Capital requirements and macroeconomic stability in light of monetary tightening

Aurélien Espic<sup>1</sup>, Lisa Kerdelhué<sup>1</sup>, Julien Matheron<sup>1,2</sup>

<sup>1</sup>Banque de France

<sup>2</sup>Paris School of Economics

October 16, 2023 - 6<sup>th</sup> MPPG research workshop

This presentation reflects the opinions of the authors and does not necessarily express the views of the Banque de France.

Model

Parameters

Results

Conclusion

Appendix

<ロト <部ト <注ト <注ト 注 のQC 2/27

## Questions

- How does the current monetary tightening affect macro-financial variables?
  - Cost-push shocks and monetary surprises
  - Materialization of risks in case of solvency shocks
  - Fear of a hard landing
- Can capital requirements stabilize macro-financial conditions in case of monetary tightening?
- Focus on dynamic properties of the capital requirements target, rather than the countercyclical adjustment of capital requirements (see IWG/MPPG Agile 'Policy' Team conjunctural note)

# Methodology

- ► A DSGE model with three layers of default and price rigidities
- Mix of calibration and Bayesian estimation on Euro Area data, 2003-2019
- Dynamic properties of the model at the optimal capital requirements in the long-run
- Computation of the risky steady state

### Literature

- DSGE models with financial intermediaries: Clerc et al. (2015); Mendicino et al. (2018, 2020); Bratsiotis and Pathirage (2023)
- New-Keynesian models: Bernanke et al. (1999); Smets and Wouters (2003); Galí et al. (2011)
- Monetary and macroprudential policies: Revelo and Levieuge (2022); Boissay et al. (2023)

## Results

- Optimal banks' capital requirements contribute to macroeconomic stability, especially if monetary tightening leads to solvency shocks: they guarantee a faster recovery, as they avoid disruption in financial intermediation.
- This comes at the expense of borrowers: optimal capital requirements lead to higher probability of default for non-financial entities in case of risk materialization.
- Expectations of a disruption in financial intermediation are sufficient to justify higher capital requirements, even though it does not materialize.

 $\Longrightarrow$  Optimal capital requirements give more room to monetary policy

### Model

Parameters

Results

Conclusion

Appendix

<ロト <部ト <注ト <注ト 注 のQC 7/27

# General structure

- Patient households
  - Save through capital accumulation and banks' deposits
  - Pay for deposit insurance
  - Own all firms in the economy
  - Composed of three types: workers, entrepreneurs, bankers
- Impatient households
  - Borrow from banks and supply labour
  - Subject to idiosyncratic housing quality shocks
- Firms
  - Intermediary good producers with market power
  - Final good producers
  - Capital and housing producers subject to dynamic adjustment costs
  - Investment firms subject to idiosyncratic capital quality shocks
  - Housing and firm specialized banks subject to idiosyncratic portfolio quality shocks

# Price rigidity

- ▶ Firm f sets its price P<sub>t</sub>(f) so as to maximize the value to its shareholders (the patient households), taking the demand function of the final good producers into account.
- Firm *f* faces nominal rigidities à la Calvo. In each period, firm *f* can reset its nominal price with probability 1 − ξ.
- Otherwise, firm f rescales P<sub>t</sub>(f) according to P<sub>t</sub>(f) = (Π<sub>\*</sub>)<sup>1-ι</sup>(Π<sub>t-1</sub>)<sup>ι</sup>P<sub>t-1</sub>(f), with Π<sub>\*</sub> the steady-state value of inflation.

## Monetary policy

As in Mendicino et al. (2020), the central bank sets the gross nominal interest rate  $R_t$  according to the following monetary policy rule

$$\log\left(\frac{R_t}{R_*}\right) = \varrho_R \log\left(\frac{R_{t-1}}{R_*}\right) + (1 - \varrho_R) \left[a_{\Pi} \log\left(\frac{\Pi_t}{\Pi_*}\right) + a_y \log\left(\frac{GDP_t}{GDP_{t-1}}\right)\right] + \zeta_{R,t}$$

## Banks' net worth

For bank j, either firm-specialized (F) or mortgage-specialized (M), the ex post gross return on inside equity is the following:

$$Z_t^j = \frac{[1 - \Gamma_t^j(\bar{\omega}_t^j)]R_t^j}{\phi_{t-1}^j}$$

Total bankers' real net worth evolves according to:

$$n_t^b = \left[\theta^b + \chi^b (1 - \theta^b)\right] \left(\frac{Z_t^M}{\Pi_t} e_{t-1}^M + \frac{Z_t^F}{\Pi_t} e_{t-1}^F\right)$$

Direct impact of inflationary pressures through  $\Pi_t$ , and indirect impacts through the threshold value for banks' default  $(\bar{\omega}_t^j)$  and the interest rate paid by borrowers  $(R_t^j)$ . Capital requirements  $(\phi_{t-1}^j)$  are crucial in this transmission channel.

