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c evalUating intercOnnectedness in the financial system On the basis Of actUal  
and simUlated netwOrks

Multiple levels of analysis are required to assess banks’ fragility in a complex banking system.  
On the one hand, network analysis using existing data for the euro area shows a banking structure 
which is well integrated across euro area countries, with some banks playing an important role 
at the euro area level while others have a more domestic focus. On the other hand, a dynamic 
network modelling approach can illustrate important aspects and fragilities of interbank activity in 
a simulated network in the absence of real micro data.

This special feature first describes a static approach to financial network analysis and then gives 
a specific illustration of a dynamic network in a stress-testing context. Both provide important 
insights for financial stability analysis. The static analysis of existing financial networks and the 
use of a simulated network for stress testing exploit information on the microstructure of banking 
activities to characterise the robustness of the banking sector to operating shocks. This is a unique 
application of conceptual and analytical techniques that have only recently been introduced in 
financial analysis. 

intrOdUctiOn

Network relationships in a financial context are exposures and liabilities recorded on or off balance 
sheet, or reflect financial activities in general. Mutual exposures of financial intermediaries are, on 
the one hand, beneficial as they generally allow for a more efficient allocation of financial assets 
and liabilities and are a sign of better diversified financial institutions. On the other hand, when 
large shocks affect the financial system, financial networks can accelerate the shock’s initial impact 
by propagating it throughout the system. The unit of analysis in macro-prudential analysis has 
traditionally been at the level of countries and/or sectors, providing information on sources of 
fragility for the financial sector as a whole. However, as the recent crisis revealed the intrinsic 
dependence of stability on institution-level relationships, macro-prudential analysis has begun to 
focus on information concerning individual institutions.

Accordingly, one can view a financial exposure or liability within a network as a relationship  
(or edge) of an institution (node) vis-à-vis another whereby the relationship portrays a potential 
channel of transmission between institutions. This simple – or static – representation of a network 
does not specify how transmission mechanisms transfer shocks throughout the network and, in 
particular, makes no assumptions as to the institution’s behaviour when confronted with a shock 
stemming from one of the relationships. A static network is therefore most valuable in its ability to 
summarise stylised facts of the network architecture as a whole, which can be very useful in macro-
prudential analysis. Information derived from the static network includes the identification of 
central or systemic groups of institutions or nodes in the network. For example, one standard method 
of identifying the centrality of a node alone is the “between-ness” measure, i.e. the number of 
shortest paths from all nodes to all others that pass through that given node. Another method is 
eigenvector centrality, that is, a measure of the node’s influence in the network, assigning relative 
scores to all nodes on the assumption that connections to high-scoring nodes contribute more to the 
score of the node in question than equal connections to low-scoring nodes. These and related 
network centrality measures enable a simple identification of systemic nodes and the general 
structure of a network. Observed over time, these measures can reveal the evolution of important 
aspects of the network relevant to its systemic robustness, identifying, for example, certain network 
vulnerabilities or its ability to dampen or exacerbate shocks. 

Bank networks 
illustrate their 
interaction, 
highlighting 
positive aspects and 
potential fragilities 

Some 
representations 
are static in that 
they focus on 
the structure of 
the relationship 
studied…
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A second class of network models – those that are dynamic – imposes additional characteristics on 
the nodes. These characteristics allow the transmission of shocks across the system to be modelled.1 
Specifically, studying dynamic network models is justified by the substantial volatility of some 
financial networks. A trade-off between the richer nature and robustness of the results of the model 
and the specificity brought by the behavioural assumptions at the nodes is relevant. This is especially 
important when the behaviour at the nodes significantly impacts their systemicity or the vulnerability 
of the system as a whole. Therefore, it is particularly important to work in as general a model 
setting as possible, i.e. taking into account various possible network structures and looking at 
exogenous shocks from different angles. A notable example of this second class of models is used 
in the context of stress testing, whereby the response modelled at the nodes will allow risk maps of 
contagion effects of exogenous shocks to be formulated.

strUctUral vUlnerability and high intercOnnectiOn in crOss-hOldings Of bank secUrities

