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1 Introduction

Economic and financial forecasters have become increasingly interested in making quantile predictions,

often across different quantile levels and at multiple horizons into the future. In financial markets,

for instance, such multi-step quantile predictions are produced due to the 10-day value-at-risk (VaR)

requirements of the Basel Committee on Banking Supervision.1 In the growth-at-risk (GaR) literature

on the other hand, Adrian et al. (2019) propose quantile models to predict downside risks to real gross

domestic product (GDP) growth at horizons ranging from one quarter ahead to one year ahead. These

methods are now widely implemented in academic research (Plagborg-Møller et al., 2020; Brownlees

and Souza, 2021) and in international institutions like the IMF (Prasad et al., 2019), and are typically

applied across various quantile levels. This trend for multi-horizon quantile forecasts has also developed

into a growing literature in nowcasting GaR that typically uses several intra-period nowcast horizons

(e.g., Antolin Diaz et al., 2021; Ferrara et al., 2021; Carriero et al., 2020). Finally, it is common for

central banks, such as the Bank of England, to produce fan charts of key economic variables such as

GDP growth, unemployment or the Consumer Price Index (CPI) inflation rate across several quantile

levels and horizons.

However, despite the expansion in empirical and methodological research, there is currently very

little statistical guidance for assessing whether a set of multi-step ahead, multi-quantile forecasts are

consistent with respect to the outcomes observed. This consistency is often referred to as ‘optimality’,

‘rationality’, or ‘calibration’ in the literature, with ‘full optimality’ referring to optimality relative to

the information set known to the forecaster, while a weaker form of optimality known as ‘autocali-

bration’ is defined with respect to the information contained in the forecasts themselves (see Gneiting

and Ranjan, 2013; Tsyplakov, 2013). This paper aims to fill this gap in the literature by proposing

various (out-of-sample) optimality tests for quantile forecasts that can accommodate predictions ei-

ther derived from known econometric forecasting models, or from external sources like institutional or

professional forecasters. Specifically, we develop tests that assess optimality of quantile forecasts over

multiple forecast horizons and multiple quantiles simultaneously.

The main test of this paper is a joint test of autocalibration for quantile forecasts obtained across

different horizons and quantile levels. The test is based on a series of quantile Mincer-Zarnowitz

(MZ) regressions (see Gaglianone et al., 2011) across all quantile levels and horizons, which are in

turn used to construct a test statistic for the null hypothesis of autocalibration across horizons and

quantiles using a set of moment equalities (e.g., Romano and Shaikh, 2008, 2010; Andrews and Soares,

2010). We suggest a block bootstrap procedure to obtain critical values for the test. The bootstrap is

simple to implement and avoids the need to estimate a large variance-covariance matrix that would be

required in a more standard Wald-type test. We establish the first-order asymptotic validity of these

bootstrap critical values.

The test of autocalibration based on MZ regressions can provide valuable information to forecasters.

In particular, failure to reject the null hypothesis of autocalibration suggests that the forecaster may

proceed to use the forecasts as they are without the need to ‘re-calibrate’ them. On the other hand,

if the null hypothesis is rejected, the test hints at directions for improvement of the forecasts. That

is, it informs the forecaster about the horizons, quantiles or horizon-quantile combinations that con-

tributed strongest to the rejection of the null, and thus an improvement of the forecasts is warranted.

1See for instance: https://www.bis.org/publ/bcbs148.pdf [Last Accessed: 18/12/20]
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In addition, the estimated MZ regression can be used to infer about the nature of the deviations from

autocalibration, when the forecasts are plotted alongside the realisations. The estimated MZ coeffi-

cients may also be used to perform a re-calibration or the original forecasts, as has been suggested in

the case of mean forecasts in the recent work of Clements (2022).

We provide two extensions of this test for autocalibration. The first extension allows for additional

predictors in the MZ regressions, which we call the augmented quantile Mincer-Zarnowitz test. This

test is operationally similar to that of the first test, but may provide richer information to the fore-

caster. It tests a stronger form of optimality relative to a larger information set than autocalibration.

If autocalibration is not rejected, but the null hypothesis of the augmented test is rejected, it indicates

that the additional variables used in the MZ regression carry additional informational content which

should be used in making the forecasts themselves. The second extension allows to test optimality

for multiple time series variables and not just for a single variable. Testing multiple time series vari-

ables simultaneously may be useful in cases where we are interested in testing whether one type of

model delivers optimal forecasts for multiple macroeconomic variables, or across different financial

asset returns, e.g. from the same industry.

Finally, as a separate contribution, we also outline in the Appendix a test for monotonically non-

decreasing expected quantile loss as the forecast horizon increases. This extends the result of Patton

and Timmermann (2012) to the quantile case whereas they focussed on the mean squared forecast

error (MSFE) case for optimal multi-horizon mean forecasts. The test makes use of empirical moment

inequalities using the Generalised Moment Selection (GMS) procedure of Andrews and Soares (2010).

