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Discussion Adämmer et al. (2023), Forecasting tail risk in real time

Main idea paper

Explore benefits of textual predictors for monthly tail risk forecasts of employment,
industrial production, inflation and consumer sentiment in real-time;

Textual predictors: correlated topic model estimated on English news articles;

Analyze impact of textual predictors in linear and non-linear models;

Linear models: linear Bayesian quantile regressions with three shrinkage priors (Ridge,
Horseshoe & Lasso) | Non-linear models: Bayesian Gaussian process regressions and
Quantile regression forests.

Main insight

Non-linear models have higher now- and forecasting accuracy in tails of distribution
than linear models;

News topics can increase forecasting accuracy, especially in the left tail of the distri-
bution.

Four main comments

1. Timing real-time analysis, 2. Use of survey indicators, 3. high volatility and
forecasting accuracy, 4. dynamic topic models.
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Comment 1: Robustness to shift in timing real-time exercise

Current version of paper compares real-time forecasting accuracy on last business
day of the month, based on FRED-MD database;

100 monthly indicators from FRED-MD in paper | 21 financial indicators, 80 news
topic proportions;

News topics & financial indicators known at end-of month, macro-economic indicators
have one month publication delay;

Therefore, outcome forecasting horse-race only valid for end-of-month comparison
of forecasting accuracy;

What happens to relative forecasting accuracy of the textual predictors if you shift
by a week, two weeks, three weeks (see e.g Bańbura et al., 2013 and Knotek and
Zaman, 2022)?

Knotek and Zaman (2022) nowcasts for monthly inflation rate on 1st , 8th, 15th,
last day and 15th of following month.
Main takeaway: smaller publication lags increase forecasting accuracy.
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Comment 1: Robustness to shift in timing real-time exercise (cont.)

Though experiment: shift data availability from end-of-April 2023 to mid-May 2023
using publication calendar of the series included in FRED-MD;

Example: shift two weeks in time, % of variables with same delay
as news topics

April 2023 Mid-May 2023

Financial indicators (%) 21 21
Macro-economic indicators (%) 0 54

Same delay as news-topics (%) 21 75

Larger nr. of indicators with identical publication delay will (probably) decrease value-
added textual predictors.
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Comment 2: Include more survey indicators

Only one survey indicator included in real-time database (“Michigan Consumer Sen-
timent, headline”)

Survey indicators are a “fierce” competitor to news-based data (e.g. Bańbura et al.,
2013) because of short(er) publication delays;

Long list of possible survey indicators in the US; e.g manufacturing PMI (flash:
-6 days), ISM services (flash: -6 days), Philadelphia Fed non-manufacturing business
outlook survey (-7 days);

Value added news-indicators decreases when survey information is added (e.g Ellingsen,
Larsen and Thorsrud, 2022 and van Dijk en de Winter, 2023)

Larger nr. of indicators with identical publication delay will (probably) decrease value-
added news-topics
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Comment 3: High volatility and forecasting accuracy

Industrial production Inflation

Employment Consumer sentiment

Source: FRED-MD, vintage 2021-12.
Shaded areas: mean + 3*(standard deviation) over periode 1980-06 until 2008-08.
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Comment 3: High volatility and forecasting accuracy

When do indicator based models outperform quantile AR?

Relatively good forecasting performance of indicator-models vs. simple bench-
mark models in large part driven by crisis-periods (e.g. Jansen et al, 2018). Hard
to beat simple benchmark in tranquil period;
Current version paper: Quantile score (QS) are averaged over complete sample;
unclear what moves QS over times;
Suggestion: Analyze cumulative QS over time (see e.g. Welch and Goyal, 2008
and Borup and Schütte , 2020) or exclude crisis-period from QS;
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Comment 4: Dynamic word-topic distributions

Fixed word-topic distribution estimated over the period 1980M6 – 1999M9 and is not
updated over the evaluation period;

Does not take into account large change in topic content & word use since 1999:
e.g. Brexit, ECB, euro;

Probability of new words and words gaining popularity after 1999 are underrepresented
in word-topic distributions;

Topic-document proportions will be strongly influenced, might decrease forecasting
accuracy news-topics;

Suggestion: Dynamic topic model (Blei et al, 2006) or time-varying topic model
(van Dijk and de Winter, 2023);
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Comment 4: Dynamic word-topic distributions (cont.)

Example: time variation in “Brexit”, within topic “Economics” (van Dijk and de Winter,
2023)

Time variation in topic, Brexit example
Relevance within economics topic 

Higher score is more relevant, lambda = 0.6
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Comment 4: Dynamic word-topic distributions (cont.)

Example: time variation within topic “Financial Markets” (van Dijk and de Winter, 2023)

A. First time slice B. Last time slice

estimated within topic word frequency (x 1,000)
0 100 200 300

Bank [2]
Investments [5]

Stock [1]
Stock Exchange [3]

Interest [13]
Euronext [11]

Stock price [4]
Funds [12]
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ECB [1145]
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Index [8]
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[##] rank first time time slice , increase (  ), decrease (  ), new in top-20 (  ) & stabilization (  ) in rank.
overall term frequency (x 1,000)
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Wrap-up

Very nice paper combining state-of-the art Bayesian techniques and topic modelling
techniques that stimulated further thinking on tail-risk now- and forecasting;

Thank you!
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Other comments

Alternative for Bayesian shrinkage: Extract factors from FRED-MD in tail risk
framework (Plagborg-Møller et al., 2020);

Real-time analysis: which vintages are used for the dependent variable exactly: first
release, final release? Might matter (a lot), see e.g. Croushore (2011)

Robustness test for to number of lags in models (currently 12), structural breaks
in volatility (e.g. in inflation) and compare forecasting accuracy of correlated topic
model to plain-vanilla LDA, test for the “optimal” number of topics in topic model;

Diebold Mariano to determine if linear model(s) are statistically more accurate than
non-linear models | Currently: all tests against quantile AR(1);

Check publication lags in database, for some variables two months or more (e.g. busi-
ness inventories, real personal income, non-revolving credit), and check for changes
in publication lags over time;
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