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Abstract

This paper proposes a Skewed Stochastic Volatility (SSV) model to estimate asym-
metric macroeconomic tail risks in the spirit of Adrian et al’s (2019) seminal paper
”Vulnerable Growth”. In contrary to their semi-parametric approach, the SSV
model captures the evolution of the conditional density of future US GDP growth
in a parametric, non-linear, non-Gaussian state space model. This allows to sta-
tistically test the effect of exogenous variables on the different moments of the
conditional distribution and provides a law of motion to predict future values of
volatility and skewness. The model is estimated using a particle MCMC algorithm.
To increase estimation accuracy, I use a tempered particle filter that takes the time-
varying volatility and asymmetry of the densities into account. I find that financial
conditions affect the mean, variance and skewness of the conditional distribution of
future US GDP growth. With a Bayes ratio of 1612.18, the SSV model is strongly
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1 Introduction

John Maynard Keynes already wrote in his General Theory that economic recessions tend

to be more volatile and more severe than economic expansions. Since then, different non-

linear or non-Gaussian features of the business cycle have been described in the economic

literature (Pitt et al., 2012). A recent study on non-linearities in US GDP growth that

gained considerable attention amongst academics and policy makers alike is the seminal

paper ’Vulnerable Growth’ by Tobias Adrian, Nina Boryaschenko and Domenico Gian-

none (2019). Based on the results in the Macro-Finance literature, the authors link the

non-linear and non-Gaussian features of economic growth to a country’s national financial

conditions. Borrowing from the Value at Risk concept in financial econometrics, they cap-

ture time-varying tail risks to GDP growth conditional on a country’s national financial

conditions using a semi-parametric estimation procedure. They find that a deterioration

in national financial conditions increases the volatility and skewness of the conditional

distribution of future GDP in the US. Most notably, their results indicate that condi-

tional forecasting densities of US GDP growth rates are not always symmetric but left

skewed in times of financial distress.

Yet, while the semi-parametric approach proposed by Adrian et al. (2019) is easy to im-

plement, it is difficult to construct confidence intervals to statistically test the impact

of national financial conditions or potentially other exogenous variables on the different

moments of the conditional densities. Furthermore, since their approach does not assume

a parametric law of motion, it is also not possible to conduct multi-step forecasts to pre-

dict of the evolution of time-varying risks around US-GDP growth several periods in the

future. Nevertheless, as outlined in Prasad et al. (2019) the concept of Growth at Risk has

provided policy makers all over world with an easy risk measure to evaluate a country’s

economic stability.

However, other recent studies by Hasenzagl et al. (2020) or Brownlees and Souza (2021)

have put the results of Adrian et al. (2019) into question. While Hasenzagl et al. (2020)

document little evidence for the effects of national financial conditions on higher moments

such as variance or skewness, the results of Brownlees and Souza (2021) find that quantile

regressions in the style of Adrian et al. (2019) show no predictive gains over symmetric

GARCH models for macroeconomic tail risks.
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Adding to the debate about time-varying asymmetries in the conditional densities of

macroeconomic variables, this paper proposes a parametric modeling approach to es-

timate macroeconomic tail risks conditional on financial conditions. I build a Skewed

Stochastic Volatility model (SSV) that can capture the variation of the full conditional

density of future US GDP growth parametrically while being equally flexible. In this

model, skewness arises from the assumption that errors follow a skewed normal distribu-

tion as introduced by Azzalini (2013). The model is a non-linear and non-Gaussian state

space model that captures the effects of exogenous variables such as the national financial

conditions index on the first and second moment of the conditional forecasting distribu-

tion of US GDP growth. Additionally, the SSV model provides a law of motion for the

volatility and skewness of the conditional distributions. This makes it easy to iterate the

evolution of the conditional densities forward in time to obtain multi step forecasts of tail

risks. The model also nests a generic Stochastic Volatility (SV) model with symmetric

densities, and does not impose skewness a priori.

Building on established Bayesian estimation methods for non-linear, non-Gaussian state

space models, the SSV model can be estimated using a particle Monte Carlo Markov Chain

(MCMC) algorithm that treats the model coefficients and the unobserved volatility and

skewness symmetrically as random variables.1 This allows to easily construct credible sets

for both objects to conduct statistical inference. Additionally, the Bayesian estimation

approach makes it possible to compare and select different model specifications based

on the respective marginal data densities. To increase the efficiency of the estimation,

I use the recently introduced tempered particle filter by Herbst and Schorfheide (2019)

to obtain robust estimates of the likelihood and latent states. As discussed in Pitt et al.

(2012) the accuracy of the particle filtering approximation is important for the efficiency of

the particle MCMC algorithm. Improving on the well-documented weakness of standard

bootstrap particle filters to be sensitive to extreme values (see for example Doucet et al.

(2001)), the tempered particle filter is more accurate in periods of high volatility but also

more computationally expensive. Building on the work of Herbst and Schorfheide (2019),

I modify the tempering schedule to take the asymmetry of the measurement density into

account. This results in less tempering iterations and allows to increase the targeted

1Flury and Shephard (2011) have documented that these estimation methods work well for SV models
with symmetric densities in discrete time.
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accuracy of the estimated states by reducing the runtime of the filter.

Estimating the model using US data, the SSV model provides further statistical evidence

that national financial conditions have an impact on the second and third moment of the

conditional forecasting distribution of future US GDP growth. Furthermore, the tem-

pered particle filter provides significant estimates of the time variation in the variance

and skewness of the forecasting density of US GDP growth rates.

The results are also in line with other recent studies in the Growth at Risk literature such

as delle Monache et al. (2021) or Montes-Galdon and Ortega (2022). With a Bayes ratio

of 1612.18, the SSV model is strongly favoured by the data over a symmetric SV model.

Comparing the conditional densities based on entropy measures developed in Adrian et al.

(2019), the higher marginal likelihood of the SSV model can be attributed to its ability

to better capture the strong increase in downside risks in periods of economic turmoil.

These results provide further statistical evidence that asymmetries are an essential feature

of the conditional densities of macroeconomic variables in times of economic crises.

The chapter is structured as follows: Section 2 provides an overview of the Growth at Risk

concept and the methodology developed by Adrian et al. (2019). The Skewed Stochastic

Volatility model and its estimation is introduced in Section 3 and 4 respectively. Section

5 and 6 discuss the results for the SSV model based on US data. Section 7 concludes.

2 Growth at Risk

The concept of Growth at Risk was introduced in the seminal paper by Adrian et al.

(2019) who analyse the variation of the one-period ahead forecast distribution of US GDP

(gdpt+1) conditional on the national financial conditions index (dubbed nfcit) to analyse

macro-financial risks in the US economy.2 To obtain an estimate of the one-period ahead

forecasting distribution of US-GDP, the authors develop a semi-parametric approach that

consists of two steps.

