020)
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F (θ) =

τ∑
t=1

lnP (yt | θ) + lnP (θ)

In the current exercise four basic types of prior distributions are used for the different pa-

rameters of the model (see Table 3). For the coefficients of auto-regressive processes of order

one, or AR(1), a beta distribution is assumed, which has a support (0,1). This is consistent with

the prior belief that the cyclical components of the observable input series are stationary. The

beta priors on the AR(1) coefficients have a mean of 0.7 and a standard deviation of 0.15. These

hyper-parameters imply fairly persistent but stationary processes that are clearly distinguishable

from I(1) processes, since close to 90 per cent of the probability mass of these prior distributions

fall between 0.5 and 0.95. In case of the output gap that is defined as an AR(2) process as in

Clark (1987), the above beta prior is used on the sum of the autoregressive coefficients, following

the procedure of imposing system priors by Andrle and Plašil (2018). Given the (0,1) support

of the beta distribution, this is sufficient to ensure stationarity of the output gap.

Most of the other coefficients of the model equations are assumed to have gamma-type priors

that have a support of (0,∞). These reflect prior beliefs in the existence and the direction of the

economic relationships these parameters capture. For example, in the price and wage Phillips

curves it is a non-controversial assumption that inflation and wage growth are pro-cyclical - on

the basis of economic theory. Similarly, in case of the Okun’s law the relationship between the

output gap and the unemployment gap is assumed to be strictly negative. For these coefficients

the literature often finds values that are between zero and 1 and typically closer to zero than

one. This is reflected in the choice of hyper-parameters that imply that more than 90 per cent

of the probability mass lies between 0 and 1, and close to 60 percent of it between 0 and 0.5.

Some coefficients capturing less well established relationships, such as the hysteresis term in the

trend unemployment rate equation have Gaussian prior distributions centred around zero. For

numerical stability reasons, some of the prior densities are truncated in regions with very small

probability mass, see Table 3.

All estimated shock standard deviations in the state equations of the model are assumed

to have an inverse gamma (IG) prior distribution with means corresponding to 1 and 0.01 in

case of the cyclical and trend shocks, respectively. The IG distribution cannot take the value of

zero, thus its application as a prior on shock standard deviations helps to alleviate the so-called

pile-up problem, as described by Stock (1994). The standard deviations of all inverse gamma
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priors are set to ∞, which is common in the literature, see e.g. in Adolfson et al. (2007). It

is important to note that in case of the IG distribution an infinite standard error still yields

a proper prior distribution, with finite values of the distribution’s scale and shape parameters.

The labour share coefficient in the production function (ν) and the shock standard deviations

in the capital stock and working age population equations (σk̃ and σw̃p, respectively) are not

estimated. The labour share is set to its long term average value, 0.63. The shock standard

deviations of the capital stock and working age population are fixed at values corresponding to

the prior mean of the estimated trend shock standard deviations (0.01).

Parameter estimation is conducted with the help of a fairly standard Bayesian procedure

following a the algorithm described e.g. by Herbst and Schorfheide (2016). First the mode (θ∗)

of the log-posterior, F (θ), is found via a numerical optimisation method where the likelihood

is evaluated in each step with the help of the Kalman-filter. While the numerical optimisation

provides the posterior modes - possibly local maxima - and the corresponding Hessian, proper

Bayesian inference requires the full posterior distribution. Given the type of prior densities used,

the posterior distribution cannot be derived analytically, neither are the conditional posteriors

available, thus direct sampling from them is infeasible. In such cases the posterior distribution

can be simulated using a Markov chain Monte Carlo (MCMC) method based on Metropolis

et al. (1953). In particular, the posterior simulation in this exercise is conducted with the

help of an adaptive random walk Metropolis algorithm, as proposed by Haario et al. (1999).

The algorithm is initialised with θ∗ and the corresponding covariance matrix, which is the

inverse of the negative of the Hessian evaluated at the mode, and uses a multivariate normal

proposal distribution centered around zero to perturb the current state of the chain. Draws

from the proposal distribution are added to the current state of the chain to form a candidate

state. The log posterior of the candidate state (i.e. the log-likelihood plus the log-prior of

the model parameters) is then evaluated, with the help of the Kalman-filter. If the posterior

evaluated at the candidate state is higher than or equal to the actual state of the chain it is

automatically accepted, otherwise it is accepted with a probability that equals the ratio of the

posteriors evaluated at the current and the candidate state. This allows the chain to explore

the lower probability regions of the posterior density. To increase the efficiency of the algorithm

the covariance matrix of the proposal distribution is adapted in each draw to achieve a target

acceptance ratio of 23.4 per cent, a standard value in the literature, see e.g. Chapter 7.8.4 of
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Robert and Casella (2005). Since the adaptation satisfies the diminishing adaptation condition10,

the simulated Markov chains will retain the posterior density as their stationary distribution, as

shown in Chapter 4.3.1 of Brooks et al. (2011). The posterior chains are simulated in a parallel

setup resulting in 16 chains, each containing 200,000 draws after discarding an initial 200,000

draws. The (marginal) posterior distributions of model parameters, as well as trace plots of the

parallel chains are reported in Appendix B allowing for a visual inspection of the convergence of

the chains to their stationary distribution. The multivariate convergence diagnostics of Brooks

and Gelman (1998) which can be used to assess the convergence of the parallel chains numerically,

yields a potential scale reduction factor of 1.01, suggesting marginal gains if the number of draws

were to be increased further. Since the evidence suggests that the chains have converged to their

stationary distributions, the parallel draws are pooled together and the posterior statistics are

calculated over 3.200.000 draws for each parameter.