### Short-run wealth effect

The laws of motion of net worth are crucial in BGG-type models, so it is important that wealth effects in the model are able to replicate business cycles (Galí et al., 2011). Therefore, instantaneous utility of household j writes as follows:

$$\log(c_t^j - \psi \bar{c}_{t-1}^j) + \upsilon^j \log(h_t^j) - \frac{\varphi^j}{1+\eta} \mathsf{e}^{\zeta_{\ell,t}} \Theta_t^j (\ell_t^j)^{1+\eta}$$

 $\Theta_t^j$  is an endogenous taste shifter, obeying

$$\Theta_t^j = \frac{J_t^j}{\bar{c}_t^j - \psi \bar{c}_{t-1}^j},$$

where

$$J_t^j = (J_{t-1}^j)^{1-\zeta_J} [(\bar{c}_t^j - \psi \bar{c}_{t-1}^j)]^{\zeta_J}$$

This specification follows Galí et al. (2011) and mitigates the strong wealth effect on labor supply.

Model

### Parameters

Results

Conclusion

Appendix

<ロト <部ト <注ト <注ト 注 のQC 13/27

## Steady state calibration

| Preset parameters                      |                |       |  |  |  |
|----------------------------------------|----------------|-------|--|--|--|
| Description                            | Parameter      | Value |  |  |  |
| Inverse Frisch elasticity              | η              | 4     |  |  |  |
| Patient disutility of labor            | $\varphi^{p}$  | 1     |  |  |  |
| Impatient disutility of labor          | $\varphi^{i}$  | 1     |  |  |  |
| Bank M bankruptcy cost                 | $\mu_M$        | 0.3   |  |  |  |
| Bank F bankruptcy cost                 | μ <sub>F</sub> | 0.3   |  |  |  |
| Firm bankruptcy cost                   | $\mu_e$        | 0.3   |  |  |  |
| Household bankruptcy cost              | $\mu_i$        | 0.3   |  |  |  |
| Share of insured deposits in bank debt | κ              | 0.54  |  |  |  |
| Consumption smoothing                  | $\psi$         | 0.5   |  |  |  |
| Productivity                           | A              | 1     |  |  |  |
| Capital share in production            | α              | 0.3   |  |  |  |
| Depreciation rate of capital           | $\delta_K$     | 0.3   |  |  |  |
| Survival rate of entrepreneurs         | $\theta_e$     | 0.975 |  |  |  |
| Capital requirements for bank F        | $\phi_F$       | 0.10  |  |  |  |
| Capital requirements for bank M        | $\phi_M$       | 0.05  |  |  |  |

#### Table : Preset and calibrated parameters

| Calibrated parameters                    |                       |       |  |  |  |
|------------------------------------------|-----------------------|-------|--|--|--|
| Description                              | Parameter             | Value |  |  |  |
| Impatient household discount rate        | $\beta_i$             | 0.987 |  |  |  |
| Patient household discount rate          | $\beta_p$             | 0.995 |  |  |  |
| Housing depreciation rate                | $\delta_h$            | 0.008 |  |  |  |
| Patient housing scale factor             | $v_p$                 | 0.131 |  |  |  |
| Impatient housing scale factor           | $v_i$                 | 1.414 |  |  |  |
| Management cost                          | ξs                    | 0.006 |  |  |  |
| Survival rate of bankers                 | $\theta_B$            | 0.873 |  |  |  |
| Std. idiosyncratic shocks, bankers M     | $\bar{\sigma}_M$      | 0.018 |  |  |  |
| Std. idiosyncratic shocks, bankers F     | $\bar{\sigma}_F$      | 0.039 |  |  |  |
| Std. idiosyncratic shocks, entrepreneurs | $\bar{\sigma}_e$      | 0.365 |  |  |  |
| Std. idiosyncratic shocks, HH            | $\overline{\sigma}_i$ | 0.331 |  |  |  |
| Banker's endowment                       | χь                    | 0.82  |  |  |  |
| Entrepreneur's endowment                 | χe                    | 0.14  |  |  |  |