In the first step, the 5, 25, 75 and 95% quantiles of the conditional distributions of gdpt+1

are estimated by running quantile regressions of the form

gdpt+1 = β0,τ + β1,τnfcit + εt+1 (1)

2The National Financial Conditions Index is given by the fist principal component of a large number
of financial variables and released by the Federal Reserve Bank of Chicago.
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where the vector of coefficients βτ = (β0,τ , β1,τ )
′ depends on a predetermined quantile

τ ∈ (0, 1). The coefficients are found by minimizing the Koenker Bassett loss (Koenker

and Bassett, 1978) defined as

LKB(βτ ) =
∑(

τ · 1(gdpt+1≥x′
tβτ )

|gdpt+1 − x′tβτ |+ (1− τ) · 1(gdpt+1<x′
tβτ )

|gdpt+1 − x′tβτ |
)

where the vector xt = (1, nfcit)
′ contains the explanatory variable plus intercept and

1A(...) denotes the indicator function. In a second step, the authors match the predicted

5, 25, 75 and 95 percent quantiles from the regressions to the theoretical moments of

the skew T distribution developed in Azzalini (2013). The respective density function is

defined as

skew T (y|ξ, ω, α, ν) = 2

ω
· t(z|ν) · T (αz|ν + 1) with z =

y − ξ

ω
(2)

with parameters ξ, ω, α, ν controlling the location, scale, shape and kurtosis of the distribu-

tion. The resulting densities are flexible and not constrained to be symmetric. Estimating

the model based on US data from the 1970s up to 2017, Adrian et al. (2019) document

the following properties of the one period ahead forecast distributions:

(1) Lower quantiles of the conditional forecast distribution vary a lot over time while

the upper quantiles remain relatively stable.

(2) A deterioration of national financial conditions coincides with increases in the in-

terquartile range and decreases the mean.

(3) Distributions are more symmetric in normal times and become left skewed in reces-

sionary periods.

Based on their work, the proposed two-step approach has also been applied to analyze

time-varying forecast distributions of European growth rates (de Santis and van der Veken,

2020) or other macroeconomic variables such as inflation (López-Salido and Loria, 2020).

However, while the semi-parametric approach by Adrian et al. (2019) provides coefficients

of the quantile regressions in the first step, it does does not provide a parametric law of

motion that describes the evolution of the time variation in the volatility and asymmetry

of the conditional forecast distributions. This prevents to directly capture the effect of
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the national financial conditions or any other explanatory variable a researcher might

include on the second and third moment. Consequently, it is also not possible to conduct

statistical inference to determine the statistical relevancy of different variables on the

moments of the distributions. The same is true for the estimation uncertainty of the

time-varying parameters of the skew T distribution at each point in time. Furthermore,

without a parametric law of motion that governs the variation in the higher moments over

time it is not possible to obtain multistep forecasts of the evolution of the conditional

densities and predict future risks. 3 Last but not least, it is well known that standard

quantile regressions based on the Koenker Bassett Loss do not insure monotonicity in the

estimated coefficients of the different quantile regressions. Hence, the regression lines for

different quantiles can intersect, a problem that is commonly denoted as quantile crossing

(see for example Chernozhukov et al. (2010)). To remedy these shortcomings, this paper

proposes to estimate the evolution of the full forecasting density in a fully parametric way

using a Skewed Stochastic Volatility Model.

3 Skewed Stochastic Volatility Model

The Skewed Stochastic Volatility Model (SSV) model is a non-linear, non-Gaussian state

space model with measurement equation

yt = γ0 +
L∑
l=1

γlxt,l +
P∑

p=1

βpyt−p + εt with εt ∼ skew N (0, σt, αt) (3)

and latent states

ln(σt) = δ1,0 +
Jσ∑
j=1

δ1,jxt,j +
Kσ∑
k=1

β1,k ln(σt−k) + ν1,t (4)

αt = δ2,0 +
Jα∑
j=1

δ2,jxt,j +
Kα∑
k=1

β2,kαt−k + ν2,t (5)

3Compared to the approach in this paper, an alternative way to obtain multistep forecasts using the
semi-parametric approach of Adrian et al. (2019) could be to estimate a separate model to obtain a
direct forecast for each horizon in the spirit of a local projections approach. However, this method fails
to capture the uncertainty around the predictions.
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The innovations of the latent states ν1,t and ν2,t are assumed to be uncorrelated Gaussian

White Noise ν1,t
ν2,t

 ∼ N

0
0

 ,
σν1 0

0 σν2

 (6)

Most importantly, the errors in the measurement equation (3) are distributed according

to the skew normal distribution of Azzalini (2013). Similar to the normal distribution it

has parameters for the location (µ) and scale (σ) plus an additional shape parameter α

that determines the symmetry of the density function. The probability density function

of the skew normal distribution is given by

skew N (y|µ, σ, α) = 2√
(2π)σ

e−
(y−µ)2

2σ2

∫ α y−µ
σ

−∞

1√
2π
e

−z2

2 dz with z =
y − µ

σ
. (7)

Figure 1 shows how different values for α affect the skewness of the distribution function.

While α < 0 results in a left skewed distribution, α > 0 tilts the distribution to the right.

Setting α = 0 recovers the symmetric Normal distribution. The evolution of the density

Figure 1: Skewed Normal Distribution for Different Values of the Shape Parameter α.
Notes: Negative values of α tilt the distribution to the left while positive values skew the distribution to

the right. Setting α = 0 recovers the standard normal distribution.

of the measurement errors over time is governed by state equations (4) and (5). The

set of exogenous driving variables is not limited to be equal across Equations (3) - (5).

Additionally, the lagged states can capture serial correlation in the evolution of the state

variables. To guarantee the stability of the model I restrict the autoregressive coefficients
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such that
P∑

p=1

βp < 1 and
Kα∑
k=1

β1,k < 1 and
Kσ∑
k=1

β2,k < 1.

Depending on the value of the static coefficients of the model, Equation (4) will affect the

interquartile range of the conditional densities while Equation (5) introduces time-varying

asymmetries.

The skew normal distribution can also capture excess kurtosis in the conditional den-

sities of the SSV model. Given the derivations of Azzalini (2013) the kurtosis of the

skew normal is a function of the scale and shape parameters. Hence, skew normal

distribution can capture all characteristics found by Adrian et al. (2019) while main-

taining a parsimonious modelling approach and without imposing skewness a priori.

Furthermore, the SSV model nests a symmetric SV model with symmetric densities if

δ2,0 = δ2,j = β2,k = σν2 = 0 ∀j, k. Last but not least, given the estimation approach

outlined in Section 4, it is also possible to allow for non-zero correlation of the error terms

ν1 and ν1 by including their covariance in the set of static parameters that need to be

estimated.

Estimating the model using Bayesian methods yields credible sets for both, the static

parameters of the model as well as the value of the latent states at each time t. This

allows to directly test the significance of the static and time-varying parameters. Addi-

tionally, it is easy to iterate the latent states forward in time to forecast the evolution of

the conditional density of yt several periods ahead.