This test can also be seen as complementary to monotonicity tests used in the nowcasting literature

for the MSFE of mean nowcasts (see Fosten and Gutknecht, 2020, and references therein).

We assess the finite sample properties of the MZ and augmented MZ tests using Monte Carlo

simulations which confirms that both tests have good finite sample properties across various sample

sizes and bootstrap block lengths. We then provide two empirical applications of our methodology. The

first application applies the basic MZ test to classical VaR forecasts for S&P 500 returns constructed

from a GARCH(1,1) model via the GARCH bootstrap (Pascual et al., 2006). We test jointly over

the quantile levels 0.01, 0.025 and 0.05 and horizons from 1 to 10 trading days. Autocalibration

is rejected overall and the miscalibration of the forecasts gets stronger for larger forecast horizons

and more extreme quantiles. Furthermore, a clear pattern emerges over all quantiles and horizons

regarding the conditional quantile bias: the VaR forecasts tend to underestimate risk in calmer times,

but overestimate it in more stressful periods.

The second application applies the test in the spirit of the emerging GaR literature, where we

focus on the extensions of our test using the augmented MZ test and the test with multiple time

series. We expand on the work of Adrian et al. (2019) to formally investigate the performance of

simple quantile regression models using financial conditions indicators in predicting a range of U.S.

macroeconomic series. Interestingly, we find that the forecasts across four different series and a range

of quantile levels and horizon are sub-optimal in that they are not autocalibrated. However, further

analysis of the results shows that this sub-optimality is present only in inflation-type series and not in

real series like industrial production and employment growth. We also find poorer calibration at the

most extreme quantile under consideration.

In relation to the existing literature, this paper extends the work on quantile forecast optimality

or, in other words, absolute evaluation of quantile forecasts. The focus of this literature has been on

3



single-horizon prediction at a single quantile, which mainly stems from the extensive body of research

on backtesting VaR, such as Christoffersen (1998), Engle and Manganelli (2004), Escanciano and Olmo

(2010, 2011), Gaglianone et al. (2011) and Nolde and Ziegel (2017). Our work also complements the

literature on testing the relative forecast performance of conditional quantile models such as Giacomini

and Komunjer (2005), Manzan (2015) or more recently Corradi et al. (2021). Finally, as our focus lies

on testing for optimality across horizons, the paper also relates to Quaedvlieg (2021), who emphasized

the importance of multi-horizon forecast evaluation to avoid multiple testing issues in the context of

relative evaluation of mean forecasts. The only work on multi-horizon optimality testing we are aware

of is Patton and Timmermann (2012), who consider the case of mean forecasts as well and discuss

several implications of optimality specific to the multi-horizon context and how to construct tests for

them, most notably the monotonicity of expected loss over horizons, which we extend to the quantile

case in the Appendix.

The rest of the paper is organised as follows. Section 2 lays out the notion of quantile forecast

optimality that will provide the foundation of our tests. Section 3 then introduces the test for auto-

calibration via MZ regression, along with the bootstrap methodology and theory. Section 4 extends

the test to the augmented MZ test and the test for multiple variables. Section 5 provides the results of

the Monte Carlo study, while Section 6 gives the two empirical applications of our methods. Finally,

section 7 concludes the paper. All proofs can be found in the Appendix along with the monotonicity

test and some additional empirical results and graphs.

2 Quantile Forecast Optimality

Consider a multivariate stochastic process {Vt}t∈Z, where Vt is a random vector which contains a

response variable of interest yt and other observable predictors. We denote the forecaster’s information

set at time t by Ft = σ(Vs; s ≤ t), where σ(.) denotes the σ-algebra generated by a set of random

variables. Assuming a continuous outcome yt for the rest of the paper, our target functional is the

conditional τ -quantile of yt given Ft−h:

qt (τ |Ft−h) = F−1
yt|Ft−h

(τ),

where Fyt|Ft−h
(·) is the cumulative distribution function of yt conditional on Ft−h. We denote an

h-step ahead forecast at time t−h for this τ -quantile qt (τ |Ft−h) by ŷτ,t,h, and assume that we observe

these forecasts ŷτ,t,h for each target period t at multiple horizons, h ∈ H = {1, . . . ,H}, and multiple

quantile levels, τ ∈ T = {τ1, . . . , τK}, for some finite integers K and H. That is, at each time point

t we have a matrix of forecasts, (ŷτ,t,h)τ=τ1,...,τK ,h=1,...,H . In addition, throughout the paper, we will

assume strict stationarity of {Vt}t∈Z and finite first moments of the forecasts ŷτ,t,h and yt itself, see

Assumptions A1 and A2 in Section 3.

