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Abstract

In this paper, I incorporate a complex network model into a state of the art stochastic general

equilibrium framework with an active interbank market. Banks exchange funds one another generating

a complex web of interbanking relations. With the tools of network analysis it is possible to study how

contagion spreads between banks and what is the probability and size of a cascade (a sequence of defaults)

generated by a single initial episode. Those variables are a key component to understand systemic risk

and to assess the stability of the banking system. In extreme scenarios, the system may experience a

phase transition when the consequences of one single initial shock affect the entire population. I show

that the size and probability of a cascade evolve along the business cycle and how they respond to

exogenous shocks. Financial shocks have a larger impact on contagion probability than real shocks that,

however, are long lasting. Additionally I find that monetary policy faces a trade off between financial

stability and macroeconomic stabilization. Government spending shocks, on the contrary, have smaller

effects on both.

JEL Classification: E44, E32, E52, E58, D85.
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Non-technical summary

The global financial crisis has shown how the web of mutual claims and obligations that ties to-

gether financial institutions is a key element to understand the propagation of financial shocks and

sequences of defaults. Understanding the relationship between the structure of the financial market

and the transmission of shocks has also relevant policy implications. For example, understanding

the connections between agents is crucial to design a “resilient” system (i.e. a system able to absorb

the default of several agents without systemic consequences) and to evaluate different tools to stop

contagion. Understanding how financial agents are connected is also relevant to assess how exoge-

nous shocks, including monetary policy shocks, increase or decrease the risk and size of contagion.

In the recent years, a growing literature has investigated those topics using different methodological

approaches. One strand of research, for example, has focused on the so called “asset communal-

ity” explanation for systemic crises. This theory suggests that contagion arises because financial

institutions invest in assets with highly correlated returns; when a negative shock occurs, they are

all affected in a similar way. An alternative approach to explain contagion relies on modelling the

web of financial connections between banks. The underlying assumption is that agents transmit

contagion by direct links (i.e. if bank “a” defaults all banks that have claims against “a” sustain

losses). The structure of those connections can explain how losses are transmitted from one financial

institution to another and how shocks may be amplified moving through the financial system.

This paper provides three contributions to this last strand of literature. First, and most importantly,

it augments a standard dynamic stochastic general equilibrium model (DSGE) with an endogenous

network between banks. The network presented in this model evolves along the business cycle,

reacting to exogenous shocks and endogenous macroeconomic developments. With the tools of net-

work analysis it is possible to compute the likelihood and size of contagion at each point in time,

which depend on the entire network structure. This is an important extension of standard DSGE

models (the main workhorse models used by central banks for analysis and forecasting). Equipped

with this additional tool, the model can be used to investigate the financial stability consequences of

macroeconomic developments. Notably, the modelling technique presented here can be extended to

other sectors of the economy where diffusion is important (for example technology or information).

Second, the paper exploits the general equilibrium dimension of the model to assess how different

exogenous shocks affect the probability and size of contagion between banks. Most of the literature

on contagion has so far focused on partial equilibrium models (i.e. models that focus on the financial
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sector taking other sectors of the economy as given). This paper, on the contrary, is the first to

assess the effects of aggregate shocks on the likelihood of financial contagion through the lens of a

full macroeconomic model. The analysis is important to assess the impact of developments of real

variables and monetary policy on financial stability, as they have significant general equilibrium

effects. Results suggest that the impact of shocks is persistent and that financial shocks have higher

impacts on the stability of the banking sector that real shocks.

Finally, the model is used to compare the different effects on financial stability of monetary policy

and fiscal shocks and to draw policy implications.
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1 Introduction

Modern financial markets are populated by agents connected by a deep web of mutual claims and

obligations, creating an environment that amplifies the response of the financial system to shocks,

Plosser (2009) and Yellen (2013). Early, pre-crisis, contributions such as Allen & Gale (2000) and

Freixas et al. (2000) suggest that an highly interconnected financial system is more resilient to the

insolvency of an individual bank as losses are spread among more creditors. More recent papers, such

as Blume et al. (2013), have challenged this view arguing that interconnections may be destabilizing,

allowing shocks to spread faster between agents; a similar conclusion is reached by global games

models of credit connections in the spirit of Dasgupta (2004). Moreover, Acemoglu et al. (2015) has

shown that the structure of the financial system is crucial to understand the spread and consequences

of exogenous shocks. These conclusions are similar to the computational results by Gai & Kapadia

(2010), which base their characterization of the interbank market on the empirical evidences of

Caldarelli et al. (2006) and Clauset et al. (2009) between others. Departing from that literature

this paper develops a full general equilibrium model with an interbank network. The advantage

of this approach is that it can be used to analyze the interaction between aggregate shocks, the

state of the economy and financial stability. Banks, in this model, hold at the same time claims

and liabilities against each other and a network of interbanking relations arises on which contagion

can be modelled in the spirit of Acemoglu et al. (2015).1 Nesting a network structure in a DSGE

setting is not straightforward as network models often exhibit chaotic properties making difficult

to define a proper steady state. This paper solves that complexity using the moment generating

function approach developed in the physics literature on diffusion, see Newman et al. (2001) and

Strogatz (2001), under the assumptions that i) there are liquidity mismatches in the final loans

market, such that banks need to rise liquidity from the interbank market and ii) banks interact only

with a limited numbers of other banks when doing so. Specifically, banks operate, in this model,

both on the interbank market (exchanging funds one another) and on a retail market (extending

loans to firms). Banks need to turn to the interbank market because the demand for loans and the

liquidity necessary to finance them do not arise at the same time. On that market banks trade only

with a limited numbers of counterparts; this generates an endogenous interbank network with size

and characteristics that evolve with the business cycle and the balance sheet of banks. The network

1In DSGE models with the interbank market banks are generally either landers and borrowers, see Angeloni &
Faia (2009), Dib (2010) and Gertler & Kiyotaki (2010). This simplifying assumption preserves tractability but also
eliminates, by construction, the possibility of contagion beyond the lander-borrower pair.
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can be described using extensions of graph theory which provide estimates for the probability and

size of contagion (i.e. defaults sequences). Both bank’s specific characteristics and the relative

position of each bank on the network are relevant for contagion. In fact, the probability that any

kth neighbor of a bank defaults affects the losses credit institutions are exposed to; at the same time,

the balance sheet of each bank determines, for a given shock, whether it defaults or not. To model

such complexity, this paper uses an extension of the moment generating function method proposed

by Newman et al. (2001) to study the aggregate characteristics of the financial network and the

diffusion of shocks. The other sectors of the economy, instead, follow Gertler & Karadi (2011).

The contribution of this paper is twofold. First, it provides a rigorous way to incorporate

financial contagion and cascade mechanisms into a standard macro framework filling a gap in the

existing literature between DSGE and contagion models. Second, the general equilibrium dimension

allows to study a) how shocks generated on other sectors of the economy affect contagion risk and

b) if and how the monetary and fiscal shocks can reduce that risk. Results show that financial

shocks affect the contagion probability more than real shocks that, however, are long lasting. The

model also highlights a trade off between macroeconomic stabilization and financial stability, with

central banks that are not able to achieve financial stability with monetary policy only. Monetary

policy tightenings can indeed reduce the risk of contagion, but have also severe effects on real

activity. Moreover, fiscal shocks have limited effects on the stability of the financial sector in the

model. The paper proceeds as follows: Section 2 Section 2 presents the model, Section 3 describe

the structure of the (complex) interbank market, Section 4 shows simulations of the model under

different shocks and policy specifications, in Section 5 I present conclusions. In the Appendix A

and the Appendix C proofs, additional graphs and full tables are reported. Appendix B Presents

an alternative configuration of the baking sector as robustness.

1.1 Related literature

This work is related to four streams of literature: financial contagion, network economics, network

theory and DSGE models with financial frictions.

Financial contagion.- Since Allen & Gale (2000) a growing literature has studied how the

architecture of the financial system may or not amplify contagion. Allen & Gale (2000) show how

interbank relations may create fragility in response to unanticipated shocks. Additionally Shin

(2008) and Shin (2009) show that securitisation enables credit expansion generating higher leverage
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and decreasing financial stability. More recently, Allen (2012) has shown that asset commonality

between banks determines the likelihood of systemic crises while Castiglionesi et al. (2017) show

that higher financial integration leads to more stability in normal times and larger interest rate

spikes during crises. Dasgupta (2004) argues that financial contagion, modeled through a global

game, prevents banks from perfectly ensuring on the interbank market. This paper is also closely

related to Acemoglu et al. (2015), who have highlighted how the structure of the underlying financial

network is not neutral for the size (and consequences) of contagion. Gai & Kapadia (2010) have

reached similar conclusions using numerical simulations. Their key finding is that when networks

are incomplete (i.e. banks are exposed to a limited number of counterparts) the system is fragile and

a single episode can generate a cascade (a series of defaults) that may affect the entire population. If

at least one first neighbor of the defaulting bank succumbs, it transmits losses to its own neighbors

bringing them into the “front line of contagion” (Gai & Kapadia (2010)).2 This paper extends

the literature on financial contagion in two directions: first, contagion here is studied in a general

equilibrium setting, with its probability and size being affected by the state of the economy and

aggregate shocks; second, this paper develops a more general methodology to nest network models

in general equilibrium frameworks.

Network economics.- This paper is also related to several works that try to apply complex

network tools to economic problems. Most of them, such as Cabrales et al. (2017), Elliot et al.

(2014), Battiston et al. (2012), Delli Gatti et al. (2010), study the propagation of shocks on a

network of firms connected by credit linkages. They find that an high degree of interconnectedness

allows shocks to propagate faster, making the system more fragile. This paper, in contrast, focuses

on banks and on how contagion spreads on the interbank market. Another stream of the network

literature focuses on the identification of the structure of interbanking connections. These works,

such as Boss et al. (2004a), Boss et al. (2004b), Caldarelli et al. (2006), Soramaki (2007), Alentorn

et al. (2007), Clauset et al. (2009), Cohen-Cole et al. (2011), Co-Pierre (2013) and Gabrieli &

Co-Pierre (2014), use -confidential- data on interbank transactions to back out a model for the

distribution of connections on the interbank market, which is critical to understand how contagion

works. The general finding is that connections between banks are best modeled using a power law

distribution. Power law functions have properties that capture some of the key characteristics of

the interbank market structure: i) preferential attachment (i.e. banks with a link in t are more

likely to have a link also in t + 1), ii) “fat” tails (i.e. there is a relevant number of banks that

2On a similar topic see also Bollobas (2001), Wormald (1999), Boss et al. (2004a), Boss et al. (2004b), Caldarelli
et al. (2006), Soramaki (2007), Clauset et al. (2009), Bluhm et al. (2013), Gabrieli & Co-Pierre (2014).
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have a number of connections above or below the average). In the model developed hereafter those

evidences seriously modeling the interbank market as a random network governed by a power law

distribution.