The results of Adrian et al. (2019) quickly spawned a number of papers that are re-

lated to the research of this paper and that can be categorized in their parameter ver-

sus observation-driven modelling approach. As defined in Koopman et al. (2016), the

observation-driven framework captures time-variation of parameters as deterministic func-

tions of lagged dependent as well as exogenous variables. Prominent examples are the

ARCH and GARCH models by Engle (1982) and Bollerslev (1986). In contrast to these

models, the parameter-driven approach models time-varying parameters as independent

stochastic processes with idiosyncratic errors. A notable example is the stochastic volatil-

ity model or the unobserved component models discussed in Durbin and Koopman (2012).

Using a parameter driven approach, Carriero et al. (2020) work with a time-varying volatil-

ity specification in large BVAR that can capture variation in the second moment of the
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conditional forecasting densities. Yet, skewness can only arise in the unconditional density

of GDP growth. Montes-Galdon and Ortega (2022) analyze asymmetric macroeconomic

risks in the Euro Area using an SVAR model with structural errors that follow a mul-

tivariate skew normal distribution with time varying shape parameters. However, the

authors limit the effect of national financial conditions to the shape parameter of the

structural errors and restrict the scale parameter to be constant over time. Similarly,

Iseringhausen (2021) develops a panel model with time-varying skewness. Yet, national

financial conditions are restricted to affect the skewness of the conditional distributions

while volatility evolves as a random walk. Eventually, Hasenzagl et al. (2020) also es-

timate a time-varying parameter model using Hamiltonian Monte Carlo methods and a

skew T distribution. The authors find that the time-varying moments cannot be esti-

mated precisely and are generally insignificant. However, compared to the analysis in this

paper, the authors focus on marginal forecasting gains of financial variables over measures

of real activity.

In the observation driven framework, Adrian et al. (2019) already include a simple GARCH-

type model that can capture time variation in the first two moments. Yet, resulting

conditional forecast distributions remain constrained to be symmetric and Gaussian sim-

ilar to Carriero et al. (2020). Using the Generalized Autoregressive Score (GAS) model

framework developed by Creal et al. (2013), the paper by delle Monache et al. (2021) also

allows for time varying skewness. Furthermore, older observation driven models that seek

to model time-varying skewness are proposed in the work of Hansen (1994) or Engle and

Manganelli (2004).

Compared to the other studies, an additional contribution of this paper is the Bayesian

estimation approach of the model using advanced particle filtering methods recently in-

troduced by Herbst and Schorfheide (2019). In contrary to the aforementioned studies,

the SSV model and the Bayesian estimation strategy can capture all features documented

by Adrian et al. (2019) while remaining flexible with regards to other distribution families

and more complex model specifications.

The SSV model in this paper is a parameter driven model and estimated using a com-

bination of particle filters and Markow Chain Monte Carlo methods. To the best of

my knowledge, this is the first paper that estimates a SV model that also allows for

time-varying skewness using state of the art particle filtering techniques in combination
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with MCMC methods. The estimation methods for the non-linear state space model are

introduced in detail in the next section.

4 How to Estimate the Skewed Stochastic Volatility

Model

Due to the skew normal distribution of the measurement errors as well as the non-linearity

in the state equation of the scale parameter, the SSV model is a non-linear, non-Gaussian

state space model. Therefore, one cannot estimate the states and static model parameters

with methods such as Kalman filtering and the EM-algorithm. Yet, non-linear state space

models can feasibly be estimated in a Bayesian framework using a combination of particle

filters and MCMC-Algorithms (Schön et al., 2015). In particular, Kim et al. (1998)

show how symmetric SV models can be estimated using a particle Metropolis Hastings

algorithm. Furthermore, convergence results have been derived in Andrieu et al. (2010).

4.1 The Particle Metropolis Hastings Algorithm

In general a non-linear, non-Gaussian state space system consists of measurements yt and

latent states st that evolve according to the densities

yt ∼ p(yt|st, θ) (8)

st ∼ p(st|st−1, θ). (9)

In the SSV model, the latent states are the time-varying second and third moment of

the measurement density determined by st = (lnσt, αt). The static model parameters are

given in the vector

θ = (γ0, γ1, ..., γL, β1, ..., βP ,

δ1,0, δ1,1, ..., δ1,Jσ , β1,1, ..., β1,Kσ , σν,1,

δ2,0, δ2,1, ...δ2,Kα , β2,1, ..., β2,Kα , σν,2)
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and determine the dynamics of the latent states and the mean equation of the observed

measurements. Estimating the model using the the particle Metropolis Hastings Algo-

rithm consists of two steps:

Step 1: Posterior distributions of the static model parameters θ are obtained with a

Metropolis Hastings sampler that generates draws from the posterior distribution

p(θ|y1:T , s1:T ) =
p(y1:T |s1:T , θ)p(s1:T |θ)p(θ)

p(y1:T )
. (10)

The MCMC step of the algorithm constructs a Markov Chain {θn}Nn=1 of length N with

stationary distribution equal to the posterior p(θ|y1:T , s1:T ).

Step 2: The second step uses a particle filter to sequentially estimate the posterior

distributions of the time-varying model parameters

p(st|y1:t, θ) =
p(yt|st, θ)p(st|y1:t−1, θ)∫
p(yt|st, θ)p(st|y1:t−1, θ)dst

(11)

with p(st|y1:t−1, θ) = p(st|st−1, θ)p(st−1|y1:t−1, θ). (12)

using importance sampling. Doucet et al. (2001) give a thorough treatment of importance

sampling and particle filters. For each point in time t,M particles {st,i,Wt,i}Mi=1 are drawn

from a proposal density q(st|y1:t) and resampled based on the importance weights

Wt,i =
wt,i∑M
i=1wt,i

with wt,i =
p(st,i|y1:t, θ)
q(st,i|y1:t)

. (13)

In principle, the proposal density can be chosen freely, yet a convenient choice generates

draws based on the mixture density

q(st|y1:t, θ) =
M∑
i=1

Wt−1,ip(st,i|st−1,i, θ) with
M∑
i=1

Wt−1,i = 1 (14)

Given that the process for st is markovian, this choice yields the standard bootstrap par-

ticle filter where particles are resampled proportional to the likelihood wt,i = p(yt|st,i, θ)
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of the measurement yt given the proposed states st,i as discussed in Doucet et al. (2001).

At each t, particles are proposed given the stochastic process of the latent states and

weighted based on how well they explain the observed measurement yt.