A network rests on the definition of who (the nodes) and what (the links). Banks’ interbank 
activity, at both the individual and the aggregate level, motivates the use of network analysis.  
At the country level, the Bank for International Settlements’ consolidated banking statistics 
provide information on foreign bank claims which are a prominent and the most studied form of 
bank interconnection. Microstructure studies, however, concentrate on proprietary supervisory 
information and have a narrower national or market-specific context, depending on a wide range of 
links: claims and obligations computed from balance sheets 2, return correlations 3, joint investment 4, 
or the same pool of depositors 5. In principle, various relationships between banks can be analysed, 
even simultaneously.

structural issues relevant to financial surveillance
From a system perspective, the architecture of a network and its potential fragility support macro-
prudential analysis in many ways. Different network structures can deal with shock propagation in 
different ways, and there are a number of measures to classify such network typologies. Notably for 
existing networks,6 Watts and Strogatz find that actual networks are generally highly clustered in 
groups adjacent to one another but not to other groups in the network.7 These are also known as 
small-world networks. The transmission of information within this structure is very quick and has 
been found to be important for spreading news, human disease and internet viruses.8 The forms of 
bank interaction, therefore, can illustrate how rapidly shocks can spread across classes of banks or 
across the banking sector, both nationally and internationally.

1 Simulations depend on the strategic interaction of financial agents. Hence, understanding the relationships is essential to predict future 
outcomes, i.e. to limit – or possibly prevent – negative effects before they affect the whole system, including feedback mechanisms 
and realistic behavioural responses. A key challenge is specifying a network with different agents; see K. Anand et al., “Epidemics of 
rules, rational negligence and market crashes”, European Journal of Finance, forthcoming; O. Castrén and I. K. Kavonius, “Balance 
sheet interlinkages and macro-financial risk analysis in the euro area”, ECB Working Paper Series, No 1124, 2010; and O. Castrén and 
M. Rancan, “Macro-Networks - an application to Euro Area Financial Accounts”, Padova University, 2012. All include different sectors 
in the same framework.

2 C. Upper and A. Worms, “Estimating bilateral exposures in the German interbank market: Is there a danger of contagion?”, European 
Economic Review, Vol. 48, 2004.

3 R. N. Mantegna, “Hierarchical structure in financial markets”, European Physical Journal B, Vol. 11, 1999.
.4 Y. V. Hochberg, A. Ljungqvist and Y. Lu, “Whom You Know Matters: Venture Capital Networks and Investment Performance”, Journal 

of Finance, Vol. 62, 2007.
5 F. Castiglionesi and N. Navarro, “Optimal Fragile Financial Networks”, Tilburg University, 2007.
6 See D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’ networks”, Nature, Vol. 393, 1998.
..7 This is in contrast to regular networks, characterised by a large value for the average path length and a high degree of clustering, and 

random networks, which have a low average shortest path and a small degree of clustering.
8 Similar mechanisms could help explain rumours, fears and excessive euphoria spread across professional investors and financial markets.

… while others 
are simulated thus 

facilitating the 
modelling of specific 

shocks

Structural 
representations can 

look at system  
or bank-level 

features to illustrate 
different properties 

of the network



127
ECB

Financial Stability Review
June 2012 127

iv   sPec ial 
featUres

127

In addition to the description of the structure of banks’ interlinkages as a unit in itself, measures 
based at the bank level (i.e. at the node level) give a wider perspective on system fragilities. In fact, 
banks’ centrality may be understood by reference to three different structural attributes within the 
network: a bank’s degree, between-ness and closeness. Network activity would best be analysed 
using a degree-based measure, whereas an analysis of a node’s control of network activity would 
benefi t from a measure based upon between-ness. A measure based upon closeness would be the 
best solution when looking at independence or effi ciency. These centrality measures evaluate 
importance based on the position of a node in relation to the others, and each covers a different 
aspect of the centrality/power.9 For example, a high degree of a node (the number of connections or 
edges the node has to other nodes) is associated with the node’s ability to accentuate the spread of a 
shock, making the network more fragile. By contrast, the network is considered to be more robust 
whenever nodes facilitate more risk-shifting and therefore act as shock absorbers. 

