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Introduction

e Impulse response analysis 1s a widely employed tool 1n the field of
macroeconomics and econometrics, popularized by Sims (1980).

 [dentification 1ssues/what comes first? Koop et al. (1996) introduce
generalized impulse response functions.

We propose: Multiple shock impulse response functions, which
take into account the correlation between the shocks. Incorporates:

* Contagion between shocks
* Temporal aggregation

Multiple impulse response functions can shed light on:

* The interaction and impact of financial shocks.

* The effects of multiple uncertainty sources on economic variables.

 The transmission of shocks across countries and assessing global
macroeconomic linkages.

General Framework

Let y; be a vector with n endogenous variables, modeled by a function
of historical values of y; and variables z;, and a function of n shocks v;:
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where v; have mean zero and finite variances.

Impulse Response Concepts

Let y; follow a process in accordance with Equation (1).

The traditional impulse response functions of y; . to the s-th shock
Vst Of size o, are defined as
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for horizon h = 0,1, ..., H, where w;_; denotes an historical path
realization of the stochastic process that generates y;. 5. This defi-

nition implies a linear function of ¢(-) and requires identification of
the structural relations between shocks.

The one shock generalized impulse response functions (Koop et al.,
1996; Pesaran and Shin, 1998) of vy, to the s-th shock v ; of size
0, are defined as
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for horizon h = 0,1, ..., H, where Z;_; denotes the information set

available at ¢ — 1. Here, the history 1s treated random and does not
require 1dentification of the structural relations.

Definition 3: Multiple shock impulse response functions

Let S be a set of indices corresponding to the 1 < m < n shocks
of interest, where |S| > 1. The multiple shock impulse response

functions of y;., to a set of shocks v ; of size ds are defined as

U°(h,8s,Li-1) =Elyion | Vst = 0s,Li-1) — Elyen | Zi1),
for horizon h =0,1, ..., H.

lllustration: VAR(1) process

Let y; denote the n variables of interest. The vector autoregression

(VAR) with one lag 1s then
y: = By, + uy, U ~ N(O, Z)- (2)

We assume 1.1.d. residuals u; and stability of the VAR.

Impulse response functions for Equation (2)

Let o, be the (s, s)-th element of 3, e, an s-th element unit vector,
and P an n X m permutation matrix, with m unit vectors, then:

Generalized impulse response functions (GIRF) for one shock s:

WI(h,d,,T,1) = B"Xe,(o4) 9. (3)

Multiple shock impulse response functions for m > 1 shocks:

w°(h,ds,T;_) = B"XP(P'XP) '4s. (4)
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 Analyze effect of first two shocks S = {1, 2} on variable 3.

Figure: Impulse Response Functions

(a) Case 1, DGP with X! (b) Case 2, DGP with X2
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The sum of the one-shock GIRFs » |, sW9(h,ds,Z;_;) (dashed
red line) underestimates (case 1) or overestimates (case 2) the
total effect, W°(h, ds,Z;_1) (solid blue line).

Summary and Further Research

e Multiple shock impulse response functions are necessary to ac-
curately analyze the combined effect of shocks.

 Summing the one-shock generalized impulse response functions
can lead to either over- or underestimation of the total effect.

 Further research:

* Empirical analysis
* Non-linear specifications, second order dynamics
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