Conditional on a draw of parameters θn, the particle filter generates an estimate of the

models likelihood function p(y1:T |s1:T , θn). This estimate is given by

p̂(y1:T |s1:T , θn) =
T∏
t=1

1

M

M∑
i=1

Wt,i. (15)

The particle Metropolis Hastings Algorithm iterates between estimating p̂(y1:T |s1:T , θn)

given a draw θn with the particle filter and drawing a new vector of static model parameters

θn+1 from the posterior distribution p(θ|y1:T , s1:T ) using p̂(y1:T |s1:T , θn) for the Metropolis

Hastings step. Increasing the length N of the Markov chain as well as the number of

particles M improves the accuracy of the estimation but results in more computational

work and longer run times. As shown by Andrieu et al. (2010), the distribution of the

resulting chain {θn}Nn=1 converges to the exact posterior distribution p(θ|y1:T , s1:T ) even if

the likelihood function is estimated using the particle filter. Convergence results for the

particle filter can be found in Doucet et al. (2001) or Chopin (2004).

Yet, it is well known that the proposal distribution of the bootstrap particle filter given

by Equation (14) is suboptimal since it ignores information about the states st contained

in yt (Herbst and Schorfheide, 2019).

For example, given the SSV model a large increase of US GDP growth will be more likely

under particles that suggest high values in volatility as well as positive skewness in the

next period. However, as particles are proposed conditional on st−1,i only a few particles

will imply large values for the latent states if volatility and skewness are small in t − 1.

Since most proposed particles will have a low likelihood under the model, this results in

a high variance of the normalized weights Wt,i. Consequently, only a few particles are

resampled which leads to a poor approximation of the filtering density p(st|y1:t, θ) and the

likelihood of the static parameters p̂(y1:T |s1:T , θn). This phenomenon is commonly referred

to as weight degeneracy (Pitt and Shephard, 1999). Conversely, a smaller variance of Wt,i

implies a more uniform distribution of the weightsWt,i and will lead to a better importance

sampling approximation.

As discussed in Pitt et al. (2012) even though the particle MCMC algorithm is generally
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unbiased, the quality of the likelihood approximation of the particle filter is crucial for its

efficiency. A low approximation accuracy results in slow mixing properties of the markow

chains which yields high rejection ratios and a slow convergence to the ergodic distribution

(see for example Flury and Shephard (2011)).

A common measure to gauge the accuracy of the particle approximation at time t is the

inefficiency ratio

Inefft =
1

M

M∑
i=1

(
wt,i

1
M

∑M
i=1wt,i

)2

(16)

where wt,i are the unormalized weights.4 A high inefficiency ratio indicates that the dis-

tribution of weights is uneven such that the approximation of the target distribution is

bad, while an inefficiency ratio close to one indicates evenly distributed weights and a

good approximation of p̂(st|y1:t, θ) and p̂(y1:T |s1:T , θn).

The recently introduced tempered particle filter by Herbst and Schorfheide (2019) controls

the inefficiency ratio by sequentially adjusting the proposal distribution in each period.

This greatly improves the accuracy of the estimated states and leads to a better approx-

imation of the likelihood function in the Metropolis Hastings step. Building on annealed

importance sampling that was first proposed by Neal (2001), it is a more complex but also

more accurate filtering algorithm. Given the aim of this paper to estimate tail risks, the

ability to handle outliers and extreme values better then standard particle filters makes

the tempered particle filter a suitable method to obtain precise estimates of the variation

in the higher moments. This property of the tempered particle filter is further elaborated

in the next section.

4.2 Adjusting the Tempered Particle Filter

The tempered particle filter proposed by Herbst and Schorfheide (2019) adjusts the pro-

posal distribution to the observation yt using an adaptive version of annealed importance

sampling procedure for each t. Instead of directly reweighting the particles drawn from

p(st|st−1,i, θ) proportional to the likelihood function p(yt|st,i, θ), the particles are sequen-

tially adapted to a more optimal proposal via a sequence of Nϕ bridge distributions. These

4It can be shown, if one can draw particles from the optimal proposal density p(st|yt, st−1) the weights
become wt,i =

1
M ∀i which gives Inefft = 1. In general this distribution is not available in closed form

since it requires the distributions of the measurement and states to be conjugate to each other.
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bridge distributions are defined by the ”tempered” likelihood function p0(yt|st,i, θ). The

tempered likelihood function has an inflated variance defined as σt,i/ϕn with 0 < ϕn < 1.

Intuitively, the likelihood function is initially ”flattened” to ensure that the weights of the

proposed particles are equal. As described in Herbst and Schorfheide (2019), the vari-

ance of the measurement equation is then sequentially reduced to its actual level while

targeting a user-defined inefficiency ratio r∗. Concurrently, the particles are adapted to

a better proposal distribution using a combination of importance sampling and MCMC

methods (for a detailed description of the algorithm see Herbst and Schorfheide (2019),

Herbst and Schorfheide (2014) or Godsill and Clapp (2001) for a simpler outline of the

basic idea). In the context of the SSV model this means that for each t, the volatility

is assumed to be large and subsequently shrunk towards a level that fits the data best

during the tempering steps. For each tempering step a new value for ϕn is chosen as

ϕn = argmin
ϕ

Ineff(ϕ)− r∗ = 0 (17)

until ϕNϕ
= 1. If the set of particles proposed based on Equation (14) satisfies Ineff(1) ≤

r∗ no tempering is required and the filtering step is equal to classic bootstrap particle

filtering. Targeting a lower r∗ will result in a better approximation of the latent states,

but comes at the price of more tempering steps and a longer runtime.

Following the reasoning in Herbst and Schorfheide (2019), I modify the adaptive tempering

schedule such that the asymmetry of pn(yt|st,i, θ) is also taken into account. Since the skew

normal distribution converges to a symmetric normal distribution for α → 0, starting from

a symmetric and flat distribution will result in a value for ϕ0 that is closer to 1 reducing

the number of required tempering iterations. At each step, the targeted inefficiency ratio

r∗ can be achieved with a higher value for ϕn. More formally, in the SSV model the

unnormalized weights wt,i(ϕ0) are given by

wt,i(ϕ0) =
2ϕ

1/2
0√

2πσt,i
exp

(
−ϕ0(yt − µt)

2

2σ2
t,i

)∫ αt,iϕ
3/2
0

(yt−µt)
σt,i

−∞
exp

(
−z2

2

)
dz. (18)

Compared to the unnormalized weights obtained from a normal distribution, the integral

in Equation (18) introduces additional variation to wt,i which increases the inefficiency

ratio. The tempering parameter ϕ0 shrinks the upper bound of the integral towards 0
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for limϕ0 → 0 and brings p0(yt|st,i, θ) closer to a normal distribution. Using Equation

(16) and taking the limit for ϕ0 shows that the Inefficiency Ratio is decreasing in ϕ and

bounded from below by

lim
ϕ0→0

Inefft(ϕ0) =

1
M

∑M
i=1

(
1

σi,t

)2
(

1
M

∑M
i=1

1
σi,t

)2 > 1 (19)

by Jensen’s inequality.5 This is a special feature of the stochastic volatility model and

differs from the lower bound derived in Herbst and Schorfheide (2019) for the DSGE

model case. Without the stochastic volatility component, the lower bound is given by

r∗ = 1. Hence, I define the target inefficiency ratio as

r∗ =

1
M

∑M
i=1

(
1

σi,t

)2
(

1
M

∑M
i=1

1
σi,t

)2 +∆r (20)

where ∆r is set by the researcher to determine the accuracy of the filter.