The importance of fi nancial actors is measured extensively with such metrics by identifying critical 
institutions, such as banks too connected to fail, illustrating the effects in the event of a loss or a 
shock, or identifying nodes of the fi nancial network serving a particularly important role.10

application of structural surveillance to cross-holdings of bank securities
One rich source of information illustrating the usefulness of network analysis in macro-prudential 
work is the network with banks as nodes and the cross-holding of securities as links, here referred 
to as the securities network. As observed from the collateral used for Eurosystem operations, in 
March 2012 this network had 1,530 bank groups (or nodes) and 13,121 group relationships formed 
by banks holding securities issued by each other amounting to a total of around €914 billion 
(see Chart C.1 which groups the banks according to the nationality of the issuer/user).

The present analysis relies on observations 
which are available on a weekly basis starting in 
October 2008, i.e. over 174 periods. The number 
of holding relationships or links of each bank 
with another bank is 17 on average (simple 
average) and 69 when using a value-weighted 
average (the value of securities representing the 
link). Thus, this network is characterised by low 
density; it is a very sparse network. Indeed the 
diameter – the greatest distance between any 
pair of nodes – comprises only seven nodes and 
the average path length is 2.51, indicating that 
typically banks are not “too distant” from each 
other in this type of relationship. This is a 
consequence of well-connected nodes being 
linked to less well-connected ones, as indeed a 

9 Centrality metrics are different and thus a node with many links will have a high value in terms of degree but may have a marginal 
position in the overall structure, while a node with a lower degree value but which is more central can matter more in the overall structure. 
See L. C. Freeman, “Centrality in Social Networks: I. Conceptual Clarifi cation”, Social Networks, Vol. 1, 1979.

10 For example, in G. von Peter, “International banking centres: a network perspective”, BIS Quarterly Review, December 2007, centrality 
measures are used to identify Germany, France, the United Kingdom, Switzerland and the United States as international banking centres.

The securities 
network represents 
an invisible, 
important and very 
large interbank 
network…

… which is 
clustered…

chart c.1 the securities networks as 
observed via a national grouping

Source: ECB.
Note: The number of banks determines how the national cluster 
is visualised and while it portrays the centrality of the cluster in 
the system as a whole, it does not illustrate its relative fragility.
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low level of assortativity indicates.11 While the 
concentration of banks in the network is also 
low (a low clustering coeffi cient), the larger 
weighted coeffi cient implies strong relationships 
between the nodes (see Table C.1).

Metrics computed at bank level may help to 
ascertain the type of the securities network 
and thus its vulnerability. Financial institutions 
having the largest number of connections play a 
hub role, and those whose securities are widely 
held by other counterparties are, of course, 
particularly relevant in measuring system 
fragility (see Chart C.2).12

In addition, holding or issuing a bank security 
distinguishes banks as users or issuers. Banks 
are quite specialised: around 13% both issue and hold securities, while the remainder are only 
issuers (78%) or only users (9%), indicating the hierarchical and “intermediate” nature of fi nancing 
based on securities-holding (see Chart C.3). The value of the securities held is the weight of the 
link. 

Therefore, the direction and size of the interconnections give further nuance to the analysis. The 
direction provides information distinguishing between the cause and consequence of potential 
shocks. The typical degree notion of connectedness becomes the dual in- and out-degrees, clarifying 
the concepts of users and issuers of securities. Likewise, the number of securities held qualifi es the 
strength of the relationship, with larger volumes representing more signifi cant links, and thus enabling 
the linkages to be weighed (see Table C.2). 

To illustrate how the analysis is enhanced by the use of both direction and size, it is useful to 
consider eigenvector and alpha centrality. Each node is given a starting random positive amount of 
infl uence. Each node then splits its infl uence evenly, dividing it among its outward neighbours and 
receiving from its inward neighbours in kind, continuing until every institution is giving out as 

11 Assortativity describes nodes’ preference to attach to others that are similar or different in some way and is often operationalised as a 
correlation between two nodes. There are several ways to capture such a correlation. The two most prominent measures are the assortativity 
coeffi cient and neighbour connectivity.

12 A number of factors affect the level of securities held by different institutions, such as the introduction of a limit on the use of unsecured 
bank bonds as collateral.