Network theory.- This paper also adapts the methods developed by the literature on complex

networks in physics and engineering to integrate a network structure into a general equilibrium

model. Strogatz & Watts (1998), Callaway et al. (2000), Strogatz (2001), Newman et al. (2001)

and Watts (2002) shown how real world networks can be modeled with random graphs and moment

generating functions. Those papers graph theory (i.e. the set of mathematical methods to analyse

a set of connections between objects) to describe the average characteristics of a graph V which

distribution of connections is known.3 The same approach can be used to study contagion as

“infected” nodes are just a subsample of the entire graph V . This modelling approach takes into

account both the individual characteristics (resilience, number of connections and relative position)

of each object in the graph and its relative distance from all other objects. There are clear advantages

of applying graph theory to banking models; however those models often exhibit chaotic properties

and fractal structures which make more difficult to integrate them in a standard DSGE framework;4

a contribution of this paper is to develop a tractable method to incorporate them into a standard

monetary model in the spirit of Gertler & Karadi (2011).

DSGE models with financial friction.- This paper is obviously related to the literature on

financial frictions in DSGE models. Since the global financial crisis several important contributions

have focused on the interaction between financial constraints and the real economy, see for example

Faia & Iliopulos (2011), Angeloni & Faia (2013), Christiano et al. (2014), Brunnermeier & Sunnikov

(2014), Gertler & Kiyotaki (2015).5 This stream of research studies the multiplicative effects of

financial frictions, i.e. friction in the flow of funds between borrowers and lenders, that may arise

from information asymmetries between borrowers and lenders or market power of financial interme-

diaries. Significant advances have been done on this front, which have lead to a better understanding

on how financial frictions affect the transmission of shocks and monetary policy. This paper builds

on those results incorporating into a state of the art DSGE model with financial frictions (as in

Gertler & Karadi (2011)) a network model which can be used to study contagion and diffusion. The

model proposed hereafter connects the literature on financial friction with that on contagion and

3See Vega-Redondo (2007) for an extensive review of these methods.

4See Mandelbrot (2004)

5Other notable contributions are Gerali et al. (2010), Gambacorta & Signoretti (2013), Giri (2018), Minesso Ferrari
(2019).
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diffusion on financial networks.

1.2 What is a cascade?

Before turning to the model, it is worth providing an intuition of the process this paper tries

to analyse and the methodology used. A network is nothing else than a graph, a mathematical

structure used to model pairwise relations between objects, Gross & Yellen (2003). Objects on the

graphs are called nodes or vertices while their relations are described by edges connecting them.

Network analysis was originally developed in physics and engineering to trace how an impulse (i.e.

energy on a grid, heat in fluids or gases, viruses between computers) spreads on a complex system

which connection structure is known or can be (reasonably well) approximated by a (estimated)

function. On financial markets the same tools can used to describe the web of connections between

banks and how contagion spreads.6 In this paper the objects connected in the network (graph) area

banks while debt contracts are the edges linking banks with each other.

Once the network is defined it is possible to compute the probability that the default of a single

node (bank) leads to a sequence of defaults and the number of nodes (banks) involved.7 These

are important measures for financial stability as they capture the probability and size of financial

contagion. An important caveat is that banks do not systematically (i.e. in the steady state) default

in this setting; the initial default is treated, instead, as an exogenous shock. If one bank defaults

it spreads losses to its counterparties (the banks from which it has borowed) that may or may not

default as well starting a contagion process. In this literature, the contagion process is called a

cascade (i.e. how the impulse given to a single node spreads trough the system). The size and

probability of a default sequence is affected not only by the magnitude of the initial seed8 (the

bank that originally defaulted) but also, and probably more importantly, by the relative position

of the initial seed in the network.9 Isolated banks or banks with “resilient” neighbors do not spread

contagion. On the contrary the initial seed grows if and only if it is surrounded by fragile nodes.

Consider the simple network of Figure 1.1.

6See Strogatz & Watts (1998), Strogatz (2001), Vega-Redondo (2007).

7The tools applied here are very similar to those used by engineers to analyze power grids or integrated circuits.
Stanley (1971), Barabasi & Albert (1999), Strogatz (2001), Callaway et al. (2000), Newman et al. (2001) provide
intuitions on how those methods can be applied on social networks. Those tools have also been adopted in epidemiology.

8So to how “large” is the institution that initially defaults.

9The relative position of a node in the network is given by the position and connectivity of the node and the
number, position and connectivity of all its neighbors.
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Figure 1.1: A simple network model.

Notes: The red triangle is the initial seed (i.e. the institution starting the contagion), that moves exogenously from

state 0 (no default) to state 1 (default). Circles are vulnerable nodes (i.e. nodes that move to state 1 if hit by a shock)

and squares are resilient nodes (i.e. nodes that never move to state 1). Green nodes are in state 0 while blue nodes

are in state 1. The cascade is composed by the initial seed and all blue nodes.

The initial seed is connected to only one node. However, this node is vulnerable and is very

well connected in the network, hence the initial seed can grow and infect all blue nodes in the

figure. There are also vulnerable nodes that are not part of the cascade, as they are connected

only to resilient nodes that protect them from contagion. This very simple example is useful to

point out four characteristics of contagion that the model can capture: i) it is necessary to consider

the position of each node on the network to assess its relevance; ii) diffusion processes are affected

by the connectivity of any kth order neighbor of the initial seed; iii) a cascade can grow through

those neighbors even if it starts from a rather peripheral node; iv) resilient nodes are key to prevent

contagion. The paper builds on Newman et al. (2001) and Watts (2002) to create a statistical model

for the financial network.

The model takes a step forward relative to the existing literature as explicitly defines the likeli-

hood of a bank being part of a cascade as the convolution of bank’s specific characteristics (i.e. its

number of links or the quality of its capital), its relative position in the network (i.e. having resilient

nodes between its first and second neighbors) and aggregate shocks or macroeconomic dynamics (i.e.

demand for loans, TFP, preferences). The application of network models into a DSGE framework

is presented in sections 3.1 and 3.2.
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2 The Model

The model follows Gertler & Karadi (2011). The economy is populated by five types of agents:

households, firms, banks, government and a central bank.

Households own firms and banks, supply labor, consume, pay lump-sum taxes and save (through

bank deposits). Household members are either workers -i.e. agents who supply undifferentiated labor

to firms10- and bankers, i.e. agents who manage banks. Workers earn wages while bankers earn

dividends that are transferred to the household only upon exit. Within each household there is full

consumption insurance and at any moment in time the fraction 1 − f (f) of workers (bankers) is

constant. At the end of each period, with an exogenous probability θB a banker stays banker for

the next period and with the complementary probability “exits” and becomes a worker.11 Finally

households save through deposit accounts.12

The private sector of the economy is composed by wholesale producers, retailers and capi-

tal producers. Wholesale producers operate in perfect competition and produce an homogeneous

undifferentiated intermediate good which is sold to retailers. They combine labor and capital in pro-

duction. Capital is entirely financed by bank loans and there is no agency problem between firms

and banks13 Capital producers use a fraction of final goods and undepreciated capital as inputs

to produce new capital. Retailers acquire undifferentiated goods from wholesale firms, differentiate

them with negligible costs (acquiring some degree of market power following Dixit & Stiglitz (1977))

and sell them in consumption bundles on the final market. The price of final goods is sticky and

can be updated in each period with probability θR.14

The financial sector of the economy is composed by a large number of banks. Each bank operates

in perfect competition and is operatively divided into a wholesale branch and a retail branch. The

banker’s objective is to maximize end-of-period net worth.15 As in Acemoglu et al. (2015), I assume

that banks are limited in the ammount of own funds that can directly invest into projects. This is

a simple way to model the fact that investment opportunities may not arise when there are internal

10More precisely, workers supply labor to wholesale producers.

11(
(
1− θB

)
f is the fraction of household members who switch from banker to worker).

12As Gertler & Karadi (2011) households do not hold deposits at the same financial institution they control. This
assumption is needed to characterize the agency problem between banks and depositors.

13When banks extend credit to firms they are acquiring a state contingent claim on the firm’s profits.

14See Calvo (1983).

15This is equivalent to maximizing the transfer to the household in case of exit.
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funds readily available to finance them. It is equivalent to assume that each period is divided into

subperiods in which some banks have access to investment projects while others do not. As in

Gertler & Kiyotaki (2015) the constraint generates an interbank market where banks borrow from

and lend to other banks.

The retail branch provides final loans to firms using interbank credit and accumulated capital.

The wholesale branch operates on the interbank market lending to and borrowing from other banks.

This branch acquires loans on the interbank market when valuable investment projects arise, but

the bank does not have internal funds to finance them. On the contrary, it issues interbank credit

when other banks have investment projects but no liquidity available, see Acemoglu et al. (2015).16

As a consequence, banks can borrow from and lend to other banks in the same period. This is a

key characteristic of real-world bank networks and is crucial for the transmission of shocks through

lending relations. In other contributions, such as Allen & Gale (2000) or Gertler & Kiyotaki (2010),

the banking system is composed by a set of lending banks and a set of borrowing banks (with no

intersection); banks, in other terms, are either borrowers or lenders. Under that assumption, if a

borrower defaults losses do not spread beyond the direct creditors of the defaulting institution and

contagion cannot start by construction (banks receiving the shock do not transmit it as they have

not borrowed funds). In this model, on the contrary, contagion can spread as banks are at the same

time borrowers and lenders.

I further assume that banks interact with a limited number of partners on the interbank market

in each period. This constrain arises because not all banks have liquidity available at the same time,

so (i.e. bank a may have funds to borrow but not when bank b needs them); when a bank demand

funds, only some banks have liquidity to spear.17 The number of borrowers (k) available to each

bank is randomly drawn in each period and determines the number of (borrowing) connections a

bank has. Given a distribution function from which k is drawn, it is possible to model the structure

of the network with a moment generating function approach.18 That model describes the average

characteristics of the network, for example the average number of connections or the presence and

size of clusters, and can be used to study the probability that the default of a single bank affects

the entire banking system (i.e. a “cascade”). In this paper cascades are not systematic events, but

16Following Dasgupta (2004) between others, it is assumed that banks can trade only a fraction of deposits on the
interbank market.

17An alternative justification for the constraint is that here are costs connected to exploring the network. Banks,
therefore, find optimal to limit the number of partners they approach.

18See Newman et al. (2001), Watts (2002) and Newman (2002).
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are treated as exogenous shocks to the system (i.e. one bank exogenously defaults). Hence, agents

assign a very low (zero in the limit) probability that a cascade takes place. The network model,

however, can be used to investigate what is the probability that the exogenous default of a randomly

chosen bank triggers a cascade and what would be its average size. In this setting, the default of a

credit institution might have global implications depending on the state of the economy but also on

bank-specific variables. The cascade conditions, which link macro variables and the balance sheet

of banks to the diffusion of shocks on the interbank market, are presented in Section 3.

An alternative approach would be that banks trade their net worth on the interbank market.

this configuration of the model follows more closely the original framework by Acemoglu et al. (2015)

and is explored in Appendix B.

The microeconomic literature on banking sometimes takes a different assumption to derive

interbank credit linkages. Banks exchange deposits on the interbank market (instead of internal

funds) to face ex-post liquidity constraints. This class of models, in the spirit of Dasgupta (2004),

assume a two-period economy where banks do not accumulate net worth. In the second period

households face a preference shock and a fraction of depositors withdraw deposits unexpectedly

from some banks. Those credit institutions enter the interbank market to acquire liquidity. Credit

linkages between financial institutions are thus engineered through deposits rather than net worth,

as liquidity mismatches derive from ex-post shocks. In the original framework by Acemoglu et al.

(2015), however, banks liquidity mismatches exist ex-ante: banks receive investment proposals but

do not have readily available liquidity to finance them. This choice has also the advantage to

link conditions on the interbank market across periods, therefore I follow as baseline assumption.