Given Expression (7) and Algorithm 2 in Herbst and Schorfheide (2019), the expression

for the unnormalized weights at the nth tempering step is given by

w̃t,i(ϕn) =

(
ϕn

ϕn−1

) 1
2

exp

(
−(ϕn − ϕn−1)(yt − µt)

2

2σ2
t,i

)
Λ̃t,i(ϕn) (21)

with

Λ̃t,i(ϕn) =

∫ αt,iϕ
2/3
n

(yt−µt)
σt,i

−∞ exp
(

−z2

2

)
dz∫ αt,iϕ

2/3
n−1

(yt−µt)
σt,i

−∞ exp
(−z2

2

)
dz

(22)

Once again, Expressions (21) and (22) show that the weights of the skew normal dis-

tribution differ from a symmetric normal density by a factor Λ̃t,i(ϕn) that is greater or

smaller than one depending on the sign of αt,i(yt − µt) (see Appendix A.1). This intro-

duces additional variation into the weights and increases the inefficiency ratio for a given

ϕn compared to the weights from a standard normal distribution. Since the limit for ϕn

is given as

lim
ϕn→0

Λ̃t,i(ϕn) = 1, (23)

5Note that this also holds for a stochastic volatility model with symmetric densities.
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additionally tempering the skewness of the likelihood brings this factor closer to one and

results in weights that are more uniform and less tempering steps.

The example in Figure 2 illustrates the idea of tempering and provides a comparison
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Figure 2: Tempering of the State Distributions of ln(σ2
t,i)

Notes: Illustration of tempering based on simulated data. The mean of the distribution moves from -0.2
(left) or 1.5 (right) to about 1.9. While tempering only the scale of the distribution (left) requires 7
iterations, additionally tempering the shape parameter αt,i reduces the tempering steps to only 3

iterations (right). Furthermore, in case of skewness tempering the optimal ϕ0 is much closer to one.

of the two different tempering schedules based on simulated data from the SSV model.

The panels shows an approximation of the filtering distribution based on the proposed

particles for ln(σ2
i,t) at each tempering step. In each iteration the particles are reweighted

and adjusted to the final measurement. The particles are more spread out in the beginning

and slowly moved to the final filtering density at ϕNϕ
= 1. The improvements of the

skewness tempering are obvious. If the skewness of the measurement distribution is not

taken into account, the mean of the filtering distribution is mutated from values of -0.2 to

a final value of approximately 1.2 in 7 tempering steps. Yet, if the skewness is tempered

as well it only takes 3 tempering steps and the approximation of the filtering density is

more accurate at the beginning of the tempering. Furthermore, with an optimal value of

0.67, the initial ϕ0 is already much closer to 1 in case of skewness tempering.

Figure 3 shows a comparison of the total number of tempering steps for US data from 1973

to 1983 for the tempered particle filter with and without skewness tempering. The filter

is run using the model introduced in Section 3 and the estimated parameters from Section

5. As highlighted in the upper panel, this decade represents a particularly volatile period
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Figure 3: Total Number of Tempering Steps for both Tempering Variants
Notes: Tempering steps increase during times of high volatility. The plot shows that additionally

tempering the shape of the measurement density requires fewer tempering steps.

of the sample with large jumps in US GDP growth rates. The lower panel shows the

number of tempering steps that are adaptively chosen in each time period t. Tempering

increases especially if the values of subsequent observations are far apart. In periods where

the standard tempering schedule requires a large number of tempering steps, additionally

tempering the skewness is most effective. For example, in 1975Q2, 1975Q4 or 1977Q1

skewness tempering yields a similar reduction of tempering steps as with simulated data

in Figure 2. The number of tempering steps required in 1975Q2, 1975Q4 decreases by

more than 60%. While exclusively tempering the scale of the measurement density takes

six or seven tempering iterations additionally tempering the symmetry of the distribution

requires only two iterations.
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4.3 Data and Priors

The proposed model is estimated on the same data set as used by Adrian et al. (2019).

Measurements yt are chosen to be one-period ahead realizations of GDP growth (gdpt+1).

To compare the model with the results of Adrian et al. (2019), I use contemporaneous

realizations of the national financial conditions index nfcit as exogenous driving variable

in the measurement and state equations. This introduces time variation of the variance

and skewness of the conditional densities of the one-period ahead US GDP growth. The

lag order of the latent states is determined using the Bayes Ratio as selection criteria. I

use a mixture of uninformative and informative priors on the static parameters. Table

3 in Appendix ?? gives a comprehensive overview of the prior specification of the static

parameters as well as the data.

The tempered particle filter is tuned to use M = 10, 000 particles with a targeted inef-

ficiency ratio ∆r = 0.01 and 2 mutation steps in each tempering iteration. Draws for

the static model parameters are generated using a standard random walk proposal with

four chains ran in parallel on the HPC-Cluster at the Freie Universität. To increase the

efficiency of the Metropolis Hastings algorithm the constrained parameters such as the

autoregressive coefficients −1 < β < 1 and the variances σνi > 0 are mapped to the real

line using the following transformations

β = tanh(ψ) ∈ [−1, 1] (24)

σ = exp(ζ) ∈ R+ (25)

where ψ and ζ can be drawn from the set of real numbers R. This allows to obtain samples

from the transformed unconstrained target distribution of

θ̃ = (γ0, γ1, ..., γL, ψ1, ..., ψP ,

δ1,0, δ1,1, ..., δ1,Jσ , ψ1,1, ..., ψ1,Kσ , ζν,1,

δ2,0, δ2,1, ...δ2,Jα , ψ2,1, ..., ψ2,Kα , ζν,2) ∈ RS
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were S = 5+L+P +Jσ+Kσ+Jα+Kα. As described in Schön et al. (2015) this requires

to correct the acceptance ratio for the Jacobians of the inverse functions

d tanh−1(ψ)

dψ
=

1

1− ψ2
and

d log(ζ)

dζ
=

1

ζ

based on the change of variables rule. The posterior distributions of the constrained model

parameters can then be recovered using Equations (24) and (25). To further improve the

mixing properties of the chains an initial estimate of V ar(θ̃) = Ω is obtained based on a

pre-run with 5000 draws. The proposal variance is scaled to target an acceptance ratio

between 20% and 30% as suggested in Roberts and Rosenthal (2001).