## Estimation

#### Table : Estimated parameters

|                           |            | Prior distribution |      | Posterior distribution |       |        |
|---------------------------|------------|--------------------|------|------------------------|-------|--------|
|                           |            | Dist.              | Mean | Std.                   | Mean  | Std.   |
| Endogenous taste shifter  | ζj         | Beta               | 0.5  | 0.15                   | 0.647 | 0.1252 |
| Capital adjustment cost   | $\psi_{K}$ | Gamma              | 4.5  | 1                      | 5.108 | 0.9176 |
| Housing adjustment cost   | $\psi_H$   | Gamma              | 2.5  | 1                      | 2.434 | 0.6707 |
| Price rigidity            | ξ          | Beta               | 0.75 | 0.05                   | 0.949 | 0.0063 |
| Price indexation          | ι          | Beta               | 0.5  | 0.1                    | 0.812 | 0.0504 |
| MP reaction to inflation  | а⊓         | Normal             | 1.5  | 0.3                    | 2.862 | 0.2052 |
| MP reaction to GDP growth | $a_{y}$    | Gamma              | 0.12 | 0.05                   | 0.138 | 0.0463 |
| Monetary policy smoothing | ₽R         | Beta               | 0.85 | 0.1                    | 0.737 | 0.0245 |

Model

Parameters

### Results

Conclusion

Appendix

<ロト <部ト < Eト < Eト E のQC 16/27

### Long-run optimum

- Calibrated capital requirements are lower than optimum
- The optimum is slightly higher than in the literature, partly because of the period chosen for calibration.
- Patient households benefit from higher banks' capital requirements as they pay for deposit insurance, while this is less clear for impatient households

Figure : Real variables

Figure : Welfare





# Cost-push shock

- We estimate the effect of a cost-push shock, designed as a markup shock for intermediary good producers
- The Bayesian estimation enables to get uncertainty bands around a point estimate



#### Figure : Effects of a cost-push shock

Solid black line: Mean impulse response function. Red bands: 95% confidence intervals, computed by drawing 2000 sets of parameters from the posterior distribution. Rates are yearly. Financial variables

## Cost-push shock, monetary surprise and capital requirements

- Bringing capital requirements closer to their optimal level slightly limits the macroeconomic effect of a cost-push shock
- This is true even when adding a monetary surprise, i.e. a deviation from the preset-rule

Figure : Cost-push shock, optimal vs. calibrated capital requirements



The black line corresponds to the resilience gain from a higher level of capital requirements before a cost push shock. The dotted line corresponds to the resilience gain from a cost push shock together with an exogenous monetary shock.

19/27

# Side effects of monetary policy

Figure : Solvency shocks

- Rising interest rates may lead to solvency shocks, for instance in case of interest rate risk mismanagement
- We simulate solvency shocks for banks, firms and impatient households, rising their respective probability of default by 100 bps
- The mitigating effect of optimal capital requirements is stronger for solvency shocks than for a standard cost-push shock



Solid red line: firm shock. Dashed black line: household shock. Firm-specialized bank shock: dashed dotted blue line. Household-specialized bank shock: crossed-dashed green line. Financial variables

Figure : Optimal vs. Calibrated

### Capital requirements in an uncertain environment

- The deterministic steady state assumes (i) no shock (ii) no anticipation of shock
- The risky steady state (Coeurdacier et al., 2011) does not assume the latter: we need second-order approximation to move beyond certainty-equivalence
- The optimal capital requirements are higher when agents anticipate some bank-level risk, which may justify an increase in capital requirements targets in the long-run



Figure : Welfare



Solid black line: deterministic steady state.Dashed-dotted red line: risky steady state. 🗄 🛌 👌 🖉 🖉 🖓 🔍