Since our focus lies on the evaluation of quantile forecasts, the loss function used for evaluation in

this context is the ‘tick’ or ‘check’ loss which is well-known from quantile regression:

Lτ (yt+h − ŷτ,t,h) = ρτ (yt+h − ŷτ,t,h) ,

where ρτ (u) = u (τ − 1{u < 0}) and where 1{.} denotes the indicator function giving a value of one

when the expression is true and zero otherwise.
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While relative forecast evaluation deals with comparing different forecasting methods or models,

mainly by ranking them via their expected loss, the subject of this paper is absolute forecast evalu-

ation across different quantile levels and/or forecasting horizons, in other words the assessment of a

particular forecasting model or method in terms of absolute evaluation criteria for multiple quantile

levels and horizons. These evaluation criteria are usually different forms of optimality (or ‘rational-

ity’/‘calibration’). We start by defining and discussing various forms of quantile forecast optimality

before showing how to operationalise the latter for testing.

Definition 1 (Optimality). An h-step ahead forecast ŷ∗τ,t,h|It−h
for the τ -quantile is optimal relative

to an information set It−h ⊂ Ft−h if:

ŷ∗τ,t,h|It−h
= arg min

ŷτ,t,h
E [Lτ (yt − ŷτ,t,h) |It−h] .

We simply call it optimal and denote it by ŷ∗τ,t,h if It−h = Ft−h, i.e. if it is optimal relative to the full

information set:

ŷ∗τ,t,h ≡ ŷ∗τ,t,h|Ft−h
.

Analogous to the case of mean forecasts (Granger, 1969), an optimal quantile forecast relative to an

information set can alternatively be characterised as being equal to the respective conditional quantile

provided the information set is sufficiently large and includes the forecasts themselves. Specifically,

since ‘tick’ loss is a strictly consistent scoring function for the corresponding quantile (see Definition 1

and Proposition 1 in Gneiting, 2011), it holds that an h-step ahead forecast ŷτ,t,h for the τ -quantile is

optimal relative to any information (sub-)set It−h satisfying σ (ŷτ,t,h) ⊂ It−h ⊂ Ft−h, where σ (ŷτ,t,h)

denotes the sigma algebra spanned by the forecast itself, if and only if

ŷτ,t,h = qt (τ |It−h) .
2 (1)

While interest often lies in testing the null hypothesis of (full) optimality relative to the information

set Ft−h, which amounts to testing if the forecast, ŷτ,t,h, is equal to its target, qt(τ |Ft−h), the possibly

large and generally unknown information set Ft−h usually makes direct tests of this hypothesis difficult

in practice. Thus, we next discuss weaker forms of optimality that will form the basis of our test(s)

in Sections 3 and 4 below. In fact, in Appendix A (see Lemma A.1) we show formally that these

weaker forms of optimality may always be viewed as a direct implication of optimality with respect

to the ‘full’ information set Ft−h. That is, any h-step ahead forecast optimal with respect to the full

information set Ft−h, is also optimal relative to any ‘smaller’ information (sub-)set It ⊂ Ft.

A special case of this ‘weaker’ form of optimality is optimality with respect to the information

contained in the forecast itself, σ (ŷτ,t,h), or autocalibration, a term first coined by Tsyplakov (2013)

and Gneiting and Ranjan (2013) in the context of probabilistic forecasts.3

Definition 2 (Autocalibration). An h-step ahead forecast ŷτ,t,h for the τ -quantile is autocalibrated if

it holds that:

ŷτ,t,h = qt (τ |σ(ŷτ,t,h)) .
2Note that this result continues to hold for any quantile loss from the class of generalised piecewise linear loss functions,

or in fact for any consistent scoring function if the τ -quantile is substituted for the corresponding statistical functional
for which this scoring function is consistent.

3See also Krüger and Ziegel (2021) and Pohle (2020) for a discussion of autocalibration in the context of mean forecasts
and of more general statistical functionals, respectively.
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On the one hand, autocalibration may be regarded as a direct implication of full optimality that

is particularly suitable for testing as it only relies upon the forecasts themselves and does not require

any assumptions on the information set Ft−h or a selection of variables from it. On the other hand,

however, autocalibration may also be viewed as a criterion for absolute forecast evaluation in its own

right for several reasons. Firstly, the concept has a clear interpretation since a forecast user provided

with autocalibrated forecasts should use them as they are and not transform or ‘recalibrate’ them.

Secondly, only involving forecasts and observations and no information set that depends on other

quantities, it comes closest to the idea of forecast calibration as a concept of consistency between

forecasts and observations (see Gneiting et al., 2007). Thirdly, autocalibration might often be a more

reasonable criterion to demand from forecasts than full optimality, which is a often hard to fulfill in

practice. Finally, the Murphy decomposition of expected loss (Pohle, 2020) shows that autocalibration

is a fundamental property of forecasts in that expected loss is driven by only two forces: deviations

from autocalibration and the information content of the forecasts.