5 Results

Table 1 presents the estimates for the static model parameters from the particle Metropolis

Hastings algorithm described in the previous section. The estimated coefficient γ1 gives

Model Parameter Mean SD q16 q84 q05 q95

γ0 2.285 0.398 1.898 2.672 1.623 2.94
γ1 -0.686 0.362 -1.045 -0.335 -1.311 -0.119
δ1,0 0.865 0.285 0.573 1.164 0.446 1.372
δ1,1 0.242 0.096 0.147 0.338 0.102 0.412
β1,2 0.108 0.278 -0.192 0.396 -0.375 0.522
δ2,0 0.218 0.221 0.006 0.429 -0.143 0.595
δ2,1 -0.290 0.226 -0.477 -0.103 -0.603 0.042
σν1 0.092 0.059 0.037 0.14 0.023 0.209
σν2 0.020 0.020 0.006 0.032 0.004 0.058

Table 1: Posterior Means, Standard Deviations (SD) and 68% and 90% Credible Sets
Notes: The model is estimated using N = 20, 000 draws of the tempered particle Metropolis Hastings
Algorithm. The first half of the sample is discarded as burn in. The model specification containing a
lagged value of αt in the state equation of the shape parameter is strongly rejected against a model

specification without an autoregressive term based on a Bayes Ratio of about 200. The marginal data
densities are estimated using the modified harmonic mean estimator of Geweke (1999))

a negative impact of nfcit of about -0.69 on the one period ahead realization of gdpt+1.

Furthermore, with an impact of 0.24 on the scale (δ1,1) and -0.29 on the shape (δ2,1) of

the skew normal distribution, the effect of national financial conditions on the different

moments of the conditional densities is in line with the stylized facts described in Adrian

et al. (2019). Consequently, the estimated coefficients of the SSV model imply an inverse
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relationship of the second and third moment of the conditional densities. As financial

conditions deteriorate, the expected growth rate decreases while the interquartile range

widens and downside risks of future GDP growth increase.

However, while the 90% credible sets of the coefficients for the effect of current national

financial conditions on the mean and variance of gdpt+1 do not overlap the zero, this is

not the case for the effect on the shape parameter. Significance of the impact of nfcit on

the skewness of the conditional densities is only given by the 68% credible set of δ2,1. This

raises the question about the importance of time-varying asymmetry of the conditional

densities, a topic that will be further investigated in Section 6. Additionally, Figure 4

shows the sample approximations and prior distributions of the parameters γ0 and γ1 in

the measurement equation as well as the parameters that capture the effect of nfcit on the

shape and scale of the conditional distribution of gdpt+1. All posteriors are well-behaved,
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Figure 4: Posterior Distributions Obtained Using the Particle MCMC Algorithm
Notes: Posterior distributions for the parameters of the measurement equation γ0 and γ1 as well as the

parameters that capture the effect nfcit on the scale (δ1,1) and shape (δ2,1). All posteriors are
well-behaved, unimodal and clearly centered away from zero. The coefficients γ0, γ1 and δ1,1 are

significantly different from zero based on the 90 % credible set constructed from the posterior draws.
For δ2,1 the 68% credible set does not overlap the 0. Grey dashed lines indicate the prior distributions.

uni-modal and clearly centered away from zero. The distributions also differ sufficiently
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from the priors indicating that the effects are well identified by the data.

Given the posterior mean estimates of the static model parameters, Figure 5 shows the

filtered states and the respective 68% and 90% credible sets, an additional feature of the

SSV model that is not available with the quantile approach of Adrian et al. (2019). The

sharp increase in volatility and downside risks in the 1980s as well as during the financial

crises in 2009 is well captured by the evolution of the two latent states. Compared to

the results in Hasenzagl et al. (2020), both states indicate significant time variation in

the second and third moments of the conditional densities of gdpt+1 based on the 90%

credible sets. Yet, Hasenzagl et al. (2020) approach includes autoregressive components of

GDP growth to investigate time-varying asymmetries from a forecaster’s perspective who

seeks to obtain additional forecasting gains by including financial variables. While the

aim of this paper remains close to the work of Adrian et al. (2019), the SSV model and

estimation algorithm can easily be extended to further investigate these questions and

provide a further comparison with the results of Hasenzagl et al. (2020).6 In general, the

plots show that the proposed model is able to capture the stylized facts given in Section 2.

However, even though the distribution is more symmetric in normal times, the estimated

state of αt also exhibits significant levels of positive skewness when levels of volatility are

low. Based on the estimated states, significant upside risks to GDP growth occur during

times of economic moderation for example during the late 1980s and early 1990s. These

results are similar to recent results of delle Monache et al. (2021) who find evidence for

cyclical behavior in the shape of the one-step ahead conditional forecast densities. Based

on a trend-cycle decomposition of the latent states in their model, the authors find that

conditional forecasting distributions of future US GDP growth do not only exhibit negative

skewness during recessions, but become positively skewed in expansionary periods.

Eventually, Figure 6 shows the resulting conditional densities of the estimated model with

the respective lower and upper 5% and 25% quantiles. The effect of the strong increase

in the scale and shape parameters during the Great Recession as well as during the oil

crises in the 1970s and 80s is clearly visible in the behavior of the lower quantiles. Similar

to stylized fact (1) in 2, the upper quantiles of the conditional forecasting distributions

remain relatively stable while the lower quantiles vary significantly over time.

6Including real macroeconomic variables such as for example the unemployment rate is a natural step
left for further research.
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Figure 5: Filtered States Obtained with the Tempered Particle Filter
Notes: The filter is tuned to target an inefficiency ratio with ∆r = 0.01, 2 Mutation steps and

M = 10, 000 particles. The posterior means in table 1 are used for the value static model parameters.
The shaded areas give the respective 68% and 90% credible sets obtained from the approximations of

the filtering distributions.
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Figure 6: Conditional Distribution for One-Step Ahead GDP Growth
Notes: Lower and upper 5% and 25% percent quantiles display the same characteristics as found by

Adrian et al. (2019). While the upper quantiles remain relatively stable, the lower quantiles vary

strongly over time indicating increased downside risks to GDP growth in times of financial distress.