21/27

Model

Parameters

Results

Conclusion

Appendix

・ロト (部)、(意)、(意)、意)の(C
22/27

## Conclusion

- We estimated a new-Keynesian model with a rich set of financial frictions on Euro Area data
- We find that a cost-push shock can significantly affect macro-financial conditions and that capital requirements are useful policy instruments to mitigate its impact
- Should monetary tightening lead to solvency shocks, these tools would be particularly useful, although they imply slightly tighter financial conditions for borrowing households and non-financial firms
- Fear of solvency shocks in itself is sufficient to justify higher capital requirements

Model

Parameters

Results

Conclusion

Appendix

<ロト < 部 > < 言 > < 言 > 言 の < C 24 / 27

### Endogenous taste shifter

In a symmetric equilibrium, the marginal rate of substitution between consumption and labor is the following:

$$\begin{aligned} -\frac{\mathcal{U}_n}{\mathcal{U}_c} &= \varphi^p \mathsf{e}^{\zeta_{\ell,t}} \Theta_t^p (c_t^p - \psi \bar{c}_{t-1}^p) (\ell_t^p)^\eta \\ &= \varphi^p \mathsf{e}^{\zeta_{\ell,t}} J_t^p (\ell_t^p)^\eta \end{aligned}$$

where

$$J_t^{p} = (J_{t-1}^{p})^{1-\zeta_J} [(\bar{c}_t^{p} - \psi \bar{c}_{t-1}^{p})]^{\zeta_J}$$

Without endogenous taste shifter:

$$-\frac{\mathcal{U}_n}{\mathcal{U}_c} = \varphi^{\mathbf{p}} \mathsf{e}^{\zeta_{\ell,t}} (c_t^{\mathbf{p}} - \psi \bar{c}_{t-1}^{\mathbf{p}}) (\ell_t^{\mathbf{p}})^{\eta}$$

A lower  $\zeta_J$  means a lower short-run wealth effect than baseline.

# Cost-push shock - Financial variables

Back

Figure : Cost-push shock



Solid black line: Mean impulse response function. Red bands: 95% confidence intervals, computed by drawing 2000 sets of parameters from the posterior distribution. Rates are yearly.

26 / 27

# Solvency shocks - Financial variables

Back

Figure : Solvency shocks shock



Solid red line: firm shock. Dashed black line: household shock. Firm-specialized bank shock: dashed dotted blue line. Household-specialized bank shock: crossed-dashed green line.  $rac{1}{2}$   $rac{1}$ 

27 / 27

- Bernanke, B. S., M. Gertler, and S. Gilchrist (1999): "The financial accelerator in a quantitative business cycle framework," in *Handbook of Macroeconomics*, ed. by J. B. Taylor and M. Woodford, Elsevier, vol. 1 of *Handbook of Macroeconomics*, chap. 21, 1341–1393.
- Boissay, F., C. Borio, C. Leonte, and I. Shim (2023): "Prudential policy and financial dominance: exploring the link," .
- Bratsiotis, G. J. and K. D. Pathirage (2023): "Monetary and Macroprudential Policy and Welfare in an Estimated Four-Agent New Keynesian Model," *Journal of Money, Credit and Banking*.
- Clerc, L., A. Derviz, C. Mendicino, S. Moyen, K. Nikolov,
  L. Stracca, J. Suarez, and A. P. Vardoulakis (2015): "Capital Regulation in a Macroeconomic Model with Three Layers of Default," *International Journal of Central Banking*, 11, 9–63.
- Coeurdacier, N., H. Rey, and P. Winant (2011): "The risky steady state," *American Economic Review*, 101, 398–401.
- Galí, J., F. Smets, and R. Wouters (2011): "Unemployment in an Estimated New Keynesian Model," in *NBER Macroeconomics*

*Annual*, National Bureau of Economic Research, vol. 26, 329–360.

Mendicino, C., K. Nikolov, J. Suarez, and D. Supera (2018):
"Optimal Dynamic Capital Requirements," *Journal of Money, Credit and Banking*, 50, 1271–1297.

— (2020): "Bank capital in the short and in the long run," *Journal of Monetary Economics*, 115, 64–79.

- Revelo, J. D. G. and G. Levieuge (2022): "When could macroprudential and monetary policies be in conflict?" *Journal of Banking & Finance*, 139, 106484.
- Smets, F. and R. Wouters (2003): "An estimated dynamic stochastic general equilibrium model of the euro area," *Journal of the European economic association*, 1, 1123–1175.