… and where banks 
have a variety 

of relationships, 
some central, others 

at the periphery…

table c.1 metrics at the network level

(Mar. 2012)

Average number of links 69.640
Density 0.005
Average path length 2.510
Cluster coeffi cient 0.126
Weighed cluster coeffi cient 0.291
Assortativity -0.410
Diameter 7.000

Sources: ECB and ECB calculations.

chart c.2 escb market operation 
counterparties using each other’s uncovered 
bonds as collateral
(Sep. 2008 – May 2012; monthly distribution of the number of 
counterparties per issuer)
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Sources: ECB and ECB calculations.
Notes: Average monthly number of ESCB market operation 
counterparties using a given bank issuer’s bonds as collateral. 
For any given month, the fi gure displays the distribution of 
such values across bank issuers (box plot capturing 50% of the 
values and lower and upper whiskers extending the range to 
1.5 standard deviations in each direction – values outside this 
range are marked by a point). The time evolution of these values 
identifi es changes in the “concentration” of the use of these bank 
bonds as collateral. The ten banks issuing uncovered bank bonds 
that are most widely used by other counterparties are displayed 
as coloured lines. While most ECB counterparty bank bonds 
are held by a few banks (<150), certain banks’ securities have 
been consistently posted as collateral by a very high number of 
counterparties.
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much as they are taking in and the system has reached a steady state. Clearly, institutions with 
larger links, being well connected, have greater influence. The amount of influence each has in this 
steady state is its eigenvector centrality. 

Alpha centrality enhances this process by, first, allowing nodes to have external sources of influence 
that do not stem from the links themselves, and then trading off external influence against that 
associated with a connection. Alpha centrality therefore captures an innate centrality of a node that 
is independent of the number, direction and size of its relationships. A nil value of alpha denotes that 
only external influence matters, whereas very large values denote that only the innate characteristic 
of the bank matters. A bank has a positive alpha value for links from or to banks with high scores 
and a negative value for links from or to banks with low scores.13 The large dispersion of alpha 
centrality around nil supports the notion of much bank diversity, with banks both influencing and 
being influenced by each other and being connected both as users and issuers (without much innate 
influence on average).

In addition, banks with a high level of between-ness are more fragile in the event of the failure of 
other banks, while at the same time they are systemically more important as their difficulties have a 
bigger impact on the network than banks with a low level of between-ness. Closeness also detects 
systemic importance, quantifying a bank’s distance from or to all other banks. While intrinsically 
denoting fragility, high-closeness banks may also be protected by other big and “healthy” close 
institutions in the event of the failure of a peripheral bank.

Overall, the standard deviation of centrality measures is very high (see Table C.2). Accordingly, 
banks have very different positions in the network, with some being very central while others have 
a negligible role in the system. In particular, the distributions of between-ness and centrality show 

13 In addition, Kleinberg’s centrality scores do not take into account the weights of links but identify hubs and authorities: important hubs 
send links to banks that have high authority scores, while a bank is a good authority if it is pointed to by many good hubs. In addition, 
it can be useful to identify banks linked to very important banks via the Bonacich power centrality (P. Bonacich, “Power and centrality:  
a family of measures”, The American Journal of Sociology, Vol. 92, 1987). 

… and where  
the network 
importance of banks 
varies over time, 
capturing  
the evolution  
of this fragility

chart c.3 the role of banks in the 
crossholding securities network

(Mar. 2012)

user & issuer

user

issuer

Sources: ECB and ECB calculations.
Note: The pie chart shows the proportion of banks that are users, 
issuers and both users and issuers relative to the total number 
of banks. 

table c.2 metrics at the node level

(Mar. 2012)

Mean Std. dev. Min. Max.

In-degree 297 1,480 0 22,296
Out-degree 297 1,252 0 18,048
Weighted between-ness 997 7,951 0 164,090
Weighted closeness 113 136 0 1,046
Eigenvector centrality 0.06 0.1 0 1
Alpha centrality 44.52 508 -2,500 3,970
Embeddedness 9 10 1 38
Kleinberg’s authority score 0.02 0.09 0 1
Kleinberg’s hub score 0.1 0.12 0 1
Power (Bonacich 1987) 0.19 0.98 -3.2 6.05
Page rank 0.0006 0.0029 0.0001 0.0471

Source: ECB calculations.
Note: Std.dev. refers to standard deviation.
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that many nodes are almost isolated, with 
between-ness and closeness scores being 
essentially negligible.