The alternative approach, where connections between banks depend on deposits rather than net

worth, is explored in the Appendix B. Finally, the public sector of the economy is compose by the

government, which acquires final goods financing with lump-sum taxes and the central bank, which

follows a Taylor-type rule.

2.1 Households

There is a continuum of identical households, indexed by j ∈ [0, 1]. Households consume, save and

supply labor to firms. The preferences of a representative household are:

U (Ct, lt) =
∞∑
t=0

Etβ
t

[
exp(ect) ln (Ct − γCt−1)− χ

1 + ϕ
l1+ϕ
t

]
(1)
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where Ct denotes consumption and lt labor at time t. There is habit formation in consumption with

γ ∈ [0, 1] the habit parameter; χ is the weight of disutility of labor in the period utility function

and ϕ the inverse of the Frish labor supply elasticity;19 ect is an I.I.D. preference shocks that follows

an AR(1) process whose steady state value is 0. The intra-period budget constraint is:

Ct +Dt ≤Wtlt +RDt Dt−1 + Πt (2)

Sources of funds are: the wage bill (Wtlt), with Wt real wages; returns on risk free deposits (RDt Dt)

with Dt deposits and RDt the (real) risk free rate; Πt collects profits (from firms and banks) net of tax

paid.20 Uses of funds are consumption (Ct) and savings (as deposits). Each household maximizes

equation (1) with respect to consumption, labor supply and deposits subject to the sequence of

constraints of equation (2) and non negativity constraints. First order conditions are:

∂L
∂Ct

=
ect

Ct − γCt−1
− βγEt

[
ect+1

Ct+1 − γCt

]
− λCt = 0 (3)

∂L
∂lt

= −χlϕt + λCt Wt = 0 (4)

∂L
∂Dt

= Et
(
λCt+1R

D
t+1

)
− λCt β−1 = 0 (5)

where
{
λCt
}∞
t=0

is the sequenceof Lagrangian multipliers associated to the optimization problem.

λCt defines a stochastic discount factor as: Et
(
ΛCt,t+1

)
= βt

Et(λCt+1)
λCt

.

2.2 Wholesale Producers

Wholesale producers acquire capital from capital producers and labor from households to produce

undifferentiated intermediate goods. They finance capital issuing securities to banks in exchange

for loans at the price Qt. Zt are real returns on capital and each loan constitute a state contingent

claim on future returns (Zt+1, (1− δ)Zt+2, (1− δ)2 Zt+3 . . .), with δ the depreciation rate of capital.

As the intermediate good market is perfectly competitive, the price of intermediate goods (PWt )

equals the marginal cost. Firms produce with the technology:

Yt = At (UtξtKt)
α l1−αt (6)

19See Frisch (1959).

20Notice that profits are collected from exiting banks and retailers.
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with α ∈ (0, 1), Yt output, Kt capital, Ut the utilization rate of capital, ξt is a capital quality

shock.21 At is total factor productivity that follows an AR(1) process with steady state 1; the same

AR(1) structure is assumed for ξt. Wholesale firms choose the level of inputs in order to maximize

profits. First order conditions are:

∂L
∂Ut

= λft α
Yt
Ut

= ∆′ (Ut) ξtKt = Zt (7)

∂L
∂lt

= λft (1− α)
Yt
lt

= Wt (8)

with Zt the marginal product of capital and
{
λft

}∞
t=0

the sequence of Lagrangian multipliers asso-

ciated to the problem.

The real rate of return
(
RKt
)

per unit of capital is the sum of the marginal product of capital (Zt)

and the value of undepreciated capital ((1− δ)Qt −∆(Ut)) divided by the cost of capital (Qt−1):22

RKt =
[Zt + (1− δ)Qt −∆ (Ut)] ξt

Qt−1
(9)

The total demand for loans (Bt) is defined as Bt = QtKt+1.23

2.3 Retailers

Retailers acquire undifferentiated wholesale goods (at the price PWt ) and bundle them together to

produce differentiated final goods that are sold on the final market at the price Pt. Each retailer

(indexed by j), faces a downward sloping demand function in a Dixit-Stiglitz setting24 for the

variety of good sold, with the CES aggregator for output Yt =

[∫ 1
0 Y

ε−1
ε

j,t dj

] ε
ε−1

. ε > 1 is the

elasticity of substitution between different varieties of final goods with the aggregate price level:

Pt =
[∫ 1

0 P
1−ε
j,t

] 1
1−ε

. Under these assumptions, the demand function faced by a j − th retailer is:

Yj,t =

(
Pj,t
Pt

)−ε
Yt (10)

21Capital utilized in production is ξtKt. As in Merton (1973) this shock allows the introduction of an exogenous
source of variation in the value of capital.

22Notice that returns are net of non-utilized capital ∆ (Ut).

23From perfect competition, the interest rate on loans equals returns on capital RKt . Notice that in this model
bank loans are closer to shares than to standard debt contracts. This approach has the merit of solving the agency
problem between banks and wholesale producers.

24Dixit & Stiglitz (1977).
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In each period retailers are able to reset prices with probability (1− θR). If a retailer receives

the signal, she will choose the new price Pj,t = P ∗j,t in order to maximize future expected profits.

Alternatively prices are indexed to past inflation.25 The first order condition is:26

∞∑
i=0

Et−1

{
θiRΛCt,t+kYj,t+i

[
P ∗j,t
Pt+i

Πi
k=1 (πt+k−1)θ − ε

ε− 1
PWt+i

]}
= 0 (11)

2.4 Capital Good Producers

Capital good producers operate in perfect competition and combine (subject to a quadratic cost)

undepreciated capital with “investment goods” to produce new capital that is sold to wholesale firms

at the price Qt.
27 The optimality condition is (with It new investment goods):

∂L
∂It

= Qt

[
1− χI

2
(xt − 1)2 + χI (xt − 1)xt

]
+ Et

[
ΛCt χI (xt+1 − 1)x2

t+1

Qt+1

Qt

]
= 1 (12)

where xt = It
It−1

. Equation (12) is the well known Tobin’s q equation,28 that links the price of

capital to its marginal cost. Finally, the law of motion of capital is: Et (Kt+1) = (1− δ)Kt +[
1− χI

2

(
It
It−1
− 1
)2
]
It.

2.5 Banks

Banks combine net worth, interbank loans and deposits to supply credit to firms. Each bank is

managed by a banker, with the fraction of bankers in each household constant and equal to f .

At the end of the period a banker may exit with probability 1 − θB. If that happens, the banker

transfers all remaining equity to her household as dividends.29

Bankers maximize the transfer to the household upon exit. Following Gertler & Karadi (2011)

25More formally, they solve max
∑∞
i=0Et

{
θiRΛCt,t+i

[
P∗
j,t

Pt+i
Πi
k=1 (1 + πt+k−1)θ − PWt+i

]
Yj,t+i

}
, subject to the de-

mand function, equation (10)

26With the optimal price level Pt =
[
θR
(
πθt−1Pt−1

)1−ε
+ (1− θR)P ∗1−εj,t

] 1
1−ε

. Since all retailers are equal, they

choose the same -optimal- price, so the index can be droppend (i.e. P ∗t = P ∗j,t).

27Their objective function is Et
∑∞
t=0 ΛCt,t+1

{
QtIt

[
1− χI

2

(
It
It−1

− 1
)2]
−
[(
Qt −Qt

)
(1− δ)Kt−1

]}
with Qt the

price of undepreciated capital and χI
2

(
It
It−1

− 1
)2

physical adjustments costs.

28See Tobin (1969). Notice that Qt = 1 in the steady state.

29At the same time, a fraction θBf of workers become bankers, receiving an initial lump sum transfer from
households.

ECB Working Paper Series No 2432 / June 2020 15



and Gertler & Kiyotaki (2015), I assume that this generates an agency problem between lenders and

the banker. Namely, bankers can divert a fraction Θ of funds intermediated on the retail market

directly to the household, leading to a default of the bank.30 Except for the frictions just discussed

financial markets operate in perfect competition.

I depart from Gertler & Karadi (2011) assuming that banks interact on a complex network

of credit relations. To model this network I incorporate the framework31 proposed in Acemoglu

et al. (2015) in a general equilibrium setting. In Acemoglu et al. (2015) two main assumptions

characterize the interbank market. First, there are liquidity mismatches between financial agents.

Banks cannot use their net worth to finance loans; instead they need to borrow from other credit

institutions on the interbank market. This assumption captures, in a simple way, the fact that

investment opportunities and the liquidity needed to finance them may not arise simultaneously. It

is equivalent to assume that each period is composed by multiple subperiods. In each of them some

banks have access to investment opportunities while other have liquidity. As a consequence banks

exchange credit on the interbank market. Second, banks can trade only with a limited (random)

number of counterparts in each period on the interbank market. This assumption captures the

regularity of existing banking networks where banks have access to the entire interbank market but

approach only a limited number of other credit institutions (for example because of searching costs

or liquidity mismatches). See Acemoglu et al. (2015) for a detailed discussion of both assumptions.

Under these assumptions banks create a credit network of mutual claims and obligations. That

network is modelled following Watts (2002) and Newman et al. (2001) and allows to quantify the

likelihood that the default of a credit institution spreads to other banks. Defaults are not systematic

events (i.e. they do not occur in the steady state) but are exogenous shocks. Agents, therefore,

assign a very low (zero in the limit) probability that a default occurs. Nevertheless, the network

models trace how contagion spreads between banks following such exogenous events. I assume that

banks also differ in their ability to absorb losses when there is a default; this assumption can be

relaxed without changing the main implications of the model. The following section of the paper

will (extensively) elaborate on the characterization of banks. Specifically, the derivation of the

interbank network is presented in section 3 under the previously described assumptions.

30Banks can monitor more efficiently other banks. Therefore, bankers can divert only funds intermediated on the
retail market. This assumption is similar to Gertler & Kiyotaki (2010) and Gertler & Kiyotaki (2015).

31That is based on the results of the “coconut” model by Diamond (1982).
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2.5.1 The wholesale branch

Similar to Gerali et al. (2010), the wholesale branch lends to and borrows from the interbank market.

Interbank credit is then transferred to the retail branch that combines it with deposits to supply

final loans to firms. At the same time, the wholesale branch issues credit on the interbank market

using a fraction of deposits (Ξ) from households;32 banks access the interbank market because there

are liquidity mismatches between banks and firms (i.e. bank a does not have liquidity when firms

demand credit).33 The wholesale branch chooses the level of interbank loans offered
(
Int+t

)
and

demanded
(
Int−t

)
to maximize the value of the branch (i.e. the discounted sum of profits) given

market rates:

Et(V
WB
t ) =

∞∑
i=0

(
1− θB

)
(θB)iΛCt,t+1+i

[
Int+t R

I
t+1 − ΞDtR

D
t+1 − Int−t RIt+1

]
(13)

subject to the resource constraint Int+t ≤ ΞDt and the demand of interbank loans by the retail

branch Int+t = Bt−Nt. R
I
t+1 is the interbank rate and Rt+1 the opportunity cost of unused capital.