Table 3: Prior and posterior statistics (model A)

Prior Posterior
Parameter type l.b. u.b. mean std mean median 90% HPDI
α1 + α2 beta 0 1 0.7 0.15 0.930 0.939 0.864 0.999
β1 beta 0 1 0.7 0.15 0.588 0.59 0.361 0.824
β2 gamma 0 10 0.5 0.3 0.109 0.101 0.026 0.189
β3 beta 0 1 0.7 0.15 0.469 0.466 0.259 0.682
β4 gamma 0 10 0.5 0.3 0.324 0.306 0.089 0.547
γ1 beta 0 1 0.7 0.15 0.804 0.819 0.652 0.96
−γ2 gamma 0 10 0.5 0.3 0.122 0.113 0.026 0.21
−γ4 normal -10 10 0 1 0.125 0.126 -0.334 0.575
γ6 normal -10 10 0 1 0.199 0.196 0.03 0.37
κ1 normal -10 10 0 1 0.259 0.257 -0.095 0.613
κ2 normal -10 10 0 1 0.531 0.534 0.282 0.786
φ beta 0 1 0.7 0.15 0.654 0.666 0.425 0.891
σŷ inv. gam. 0 ∞ 1 ∞ 0.012 0.012 0.01 0.014
σã inv. gam. 0 ∞ 0.01 ∞ 0.001 0.001 0.001 0.001
σû inv. gam. 0 ∞ 1 ∞ 0.011 0.011 0.009 0.013
σũ inv. gam. 0 ∞ 0.01 ∞ 0.002 0.002 0.001 0.002
σl̂p inv. gam. 0 ∞ 1 ∞ 0.011 0.011 0.009 0.013

σl̃p inv. gam. 0 ∞ 0.01 ∞ 0.001 0.001 0.001 0.001

σ
âh

inv. gam. 0 ∞ 1 ∞ 0.011 0.011 0.009 0.013
σ
ãh

inv. gam. 0 ∞ 0.01 ∞ 0.002 0.002 0.001 0.002
σπ̂ inv. gam. 0 ∞ 1 ∞ 0.012 0.012 0.01 0.014
σπ̄ inv. gam. 0 ∞ 0.01 ∞ 0.002 0.002 0.001 0.003
σŵ inv. gam. 0 ∞ 1 ∞ 0.017 0.017 0.014 0.02
σw̄ inv. gam. 0 ∞ 0.01 ∞ 0.003 0.003 0.001 0.004

Note: l.b.: lower bound, u.b.: upper bound, HPDI: highest posterior density interval, i.e. the
narrowest interval containing the specified probability mass

10In particular, the adaptation is adjusted by a rate of decay of 0.8 with each draw.
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Overall, given the a priori beliefs entailed in the prior distributions, the data seems to contain

information about most model parameters, i.e. the marginal posteriors do not coincide with the

priors. (see Table 3 and Figures B4-B6 in the Appendix). In particular, there is information

in the data about the coefficients in Okun’s law and the Phillips curves. The data are also

informative about the coefficients with prior distributions centered around zero. For example,

the data is informative about the coefficient linking the unemployment gap and the NAIRU

(κ1), providing some evidence on two-way labour market hysteresis effects. Similarly, the data

suggests a negative relationship between the trend growth rate of the participation rate and

that of average hours worked (κ2), which is consistent with the observation that increases in

the labour force participation rate over the last decade have been driven by demographic groups

that are more likely to work part-time. A negative relationship seems to connect the cyclical

component of the participation rate and the unemployment gap (γ4) - although with zero falling

well within the 90% highest posterior density interval - suggesting that discouraged worker

effects play a role over the business cycle. The data suggest a positive relationship between

the cyclical component of averages hours worked and the output gap (γ6), implying that the

intensive margin is a potentially important labour market adjustment channel in response to

business cycle fluctuations in the euro area.
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5 An overview of the estimated states

This section presents the key results of the exercise, in particular the smoothed estimates of the

unobservable states and various decompositions. The smoothed state estimates shown below are

calculated conditional on the estimated model parameters being at the median of their posterior

distributions11. Draws from the full conditional distribution of the states over time are shown

in section 5.1 and are available from the simulation smoother of Durbin and Koopman (2002).