The next section will outline how to test autocalibration, viewed either as an implication of full

optimality or as a forecast property its own right, across multiple quantile levels and horizons simul-

taneously.

3 Quantile Mincer-Zarnowitz Test

3.1 Null Hypothesis and Quantile Mincer-Zarnowitz Regressions

While autocalibration testing has a long tradition in econometrics through the use Mincer-Zarnowitz

regressions for mean forecasts (Mincer and Zarnowitz, 1969), the latter may also be used directly for

the case of quantiles (see Gaglianone et al., 2011). Definition 2 in fact suggests that a natural test for

autocalibration of an h-step ahead forecast for the τ -level quantile may be based on checking whether,

for a given sample of outcomes and quantile forecasts at level τk and horizon h, it holds that:

qt (τ |ŷτ,t,h) = α†
h(τk) + ŷτk,t,hβ

†
h(τk) = ŷτk,t,h

almost surely. More generally, since our goal is to test for autocalibration over multiple forecast

horizons and quantile levels jointly, we specify such a linear quantile regression model for every horizon

h ∈ H and τk ∈ T as follows:

yt = α†
h(τk) + ŷτk,t,hβ

†
h(τk) + εt,h(τk) = X′

τk,t,h
β†
h(τk) + εt,h(τk), (2)

where Xτk,t,h = (1, ŷτk,t,h)
′ and β†

h(τk) = (α†
h(τk), β

†
h(τk))

′, and E[1{εt,h(τk) ≤ 0} − τk] = 0 holds by

construction. Here, the population coefficient vector β†
h(τk) = (α†

h(τk), β
†
h(τk))

′ of this linear quantile

regression model is defined as:

β†
h(τk) = argmin

b∈B
E
[
ρτk
(
yt −X′

τk,t,h
b
)]

. (3)

The composite null hypothesis is given by:

HMZ
0 : {α†

h(τk) = 0} ∩ {β†
h(τk) = 1} (4)
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for all h ∈ H and τk ∈ T versus:

HMZ
1 : {α†

h(τk) ̸= 0} and/or {β†
h(τk) ̸= 1} (5)

for at least some h ∈ H and τk ∈ T . Testing the null hypothesis in (4) not only yields a multi-horizon,

multi-quantile test of autocalibration, but also provides us with an idea about possible deviations

from the null. In particular, examining the contributions of single horizons, quantiles or horizon-

quantile combinations to the overall test statistic, which will be introduced in Subsection 3.2 below,

may also be informative about deviations from autocalibration. Moreover, the empirical counterpart

of qt (τ |ŷτ,t,h) = α†
h(τk) + ŷτk,t,hβ

†
h(τk) may be interpreted as autocalibrated forecasts such that, for

a specific value of the forecast ŷτk,t,h, the deviations between the regression line (or recalibrated

forecast) and the forecasts themselves, ŷτk,t,h−qt (τ |ŷτ,t,h) can be interpreted as the quantile version of

a conditional bias. The direction and size of this conditional quantile bias informs about deficiencies

of forecasts in certain situations, a point that we will come back to and illustrate in the applications

in Section 6.

3.2 Test Statistic and Bootstrap

In what follows, assume that we observe an evaluation sample of size P , in other words a scalar-valued

time series of observations starting at some point in time R+ 1 ∈ Z, {yt}Tt=R+1, and a matrix-valued

time series of forecasts, {
(ŷτ,t,h)τ=τ1,...,τK ,h=1,...,H

}T

t=R+1

Moreover, we may also observe a vector of additional variables Zt−h from the forecaster’s information

set Ft−h. We will write this additional sample of vector-valued time series as {Zt}T−1
t=R+1−H .

Using the taxonomy of Giacomini and Rossi (2010), forecasts ŷτk,t,h may stem either from ‘fore-

casting methods’ or from ‘forecasting models’. In the former case, we are typically without knowledge

about the underlying model such as with forecasts from the Survey of Professional Forecasters (SPF),

or may use forecasts that depend on parameters estimated in-sample using so-called limited-memory

estimators based on a finite rolling estimation window (see Giacomini and White, 2006). In the case

of ‘forecasting models’ on the other hand, we need to account for the contribution of estimation un-

certainty to the asymptotic distribution of the statistic. However, since the focus of this paper lies

on detecting systematic forecasting bias rather than dealing with specific forms of estimation error,

we consider the latter only under the recursive scheme with a ‘large’ in sample estimation window.

Specifically, for forecasting models, we assume that we also observe R additional observations of yt

prior to R + 1 that may be used as estimation window (note that the R in-sample observations also

comprise H observations that are used to produce the initial out-of-sample forecast for period R+1),

and that P/R → 0 as P,R → ∞. This allows us to abstract from estimation error in the analysis and

to focus on systematic features of the forecasts.4

The parametric models we consider in this paper take the form m(Wt−h;θ
†
τk,h

), where Wt−h

denotes a vector of predictor variable(s) and we assume for simplicity that Wt−h is a subset of Vt−h.