As there are no credit frictions on the wholesale market, the interbank market operates in perfect

competitions; rates are set at the marginal cost and banks supply all funds available. First order

conditions are:34

RIt = Rt (14)

Int+t = Int−t = ΞDt (15)

These conditions translate the interbank market structure of Acemoglu et al. (2015) in a dynamic

general equilibrium setting and under the assumption that banks trade a share of deposits on the

interbank market. As long as equations (14) and (15) hold (i.e. the interbank rate is above or

equal to the shadow cost of capital), banks supply all available liquidity on the interbank market.

Finally banks trade only with a limited number of partners, k, in each period with the probability

of having k partners being pk. This is the same assumption taken by Acemoglu et al. (2015) and

32In this, the model follows Dasgupta (2004) between others. An alternative approach would be that banks use a
fraction of banks’ capital to finance interbank loans, as in Acemoglu et al. (2015); this would lead to a weaker relation
between interbank risk and the banks’ leverage and is explored in Appendix B.

33This is equivalent to assuming that each period is divided into subperiods in which some banks face higher than
expected demand for loans while other lower than expected. Banks cannot divert funds intermediated on the interbank
market. This is one of the two cases presented in Gertler & Kiyotaki (2015); as credit frictions are not the focus of
this paper, I choose here the simplest configuration for the interbank market.

34Notice that these conditions are equivalent to Gerali et al. (2010) in the absence of frictions.
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Gai & Kapadia (2010) and captures the fact that banks have access to the entire interbank network

but do business only with a limited number of credit institutions. This assumption is also key to

generate cascades that have general equilibrium effects. In fact, in models where banks trade with

all other banks on the interbank market, losses are spread evenly between all creditors and become

negligible as the interbank market grows.35 Banks also differ in the number of defaults they can

absorb, ϕ ∈ [0, k]. In section 3 it will be derived how ϕ depends on the bank’s balance sheet, interest

rates and a bank-specific component. ϕ can be also constant across banks without loss of generality.

2.5.2 The retail branch

The retail branch combines interbank credit and net worth to supply final loans to firms (B).

Bankers maximise the value of the branch at the end of the period:

Et
(
V RB
t

)
=

∞∑
i=0

(
1− θB

)
(θB)iΛCt,t+1+i[R

K
t+1+iBt+i +Rt+1+iNt+i −RIt+1+iInt

−
t+i] (16)

As in Gertler & Karadi (2011) and Gertler & Kiyotaki (2015), at the beginning of the period

bankers can also divert a fraction Θ of intermediated assets to households. The banker decides

not to divert assets if the expected end-of-period value of the branch is larger than the value of

divertable assets:

E (Vt) ≥ ΘBt (17)

The (recursive) solution for the optimal value of the branch is:

E (Vt) = k1
t Int

−
t + k2

tBt (18)

with k1
t and k2

t defined as:

k1
t = Et

[(
1− θB

)
+ ΛCt,t+1θ

BNt+1

N t
k1
t+1

]
(19)

35Each bank divides evenly its desired amount of interbank loans between all possible borrowers. Banks differ only
in their position on the credit network and in their haircut rate in case of default. As the expected default probability
is zero, all banks are ex-ante equal (so each of them has the same “risk”).
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k2
t = Et

[(
1− θB

)
ΛCt,t+1θ

B
(
RKt+1 −RIt+1

)
+ ΛCt,t+1θ

BBt+1

Bt
k2
t+1

]
(20)

The incentive compatibility constraint can be written as k1
t Int

−
t + k2

tBt ≥ ΘBt so that, using

the budget constraint of the retail branch36, equation (17) becomes:

Bt = φtNt (21)

φLt =
k2t

Θ−k1t
is the ratio between net worth and interbank funds (similar to the leverage ratio in

Gertler & Karadi (2011)). The constraint given by equation (17) is locally biding around the steady

state and determines the spread between the rental rate of capital and the risk free rate (RK −RD)

as a function of the degree of financial frictions.37

End of period banks’ capital (NEP
t ) is equal to the beginning of period capital (Nt) plus profits

from both branches:38

Et
(
NEP
t+1

)
=
(
RKt+1 −RDt+1

)
Bt +RDt+1Nt (22)

The total net worth at the beginning of the next period is the sum of net worth of surviving

banks (θBNEP
t+1) and the initial transfer from households to new banks:39

Et(Nt+1) = Et(θ
BNEP

t+1 +
ω

1− θB
NBO
t+1 + eBt+1) (23)

eBt+1 is a shock on the bank’s capital that follows an AR(1) process and has steady state value

of 0. Notice that in this model banks do not systematically default as loans to firms bear no risk.

Defaults starting contagion are, instead, exogenous shocks to the banking sector.

36That is Int−t +Dt = Bt.

37Gertler & Karadi (2011) provides a proof for this statement.

38Given the assumptions on bankers’ behaviour, bankers optimally accumulate profits (if they do not exit) in each
period. See Bernanke et al. (1999) and Gertler & Kiyotaki (2010) for a detailed discussion.

39Houshold transfer a fraction ω
1−θB of the equity of exiting banks to newly formed banks.
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2.6 Equilibrium

Equilibrium relations complete the model. The supply-demand identity must hold on the good

market:

Yt = Ct + It +Gt + Φt (24)

where Φt gathers additional costs for the economy (adjustment costs in capital goods production

and frictions) and Gt is public expenditure, which is assumed to be exogenous and to follow an

AR(1) process. The central bank sets nominal rates following a Taylor-type rule:40

ln(Rnt ) = (1− ρ)
[
ln(Rn) + ψπln(πt) + ψy(ln(Yt)− ln(Y ss))

]
+ ρln(Rnt−1) + eRt (25)

where Rnt is the net nominal interest rate, Rn its steady state value and eRt is a monetary policy

shock that follows an AR(1) process with steady state 0. The real rate is defined by the Fisher

relation (1 +Rnt = Et (Rt+1πt+1)).41

3 The Interbank Market

Banks are connected by mutual claims and obligations. As banks trade with only a fraction of all

available counterparts, the default of one bank might have effects on the entire population depending

on the bank’s position and the characteristics of its neighbours. To model how contagion spreads, a

network model is derived under the assumption outlined in the previous section. The characteristics

of the resulting network are time-varying and depend on aggregate macro and financial variables as

well as on the balance sheet of banks.

3.1 A General Model of Transmission

A common method in physics and engineering to model diffusion on random graphs (which are

sets of interconnected entities) is the so-called moment generating functions (MGF) approach.42 In

a nutshell, MGF allow to summarize the average characteristics of a grapth exploiting the proba-

40Taylor & Woodford (1999).

41See Fisher (1896).

42I make use of the methods proposed by Strogatz & Watts (1998), Callaway et al. (2000), Strogatz (2001), Newman
et al. (2001) and Watts (2002). This method can be applied to any random graph independently on the underlying
distributions.

ECB Working Paper Series No 2432 / June 2020 20



bility distribution (PDF) of its nodes’ connections. If a PDF for the probability that a node has

k connections is available, through moment generating functions the characteristics of the entire

network can be derived analytcally. This approach is particularly appealing as it allows to take into

consideration all k levels of connections between nodes (banks) in the graph. The probability that

bank a is part of a default sequence depends on the institutions with which it is directly connected

(say b and c), but also on how b and c are connected themselves and how all their neighbors are.

This process goes on to the infinite; Strogatz (2001) and Newman et al. (2001) have developed a

computational method to solve such complexity and analytically derive the probability and size of

a cascade for a random network with a given PDF for the nodes’ links.

Specifically, consider a random graph composed by V nodes (in this contex banks) and d edges

(credit linkages). The probability of a node having k edges is defined as pk.
43 Each node has two

possible states: 0 (inactive) to state 1 (active); it moves from 0 to 1 if at least a fraction φ of its k

neighbors are in state 1.44 φ is a parameter specific to each node and is drawn from a distribution

f (φ) that is normalized such that
∫ 1

0 f (φ) dφ = 1. Notice that this assumption can be relaxed

by assigning to each node the same value of φ; in this case node differs only in the number of

connections.

A cascade is defined as the number of nodes that move from state 0 to state 1 if a random node

(called the initial seed) exogenously shifts to state 1 (if nodes are banks that is a default). The

model identifies: i) the probability that a global cascade is triggered by a single node, where a global

cascade is defined as a cascade that occupies a finite fraction of the total number of nodes; ii) the size

of the cascade if it takes place. In a banking network that would be: i) the probability of contagion

in case bank chosen at random defaults, ii) the number of banks affected. Most importantly, default

sequences are started by the exogenous default of one bank; banks do not default systematically in

this model. From the properties of random graphs45 follows that in large random graphs with small

initial seeds the local neighboring of an initial seed does not contain cycles,46 therefore no vertex

neighbor to an initial seed is adjacent to more than one seed. This property is important to pin

down the diffusion process. Another important property of large random graphs is that they can

be regarded as pure branching structures, therefore each subcluster below the transition size may

43In this model k is the number of conterparties with which each bank trades. On large networks pk is also the
share of banks that have exactly k partners.

44This is equivalent to say that a node moves to state 1 if receives enough shocks (φ) from its neighbors.

45The interested reader may refer to Newman et al. (2001), Watts (2002) or Vega-Redondo (2007).

46See Watts (2002) and Gross & Yellen (2003), this is asymptotically true for random graphs as the number of
vertices grows. See Appendix A.2 for an intuition.
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be regarded as independent.47

Under these conditions, an initial seed can diffuse through the network if and only if at least

one of its initial neighbors has a threshold φ ≤ 1
k or k ≤ k̄ = 1

φ ; a vertex that meets that condition

is called vulnerable as it might be part of the cascade. The existence of a cascade depends not

only on the magnitude of the initial shock but also, and maybe more importantly, on the position

of the initial seed(s). A seed that is isolated does not threaten the whole system even if large in

magnitude. On the contrary, a small seed located in a very “central” position may expand through

the entire graph.

Define the probability of a vertex with k neighbors to be vulnerable as ρk = P
[
φ ≤ 1

k

]
.48 The

moment generating function of the vulnerable vertex degree is:49

G0 (x) =
∞∑
k=0

ρkpkx
k (26)

the moments of this function define the moments of the vulnerable cluster (i.e. the group of nodes

-banks- that are affected by the initial seed).50 The vulnerable fraction of the population (i.e. the

probability that a bank triggers a cascade when defaults) is simply given by Pv = G0 (1).51 Notice

that a node is vulnerable depending at the same time on its own value of φ and on the number

and vulnerability of its neighbors. The combination of the two defines weather a vertex (bank) in

the model is part of the vulnerable cluster. The average degree of vulnerable vertices (i.e. how

many connections vulnerable vertices have on average) is zv = G′0 (1). A third element to evaluate

is the degree distribution of a vulnerable randomly chosen vertex a that is a neighbor of the initial

(active) vertex b. The larger is the degree of a the more likely it can spread contagion from b.

The probability of choosing a is proportional to kpk and the corresponding, well-behaving, moment

generating function is:

G1 (x) =

∑∞
k=0 ρkkpkx

k−1∑∞
k=0 kpk

(27)

the numerator is the first derivative of equation (26) while the denominator is simply the average

47A cluster is said to be at the transition size if a shock starting there can percolated to the entire network. See
Newman et al. (2001) and Watts (2002) for proofs.

48Notice that for k = 0 ρk = 1. Additionally ρk constant is just a special case of this model.

49The interested reader may refer to Newman et al. (2001), Strogatz (2001), Watts (2002) and Vega-Redondo
(2007) for an extensive theory.