The estimated trends and the six observables that were made subject to trend-cycle decom-

position in the model are shown in Figure 2 (model A) and Figure 4 (model B). While both

model specifications feature a break in the slope of potential GDP after the great financial crisis,

the level of potential GDP at the end of the sample is estimated to be higher in case of model

A. Both specifications feature a similar, counter-cyclical profile of the trend unemployment rate

(or NAIRU) that has been declining since 2013, with the estimate of model A being consistently

below that of model B. The increasing participation rate trend and the declining path of trend

average hours work is consistent with a long-run increase in the labour market participation

of demographic groups that prefer to work part-time in both specifications. The trend infla-

tion trajectories reflect the different assumptions regarding the stochastic process governing the

trend. The estimated trend of core inflation is flat in case of model A, which assumes a fixed

anchor, but it shows a persistent decline starting from 2013 if the trend is specified as a random

walk. This is broadly reflected in the trend wage growth trajectories as well. If the possibility

of a persistent decline in trend inflation after the financial crisis is ruled out (model A), the

weakness in core inflation translates to a lower output gap via the price Phillips curve but also

to a somewhat lower rate of potential growth via the trend wage growth equation (8) compared

to the stochastic trend inflation specification of model B. This is particularly true in periods

where the difference between the two trend inflation measures is widening

Based on data available up to the third quarter of 2019, the baseline specification (model A)

suggests a euro area output gap that was in slack territory for 35 consecutive quarters after the

financial crisis of 2008/2009, became broadly neutral at the end of 2017 and remained so since

then (Figure 3a). In contrast, model B suggests a more complete recovery after the financial

crisis, with the output gap closing in the first half of 2011 and rising clearly above zero in 2017

(Figure 5a). Before the financial crisis the output gap is estimated to have peaked between 3

11In the case of asymmetric distributions, such as some of the marginal posteriors in this exercise, the median
can be a better representative of the density than its mean
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and 4 per cent of potential GDP. The key drivers of the output gap in both specification are the

TFP cycle and the unemployment cycle, with the the cycle in hours worked per person and the

participation rate gap playing a more muted role.

Potential growth of the euro area is estimated to fall between 1.3 and 1.5 per cent in year-

on-year terms at the end of 2019. Potential growth has declined over the estimation sample,

with the decline starting well before the financial crisis and the ensuing great recession. At the

same, time potential growth shows a somewhat pro-cyclical pattern. As the growth-accounting

decompositions (Figures 3b and 5b) indicate this pro-cyclicality comes from a few different

sources. First, due to the way possible hysteresis effects are captured in the model, i.e. via

a link between the cyclical component of the unemployment rate and its trend. Second, a

degree of pro-cyclicality appears due the contribution of capital stock changes and working

age population growth that enter the production function directly, that is without any trend-

cycle decomposition. In case of the former the pre-crisis boom may have led to strong capital-

accumulation, particularly in terms of residential properties, that was partly mis-allocated, as

suggested e.g. by the narrowing of trend-TFP growth contribution over the same period. In

case of working age population growth some volatility may have arisen due to a degree of pro-

cyclically in net migration developments in some time periods. Regarding the other potential

growth components, the growth rate of trend participation rate is somewhat pro-cyclical, trend

hours worked per person a-cyclical while trend-TFP growth is counter-cyclical, based on pairwise

correlations with the output gap (Table 4). The GDP growth decompositions (Figures 3c and

5c) shows how changes in its cyclical and trend components contributed to overall GDP growth.

Table 4: Correlation of trend growth components with the output gap

trend growth component corr. with ŷ

∆wp 0.36
∆l̄p 0.32
∆ū -0.35
∆āh -0.04
∆k 0.68
ã -0.20

The decomposition of the growth rate of hourly wages (Figure 3d) highlights how the wage

growth trend bridges the real and nominal trends of the model. It indicates that the slowdown

in wage growth after the great financial crisis was mostly driven by transitory factors, while

trend labour productivity (output per hour) growth, decomposed further to capital deepening
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and trend TFP growth, played a smaller role. If trend-inflation is allowed to follow a stochastic

trend (model B), the slowdown in wage growth is explained also by the decline in trend inflation

with the contribution from transitory factors shrinking (see 5d). Given observed wage growth

and the fact that higher trend inflation is not fully offset by the increased amount of labour

market slack in model A, trend productivity growth needs to shift downwards compared to the

stochastic trend specification of core inflation of model B.
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Figure 2: Key variables and their trends as estimated in Model A
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Notes: GDP and hours worked per person are shown in natural logarithm, HP trend is a Hodrick-Prescott
smoothed trend with a signal-to-noise ratio of 1/1600; unemployment rate (UNR) and the participation are re-
ported in percentages of the labour force and working age population, respectively; core inflation (HICP excluding
food and energy) and wage growth (hourly compensation) are annualised q-o-q growth rates multiplied by 100
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Figure 3: Four key decompositions in Model A
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Figure 4: Key variables and their trends as estimated in Model B
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Figure 5: Four key decompositions in Model B
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5.1 The uncertainty around state estimates

Unobservable variables can only be estimated subject to a high degree of uncertainty. This is

particularly true in case of output gap estimates as noted by Orphanides and van Norden (2002).

The main sources of uncertainty are the stochastic nature of the processes driving the evolution

of the unobservable states (filter or state uncertainty), the precision with which parameters

of the processes can be estimated (parameter uncertainty) and the possibility of model mis-

specification (model uncertainty). Uncertainty is also related to revisions to past observable

data.