Moreover, θ†
τk,h

is a population parameter vector that needs to be estimated in a first step, while the

function m(Wt−h; ·) on the other hand is assumed to be a ‘smooth’ function of the parameter vector

4In addition, it also allows us to resample forecasts directly in the bootstrap.
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in the sense of Assumption A6 below. For instance, m(Wt−h;θ
†
τk,h

) could itself take the form of a

linear quantile regression model:

qt,h (τk|Wt−h) = m(Wt−h;θ
†
τk,h

) = W′
t−hθ

†
τk,h

.

Alternatively, the model could also take the form of a nonlinear location scale model:

qt,h (τk|Wt−h) = m(Wt−h;θ
†
τk,h

) = mµ

(
Wt−h;θ

†
h,µ

)
+ σ

(
Wt−h;θ

†
h,σ

)
qt,h,ϵ (τk) ,

where θ†
τk,h

= (θ†′
h,µ,θ

†′
h,σ, qt,h,ϵ (τk))

′ and qt,h,ϵ (τk) denotes the unconditional τk quantile of the error

term of the location scale model.

To accommodate both ‘forecasting methods’ and ‘forecasting models’, we adopt a more generic

notation in what follows and letXτk,t,h(θ
†
τk,h

) stand either for the vector of stemming from a forecasting

method or for the population vector of Mincer-Zarnowitz regressors stemming from a corresponding

forecasting model. On the contrary, when forecasts have been generated from a model that has been

estimated through the recursive scheme using the first t − h observations with t = R + 1, R + 2, . . .,

we write Xτk,t,h(θ̂τk,t,h) to denote the dependence on the estimated parameter vector θ̂τk,t,h. Note

that even though we focus on the recursive scheme in light of the applications, the rolling estimation

scheme whereby a window of the last R observations is used (running from t−h−R+1 to t−h) or the

fixed scheme where the parameter vector is estimated only once, i.e. θ̂τk,t,h = θ̂τk,R+1−h,h, are equally

compatible with our set-up and the assumptions below could be adapted in a straightforward manner.

Finally, ‘forecasting methods’ can be accommodated by assuming θ̂τk,t,h = θ†
τk,h

almost surely.

Thus, to implement the test for the null hypothesis in (4) versus the alternative in (5), we first

estimate the coefficient vector as:

β̂h(τk) =

(
α̂h(τk)

β̂h(τk)

)
= argmin

b∈B

1

P

T∑
t=R+1

ρτ

(
yt −Xτk,t,h(θ̂τk,t,h)

′b
)

(6)

for each h and τk. With these estimates at hand, different possibilities to construct a suitable test

statistic exist. More specifically, since the number of elements in H and T is finite, one option is

to construct a Wald-type test based on the estimates in (6) together with a suitable estimator of

the variance-covariance matrix. However, when interest lies in testing (4) against (5) for a larger

number of quantile levels and horizons, constructing a Wald test involves estimating a large variance-

covariance matrix, which can be difficult in practice and may lead to a poor finite sample performance.

On the other hand, as we argue below, using a moment equality based test in combination with the

nonparametric bootstrap does not suffer from this drawback. In fact, the moment equality framework

can be extended easily to other set-ups which give rise to an even larger number of equalities (see

Section 4).

To see the possibility of a moment equality based test, note that under HMZ
0 and the Assumptions

A1 to A7 outlined below it holds that:

√
P

(
β̂
†
h (τk)−

(
α†
h(τk)

β†
h(τk)

))
d→ N

(
0, τk(1− τk)Jh(τk)

−1E
[
Xτk,t,h(θ

†
τk,h

)Xτk,t,h(θ
†
τk,h

)′
]
Jh(τk)

−1
)
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pointwise in h and τk, where the matrix Jh(τk) is given by:

Jh(τk) ≡ E
[
ft,h

(
Xτk,t,h(θ

†
τk,h

)′β†(τk)
)
Xτk,t,h(θ

†
τk,h

)Xτk,t,h(θ
†
τk,h

)′
]

(7)

and ft,h(·) is defined in Assumption A4. In fact, under HMZ
0 , in Appendix B we establish the linear

Bahadur representation:

√
P

(
β̂h (τk)−

(
0

1

))

=Jh (τk)
−1

(
1√
P

T∑
t=R+1

Xτk,t,h(θ
†
τk,h

)
(
1
{
yt ≤ Xτk,t,h(θ

†
τk,h

)′β†
τk,h

(τk)
}
− τk

))
+ oPr(1).