50The subscript 0 defines the moment generating function of a node, 1 that of its first neighbor, 2 that of its second
neighbor and so on.

51An advantage of this method is that analysis are easily scalable, Pv = G0 (2), for example, is the probability that
a cascade starts when two nodes move to state 1.
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degree of the whole network (z). Therefore, it can be simplified into:

G1 (x) =
G′0 (x)

z
(28)

Finally, define qn as the probability that a randomly chosen vertex belongs to a vulnerable cluster

of size n, and rn as the corresponding probability for a neighbor of the initial vertex. The moment

generating functions for qn and rn ((H0 (x) , H1 (x))) are:

H0 (x) =
∞∑
n=0

qnx
n and H1 (x) =

∞∑
n=0

rnx
n (29)

Self-consistency conditions52 call for:

H1 (x) = [1−G1 (1)] + xG1 [H1 (x)] (30)

allowing to derive H0 (x) as:

H0 (x) = [1−G0 (1)] + xG0 [H1 (x)] (31)

[1−G0 (1)] is the probability that a chosen vertex is not vulnerable, xG0 [H1 (x)] takes into account

the size of the vulnerable cluster. From the definition of H0 (x) it is possible to compute all moments

of the vulnerable cluster, in particular its average size ‖n‖ = H ′0 (1). Using equations (30) and (31):

‖n‖ = G0 (1) +
[G′0 (1)]2

z −G′′0 (1)
= Pv +

z2
v

(z −G′′0 (1))
(32)

which diverges (‖n‖ → ∞) when:

G′′0 (1) =
∑
k

k (k − 1) ρkpk = z (33)

See Appendix A for an extensive proof. ‖n‖, the average vulnerable cluster size, defines the average

number of nodes that participate in the cascade if it takes place. Pv is the vulnerable fraction of the

population that, on large networks, approximates the probability that a single node is vulnerable

52See Newman et al. (2001) and Strogatz (2001). Self-consistency allows to approximate the distribution of a
random vector X by a random vector Y whose structure is less complex without significant loss of information. In
particular we can construct a self-consistent approximation of X dividing X into subsamples and defining Y as a
random variable with values the means of each subset. Notice that a (random) search process on a graph can be
regarded as a pure martingale process. See Tarpey & Flury (1996) for more details.
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(i.e. it might trigger a cascade moving exogenously from state 0 to 1). In this model if a node

(bank) is eliminated at random, it starts a cascade (default sequence) with probability Pv that has,

on average, size ‖n‖. Notice that these measures depend on the way in which nodes are connected

(described by pk) and on the resilience of each single node (φ).53

Equation (32) is generally known as the cascade condition. It states that whenever G′′0 (1) < z all

vulnerable clusters in the network are small; in other words the initial shock is unable to percolate

through the whole system. On the contrary, when G′′0 (1) = z a percolating vulnerable cluster arises;

through it an initial seed may spread to the whole system.54 Equation (33) is also known as phase

transition and as k (k − 1) is monotonically increasing in k, while ρk is monotonically decreasing in

it, has two solutions or none. With two solutions there should be, according to Watts (2002), an

interval in z in which cascades can occur. Appendix A.5 provides an overview of the properties of

the network under analysis. In Appendix A.6 the interested reader may find a longer discussion.

3.2 Application to the Model

It is straightforward to identify nodes as banks on the interbank market, the initial seed as a

defaulting bank and the parameter φ as the maximum number of defaults that a bank can absorb

without defaulting itself. A “global cascade” is nothing else than contagion on the interbank market

and its probability and size a good measure for systemic risk.55 Equation (26) is the probability

that the default of a randomly chosen bank triggers a sequence of episodes. The lower is Pv the less

likely a cascade occurs, the more stable is the system. At the same time ‖ n ‖, the cascade size,

defines the magnitude of the default sequence and the severity of the episode; pk is the distribution

from which is drawn the number of counterparties with which each bank trades at each time t.56

This framework has two advantages: first it integrates, in a rigorous way, a model to study

diffusion on the interbank network into a standard DSGE model, being, to the best of my knowledge,

the first paper on this topic. Second, the position of a bank on the network (i.e. the number and

characteristics of all its kth order neighbors) defines the probability of being part of a cascade and

the relative position of all banks defines the cascade’s size. To implement the diffusion model it is

53In the following pk is chosen to match the empirical literature on interbank networks.

54On this topic see Stanley (1971), Bollobas (2001) and Stauffer & Ahrony (1991).

55Cascade probability and size define, in terms of macroprudential policy, the probability of contagion spreading
from one defaulting institution to the system and the expected number of defaulting banks involved.

56That number is assumed to be I.I.D between time and banks.

ECB Working Paper Series No 2432 / June 2020 24



necessary to choose a probability distribution for pk and then evaluate equations (26) to (33). A

simple possibility would be to follow the so called small-world model by Strogatz & Watts (1998)

based on Erdos & Renyi (1959) and Erdos & Renyi (1960) assuming a Poisson distribution for

pk. Results with this choice, however, fail to describe real world networks, most of which exhibit

power law properties.57 In particular, there are sound and coherent evidences that the structure

of the interbank market network is described by a power law distribution, between them: Boss

et al. (2004a), Boss et al. (2004b), Caldarelli et al. (2006), Soramaki (2007), Allen & Babus (2007),

Alentorn et al. (2007), Clauset et al. (2009), Cohen-Cole et al. (2011), Co-Pierre (2013) and Gabrieli

& Co-Pierre (2014). Following those results pk is assumed to have a power law distribution.58

A power law is bounded in the interval [1,∞]59 and captures some of the key characteristics of

the interbank market (as well as of other real world networks): i) preferential attachment,60 ii) “fat”

tails.61 Define pk as:62

pk = Lk−γ̃ (34)

where L = ζ (γ̃) is a standardization parameter, ζ being the Reinmann ζ-function. The parameter

γ̃ > 263 defines the degree of “concentration” in the system; as γ̃ grows, the probability associated

to large k decreases, resulting in networks with less “well-connected” nodes (banks). The deriving

well-behaved moment generating function (i.e G0 (x) =
∑

k pkx
k) is:

G0 (x) =
Liγ̃ (x)

ζ (γ̃)
(35)

57See Barabasi & Albert (1999).

58For a detailed description of the properties of random graphs generated by this distribution see Newman et al.
(2001), Aiello et al. (2001), Strogatz (2001), ben Avraham et al. (2002) and Vega-Redondo (2007).

59This fits perfectly with the assumptions of the model. In fact, in the model banks need at least one counterparty
to operate. If k was 0, than a bank would not participate on the market and its supply of loans would be equal to
deposits.

60In the literature on random graphs preferential attachment is a characteristic of networks where agents with more
links are more likely to form new ones. This characteristic is embodied by power law distributions while it is missing
in networks generated by normal distrubutions. In the terms of the interbank market, it means that larger banks tend
to have more connections that small banks. This is consistent with empirical evidences on the the banking literature
and the literature on interbank networks (see Caldarelli et al. (2006) and Boss et al. (2004a)).

61Graphs characterized by power law distributions have typically a significant number of nodes located in the tails
of the degree distribution contrary to graphs described by normal distributions. This means that there many banks
populating the upper tail of the distribution -i.e. being more connected- that are systemically important institutions.
Therefore, the simple average number of connection is not informative and it is necessary to rely on additional statistics
to describe the network structure. The interested reader can, again, rely on Newman et al. (2001).

62Notice that in this case the power-law does not exhibit an exponential cutoff. A possible extension of the model
would be to incorporate it.

63See Newman et al. (2001), ben Avraham et al. (2002), Watts (2002) and Vega-Redondo (2007). If γ̃ ≤ 2 the first
derivative of G1(x) is not defined.
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Equation (35) has the main drawback of exhibiting fractal and chaotic properties.64 Fractals have

not always closed form solutions and are characterized by chaotic behavior. In this case, Liγ̃ (x), the

γ̃th order polylogarithm of x, is chaotic and has closed-form solution only for some specific choice

of parameters. To incorporate the cascade mechanism into the DSGE framework it is necessary to

derive a more tractable solution. Recall the definition of a definite integral as the limit of a Riemann

sum65 and that the number of agents in the model is very large.66 As in Vega-Redondo (2007) it is

possible to approximate the discrete distribution to its continuous counterpart. Given an interval

[a, b]:

b∫
a

f (x) dx = lim
n→∞

b− a
n

n∑
i=1

f (xi) (36)

with xi = a + i b−an . In the case of the MGF
∑

k f (k) = G0 (x) =
∑∞

k=0 ρkpkx
k, with b−a

n = 1.

n, the upper bound of the interval, is the maximum number of loans (edges) that a bank may

have. As bank, in the model, cannot lend less than one unit of credit per counterpart, n equals

Int+t . Therefore it is straightforward to show that a = 0 and b = n.67 As the maximum number of

connections is a function of the total ammount of interbank loans, the network structure changes

following developments on the interbank market. Rewriting equation (26) we have that:68

G0 (1) =

Intt∫
1

ρkLk
−γ̃xkdk (37)

with ρk = P
[
φ ≤ 1

k

]
and φ = f (V e

t ). Turning to φ, it can be proved69 that φ = Vt
Intt

with Vt the

-absolute- maximum amount of funds that a bank can lose without defaulting. The definition of Vt

derives from the budget of a single bank:

Vt =
RKt Bt −RDt Dt −RIt Intt

RIt
(38)

64See Falconer (2003) and Mandelbrot (2004).

65See Krantz (2005).

66Notice that in this model there is a large number of banks to ensure perfect competition.

67Consider the moment generating function G0 (x) =
∑∞
k=0 ρkpkx

k =
∑n
i=1 f (xi). Additionally xi = k, as k is the

argument of the MGF G0. This approximation holds when n tends to a large number. A similar method is used by
Newman et al. (2001) and Vega-Redondo (2007).

68Notice that the power law distribution is defined over the interval [1,∞].

69See Appendix A.
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This relationship reinforces the connection between the network structure and financial variables

and also links the network to real variables (through real returns, that depend directly on K and

Y ). Assume, finally, that banks face an haircut on the value of their assets when they are forced

to sell them during crisis. The haircut is specific to each bank reflecting bank-specific conditions.70

This assumption is in line with empirical results and introduce heterogeneity during crisis between

banks.71 It can be relaxed without changing the main results of the model.72

To model heterogeneity across banks during distress, assume that Vt is affected by a bank specific

random shock ηit that follows a uniform distribution over [0, 1] and is I.I.D. through banks (i) and

time (t). ηit measures the haircut on assets that a specific banks face during a cascade.73 Each bank

is able to use only:

V e
t = ηitVt (39)

The limit case of ηit = 1 for ∀t and i is a special case of the model under consideration, with a much

simpler network structure (i.e. φ is constant for all banks, only connectivity determines whether

they are vulnerable). P
[
φ ≤ 1

k

]
(the probability of being vulnerable) is defined as:

P

[
φ ≤ 1

k

]
= P

[(
V e
t = ηitVt

)
Intt

≤ 1

k

]
= P

[
ηit ≤

Intt
kVt

]
(40)

Therefore, equation (37) becomes:

G0 (1) =

Intt∫
1

ΩtLk
−γ̃xkdk (41)

with Ωt ≡ P
[
ηit ≤ Intt

kVt

]
. The probability of a cascade is affected not only by the total amount of

credit exchanged between banks but also by a bank-specific component. Notice that the resilience

of a bank to external shocks depends both on the realization of η and on the numbers of connections

k; both characteristics are important to determine if the bank belongs or not to a vulnerable cluster.