Filter uncertainty is reflected in the probabilistic nature of the state estimates that the

Kalman filter (or smoother) provides. Under the assumption of linearity and Gaussian distur-

bances the unobserved states follow a multivariate normal distribution, where a straightforward

measure of uncertainty around the point estimates (means) is the state covariance. The state

covariance provided by the Kalman filter or smoother at each point in time however doesn’t

account for the autocovariance of the states, see e.g. Jarociński (2015). A more encompassing

measure of uncertainty is provided by the simulation smoother of Durbin and Koopman (2002),

which can be used to draw the shocks driving the stochastic processes of the states - conditional

on the data and the parametrisation of the model - and generate the distribution of the states

taking into account their covariance over time (Figure 6a).

Parameter uncertainty arises when the parameters of the underlying state-space model are

unknown and have to be estimated from the data, as in most economic applications. Bayesian

estimation methods provide straightforward ways for quantifying parameter uncertainty by com-

bining prior beliefs and the information in the data to generate the posterior distribution of the

parameters. In the current exercise parameter and filter uncertainty can jointly be illustrated

by repeatedly drawing from the simulated posterior distribution of the parameters and em-

ploying the simulation smoother conditional on the drawn parameter vectors to draw from the

distribution of the states (Figure 6b).

The possibility of mis-specification or model uncertainty is inherent in all models of the econ-

omy, which are imperfect approximations of reality. While the number of possible specifications

makes it infeasible to completely hedge against model uncertainty, it is typically possible to

check the most important assumptions against plausible alternatives. While model uncertainty

cannot be quantified in absolute terms, Bayesian estimation makes it feasible to compare differ-
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Figure 6: State and parameter uncertainty around the euro area output gap estimate (model A)

(a) Filter uncertainty (b) State and parameter uncertainty

Notes: The covariance matrix of the state shocks has been scaled by a factor which ensures the highest
likelihood conditional on the coefficients in the model equations and the data. Filtered and smoothed state

estimates remain unaffected by this transformation. The fanchart encompasses a 5-95 inter-percentile range in
5pp steps and was built using Deoras (2016).

ent specifications of a model that are estimated on the same data via their marginal likelihoods.

Out-of-sample forecasting performance can also provide information about the severity of the

mis-specification problem.

A further source of uncertainty can stem from the observable data from which the latent

variables of interest are extracted. The observable data may be imprecise measures of the

underlying economic concepts they represent and entail measurement errors or can be subject

to revisions over time. For example, the history of national accounts data is frequently revised

which can change the history of potential output estimates across data vintages. Although less

frequently, but the history of Labour Force Survey based data, such as the size of the labour

force, can also be subject to revisions. On the contrary, revisions to historical consumer price

data tend to occur rarely, if at all. In any case, as was pointed out by Orphanides and van Norden

(2002) historical data revisions are not the most important sources of revisions to output gap

estimates. Furthermore, changes in estimates of unobserved states in response to historical data

revisions can be even considered as desirable, as the revised data reflects more accurately the

sate of the economy and the resulting revisions are unrelated to the properties of the underlying

model12. Data revisions can be an issue however, if they are sensitive to the business cycle.

12The estimation sample is often expanded by off-model forecast data that are treated as observables. Since
forecast revisions are typically larger than revisions to historical data and involve several periods beyond the end
of the historical data sample their impact on smoothed state estimates can be larger than that of revisions to
past data
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The key concern of policymakers related to the uncertainty surrounding policy relevant

unobservables is their tendency to be revised over time when new observations are added to the

estimation sample - even in the absence of historical data revisions, as pointed out by Orphanides

and van Norden (2002). By definition, these revisions occur only in the case of smoothed state

estimates, since these are estimated on the basis of the full sample information. The fixed

interval smoothers typically applied in the economics literature mechanically update past state

estimates when new observations are added to the sample. From the Kalman filtering/smoothing

algorithms it follows that the magnitude of the backward update of state estimates depend on the

prediction error of the model with respect to the new observations, see e.g. Harvey (1990). Thus,

in the absence of historical data revisions, the revision properties of estimates of unobservable

states depend on the forecasting performance of the underlying model in terms of the observables

that have the largest weights implicitly assigned to the states, in the sense of Koopman and

Harvey (2003). To asses how these uncertainties affect state estimates - in particular the output

gap - over time the following section conducts a thorough evaluation exercise.

6 An evaluation exercise

The evaluation exercise introduced in this chapter focuses on the output gap, which is the most

widely used measure of slack in the economy. The usefulness of an output gap measure for

policy purposes depends on a number of factors as pointed out, e.g., by Camba-Mendez and

Rodriguez-Palenzuela (2003). First, the output gap measure should tell a plausible story about

the state of the economy in the country or region for which it was estimated. Second, it should

not be subject to excessive revisions in response to new data and should paint a consistent

picture of the business cycle over time. Third, in a central banking context, it is important that

the output gap measure has a proven ability for predicting inflation. Other possible criteria,

such as the symmetry of output gap measures or a zero mean requirement are also relevant, but

hard to assess if the sample size is relatively low and the estimates cannot possibly include more

than a couple of full cycles.