Importantly, the evolution over time of the 
distribution of bank-level values can help to 
illustrate changes in the network’s structure. 
This is the case for between-ness, for instance, 
whose average across banks can help to ascertain 
the (average) fragility of the banking system as 
a whole (see Chart C.4). This measure seems to 
be sensitive to developments associated with a 
high impact on confi dence, with between-ness 
measuring a bank’s willingness to “become 
more connected” to other banks (i.e. increased 
confi dence).14

Overall, measures at the network and node 
levels confi rm that the security network has a 
centralised structure, with some important banks 
connected with many other peripheral ones. 
Moreover, the analysis of the securities network 
shows that the structure is well integrated across 
countries, with some banks playing an important 
role at the European level and others at the 
domestic level. Single measures alone may not 
be suffi cient to analyse the securities network, as multiple levels of analysis are required to assess 
banks’ network fragility in a complex banking system.

intercOnnectiOns gaUged frOm a simUlated netwOrk Of bank lOans and dePOsits

The introduction of the euro created a large and integrated euro area money market allowing euro 
area banks to lend to and fund themselves via other euro area banks across national borders. This 
facilitated fi nancial transactions and trade between euro area countries. However, since the outbreak 
of the fi nancial crisis in mid-2007, which inter alia led to severe disruptions in the interbank market, 
particular attention has been paid to the potential counterparty risks incurred by banks via their 
bilateral interbank exposures.15 

To model how shocks to one (or more) fi nancial entities can have contagious effects throughout the 
fi nancial system, a dynamic network modelling approach is warranted.16 However, since data on 
bank-to-bank bilateral exposures are not generally available, an alternative method is proposed 
which uses individual banks’ aggregate interbank exposures to simulate a wide range of possible 
interbank networks. Once the interbank interconnectedness structures have been simulated, 
a dynamic analysis of how and to what extent shocks to different entities propagate throughout the 

14 The three changes illustrated relatively arbitrarily show recent developments with a profound impact – both positive and negative – on the 
subsequent movement of this measure.

15 Interbank lending and borrowing constitute a signifi cant part of EU banks’ balance sheets (up to 20%).
16 A broad set of interbank deposit network models for fi nancial stability analysis is presented by E. Nier, J. Yang, T. Yorulmazer and 

A. Alentorn, “Network models and fi nancial stability”, Journal of Economic Dynamics and Control, Vol. 31, Issue 6, 2007.

Given the 
unavailability of 

data on banks’ 
bilateral exposures, 

a simulated network 
approach is 

proposed

chart c.4 centrality of eurosystem banks as 
observed in their cross-holdings of securities

(Jan. 2009 – May 2012; average of normalised number 
of weighted shortest paths)
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Sources: ECB and ECB calculations.
Notes: Between-ness is defi ned as the number of shortest paths 
from all banks to all others that pass through a particular bank, 
whereas weighted between-ness uses the amount being held 
as collateral to weigh the links. The line represents the time 
evolution of the indexed average of the normalised values. 
The normalisation accounts for the varying size of the security 
network through time. Between-ness measures the extent to 
which a vertex is located “between” other pairs of vertices, 
and thus is useful as an index of a node’s potential to control 
communication.
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banking system can be conducted. Such an analysis is useful, for example, in a stress-testing context 
to gauge the impact on specific banks or the banking system as a whole of shocks to one or more 
banks.

The following paragraphs describe how the interbank structures are simulated before giving an 
illustrative analysis of an exogenous shock to one or more banks. 

random network model
A sample of 89 European, mostly euro area, banks is used.17 Notably, only interbank relations 
between the EU banks are considered, i.e. any cross-border linkages with non-EU banks are 
ignored.18 As data on the individual banks’ bilateral exposures are not readily available, they are 
derived from their total interbank placements and deposits. Individual bank data used to parameterise 
the model are taken from the Bureau van Dijk Bankscope database and banks’ financial reports. 