70It takes into account the specific managerial ability of some banks or the specificity of the assets in which they
have invested.

71See for example, Angeloni & Faia (2009) and Altunbas et al. (2017).

72In that case, in fact, φ would be constant across all banks and Pv would depend only on the connectivity of each
bank.

73See Christopher (1991), Coval & Stafford (2005), Brunnermeier (2009) and Duarte & Eisenbach (2013).
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From equation (41) all relevant network variables can be computed:

zt =

Intt∫
1

Lk−γ̃xkdk (42)

G′0,t (x) =

Intt∫
1

ΩtLk
−γ̃kxk−1dk (43)

G′′0,t (x) =

Intt∫
1

ΩtLk
−γ̃k (k − 1)xk−2dk (44)

These equations are sufficient to describe the aggregate characteristics of the interbank network

and link -through interbank loans, bank capital and returns on assets- the economy to the network

structure. They are the result of individual decisions of banks and of the collective actions of the

banking system.74 Network variables, in this model, are defined by: i) the state of the economy

(i.e. demand for loans, returns on capital); ii) financial and bank specific conditions (capitalization

of banks, volume of trade on the interbank market) and iii) the network topology (i.e. the relative

position of each bank vis-á-vis each oterh bank). Equation (26) describes the probability that a

defaulting bank triggers a cascade. It gives the probability that a bank a is connected to at least

one fragile neighbor b; if a defaults a cascade is triggered (i.e. at least another bank -b- defaults).

Generally, the more a network is sparse (the larger is γ̃), the more likely a randomly chosen bank

starts a cascade if it defaults.75 Equation (32) defines the expected number of institutions involved

in a cascade and is the result of a complex convolution of the parameters of the network; depends,

quite intuitively, positively on the probability of being part of a vulnerable cluster (Pv) and on the

average degree of vulnerable vertices.76 On the contrary ‖ n ‖ depends negatively on the whole

network average connectivity z and positively on G′′0 (x). Their combination leads to the so called

“phase transition equation”(33).77 This equation defines the conditions at which the entire system is

affected by the initial seed. Similarly to previous contributions on financial networks, that condition

74Notice that each banker cannot computed her own exposure to risk. In fact, to compute her own exposure to
risk a banker should know her own set of neighbors on the interbank market, their characteristics and the set of
connections (and characteristics) of any kth order neighbor.

75The larger is γ̃ the lower is the number of highly connected agents. The resulting network, therefore, is more
sparse in the sense that there are relatively more agents less connected between them. Additionally γ̃ must fall in the
interval [2, 5], see Appendix A.6.

76The more a vulnerable vertex is connected, in fact, the easier it can be “infected” and spread contagion to other
vertices.

77See Appendix A.6 for more details.
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is very rarely met, but the effects of a phase transition are potentially devastating.78

4 Simulation Exercises

The model is calibrated following Gertler & Karadi (2011) and Friedman & Woodford (2011). The

discount parameter β is set to 0.99, γ and ϕ to 0.815 and 0.276 respectively. The weight of labor in

the utility function (χ) is 3.409. The share of capital in the production function, α, is calibrated to

0.33. δ and ε, the depreciation rate of capital and the elasticity of demand, take the values of 0.025

and 4.167. The Calvo parameter is set to 0.779 and χI to 12.79 The key network parameter (γ̃) is

initialized to 2.5 following the evidences of a robust empirical literature on social networks.80 The

monetary policy function parameters (%, ψπ and ψy) are calibrated to 0.8, 1.5 and 0.5 respectively.

Finally, the share of government consumption on total output is equal to 0.2 in the steady state

and the autocorrelation coefficient of each shock is set to 0.5.

4.1 Static simulations

Before analysing the dynamic response of endogenous variables to shocks, it is helpful to investigate

the properties of the interbank network and in particular how the configuration of the network in

the equilibrium changes when the leverage of the banking sector rises or the spread between safe and

risky asset widens. This can clarify the mechanisms of transmissions between financial variables,

banks’ balance sheets and the contagion probability. Appendix A.5 and Appendix A.6 present a

smilar, partial equilibrium, analysis of cascades. Figure 4.1 shows the evolution of the equilibrium

contagion probability at different levels of leverage keeping all other variables constant.81 When

leverage (ϕLt ) is at the steady state, Pv is close to 0.13%, which is a reasonable value considering

historical averages.82 If it rises, banks also issue more interbank credit to finance loans and, hence,

the probability of contagion on the interbank market increases. When deposits rise relative to bank

78See for example Acemoglu et al. (2015). Appendix A.6 provides a more extensive analysis.

79Following in this case Dib (2010).

80Between many contributions: Bollobas (2001), Wormald (1999), Boss et al. (2004a), Boss et al. (2004b), Caldarelli
et al. (2006), Soramaki (2007), Clauset et al. (2009), Bluhm et al. (2013), Gabrieli & Co-Pierre (2014).

81ϕLt defines leverage in this model, as it captures the ratio between deposits and net worth of banks.

82Data from the US Federal Deposit Insurance Corporation show that, excluding the Global Financial Crisis, the
historical annual share of defaults of US banks is about 0.16. See Federal Deposit Insurance Corporation, Failures
of all Institutions for the United States and Other Areas [BKFTTLA641N], retrieved from FRED, Federal Reserve
Bank of St. Louis; https://fred.stlouisfed.org/series/BKFTTLA641N, January 24, 2020.
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net worth there is more trade on the interbank market and, hence, banks become interconnected

(G′0(1) raises). As a result, the share of banks involved in a cascade (||n||) increases as well.83

Figure 4.1: Steady state evolution of key network variables changing the equilibrium leverage of
financial intermediaries.

The probability and size of contagion increase when the spreads on risky assets widens (RK − R),

see Figure 4.2. If spreads increase there are two opposite forces that affect the structure of the

interbank network. The first channel derives from returns on final loans. If RK rises relative to R,

banks have larger profits and increase the amount of losses they can absorb without defaulting (V ).

The second is the demand for final loans. When returns on capital (RK) increase entrepreneurs

demand more loans as investment projects are more profitable. This leads to an expansion of credit

and a rise in the demand for interbank funds, which make banks more interconnected and, hence,

the risk of contagion rises. In this model the second channel prevails as the expansion in credit

linkages between banks overcomes the benefits of a more resilient bank net worth.

Figures B.I and B.II in the Appendix B report the steady state value of key network variables

when banks finance interbank credit using their net worth. In that case rising leverage decrease

83In Acemoglu et al. (2015) the contagion probability responds to the net worth of banks but it is neutral the
heterogeneity in size or leverage among banks. This is a direct consequences of the assumption that banks are equal
any variation in the fragility of the system is due to the financial network’s structure. As a consequence, if banks trade
net worth on the interbank market, the contagion probability and size decrease when leverage increase; the result also
hold in this model as shown in 4.1. See Acemoglu et al. (2015), pp 565.

ECB Working Paper Series No 2432 / June 2020 30



Figure 4.2: Steady state evolution of key network variables changing the equilibrium spread
RK −R.

both the probability and the size of contagion (as by construction more leverage reduces net worth

over deposits and hence availability of interbank funds, this is similar to Acemoglu et al. (2015)).

Changes in spreads, instead, have similar effects to the baseline framework.

4.2 Impulse Response to Standard Shocks

This section presented the effects of a 1% positive exogenous shock on the interest rate (i.e. a

contractionary monetary policy surprise), the TFP, consumption preferences, government spending,

capital quality and banks’ net worth. In this regard, the model resembles standard New Keynesian

dynamics for output, consumption and employment.84 As these results are well documented in the

literature, only the IRFs for the TFP and the monetary policy shocks are reported. Appendix C

present the responses ot other shocks.

Output responds positively to a TFP shock and negatively to a monetary policy tightening.

As expected, inflation responds negatively to both TFP and monetary policy shocks as a result of

lower production costs generated by the TFP shock and a fall in aggregate demand induced by the

84These results are in line with previous works such as: Angeloni & Faia (2009), Christiano et al. (2010), Gerali
et al. (2010), and Gertler & Karadi (2011).
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Figure 4.3: Output response to TFP and monetary policy shocks.

increased interest rate. Total loans increase after a positive TFP and decrease after a contractionary

monetary policy shock. This is due to higher (lower) demand and a lower (higher) cost of funding

for banks. Interbank loans, Figure 4.4, follow a similar pattern.

Figure 4.4: Interbank loans response to TFP and monetary policy shocks.

Finally, the central bank conducts an easing policy after a positive TFP shock as the drop in

inflation dominates the increase in output.

4.3 Network Impulse Responses

We now leave the safe shores of standard IRFs to enter the uncharted territory of the interbank

network structure. This exercise shows how contagion becomes more likely and its size increases

after exogenous macroeconomic shocks.85 In this context contagion is defined as the probability

that the default of one bank triggers a sequence of defaults. Pv and ‖ n ‖ show what would happen

85Although there is a wide network literature, grown faster in the last years, on financial markets (such as Gai &
Kapadia (2010), Cohen-Cole et al. (2011), Battiston et al. (2013), Co-Pierre (2013), Bluhm et al. (2013),Gabrieli &
Co-Pierre (2014), Capponi & Chen (2015)) few models analyze them in a general equilibrium set up assessing the
evolution of banking relations over the business cycle.
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Figure 4.5: Policy rate response to TFP and monetary policy shocks.

if a bank exogenously defaults at any point in time. Recall that in this model defaults do not occur

systematically, but are defined as exogenous shocks (i.e. one node, randomly chosen, moves from

state 0 to 1).

The first variable to analyze is the share of banks belonging to a vulnerable cluster, Pv, which

approximates -on large networks- the probability of a single bank being vulnerable and able to trigger

cascade. According to equations (26), (38) and (39) , Pv is influenced not only by the size of the

interbank market, but also by interest rates and by the propensity to save of consumers. Therefore,

the interaction between financial and real markets are complex and not completely predictable a

priori.

Financial shocks (monetary policy, capital quality and banks’ net worth) have a stronger impact

on Pv than real shocks (TFP, government spending and consumer preference). There are two reasons

for that. On one hand Pv depends directly from financial variables and only indirectly from real

ones. Their impact is mediated through the frictions of the model and, therefore, dampened. On

the other hand, real shocks do not have a direct impact on Ωt that affects the share of vulnerable

banks. Considering real shocks, Pv increases after a TFP shock. The effect is not extremely large

in magnitude but is very persistent in time. The more the economy is active (with pressure on

demand or an increase in production) the larger financial markets are, with banks supplying more

loans and having higher profits. That increases the amount of funds banks trade one another and the

overall connectivity of the system. As a result, the probability of being part of a vulnerable cluster

increases. On the contrary, a consumer preference or a government spending shock decrease Pv, as

they reduce the amount of final and interbank loans. Banks become less connected (z decreases)86

and the number of banks being part of a vulnerable cluster is reduced.

86See Figures B.IV and B.V in Appendix C.1.
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Figure 4.6: Cascade probability Pv and size ||n|| responses to shocks.