To further illustrate the difference in variation of the tail risks, Figure 7 shows the expected

shortfall SFt and expected longrise LRt for various probability levels q. The two measures

give the expected GDP growth under a specific distribution and chosen probability level

q. Given the inverse CDF of the skewed Normal distribution together with the estimated

parameters of the SSV model denoted by F−1
yt+1|µ̂t,σ̂t,α̂t

(y) and a chosen target probability
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q ∈ [0, 1] values for SFt and LRt are calculated as

SFt(q) =
1

q

∫ q

0

F−1
yt+1|µ̂t,σ̂t,α̂t

(y)dy and LRt(q) =
1

q

∫ 1

1−q

F−1
yt+1|µ̂t,σ̂t,α̂t

(y)dy (26)

Similar to Value at Risk, expected Shortfall and Longrise measure tail risks under a given

probability distribution. However, since they are an average over the outcomes up to a

certain quantile rather than just the upper or lower bound, the behavior of the full tail

is captured more comprehensively. Figure 7 shows that the complementary effects on
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Figure 7: Expected Longrise and Shortfall
Notes: The plot shows expected shortfall/longrise for the q = 5, 15, 25, 35 percent quantiles. It gives the
expected GDP growth in the worst/best q percent of the outcomes under the estimated skew normal
distribution for each period. The plot shows that risks to the lower tails are larger in size and vary

much more compared to upside risks to GDP growth.

the different moments of the distribution result in downside risks that are larger in size

and vary more strongly over the full sample period. Especially the oil price shocks in

the 1970s and early 1980s cause a large variation in downside risks compared to upside

risks captured by the expected Longrise. During the Great Moderation the variation in

the tails becomes more equal. The differences become more pronounced again during the

financial crises in 2008 and 2009. Figure 7 shows that this feature is not only valid for

the lower and upper 5% but also for the 15, 25 and 35% levels. However, compared to the

results of Adrian et al. (2019) who find values of approximately -18% for the expected 5%

shortfall during the early 1980s, the predicted tail risks of the SSV model are less severe.
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6 Does Skewness Matter?

The estimation results of the SSV model yield significant coefficients for effect of national

financial conditions on the the mean and the variance. However, in case of the skewness

parameter the 90% credible sets for the static parameters overlap the zero. Furthermore,

as argued in papers such as Adrian et al. (2020) or Carriero et al. (2020) the different

behavior of the upper versus the lower quantiles can also be attributed to the inverse re-

lationship of the mean and variance of the conditional distributions. For example, in the

New Keynesian Volatiltiy Model of Adrian et al. (2020), symmetric conditional densities

generate non-zero skewness in the unconditional distribution of GDP growth that closely

aligns with the values observed in real world data. Additionally, based on the results of

Brownlees and Souza (2021) symmetric GARCH models yield similar predictive gains as

quantile regressions that allow for skewness when forecasting macroeconomic tail risks.

This suggests that the inverse relationship of the mean and variance can capture much of

the variation in downside risks.

To further investigate the importance of asymmetries in the conditional densities, I es-

timate a symmetric SV model and compare it with the SSV model based on the Bayes

ratio. Since the SV model is nested in the SSV model, this corresponds to testing a joint

parameter constraint on the latent state. The prior and posterior distributions of the

estimated SV model are given in Appendix A.5. Since both models are estimated using

Bayesian methods, the two models can easily be compared using their Bayes factor. The

Bayes factor determines which model is favored by the data based on the marginal data

densities p(y|Mi). Let M1 be the SSV model and M2 denote the symmetric SV model.

The Bayes factor is given by the ratio of the two marginal data densities p(y|Mi)

p(y|M1)

p(y|M2)
=

∫
p(y|θ,M1)p(θ|M1)dθ∫
p(y|θ,M2)p(θ|M2)dθ

(27)

The Bayes factor indicates which model describes the observed data better. In general,

a value larger then one indicates that M1 fits the data better, while values smaller than

one imply a better model fit of M2. The marginal data densities p(y|Mi) are estimated
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using the the modified harmonic mean estimator of Geweke (1999).7 Based on the table

of Kass and Raftery (1995) a Bayes factor lager than 10 indicates strong evidence in favor

of M1, a Bayes factor larger than 100 implies decisive evidence. Values lower then three

are considered to be inconclusive. Table 2 gives the results for the respective quantities.

With a value of 1612.18 the SSV model is clearly favored by the data. Given the alterntive

Bayes Factor log Odds log p(y|M1) log p(y|M2)

1612.18 7.39 -435.78 -443.16

Table 2: Model Selection and Evaluation
Notes: Bayes Factor and the log of the marginal data densities for the SSV and the SV-Model. The

Bayes factor gives decisive evidence for the SSV-Model.

of a symmetric SV model, this implies that allowing for time varying skewness in the

conditional densities of gdpt+1 increases the model fit.

Based on these results, I also compute the upside and downside entropy LU
t and LD

t

defined in Adrian et al. (2019) to further analyze the differences of the SSV and the SV

model. The upside and downside entropy compare the divergence in the probability mass

of two probability distributions above and below the median. As described in Adrian

et al. (2019), it is a relative measure of the divergence between two distributions in the

upper and lower tails. Formally, LU
t and LD

t are given by

LU
Mi

= −
∫ F̂−1

Mi
(0.5)

−∞
(log ĝ(y)− log f̂Mi

(y))f̂Mi
(y)dy (29)

LD
Mi

= −
∫ ∞

F̂−1
Mi

(0.5)

(log ĝ(y)− log f̂Mi
(y))f̂Mi

(y)dy (30)

where ĝ(y) denotes the fitted unconditional density of GPD growth. The densities f̂Mi
(y)

are the conditional densities of the SSV model (M1) and the SV model (M2) given

the estimated time-varying parameters. Upside entropy LU
Mi

becomes positive in a given

period if more probability mass is shifted to the upper tail compared the the unconditional

distribution of GDP growth and vice versa. Similarly, high values for downside entropy

7The Harmonic Mean Estimator is given by

p̂(y) =
1

N

N∑
n=1

f(θn)

p(y|θn)p(θn)
(28)

were {θn}Nn=1 are the draws obtained from the Metropolis Hastings sampler.
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LU
Mi

indicate that under model Mi, there is more probability mass in the lower tail

compared to the unconditional distribution. Figure 8 shows LU
Mi

and LU
Mi

for both models.
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Figure 8: Upside and Downside Entropy of the SSV Model and the SV Model
Notes: Upside and Downside Entropy for the SSV model (left) and the SV model (right). Relative to
the unconditional distribution, the SSV model shifts more of the probability mass to the downside

compared to the SV model indicating higher tail risks.

The two plots indicate that downside entropy for the SSV model is much higher in times of

economic crisis compared to SV model. Yet, the upside risks of the SSV model during the

Great Moderation are visible but less pronounced compared to the downside risks during

economic crises. With regards to the upside entropy, both models are fairly similar.

This indicates that modelling asymmetries matters especially to appropriately capture

the risks to the lower tails of the distribution. This is in line with other recent finding in

the literature of asymmetric forecasting distributions. For example Montes-Galdón et al.

(2022) find that introducing information on the asymmetry of forecasting densities in a

BVAR strongly improves the probabilistic forecasts of GDP, inflation and core inflation

in the Euro Area during times of economic crisis while there are no substantial gains in

periods with stable economic conditions. In general, these results motivate future research

to address the question of different risk regimes of macroeconomic variables. While models

such as the SSV model can capture these characteristics, the implications of risk regimes

suggest that markov switching models with exogenous driving variables that impact the

transition probabilities could be another class of models to explore in subsequent studies.
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7 Conclusion

This paper proposes a Skewed Stochastic Volatility (SSV) model as an alternative method

to estimate Growth at Risk as introduced by Adrian et al. (2019). The SSV model can

capture variation in the second and third moments of the conditional forecast distri-

butions of US GDP growth and allows researchers to estimate and conduct statistical

inference on the estimated parameters. The resulting state space model is non-linear with

non-Gaussian errors and can be estimated with a Particle MCMC algorithm. I obtain

accurate estimates of the model likelihood and the evolution of the latent states, using

the tempered particle filter introduced by Herbst and Schorfheide (2019). Building on the

adaptive tempering schedule proposed by the authors, I modify the tempering schedule

to take the asymmetry of the distribution of the measurement error into account. This

reduces the number tempering steps to save computational time while achieving the same

accuracy. Estimating the model based on US data yields conditional forecast densities

that closely resemble the findings by Adrian et al. (2019).