An interbank network is randomly generated based on banks’ interbank placements and deposits 
and taking into account the geographical breakdown of banks’ activities. Once the distribution of 
interbank networks has been calibrated, the system can be shocked to assess how specific shocks 
are transmitted throughout the system and to gauge the implications for the overall resilience of 
the banking sector. The shock is typically a given bank’s default on all of its interbank payments. 
It then spreads across the banking system, transmitted by the interbank network of the simulated 
bilateral exposures. 

The model consists of three main building blocks: the interbank probability map, the random 
interbank network generator and the equilibrium interbank payments.

interbank probability map
Bank-by-bank bilateral interbank exposures are not readily available. Thus, in order to define the 
interbank linkages, a probability structure (a probability map) is needed. For this purpose, the 
European Banking Authority (EBA) disclosures on the geographical breakdown of individual 
banks’ activities (here measured by the geographical breakdown of exposures at default) were used. 
This provides a proxy for the likelihood with which banks lend to and/or borrow from each other 
given their presence on the same market and client relationship. The probabilities were defined at 
the country level, i.e. the exposures were aggregated within a country and the fraction of these 
exposures towards banks in a given country was calculated. These fractions were assumed to be 
probabilities that a bank in a given country makes an interbank placement to a bank in another 
(or the same) country. With this aim, banks were first grouped into two sub-categories within 
countries: banks with a domestic scope of activity and banks with international activities. The 
classification was based on a ratio calculated as the share of cross-border intra-EU exposures in 
total exposures.19 

generating interbank networks
The interbank probability map enables various structures of the interbank network to be studied, 
even when only aggregated interbank loan/deposit data are available. The basic notion is to 
reconstruct, using a random generator, the linkages between banks from the reported interbank 
placements and deposits.20 An iterative procedure to establish a realisation of the network is 

17 The sample covers roughly 70% of total EU bank assets.
18 This assumption is partly due to a lack of data on extra-EU linkages and partly in order to focus on intra-EU spillover effects. It is 

obviously a simplification, particularly as regards some of the UK, French and Spanish banks that have large foreign exposures. 
19 Banks with a ratio above the 25% threshold were deemed internationally active banks.

An interbank 
network is 
generated based on 
balance sheet data 
on interbank assets 
and liabilities…

… and on a 
probability  
map defining  
the likelihood  
of linkages

The procedure 
enables many 
probable interbank 
structures  
to be analysed
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applied, whereby a pair of banks is randomly drawn – all pairs have equal probability – and the 
pair is kept as an edge (link) in the interbank network with a probability given by the probability 
map. If the drawn link is kept as an interbank exposure, then the random number is generated 
(from the uniform distribution on [0,1]) indicating the percentage of reported interbank liabilities 
(IL) of the first bank in the pair coming from the second bank in the pair. (The amount is 
appropriately truncated to account for the reported interbank assets (IA) of the second bank.) If 
not kept, then the next pair is drawn and accepted with a corresponding probability or not. 
Ultimately, the stock of interbank liabilities and assets is reduced by the volume of the assigned 
placement. The procedure is repeated until no more interbank liabilities are left to be assigned as 
placements from one bank to another. Analysing many different interbank structures instead of 
just one specific structure (either observed at the reporting date or – if not available – estimated, 
for example by means of entropic measures) generates the dynamic and unstable interbank 
structures that are confirmed by many studies.21 Chart C.5 illustrates one realisation from the 
whole distribution of network structures for the EU banking sector generated using the random 

20 The idea behind the random interbank network generator is similar to the one introduced by G. Hałaj, “Systemic Valuation of Banks – 
Interbank Equilibrium and Contagion”, 2011, to be published in E. Kranakis (ed.), Advances in Network Analysis and its Applications, 
Mathematics in Industry series, Springer Verlag.