A contractionary monetary policy surprise drives down significantly the probability of contagion

-i.e. being part of a vulnerable cluster. As the policy rate increases, Ω increases, leading to,

ceteris paribus, an increase in Pv. This effect, however, does not compensate the impact of the

output contraction. As output falls banks finance less loans to firms and, consequently, demand

less interbank credit. This is reflected on the interbank market, where banks are less connected; as

financial institutions share less links, the cascade probability declines.

Capital quality and banks’ net worth shocks, on the contrary, have a positive impact on Pv.

The reasoning is similar to the previous case. Banks finance more loans to firms and, therefore,

demand more funds on the interbank market. This last result is quite significant as highlights, from

a theoretical point of view, the connections between an asset price boom and an increase of systemic

fragility.

From the analysis of the response of Pv to shocks we can conclude that: i) the probability of

being able to trigger a cascade -i.e. contagion- is affected not only by financial shocks but also by

real ones, ii) real shock impact less on the cascade probability, as they influence only indirectly
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network variables, iii) real shocks, even if small in the initial magnitude tend to be long lasting,

iv) policy makers face a trade off when it comes to monetary policy as stimulating output has the

price of a more risky financial system, v) there is not a “divine coincidence” in this case, as an

expansionary monetary policy has a cost in terms of financial stability, vi) government spending

shocks have a positive effect on output with limited consequences on contagion.

It is not sufficient, however, to consider only the probability of a cascade to occur; economists

and policy makers should also be concerned by its size (‖ n ‖ in the model). It grows, almost

intuitively, in Pv and in the probability of having a vulnerable neighbor and decreases in the total

size of the interbank market and in G′′0 (x). In the case of large financial markets, when z is large,

banks are more distant and, therefore, clusters are more likely to be isolated.

The cascade size follows a path similar to the probability of contagion, only larger in magnitude.

However, the dynamics involved are complex and highly non linear. The intuition is that ‖ n ‖

depends positively on Pv, G
′
0 (x) and G′′0 (x); these network measures are affected in the same way

by shocks as the moments of G (x) are increasing in the same set of variables. The only variable

that moves in the opposite direction is z as the larger and less interconnected is the network the

less likely a seed is able to grow.

To conclude, IRFs of the cascade size reinforce the conclusions drawn before. Real shocks

have an effect on the stability of financial markets and policy makers face an additional trade off

implementing monetary policies.

Figure B.III presents the IRFs of Pv and ||n|| to the same shocks under the alternative assumption

that banks trade their net worth on the interbank market. The IRFs of netwoek variables are

broadly similar to the baseline model and the main conclusions hold when constructing differently

the problem of banks. The only major difference is that the responses to financial shocks are

amplified by about 30% while the impact of real shocks is broadly similar. Differences are due to

lower sensitivity of bank’s net worth to real variables. The interest rate on deposits, in fact, is

pinned down by the Euler equation, which links the marginal utility of consumption to returns on

savings. As such, they respond stronger (and faster) to changes in output than bank’s net worth.
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5 Conclusion

This paper delivers three main results. First, it provides a rigorous way to incorporate a net-

work model into a standard general equilibrium framework. This methodology can be adapted to

any model and translated to other sectors of the economy where diffusion processes and cascades

dynamics matter (i.e. technological diffusion, information diffusion...).

Second, as network dynamics are highly complex, the characteristics of the starting node are not

sufficient to understand the entire process. Its position in the network and the position of its first

and second neighbors matters as well. This model takes into account that complexity when defining

the network and incorporates the effect of the interactions between bank-specific and aggregate

variables.

The paper additionally analyzes how contagion (in terms of likelihood and severity) evolves along

the business cycle, integrating a complex network structure into a DSGE framework. Simulations

show how systemic risk is influenced by financial and real shocks (with the latters having a smaller

impact). Central banks face a trade-off when implementing monetary policy. Easing policies have

a positive effect on output but only at the price of a greater instability on financial markets. This

is due to the effect on banks’ balance sheets of easing shocks. Simulations show also that monetary

policy alone is not able to achieve financial stability without costs in terms of output stabilization.

Overall, the network structure and contagion risk are deeply affected by real and financial

variables. In this complex framework there is the possibility that a marginal episode leads to

consequence of systemic relevance. Future extensions of this work may be the integration into

an open economy model of network dynamics, the inclusion of macroprudential policies and the

estimation of the model itself. In particular this last exercise could lead to the identification of the

key network parameter (γ̃) without using restricted data.
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Appendix A Network Construction

Appendix A.1 Construction of H0 (x) and H1 (x)

The average cluster sizeis defined as in Baumann & Stiller (2005). Assume that:

• the network contains no cycles, that is asymptotically true for large networks87

• for any edge between two nodes, i.e. a and b, the degree of b does not depend on a’s neighbors

or on the degree of a

Consider a general moment generating function D0 (x) and k, the degree distribution, as a random

variable. The sum of m realization of a random variable X is nothing else than:

S = X1 +X2 + . . .+Xm

in terms of a generating function, the generating function of S is:

DS (x) = DX1 (x)DX2 (x) . . . DXm (x)

summing over the degree distribution of m randomly chosen variables (nodes in case of a graph),

we have:

[D0 (x)]m =

[∑
k

pkx
k

]m
=

[∑
k

pkx
k

]∑
j

pjx
j

 =
∑
jk

pjpkx
j+k (A.1)

the coefficient of the power of xn is the sum of the products pjpk such that j + k = n and gives

the probability that the sum of the degrees of the two vertices is n.88 Therefore, to compute the

sum of the distribution of n randomly chosen vertices, extracted by a generating function S it is

necessary to compute [D0 (x)]m. Define the average degree of second neighbors of a vertex λ as the

sum over the neighbors of the n first neighbors of λ, so as [D0 (x)]n. Using equation (A.1), we can

write D1 (x), the average degree of the first neighbors of λ, as:

87See Newman et al. (2001).

88Intuitively, the sum over pjpk gives the probability that any combination of two random extractions gives exactly
n.
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D1 (x) =

∑
k kpkx

k−1∑
j jpj

=

probability of having k neighbors︷ ︸︸ ︷
∑
k

pk

 D1 (x)︸ ︷︷ ︸
neighbors of a random vertex


k

= D0 (D1 (x)) (A.2)

Consider now the probability distribution H1 (x) of the cluster size of a neighbor of a randomly

chosen initial vertex λ. This is the probability that a cluster attach to one neighbor of a vertex a

has exactly size s. If qk is the probability of one of this neighbor to have k edges in addition to the

one connected to the starting node, H1 (x) must satisfy:

H1 (x) = xq0 + xq1H1 (x) + xq2 [H1 (x)]2 + . . .

in other words, the distribution of the cluster size attached to a neighbor of an initial vertex

is given by the average number of connection of the neighbor times the cluster connected to each

of them. Using again equation (A.1) and realizing that qk is just the coefficient on xk of D1 (x),

H1(X) can be defined as:

H1 (x) = xD1 (H1 (x)) (A.3)

Define now H0 (x) as the size of the whole component, so the size of the component constituted

by λ, its first neighbors and all the components (described by H1 (x)) attached to them. This

component is nothing else than the sum of the components attached to all neighbors of λ. Therefore,

using the previous reasoning, it is:

H0 (x) = xD0 (H1 (x)) (A.4)

Consider now the diffusion model. H0 (x) is the average vulnerable cluster size attached to a

randomly chosen vulnerable vertex λ and H1 (x) the average cluster size for a neighbor of λ.H1 (x)

must satisfy:

H1 (x) = x
{
P 0
v q0 +

[
1− P 0

v

]}
+ x

{
P 1
v q1H1 (x) +

[
1− P 1

v

]}
+ x

{
P 2
v q2 [H1 (x)]2 +

[
1− P 2

v

]}
+ . . .

(A.5)
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with P kv the probability of a vertex with k edges being vulnerable. The previous equation states

that the vulnerable cluster attached to a first neighbor of λ is proportional to the probability of

this neighbor to be vulnerable given its degree distribution
(
P kv qk

)
. In case the neighbor is not

vulnerable, than the vulnerable cluster attached to it is just λ. Using the properties seen so far,

(A.5) becomes:

H1 (x) = xG1 (H1 (x)) +
∑
k

[
1− P kv

]
(A.6)

P kv is equation (26) and therefore
∑

k

[
1− P kv

]
is the probability of a vertex to be non vulnerable.

This is equation (30). Using the same argument of equation (A.4), equation (31) can be derived.

Appendix A.2 Large networks contain no cycles

This argument follows Gross & Yellen (2003). Define x the number of cycles in a random graph V

with n vertices and p the edge probability. Given k vertices in the cycle, there are

 n

k

 (k−1)!
2

cycles of lenght k. The expected number of cycles is:

E (x) =

n∑
k=3

 n

k

 (k − 1)!

2
pk ≤

n∑
k=3

(np)3 = (np)3 1− (np)n−2

1− np
(A.7)

as limn→∞ np = 0, p is asymptotically less than 1/n thus the graph has no cycles.

Appendix A.3 Computing the average cluster size

Recall equations (30) and (31). Taking the first derivative of H1 (x):

H ′1 (x) = G1 (H1 (x)) + xG′1 (H1 (x))H ′1 (x)

H ′1 (x) =
G1 (H1 (x))

1− xG′1 (H1 (x))
(A.8)

with a similar process it si possible to define H ′0 (x) as:
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H ′0 (x) = G0 (H1 (x)) + xG′0 (H1 (x))H ′1 (x)

plugging it into equation (A.8):

H ′0 (x) = G0 (H1 (x)) + xG′0 (H1 (x))
G1 (H1 (x))

1− xG′1 (H1 (x))
(A.9)

recall now equation (27) and derive it to get G′1 (x). The previous equation becomes:

H ′0 (x) = G0 (H1 (x)) +
x [G′0 (H1 (x))]2

z −G′′0 (H1 (x))

the average cluster size is H ′0 (x) | x = 1, therefore:

H ′0 (x) = ‖n‖ = Pv +
z2
v

(z −G′′0 (1))
(A.10)

since H1 (x) is a well behaving moment generating function with H1 (1) = 1.

Appendix A.4 Definition of φ

Define φ as the fraction of neighbors of a bank that can default without leading to the default of

the bank itself.

i = Intt
k is the share of funds landed to each partner on the interbank market. As banks are all

equal, each bank is indifferent between available borrowers. In order to reduce risk, therefore, it is

optimal to differentiate.

Compute F , the maximum number of clients that may default without threatening the bank

itself:

F =
V

i

Recall the definition of φ:

φ =
F

k
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use the definition of F to get:

φ =
V

i

1

k

using the definition of i we get:

φ =
V

k

k

Int
=

V

Int

Appendix A.5 Probabilities, Cascades and the Banking Network

A key question for policy makers is how to reduce the probability and size of contagion, minimizing

the likelihood of a phase transition. In the terms of network theory that means that vulnerable

nodes need to be insulated from the shock.89 This result can be achieved with subsidies to banks’

capital. As availability of funds and public support for these measures are limited, policy makers

should identify which bank is more efficient to target with capital injections. Simulations show that

it is generally better (for reasonable values of the immunized share of banks) to intervene on the

higher part of the distribution, targeting the more connected banks. Preventing the default of a

very central node, in fact, stops the cascade before it reaches more nodes and hence is more effective

than targeting many (peripheral) small agents.90 Results are reported in Figures A.I and A.III.

89See for example: Keeling & Eames (2005), Newman (2002), Pastor & Vespignani (2001), Keeling & Eames (2005),
Gai & Kapadia (2010), Sterbenz et al. (2010) and Capponi & Chen (2015).