Exploiting the advantages of the proposed model, I find that national financial conditions

have an effect on the moments of the forecasting distribution. The tempered particle filter

provides significant estimates of the variation in the variance and skewness over time that

imply a strong positive relationship between volatility and downside risks. Times with

high volatility in growth rates coincide with an increase in risks to the lower tail of the

conditional distributions. My results are also in line with results of other recent studies

such as Montes-Galdon and Ortega (2022) or delle Monache et al. (2021). Compared to

the findings of Hasenzagl et al. (2020), my results indicate that there is predictive content

in national financial conditions for downside risks to US GDP growth and significant vari-

ation in the second and third moment of the conditional densities. I further analyze the

importance of time-varying asymmetries by comparing the SSV model with a symmetric

SV model using Bayesian model selection criteria. With a Bayes Factor of 1612.18, the

results provide decisive evidence for the SSV model. Comparing the upside and downside

entropy of the two models reveals that these advantages arise mainly from the ability

of the SSV model to capture the increased tail risks in times of financial and economic

turmoil.

The flexibility of the proposed SSV model and the particle MCMC algorithm allows for
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further research to investigate asymmetric risks to macroeconomic variables. Given the

different conclusions of Hasenzagl et al. (2020) and Adrian et al. (2020) in particular,

extending the set of predictors to contain autoregressive components of GDP growth as

well as other predictors can provide more insights on the predictability of time-varying

asymmetries. Additionally, it is straight forward to extend the measurement equation of

the SSV model to a VAR specification with additional variables and lift the exogeneity

assumption of national financial conditions in the original model.

Given the active research field of macro at risk in macro-finance, empirical macroeco-

nomics and econometrics, the SSV model provides a flexible toolkit for future research.
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A Appendix

A.1 Inefficiency Ratio Under a Skew Normal Measurement Er-

ror

From Herbst and Schorfheide (2019), the weights wi
t(ϕ0) for 0 < ϕ0 ≤ 1 are given by the

tempered likelihood function evaluated at the states st,i

Given the annealed importance sampling method described in Neal (2001) and Algo-

rithm 2 by in Herbst and Schorfheide (2019), the expression of the unnormalized weights

wt,i(ϕn) are defined as the ratio of the bridge distributions

wt,i(ϕn) =
pn(yt|sit)
pn−1(yt|sit)

(31)

Using expression (7) for the density of the skew normal distribution yields

wt,i(ϕn) =

(
ϕn

ϕn−1

)1/2

exp

(
−(ϕn − ϕn−1)(yt − µt)

2

2σ2
t,i

)∫ αt,iϕ
1/2
n

(yt−µt)
σt,i

−∞ exp
(

−z2

2

)
dz∫ αt,iϕ

1/2
n−1

(yt−µt)
σt,i

−∞ exp
(−z2

2

)
dz

(32)

Expression (21) shows that in comparison to normally distributed measurement errors,

the weights of the skew normal errors are scaled by a factor

Λt,i(ϕn) =

∫ αt,iϕ
1/2
n

(yt−µt)
σt,i

−∞ exp
(

−z2

2

)
dz∫ αt,iϕ

1/2
n−1

(yt−µt)
σt,i

−∞ exp
(−z2

2

)
dz

(33)

Additionally tempering the symmetry of the skew normal distribution modifies this factor

to

Λ̃t,i(ϕn) =

∫ αt,iϕ
2/3
n

(yt−µt)
σt,i

−∞ exp
(

−t2

2

)
dz∫ αt,iϕ

2/3
n−1

(yt−µt)
σt,i

−∞ exp
(−z2

2

)
dz

 < 1 iff αt,i(yt − µt) < 0

> 1 iff αt,i(yt − µt) > 0
∀ 0 > ϕn > 1.

(34)

Inequality (34) holds since ∫ x

−∞
exp

(
−z2

2

)
dz

is strictly monotonically increasing in x and ϕn > ϕn−1.
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A.2 US Data
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Figure 9: US GDP and National Financial Conditions Index
Notes: The sampling frequency for both series is quarterly. The sample ranges from 1973 Q1 to 2016

Q2.
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A.3 Bootstrap Particle Filter vs. Tempered Particle Filter
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Figure 10: Mean Squared Errors of the Filtered States
Notes: Mean Squared Errors are calculated based on 500 simulations obtained with the Bootstrap
Particle Filter and the Tempered Particle Filter. Tuning parameters of the Tempered Particle Filter
were set to target an Inefficiency Ratio of ∆r = 0.01, 2 Mutation steps and M = 10000 particles. The
superior performance of the Tempered Particle Filter is clear from the mean and standard errors of the

distributions.
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A.4 SSV-Model: Prior and Posterior Distributions

Model Parameter Distribution Param 1 Param 2

γ0 N 2.69 5
γ1 N -1 0.5
δ1,0 N 0 5
δ1,1 N 0 5
β1,1 N 0 0.5
δ2,0 N 0 0.5
δ2,1 N 0 0.5
σν1 IG 1 0.25
σν2 IG 1 0.15

Table 3: Priors for the Static Model Parameters of the SSV model.
Notes: N denotes normal priors with Param 1 and Param 2 giving mean and variances. IG denotes the

inverse gamma distribution with Param 1 and Param 2 for shape α and scale β.
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Figure 11: Skewed Stochastic Volatility Model: Posterior Distributions
Notes: Histograms and kernel density estimates of the posteriors obtained using the particle Metropolis

Hastings algorithm for the SSV model.
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A.5 SV-Model: Prior and Posterior Distributions

Model Parameter Distribution Param 1 Param 2

γ0 N 2.69 5
γ1 N 0 5
δ1,0 N 0 5
δ1,1 N 0 5
β1,1 N 0 0.5
σν1 IG 1 0.25

Table 4: Priors for the Static Model Parameters of the Symmetric SV model.
Notes: N denotes normal priors with Param 1 and Param 2 giving the mean and variances. IG denotes

the inverse Gamma distribution with Param 1 and Param 2 for the scale α and shape β.
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Figure 12: Stochastic Volatility Model: Posterior Distributions
Notes: Histograms and kernel density estimates of the posteriors obtained using the particle Metropolis

Hastings algorithm for the symmetric SV model.
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