21 See, for example, I. van Lelyveld and L. Liedorp, “Interbank Contagion in the Dutch Banking Sector: A Sensitivity Analysis”, International 
Journal of Central Banking, Vol. 2, 2006.

chart c.5 a simulated interbank network for the eU
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network modelling approach. The width of the arrows indicates the size of exposures (logarithmic 
scale) and the colouring scale (from light to dark green) denotes the probability (inferred from 
the interbank probability map) that a given bank grants an interbank deposit to the other bank. 
Most of the connections are between banks from the same country, but the connectivity between 
the biggest domestic banking systems is also quite high (the German, Spanish and British banking 
systems in particular). 

equilibrium interbank payments
Once the set of interbank structures has been generated, the impact of shocks to the networks can be 
analysed by looking at their impact on the equilibrium interbank payment transactions.22 For this 
purpose, a clearing payments vector is defined, in line with the concept introduced by Eisenberg 
and Noe.23 The assessment of the size of the interbank contagion is based on the so-called interbank 
clearing payments vector defined by the vector p* solving the following equation (minimum and 
maximum are entrywise):

p* p*,= min max C IA + IL + T . 0{ }IL{ } ,

where C is a vector of banks’ capital buffers and πT is a transposed matrix of the relative interbank 
exposures with πij entry defined as bank i interbank deposits from bank j divided by the total 
interbank deposits of bank i.

The expression C – IA + IL can be interpreted as banks’ own funding sources adjusted by the 
net interbank exposures; the ultimate interbank payments are derived as the equilibrium of flows 
in the interbank network. If pi* is equal to ILi, then bank i returns all its interbank obligations.  
The contagious default on the interbank deposits is detected if pi* is less than ILi – this means 
that bank i defaults on its interbank payments. The loss is then proportionately spread among its 
creditors using the matrix of the relative exposures.

the risk of “fire-sale” losses 
If some part of its interbank funding were to evaporate, a bank may need to shed part of its securities 
portfolio Si in order to meet its obligations; the less interbank assets it receives back, the higher the 
liquidation need. This may adversely affect the mark-to-market valuation of the banks’ securities 
portfolios and further depress their capacity to pay back their interbank creditors. Consequently, 
this mechanism may lead to a spiral effect of fire sales of securities.24 It is assumed that the extent of 
the devaluation of the securities portfolios is related to the share of the liquidated securities in the 
total volume of securities held by banks. All in all, there is an implicit assumption that banks do not 
use eligible securities as collateral to obtain central bank funding in such emergency circumstances; 
instead they sell outright part of their securities portfolio. 

In order to quantify this fire-sale mechanism, an auxiliary measure of the conditional amount of 
securities sold by bank i given all other banks pay back (p) units of their interbank deposits is 
introduced. This is the sum of the securities (denoted SecSold(p)) that may be sold by banks covering 
22 The proneness of the network to contagion may be directly assessed based on the network topology. The most recent concepts are 

presented in B. M. Tabak, M. Y. Takami, J. M. C. Rocha and D.O. Cajueiro, “Directed Clustering Coefficient as a Measure of Systemic 
Risk in Complex Banking Networks”, Working Papers Series, No 249, Central Bank of Brazil, 2011.

23 See L. Eisenberg and T. Noe, “Systemic risk in financial systems”, Management Science, Vol. 47, 2001.
24 On “fire sales”, see, for example, R. Cifuentes, H. S. Shin and G. Ferrucci, “Liquidity Risk and Contagion”, Journal of the European 

Economic Association, Vol. 3, Issue 2-3, 2005, pp. 556-566. A discussion on the strategic foundations of fire sales can be found in 
D. Diamond and R. Rajan, “Fear of fire sales and the credit freeze”, NBER Working Paper Series, No 14925, 2009. An overview of 
modelling approaches was presented by R. Vishny and A. Schleifer, “Fire Sales in Finance and Macroeconomics”, Journal of Economic 
Perspectives, Vol. 25(1), 2011.
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the defi ciency of resources required to pay back the interbank liabilities. No target leverage ratio is 
assumed. This could amplify the size of the fi re sales. Obviously, a natural cap for that volume is 
the total volume Si of a given bank’s securities portfolio.