Since the plausibility of a potential output or output gap measure is a qualitative category,

it cannot be measured directly. However, plausibility is typically assessed against some implicit

theory or assumptions implying co-movements across the estimated output gap and some other,

possibly observable, indicators. Often, the assessment of plausibility is based on an assumed
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link between the estimated output gap measure and the nominal side of the economy, labour

market developments or some observable cyclical indicators as in the case of the European

Commission’s plausibility tool, see Hristov et al. (2017). Of course, these cyclical indicators are

necessarily imperfect measures of the business cycle, otherwise it would be pointless to use more

complicated algorithms to estimate the latter. Ideally, to the extent these indicators contain

useful information about the business cycle, they should be embedded in the model that produces

the output gap estimate.

The revision properties of an output gap measure over time cannot be precisely assessed

in quantitative terms, since this would imply the existence of an objective benchmark, i.e. an

observable or ‘true’ measure of the output gap, rendering the efforts to estimate it redundant.

In the absence of a ‘true’ output gap measure a working assumption could be that the latest

vintage from a set of output gap estimates over an expanding sample is the best guess for a

benchmark to assess the magnitude of past revisions. The assessment of the inflation forecasting

performance of an output gap measure can be done in a number of different ways. One can use

the vintages of the output gap (or other slack measures) in standalone, reduced form Phillips

curves and assess their forecasting performance conditional on the realisations and projections

of other explanatory variables, as done by Nickel et al. (2019). Another possibility is to use the

underlying model from which the output gap estimate stems to create out-of-sample forecasts of

inflation – provided that the model includes a measure of inflation as an observable and features

a meaningful relationship between inflation and the output gap, as e.g. in Jarociński and Lenza

(2018) or the current exercise.

Since modelling choices are made with the benefit of the hindsight and the modellers’ prior

beliefs cannot be fully detached from past experience, it is not possible to re-create exactly the

same information sets that prevailed in past periods in case of more complicated models. Keeping

this in mind, it is desirable to approximate a real-time context as much as possible when assessing

the the revision properties and/or forecasting performance of a model. A necessary condition

for such a real-time exercise is that the extraction of the trend and cyclical components in each

period is done conditional on information available up to that period. Barring historical data

revisions, this is equivalent to running a one-sided filter on the latest available data sample. It is

then possible to construct a measure of revision properties by comparing one-sided and two-sided

estimates. A true real time context can further be approximated by calculating the one-sided

estimates by re-estimating the parameters of the underlying model in each time period.
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To this end in the following exercise smoothing and the estimation of model parameters are

done on an expanding sample, starting with an initial sample of sufficient length that allows

the estimates of the unobservables to stabilise. Since the revision and forecasting properties

of the model are compared to alternatives that can be recursively implemented over the same

expanding sample, there is no need to use real-time data vintages to assess relative performance.

Building the exercise on real-time data vintages would be important if the revisions or forecasting

performance were compared to real time estimates published in the periods in focus.

In the following the revision properties and forecasting performance of the model specifica-

tions introduced in this paper are assessed based on the quantitative criteria outlined above.

In particular the revision properties in terms of the root mean squared error (RMSE) of the

estimated output gap measures with respect to the latest, full sample estimate are compared to

univariate benchmarks. The (unconditional) forecasting performance of the model with respect

to its observable input variables is also assessed in terms of root mean squared forecast errors

(RMSFE) in comparison with a set of simple benchmarks.

6.1 Revisions of the output gap in response to new data points

This part assesses the revision properties of the output gap estimates of models A and B against

a set of univariate benchmarks, such as the Hodrick-Prescott filter a band-pass filter of the

type of Christiano and Fitzgerald (2003), and a local level model as described in Chapter 2.2

of Harvey (2006). The results are based on an expanding window exercise, with (a vector of)

new observations added in each time period in a pseudo real-time context (i.e. the data vintage

remains the same in each period). The starting point of the subsample windows over which the

evaluation is conducted is always Q1 1995. The end points span from Q1 2000 to Q3 2019 in

quarterly steps. The first window end point was selected to allow a sufficiently long sample for

the dissipation of the effect of the initial conditions on state and parameter estimates on the

one hand, and the assessment of the revision properties before and during the great financial

crisis on the other. To reflect on more recent developments, Appendix D assesses the output

gap revisions in response to the Covid-19 shock in 2020.

The evaluation exercise is based on two sets of results that are generated from model A

and B. In the first set, the parametrisation of the models are kept unchanged at the values

estimated over the most recent sample (ending in Q3 2019). In the second set model parameters

are re-estimated in each period and evaluated at the median of their posterior distributions.
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The difference between the sample average of headline HICP inflation and core inflation (HICP

excluding food and energy), which plays a role in the price and wage blocks of the model A,

is also recalculated for each subsample. Table 5 shows the RMSE and the mean deviation (i.e.

bias) of the output gap estimates vis-a-vis their full sample estimates. The RMSEs in the first

row of the table are calculated over the deviations of the estimated endpoints of the output

gap in each subsample compared to the final, full sample (smoothed) estimate in the same time

period. In the second row the RMSEs are based on deviations over the entire sample, i.e. they

take into account the history of the output gap series over each subsample windows. Figure 7

shows the full output gap trajectories.