The above representation motivates the use of a moment equality type statistic for a test of autocali-

bration. Thus, define the set:

CMZ = {(h, τk, j) : h ∈ H, τk ∈ T , j ∈ {1, 2}} ,

and let |CMZ| = κ denote the cardinality of CMZ, while s = 1, . . . , κ is a generic element from CMZ. For

the test statistic, define m̂s either as α̂h(τk) or as (β̂h(τk)− 1) for a specific τk and h. A test statistic

for the null hypothesis in (4) is then given by:

ÛMZ =
κ∑

s=1

(√
Pm̂s

)2
. (8)

Note that the non-studentised statistic in (8) above does not require an estimation of the asymptotic

variance, and consequently will be non-pivotal as its asymptotic distribution does depend on the full

variance-covariance matrix. That is, under HMZ
0 and conditions A1 to A7 below:

√
P





α̂1(τ1)

β̂1(τ1)
...

α̂H(τK)

β̂H(τK)


−



0

1
...

0

1




d→ N(0,Σ), (9)

whereΣ is the variance-covariance matrix, which is unknown in practice and depends on features of the

data generating process (DGP). Of course, this nuisance parameter problem can be taken into account

by using a suitable bootstrap procedure (e.g., White, 2000; Hansen et al., 2011). In particular, we will

generate bootstrap critical values using the moving block bootstrap (MBB) of Künsch (1989), whose

formal validity for quantile regression with time series observations has recently been established by

Gregory et al. (2018). In doing so, we will resample the forecasts directly as the limiting distribution

will be derived under the condition that P/R → π = 0, implying that forecast estimation error

does not feature into the asymptotic distribution of the test statistic (cf. West, 1996). We do so to

abstract from the dependence on a particular estimator, which would require further details about the

underlying forecasting models.

We generate bootstrap samples of length P consisting of Kb blocks of length l such that P = Kbl.
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We draw the starting index Ij of each block 1, . . . ,Kb, {Ij , Ij+1, . . . , Ij+l}, from a discrete random

uniform distribution on [R+1, T − l]. These indices are used to resample from {yt, ŷτ,t,h}Tt=R+1 jointly

for each τ = τ1, ..., τK and h = 1, ...,H. This way we generate B bootstrap samples, each with{
ybt , ŷ

b
τ,t,h

}T

t=R+1
for all τ = τ1, ..., τK and h = 1, ...,H. For each bootstrap sample, we construct

bootstrap equivalents of (6) and then the corresponding bootstrap statistic:

Û b
MZ =

κ∑
s=1

(√
P (m̂b

s − m̂s)
)2

. (10)

The critical value is then given by the (1−α) quantile of the empirical bootstrap distribution of Û b
MZ

over B draws, say cB,P,(1−α).

3.3 Assumptions and Asymptotic Validity

For the asymptotic validity of this procedure, we make the following assumptions:

A1: The outcome variable yt is strictly stationary, satisfies E[|yt|] < ∞ for all t, and is α-mixing with

α-mixing coefficients satisfying
∑∞

k=1 α(k)
ϵ

2+ϵ < ∞, where ϵ is defined in A2.

A2: For all h ∈ H and τk ∈ T , and any θ ∈ Θ, it holds that E
[
∥Xτk,t,h(θ)∥

4+ϵ
]
< ∞, ϵ > 0, where

∥ · ∥ denotes the Euclidean norm and Θ is defined in A6 below. The distribution of Xτk,t,h(θ) is

absolutely continuous with Lebesgue density.

A3: For every τk ∈ T and h ∈ H, assume that the parameter space of βh(τk), B, is a compact and

convex set. The coefficient vector β†
h(τk) from (3) lies in the interior of B for all values τk ∈ T and

h ∈ H.

A4: For all h ∈ H, the conditional distribution function of yt (given Ft−h), Ft,h(·) ≡ Ft(·|Ft−h),

admits a continuous Lebesgue density, ft,h(·) ≡ ft(·|Ft−h), which is bounded away from zero and

infinity for all u in U = {u : 0 < Ft,h(u) < 1}. The density ft,h(·) is integrable uniformly over U .

A5: For all h ∈ H and τk ∈ T , assume that the matrix Jh(τk) defined in (7) is positive definite.

A6: Assume that Θ is compact and that, for each τk ∈ T and h ∈ H, θ†
τk,h

lies in its interior. For all

θ1,θ2 ∈ Θ, it holds uniformly over t ≥ R+ 1 that:

∥Xτk,t,h(θ1)−Xτk,t,h(θ2)∥ ≤ B(Xτk,t,h)∥θ1 − θ2∥

for some positive, real-valued function B(Xτk,t,h) satisfying E[supt≥R+1 ∥B(Xτk,t,h)∥] < ∞. In addi-

tion, assume that for every h ∈ H and τk ∈ T , the estimator θ̂τk,t,h satisfies:

sup
t≥R+1

∥θ̂τk,t,h − θ†
τk,h

∥ = OPr

(
1√
R

)
.