The new equilibrium interbank payments can be computed with a new loss-absorption capacity 
which is equal to the initial capital level less the devaluation of the securities. It is assumed that the 
liquidation value of the portfolio of securities is related to the part of the portfolio that may be 
disposed of (and de facto to the interbank payments vector p) in the following way:

Si = exp α .SecSold p( )p( ) /TS( ).Si
,

where TS is the aggregate volume of securities in banks’ portfolios (a proxy for general securities 
market depth) and α is the sensitivity parameter. The sensitivity can be gauged by looking at 
estimates from studies of the impact of bond trading on prices.25 The higher the supply amount of 
liquidated securities, the lower their expected market value. To simplify, it is implicitly assumed 
that all the securities are marked to market, so liquidation of part of the securities portfolio affects 
the valuation of the whole portfolio, which may not be the case for held-to-maturity bonds.

simulations
The simulation of contagious defaults on interbank debt can be performed following an event-
driven concept, where an exogenous shock to the ability of a bank (or a group of banks) to satisfy 
its creditors affects other institutions’ solvency through the linkages in the network. In the following 
illustration, “bank triggers” of contagion are 
analysed only within internationally active 
banks. It is assumed that one of these banks 
defaults on its interbank deposits. Then 20,000 
scenarios of the interbank network are generated 
and, for each such structure, the clearing 
payments vector of the interbank system is 
calculated. In order to illustrate the fi re-sale 
mechanism, the interbank payments equilibrium 
is simulated with the securities’ value sensitivity 
parameter equal to 0.15.26 Consequently, for the 
sake of comparability the results are reported in 
the form of the distribution of the capital 
adequacy ratio reduction attributable to the 
interbank (contagion) losses. 

As shown in Chart C.6, contagious bank defaults 
are a tail-risk phenomenon. In 99% of the 
scenarios of the randomly generated networks, 
the average reduction of banks’ capital adequacy 
ratios (CAR) does not exceed 0.2 percentage 
point which, in general, should not depress 
banks’ capital base (the CAR reduction exceeds 
1 percentage point in only one out of one 

25 See M. Mitchell, L. H. Pedersen and T. Pulvino, “Slow Moving Capital”, American Economic Review, Vol. 97, 2007. 
26 Following studies by Mitchell et al., ibid., it is calibrated in such a way that a sell-off of 17.5% of banks’ securities portfolios leads to a 

2.7% discount in the mark-to-market valuation of the portfolios. 
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chart c.6 aggregate impact on bank solvency 
of a bank’s default on interbank payments
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thousand realisations). Inclusion of the fire-sale mechanism increases the potential contagious 
losses but the additional reduction of CAR is rather limited (the average decrease in 1% of the 
worst-case networks amounts only to 6 basis points). The results are quite homogenous across 
countries. One natural feature of the interbank losses is their apparent non-linearity since they start 
to have an adverse effect in the system once linkages of a certain size between certain banks are 
present in the network. Nevertheless, in most of the cases, the event-driven shock is contained by 
the diversified interbank connections. 

Moreover, at least two important mechanisms may mitigate the risk (and size) of the interbank 
contagion. First, the Basel II rules on large exposures limit the size of exposure to counterparties 
and mitigate the risk of contagion. Second, banks actively manage the counterparty trading limits 
and in many cases they may still have enough time to reduce exposure to an institution perceived as 
having the potential to get into financial trouble. 

cOnclUding remarks

This special feature discusses the use of network analysis based on existing and simulated 
information in the context of financial stability. Given that only minimal information on financial 
institutions’ interlinkages is in the public domain, the two approaches are a practical means of 
gaining insight into the interconnection of financial firms. Since the objective of monitoring and 
assessing such interlinkages can vary depending on the policy question at hand, the approaches 
highlight broad technical aspects that are fundamental from a macro-prudential perspective for 
existing data, and present a novel way of testing more dynamic issues on the basis of simulations.

Both the more static analysis of existing financial networks – in this case the securities network – and 
the dynamic use of a simulated analysis for stress testing constitute new approaches to understanding 
the fragilities related to activities linking banks with one another. Both exploit information on the 
microstructure of banking activities to characterise the robustness of the banking sector as a whole 
to localised operating shocks.

Contagion may be 
further restricted 
by large exposure 
limits and banks’ 
active management 
of their interbank 
position