Table 5: Root mean squared error and bias of output gap estimates

A1 A2 B1 B2 HP BP LL

RMSE total 0.166 0.268 0.212 0.452 0.344 0.259 0.581
RMSE endpoints 0.285 0.576 0.359 0.846 1.170 0.764 1.981
Bias total 0.067 0.074 -0.045 -0.246 -0.015 -0.015 0.262
Bias endpoints 0.048 0.017 -0.157 -0.507 -0.130 -0.242 1.707

Note: Log points (log deviations multiplied by 100). A1: model A with parameters kept
constant over time. A2: parameters re-estimated in each period and evaluated at their
posterior median. B1-B2 refer to similar setups in case of model B. HP refers to the
Hodrick-Prescott filter, with signal-to-noise ratio of 1/1600, BP to a Christiano-Fitzgerald
type band-pass filter with cut-off periodicities of 6 and 32 quarters and LL to a local level
filter with a signal-to-noise ratio of 1/1600.

Overall, the fixed parameter output gap estimates from model A and B (columns A1 and

B1 in Table 5) outperform the benchmarks in terms of RMSE, both in case of total (i.e. with

prediction errors calculated over each quarter in the expanding window horizon) and endpoint

revisions. In case of model A this remains true even when taking into account parameter

uncertainty (column A2), except for total RMSE against the band-pass filter. In terms of bias

the picture is less clear-cut. In terms of total deviations, model A tends to slightly overestimate

the final output gap in real-time, on average by around 0.07 log points, both with fixed and

re-estimated parameters, while model B tends to have a stronger negative bias, particularly with

re-estimated parameters. The HP and band-pass filtered benchmarks underestimate the final

output gap, but have the smallest bias in absolute terms. Regarding the magnitude of the bias

with respect to the endpoints, model A clearly outperforms model B and all the benchmarks.
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Figure 7: Output gap revision properties
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(b) Model A: re-estimated parameters
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(c) Model B: fixed parameters
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(d) Model B: re-estimated parameters
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(e) HP smoother (λ = 1600)
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(f) Band-pass filter (cut-off: 6, 32 quar-
ters)
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Note: Expanding window smoothed estimates, first window: 1995Q1-2000Q1, last window 1995Q1-2019Q3.
”Fixed parameters” refer to a parameter set estimated over the full sample and kept fixed, ”re-estimated” refers
to model parameters re-estimated and evaluated at their posterior medians in each quarter between 2000Q1 and
2019Q3. The bold red line indicates to the full sample estimate, the thin lines show estimates over the expanding
windows

6.2 Forecasting performance

This subsection examines the out of sample forecasting performance of model A and model B

over against a set of benchmarks. While the models introduced in this paper were not built
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with forecasting as the main purpose, forecasting performance is an important criterion against

which models aiming at estimating unobservable variables can be evaluated quantitatively. Fur-

thermore, as noted earlier, from a central banking perspective, the inflation forecasting ability

of slack measures is of key importance, particularly over medium term horizons. However, the

overall goodness of fit of models can be assessed on the basis of their general predictive abil-

ity, that is, with respect to all their observable variables. The evaluation exercise is conducted

over multi-step forecast horizons spanning form one to eight quarters, and is based on iterated

one-step ahead forecasts. Otherwise the set-up of the exercise is similar to that of the revi-

sion evaluation exercise: pseudo out-of-sample forecasts are generated in an expanding window

context, on a single data vintage, with Q2 2000 as the first projected quarter and Q3 2019 as

the last one. The forecast horizons are tapered off at the end of the sample, so that the last

prediction error taken into account in the exercise is based on the one quarter ahead forecast

for the sample end point. Forecasting performance is evaluated using RMSFEs calculated over

the pool of prediction errors for all horizons as well as for each horizon separately.

The forecast evaluation exercise employs the following set of benchmarks: an ARIMA model

fitted to each observable variables, with the specification (i.e. the number of AR and MA terms

and the degree of integration) selected on the basis of the full sample. First, unit root tests

are run on the level and first difference of each individual series, in particular the augmented

Dicky-Fuller test and the KPSS the test. A degree of integration is selected if both tests agree

about it. The number of AR and MA terms are selected on the basis of the Bayesian info

criterion, assuming that neither is larger than four. The resulting ARIMA specifications are

kept fixed over the subsamples. The second benchmark is an unrestricted VAR(1) estimated

on GDP, the unemployment rate, core inflation and wage growth. These four variables were

selected due their role in the three key relationships of model A and B, i.e. the price and wage

Phillips curves as well as Okun’s law. For the purpose of estimating the VAR, the variables are

transformed according to the degree of integration found by the unit root tests in the ARIMA

case. In particular, GDP is first-differenced, while the other three variables are kept in levels.