A7: Assume that R,P, l → ∞ as T → ∞ with P/R → π = 0 and l/P → 0.

Assumption A1 imposes some mild restrictions on the time dependence of the data that are in

turn linked to the existence and finiteness of corresponding moments in A2. On the other hand,

the continuity of Xτk,t,h(θ) for any given τk, h, and θ only serves the purpose to simplify some of

the arguments in the Appendix, and could be relaxed at the expense of more cumbersome notation.
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Assumptions A3-A5 are required to derive the limiting distribution of the linear quantile regression

estimator (e.g., Koenker and Xiao, 2006; Galvao et al., 2011). In fact, A3 and A4 represent standard

assumptions on the parameter space and the smoothness of the (conditional) distribution of yt, while

A5 ensures asymptotic normality of the quantile regression estimator. Assumption A6 on the other

hand is only needed when the focus lies on forecasting models. Specifically, it places restrictions on the

underlying parametric models, but is in fact compatible with many commonly used nonlinear location

scale (e.g., GARCH) or linear quantile regression models that satisfy the Lipschitz condition in A6

and that can be estimated at rate
√
R. Finally, Assumption A7 governs the rates at which P and R

as well as the block length l may grow to infinity. In particular and in analogy to West (1996), we

require π = 0 for estimation error to be ignorable asymptotically and to be able to resample directly

from the forecasts (rather than to resample from the realised predictors). In turn, this allows us to

focus on miscalibration as a structural feature of the models.

We are now ready to derive the asymptotic properties of the statistic under the null hypothesis:

Theorem 1. Assume that A1 to A7 hold. Then under HMZ
0 :

lim
T,B→∞

Pr
(
ÛMZ > cB,P,(1−α)

)
= α.

Theorem 1 establishes the asymptotic size control of the moment equality test. It is easy to imple-

ment using the standard block bootstrap, and, unlike the Wald test, can be modified to accommodate

more complex set-ups with a larger number of moment equalities that we will outline next.

4 Extensions

In the following two subsections, we will describe two extensions of the test from Section 3, firstly

to accommodate additional predictors Zt−h in the Mincer-Zarnowitz regression to test different forms

of optimality, and secondly to test for autocalibration of quantile forecasts for multiple time series

simultaneously.

4.1 Augmented Quantile Mincer-Zarnowitz Test

Recalling the characterisation of optimality relative to any information set It−h ⊂ Ft−h from (1), it

becomes clear that the Mincer-Zarnowitz set-up from the previous section may also be used to test

stronger forms of optimality with respect to larger information sets than σ(ŷτk,t,h). More precisely,

while HMZ
0 vs. HMZ

1 is a test of autocalibration, it does not check if all available valuable information

from Ft−h was incorporated into the forecasting model or taken into account by the forecaster. We

therefore suggest the idea of augmented quantile Mincer-Zarnowitz regressions, where a vector of

additional regressors Zt−h ∈ Ft−h is added to the regression model in (2) to test for optimality

relative to σ(ŷτk,t,h,Zt−h), see also Elliott and Timmermann (2016, chapter 15) for a discussion of

augmented Mincer-Zarnowitz regressions in the context of mean forecasts.

That is, in analogy to the previous section, we again specify a linear quantile regression model for

every horizon h ∈ H and τk ∈ T as follows:

yt = α†
h(τk) + ŷτk,t,hβ

†
h(τk) + Z′

t−hγ
†
h(τk) + εt,h(τk), (11)
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where with slight abuse of notation we use the same symbols as in the previous section for the

first two regression coefficients as well as the error term, and suppress the possible dependence of

the forecasts on some parameter vector θ†. If the coefficients of Zt−h in the population augmented

Mincer-Zarnowitz regression are non-zero, i.e. γ†
h ̸= 0, there is valuable information in Zt−h that has

not been incorporated into the forecasts yet. As a result, those variables or a subset thereof should

be included into the model to improve forecast accuracy.

Formally, the null hypothesis we test is given by:

HAMZ
0 : {α†

h(τk) = 0} ∩ {β†
h(τk) = 1} ∩ {γ†

h(τk) = 0} (12)

for all h ∈ H and τk ∈ T versus:

HAMZ
1 : {α†

h(τk) ̸= 0} and/or {β†
h(τk) ̸= 1} and/or {γ†

h(τk) ̸= 0} (13)

for at least some h ∈ H and τk ∈ T .

In contrast to a standard Mincer-Zarnowitz quantile regression, the augmented version requires

a choice of variables from Ft−h. These variables included in Zt−h have to be chosen a priori and

may, in some situations, suggest themselves naturally as illustrated in our macroeconomic application.

In other situations, however, it might be hard to pick those variables from a potentially very large

information set. In those cases, regularised or factor-augmented Mincer-Zarnowitz regressions could

be used instead of (11). We leave this extension to future research and state the asymptotic size result

of a moment equality based test of HAMZ
0 vs. HAMZ

1 with corresponding test statistic, say ÛAMZ, as

a direct corollary of Theorem 1.