90Notice also that well connected nodes are more likely to be part of the cascade rather than peripheral nodes.
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Figure A.I: Probability of a cascade, lower versus top.

Notes: the graph shows the difference in the share of banks that participate in a cascade (that equals the probability

of a cascade) between the case in which the same share of banks is subsidies in the bottom or in the top of the

distribution. A positive value means that Pv is larger in the case of subsidies to the least connected institutions.

Appendix A.6 Network analysis

To analyze how a change in the parameters of the network structure affects the cascade equations,the

core set of equations (26)-(32) describing the network structure are evaluated for different values of

their parameters: γ̃ and the average network degree z. These results show how cascade probabilities

and sizes change if the network becomes more or less connected.

Equation (26) describes the probability that a defaulting bank triggers a cascade. Its main

parameter is γ̃ that defines how concentrate is the network. Low values of γ̃ mean that the share

of agents in the network with high degree is relatively larger, and vice versa. For the properties of

power law distributions,91 values of γ̃ used in this simulation fall in the interval [2, 5]. Empirical

studies show that reasonable values for γ̃ lie in the interval (2, 3) for existing interbank networks.92

The straight forward interpretation of the simulation is that the more a network is sparse, the

more is likely that an agent belongs to a cluster. In sparse networks agents are divided between

many small cluster. If an agent in the group defaults it is more likely that the default affects at

91See Aiello et al. (2001), Newman et al. (2001),Clauset et al. (2009).

92See for example Boss et al. (2004a), Boss et al. (2004b), Caldarelli et al. (2006) and Soramaki (2007).
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Figure A.II: Probability of starting a cascade after an initial default, from equation (26).

least another member of the cluster. However, figure A.II should not be misleading. Equation (26)

describes the probability that a randomly chosen agent belongs to a vulnerable cluster, however it

tells nothing about the cluster size.

With more sparse networks clusters are also smaller. Therefore the correct interpretation of

figure A.II is the following: as the network becomes more sparse, there is an higher probability that

a randomly chosen vertex belongs to a cluster, however the dimension of the cluster decreases with

γ̃. As the probability of a cascade increases with γ̃ the consequences of contagion become smaller,

as nodes are more isolated and an initial seed can infect fewer neighbors.

To verify this intuition, equation (32) is evaluated at different values of γ̃ and z. Before moving

on, it is probably worth to examine the cascade condition more in details. It is influenced by all

network variables: Pv, zv (the average degree of vulnerable vertices) and z (the average degree of

the whole network). These variables are combined in equations (31) and (30) to define ‖ n ‖. They,

however, push in opposite directions as, for example, equation (27) clearly shows how zv decreases

as γ̃ increases. The higher is γ̃ the fewer neighbors each vulnerable vertex has. On the contrary,

‖ n ‖ depends positively on G′′0 (x). This term has not a clear economic interpretation, but captures

the second moment of the distribution of vulnerable vertices.93 Notice that it depends positively

93See Newman et al. (2001) and Watts (2002).
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on γ̃.

Finally ‖ n ‖ depends negatively on the whole network average connectivity z. Intuitively, the

larger is z the more agents are interconnected; as connectivity rises each agent gets a smaller share

(negligible in the limit) of default costs from the initial seed.94

z-G′′0 (x) defines the so called “phase transition equation”.95 When z = G′′0 (x) equation (33)

has a singularity as ‖ n ‖→ ∞.96 If the phase transition condition is met, the initial seed grows

up to the point that it covers the entire graph, independently by its initial size. In the terms

of the interbank network that means that the default of a single institution leads to the collapse

of the entire market structure. The conditions for a phase transition root deep into the network

structure, and are not easily pinned down. What is clear, however, is that it occurs only at specific

combinations of variables. Notice that the shift to a phase transition is sudden and driven by an

apparently small change of the variables.

Figure A.III shows ‖ n ‖ evaluated at different values of z and γ̃. The spikes in the graph are

regions close to a phase transition. As z − G′′0 (x) → 0, ‖ n ‖→ ∞. The closer the values of z and

γ̃ are to the actual combination that generates a phase transition, the higher is the share of nodes

participating in the cascade and the higher is the spike. In the limit, for that specific combination

of parameters such that z = G′′0, ‖ n ‖ is infinite. Phase transitions are concentrated around low

values of γ̃.

To build on what we discussed before, the cascade size decreases with γ̃ for the intuitive reason

that on more sparse networks vulnerable seeds are less connected.97 The opposite reasoning can

explain why it decreases with z. As the average connectivity grows, on one hand it is more likely

that vulnerable nodes are connected to non vulnerable ones on the other each node receives a smaller

share of the shock. These two effects reinforce each other.

94A similar argument is developed in Acemoglu et al. (2015).

95Equation (33).

96See Stanley (1971), Stauffer & Ahrony (1991), Callaway et al. (2000), Watts (2002), Falconer (2003), Alentorn
et al. (2007), Falconer (2003), Mandelbrot (2004), Krantz (2005), Alentorn et al. (2007).

97Notice that this means that the effect of γ̃ on Pv prevails on that on G′′0 .
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Figure A.III: Average cascade size, equation (32).

Notes: simulations for different values of z and γ̃ of the size of contagion. The spikes in the graphs
are associated to those regions where z −G′′0 (x)→ 0. In those areas the system is getting closer to
a phase transition (as ‖ n ‖→ ∞).

ECB Working Paper Series No 2432 / June 2020 50



Appendix B An alternative configuration of the interbank net-

work

This appendix constructs the network under the alternative assumption that banks trade net worth,

rather than a fraction of deposits, on the interbank market and that deposits are used in the creation

of final loans to firms. This is more in line with the baseline assumption of Acemoglu et al. (2015)

and provides an alternative framework to justify the presence of an active interbank market in

the model. The robustness exercise delivers similar results to the baseline model, with the main

difference that network variables respond more to financial shocks (by about 30%) and to real

shocks. The difference is due to the lower sensitivity of net worth to real factors, as returns on

deposits are pinned down by the Euler equations, that links consumption to savings. Real shocks,

however, continue to generate reactions significantly smaller than financial shocks.

Appendix B.1 The problem of banks

The wholesale branch trades all available net worth on the interbank market. It enters the inter-

bank market for the same reason discussed in the baseline model: investment opportunities and

liquidity do not arise simultaneously. This branch acquires interbank funds to be transferred to the

retail branch and invests liquidity (when available) financing other banks. The wholesale branch

maximizes:

Et(V
WB
t ) =

∞∑
i=0

(
1− θB

)
(θB)iΛCt,t+1+i

[
Int+t R

I
t+1 −NtRt+1 − Int−t RIt+1

]
(B.11)

subject to the resource constraint Int+t ≤ Nt and the demand of interbank loans by the retail

branch Int+t = Bt−Dt. R
I
t+1 is the interbank rate and Rt+1 the opportunity cost of unused capital.

As there are no credit frictions on the wholesale market, the interbank market operates in perfect

competitions; rates are set at the marginal cost and banks supply all funds available. First order

conditions are:98

RIt = Rt (B.12)

Int+t = Int−t = Nt (B.13)

98Notice that these conditions are equivalent to Gerali et al. (2010) in the absence of frictions.
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The retail branch uses net worth and deposits to finance final loans. It maximizes the present

discounted value of the branch subject ot the resurce constraint and the incentive compatibility

constraint (E (Vt) ≥ ΘBt).

Et
(
V RB
t

)
=
∞∑
i=0

(
1− θB

)
(θB)iΛCt,t+1+i[R

K
t+1+iBt+i −RDt+1+iDt+i −RIt+1+iInt

−
t+i] (B.14)

The optimal solution is:

E (Vt) = k1
tNt + k2

tBt (B.15)

with k1
t and k2

t defined as:

k1
t = Et

[(
1− θB

)
+ ΛCt,t+1θ

B Int
−
t+1

Int−t
k1
t+1

]
(B.16)

k2
t = Et

[(
1− θB

)
ΛCt,t+1θ

B
(
RKt+1 −RDt+1

)
+ ΛCt,t+1θ

BBt+1

Bt
k2
t+1

]
(B.17)

The loan supply is

Bt = φtInt
−
t (B.18)

φLt =
k2t

Θ−k1t
is the ratio between deposits and interbank funds.

Appendix B.2 Static and dynamic simulations

Similar to 4.1 Figures B.I and B.II present the static simulations of key network variables to changes

in the leverage of banks and the spread between assets and risk-free securities. Figure B.III presents

the IRFs of the Pv and ||n|| to real and financial shocks. Results are in line with the main conclusions

of the paper. The differences with respect to the baseline model are discussed in the main text.
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Figure B.I: Steady state evolution of key network variables changing the equilibrium leverage of
financial intermediaries when banks trade net worth rather than a share of deposits on the interbank
market.

Figure B.II: Steady state evolution of key network variables changing the equilibrium spread
RK −R when banks trade net worth rather than a share of deposits on the interbank market.
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Figure B.III: Cascade probability Pv response to shocks when banks trade their net worth on
the interbank market.

dyndeposits − cont.Cascadesize‖ n ‖ response to shocks when banks trade their net worth on the
interbank market.
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Figure B.IV: Average vulnerable cluster size (zv) response to real and financial shocks when
banks trade their net worth on the interbank market.
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Appendix B.2.1 IRFs of the Average Cluster Size Z

Figure B.V: Average cluster size (z) response to real and financial shocks when banks trade their
net worth on the interbank market.
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Appendix C Figures and Tables

Appendix C.1 Figures

Appendix C.1.1 The model

Structure of the model.
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Appendix C.1.2 IRFs of Output

Figure C.I: Output response to consumer preference and government spending shocks.

Figure C.II: Output response to capital quality and banks’ net worth.
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Appendix C.1.3 IRFs of Consumption

Figure C.III: Consumption response to TFP and monetary policy shocks.

Figure C.IV: Consumption response to consumer preference and government spending shocks.
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Figure C.V: Consumption response to capital quality and banks’ net worth.
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Appendix C.1.4 IRFs of Inflation

Figure C.VI: Inflation response to consumer preference and government spending shocks.

Figure C.VII: Inflation response to capital quality and banks’ net worth.
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Appendix C.1.5 IRFs of Total Loans

Figure C.VIII: Total loans response to TFP and monetary policy shocks.

Figure C.IX: Total loans response to consumer preferences and government spending shocks.
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Figure C.X: Total loans response to capital quality and banks’ net worth.
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Appendix C.1.6 IRFs of Interbank Loans

Figure C.XI: Interbank loans response to consumer preferences and government spending shocks.

Figure B9. Interbank loans response to consumer preferences

Figure C.XII: Interbank loans response to capital quality and banks’ net worth.
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Appendix C.1.7 IRFs of the Policy Rate

Figure C.XIII: Policy rate response to consumer preferences and government spending shocks.

Figure C.XIV: Policy rate response to capital quality and banks’ net worth.
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Appendix C.1.8 IRFs of the Deposit Rate

Figure C.XV: Deposit rate response to consumer preferences and government spending shocks.

Figure C.XVI: Deposit rate response to capital quality and banks’ net worth.
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Appendix C.1.9 IRFs of the Average Vulnerable Cluster Size ZV

Figure C.XVII: Average cluster size (Zv) and average connectivity (||Z||) responses to shocks.
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