The third benchmark is based on the state space representation of the HP filter, with the usual

smoothing parameter for quarterly data (1600)13, over which the Kalman filter is applied to

produce the one to eight quarters ahead iterated forecasts.

13In particular, following Harvey and Trimbur (2008) a local linear trend plus noise model is applied, with the
standard deviation of level shocks set to zero and the relative variance of the trend shock and the noise is set to
1/1600.
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Table 6 summarises the forecasting performance of model A and B as well as three bench-

marks in the case of model parameters remaining fixed at their full sample estimates over the

expanding windows. Model B and model A have an advantage over the benchmarks in terms of

forecasting the level of GDP. In terms of inflation the VAR and model A have the lowest RMSFE.

The VAR performs best in forecasting wage growth, while the ARIMA benchmark has the best

performance in forecasting the unemployment rate. In terms of the remaining three observables,

model B performs best in case of average hours worked, while the ARIMA benchmark has the

lowest RMSFE in case of the labour force participation rate, the capital stock and working age

population. The HP filter consistently underperforms against the alternative approaches.

Table 6: 1 to 8 quarters ahead RMSFEs, fixed parameters

mod. A mod. B VAR(1) ARIMA HP

y 1.683 1.635 1.790 1.934 2.824
π 0.127 0.141 0.125 0.133 0.179
w 0.237 0.232 0.217 0.235 0.304
u 0.868 0.877 0.776 0.667 1.435
ah 0.518 0.491 - 0.518 0.723
lp 0.482 0.476 - 0.323 0.477
k 0.309 0.309 - 0.251 0.847
wp 0.157 0.157 - 0.129 0.388

Note: Log points (log deviations multiplied by 100) and per-
centage points. Fixed parameters refer to full sample estimates
kept fixed over the expanding windows. HP refers to forecasts
produced by the Hodrick-Prescott filter, with a signal to noise
ratio fixed at 1/1600.

Table 7 shows the predictive ability of model A and B and the benchmark models with

parameters re-estimated in each period of the expanding window (since the signal-to-noise ratio

of the HP filter is not estimated, it is excluded from this table). The relative performance of

the models remain broadly similar to the fixed parameter case. Model A and B retain their

advantage in predictive ability in terms of GDP vis-a-vis the benchmarks and model A has

now the best inflation forecasting performance, although by a negligible margin. In cases where

model A or B are not the best performers, their performance gaps in terms of RMSFE became

narrower.

Regarding the horizon-specific performance (shown in Appendix C), model A and B tend to

produce larger RMSFEs over the shorter horizons, but their relative performance improves as

the length of the horizon increases. In terms of forecasting GDP, model B is the best performer
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Table 7: 1 to 8 quarters ahead RMSFEs, re-estimated parameters

mod. A mod. B VAR ARIMA

y 1.898 1.840 3.126 2.172
π 0.152 0.187 0.176 0.153
w 0.252 0.256 0.269 0.242
u 0.920 0.960 1.121 0.886
ah 0.799 0.844 - 0.542
lp 0.507 0.500 - 0.434
k 0.309 0.309 - 0.320
wp 0.157 0.157 - 0.188

Note: Log points (log deviations multiplied by 100)
and percentage points. Parameters re-estimated in
each expanding window.

over all horizons, closely followed by model A, both with fixed and re-estimated parameters. In

terms of forecasting inflation, model A is outperformed by the ARIMA and VAR benchmarks

only at the one quarter ahead horizon in the fixed parameter case. In the re-estimated case it

has the advantage at horizons beyond 4 quarters. The pattern of improving relative forecasting

performance as the horizon grows holds in general in the case of the remaining variables as well.

Since the only difference between model A and B is the formulation of the trend inflation

process, their relative performance with respect to forecasting inflation has important implica-

tions about this modelling choice. Over the full evaluation sample model A has the superior

inflation forecasting performance, consistently over each projection horizon (see Appendix C).

However, model B gains the upper hand when the evaluation exercise is constrained to a post-

2010 sample (Table 8), when headline inflation was well below 2 per cent for long periods.

Furthermore, the change in relative performance is related to the longer forecast horizons. This

suggests that model B - featuring a stochastic trend inflation process - can better accommodate

the observed decline in (core) inflation, despite the fact that it yields a less negative output

gap on average over the same time interval. Since model A and B have been estimated using

Bayesian methods over the same data set, their fit can be also be assessed via comparing their

marginal likelihoods (or marginal data densities), which is a metric based on one-step ahead

prediction errors. Assuming identical prior odds, the modified harmonic mean estimator of the

log marginal likelihoods, see Geweke (1999), implies a Bayes factor of around 6.3 in favour of

model B.
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Table 8: Model comparison: inflation trend specifications, post-2010 sample

relative RMSFE
horizon (quarters) 1 2 3 4 5 6 7 8

Model A/B fixed 0.92*** 0.95 0.95 1.13 1.13 1.23* 1.36** 1.45**
Model A/B re-est. 0.91*** 0.89 0.87 0.97 1.02 1.11 1.32 1.50**

Note: ***.** and * refer to 1%, 5% and 10% significance levels of rejecting the null hypothesis of
equal predictive ability under the Diebold-Mariano test

7 Concluding remarks

This paper built a multivariate unobserved components model based on a Cobb-Douglas pro-

duction function and a set of economic relationships, such price and wage Phillips curves and

a version of Okun’s law to estimate key unobservable variables of policy relevance. The model

features labour market hysteresis effects and a relationship between trend wage growth, trend

inflation and trend productivity growth as well. Two specifications of the model were estimated

on aggregate euro area data, differing in terms of stochastic process governing the evolution of

trend inflation. The first, baseline specification had a fixed anchor, consistent with the ECB’s

price stability objective (model A), the second one assumed a stochastic trend in inflation (model

B).

The models were estimated via Bayesian methods and the estimates of the unobserved states

were provided by a Kalman smoother algorithm. The data seems to contain information about

most of the model parameters, in particular the data supports the prior belief in the existence

of the Phillips curves, Okun’s law and labour market hysteresis effects. The resulting output

gap estimates suggest that the trend inflation assumption is a crucial one. The anchored trend

inflation assumption yields a more negative output gap after the great financial crisis, which

became broadly neutral in the first half of 2018 and remained so until the second half of 2019.

The stochastic trend specification suggest a decline in the trend component of inflation since

2013 and is consistent with a less negative output gap after the financial crisis and a positive

one since the second half of 2018.

The output gap measures have good revision properties against a set of benchmarks, such

as the Hodrick-Prescott filter or a band-pass filter, in an expanding window setup over a single

data vintage. Furthermore, both model specifications have reasonable forecasting performance

in terms of the observables entering the model against a VAR and ARIMA benchmarks. They

perform particularly well in terms of forecasting GDP growth and core inflation over 1 to 8
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quarters horizons. While model A performs better in terms of output gap revisions and inflation

forecasting over the full sample, model B gains the upper hand in forecasting performance after

2011 Q1. There is also some moderate evidence in favour of model B on according to marginal

likelihoods. This suggest that a decline in trend inflation may be a reasonable explanation for

the low-inflation environment prevailing in the second half of the 2010s, in spite of disappearing

slack. Based on the evaluation exercise, the production function based multivariate unobserved

components model developed in this paper can be a useful tool in a monetary policy context.
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A State Space representation of the baseline model
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ā
h
t

ã
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ŷ
t−

2

ȳ
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εâh,t
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εt ∼ N(0,Σε) α0 =
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B Posterior statistics

Figure B1: Prior and marginal posterior distribution of the parameters (model A)
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Figure B2: Prior and marginal posterior distribution of the parameters (model A)
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Figure B3: Prior and marginal posterior distribution of the parameters (model A)
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Figure B4: Posterior distributions - parallel posterior chains (model A)

0.6 0.7 0.8 0.9 1

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

0

1

2

3

0 0.2 0.4 0.6

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

0

1

2

3

0 0.5 1 1.5

0

1

2

3

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

0 0.2 0.4 0.6

0

2

4

6

8

-2 -1 0 1 2

0

0.5

1

1.5

-0.5 0 0.5 1

0

1

2

3

4

5

Notes: 16 parallel simulated posterior chains for each parameter

ECB Working Paper Series No 2523 / February 2021 47



Figure B5: Posterior distributions - parallel posterior chains (model A)
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Figure B6: Posterior distributions - parallel posterior chains (model A)
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Figure B7: Trace plots of simulated posterior chains (model A)
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C Forecasting performance: detailed results

Figure C1: RMSFEs with fixed parameters
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Figure C2: RMSFEs with re-estimated parameters
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D Output gap revisions and the Covid-19 shock

The Covid-19 pandemic and the related containment measures generated an unprecedentedly

large shock to economic activity. Although the shock was fully exogenous - as opposed to the

great financial crisis, when a buildup of financial imbalances preceded the recession - its sheer

magnitude poses a problem for linear time-series models, such as the one introduced in this

paper. From a trend-cycle decomposition perspective, the Covid-19 shock leads to an enormous

prediction error in 2020 Q1 and Q2 which contaminates the the past state estimates if the

Kalman smoother is applied. For example, by including the Covid-19 shock in the sample,

but keeping the parameters of model A fixed at their levels estimated before the pandemic, the

historical path of the output gap is revised up by 1 to 2 percentage points in each quarter over the

past five years (see dotted red line vs solid blue line in Figure C1), generating a strongly positive

output gap that diminishes the prediction error in the Covid-19 affected quarters. To avoid such

an unwarranted revision to past states the adjustment similar to what was suggested by Lenza

and Primiceri (2020) can be applied. In particular, it is possible to scale the covariance matrix of

the state shocks - in an ad-hoc way - in the affected periods to accommodate the extraordinarily

large shocks. Indeed, by applying a scale factor of 10 to the shock covariance matrix in the two

Covid-19 affected quarters in the sample, the Kalman smoother does not revise the past states

anymore (Figure C1).

Figure C1: Output gap revisions due to the Covid-19 shock (model A)
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