Corollary 1. Assume that A1 to A7 hold. Then under HAMZ
0 :

lim
T,B→∞

Pr
(
ÛAMZ > cB,P,(1−α)

)
= α.

4.2 Multivariate Quantile Mincer-Zarnowitz Test

While Section 3 establishes a test for autocalibration of quantile forecasts of a single time series

yt, researchers may sometimes be interested in testing this property across several time series yt =

(y1,t, . . . , yG,t)
′ using an array of h step ahead τk-level forecasts (ŷτ,t,h)τ=τ1,...,τK ,h=1,...,H , where ŷτk,t,h =

(ŷ1,τk,t,h, . . . , ŷG,τk,t,h)
′, where h ∈ H, τk ∈ T , and finite G ∈ N. For instance, we may be interested

in testing for forecast autocalibration jointly across different industries or sectors; components of

GDP growth like consumption or export growth; or different macro series like in our application in

Section 6.2. It is important to distinguish this situation with many univariate quantile forecasts issued

by the same forecaster or institution, which often arises in practice, from the situation where truly

multivariate forecasts are issued in the form of a multidimensional density or CDF (see Knüppel et al.,

2022).

We now sketch the extension of the autocalibration test to such a multivariate set-up. To this end,

consider again the following linear quantile regression model:

yi,t = αi,h(τk) + ŷi,τk,t,hβi,h(τk) + εi,t,h(τk), h ∈ H, τk ∈ T , i = 1, . . . , G. (14)
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Here, the coefficient vector βh,G(τk) = (α1,h(τk), . . . , αG,h(τk), β1,h(τk), . . . , βG,h(τk))
′ is defined as:

βh,G(τk) = arg min
bG∈B

E

[
G∑
i=1

(
ρτk

(
yi,t −Xi,τk,t,h(θ

†
i,τk,h

)′bG

))]
(15)

with Xi,τk,t,h(θ
†
i,τk,h

)′ = (1{i = 1}, . . . , 1{i = G}, 1{i = 1} × ŷi,τk,t,h, . . . , 1{i = G} × ŷi,τk,t,h)
′.5 There-

fore, the set-up in (14) allows for miscalibration also at the individual time series level (e.g., industry

or sector) if for some i,h, and τk it holds that αi,h(τk) ̸= 0 and/or βi,h(τk) ̸= 1, respectively.

The sample analogue of (15), using the evaluation sample of observations {yt}Tt=R+1 and array-

valued forecasts {
(ŷτ,t,h)τ=τ1,...,τK ,h=1,...,H

}T

t=R+1

is given by:

β̂h,G(τk) = arg min
bG∈B

1

P

T∑
s=R+1

G∑
i=1

(
ρτ

(
yi,s −Xi,τk,s,h(θ̂i,τk,s,h)

′bG

))
. (16)

As in Section 3, we are interested in testing the composite null hypothesis:

HMMZ
0 : {αi,h(τk) = 0} ∩ {βi,h(τk) = 1} (17)

for all h ∈ H, τk ∈ T , i = 1, . . . , G, versus:

HMMZ
1 : {αi,h(τk) ̸= 0} and/or {βi,h(τk) ̸= 1} (18)

for at least some h, τk, and i. Note that, since G is finite, for a given horizon h and quantile level

τk (with A1-A7 adapted to hold for yi,t and Xi,τk,t,h(θ
†
i,τk,h

), i = 1, . . . , G), the estimator in (16) is

consistent for βh,G(τk). The test statistic for the null hypothesis in (17) versus (18) is therefore given

by:

ÛMMZ =
κ∑

s=1

(√
Pm̂s,G

)2
,

where either m̂s,G = α̂i,h(τk) or m̂s,G = β̂i,h(τk) − 1, respectively, and in a similar way as above, κ

denotes the total number of moment conditions which in this case accounts for the G different series

being used in the test.

In order to construct a suitable bootstrap statistic in analogue to Subsection 3.2, we construct

bootstrap analogues β̂
b

h,G(τk) of (16) from bootstrap samples of length P = Kbl from Kb blocks of

length l by resampling again from the series of forecasts-observation pairs, where the forecasts are

array-valued. The bootstrap procedure does not just take the horizon, but also the group structure

as given, which ensures that the dependence of the original data across horizons h as well as across

series i = 1, . . . , G is maintained. More precisely, we again draw the starting index Ij of each block

of forecasts and observations 1, . . . ,Kb from a discrete random uniform distribution on [R+ 1, T − l].

These indices are used to resample from
{
yt, (ŷτ,t,h)τ=τ1,...,τK ,h=1,...,H

}T

t=R+1
. This way we generate B

bootstrap samples, each with

{
ybt ,
(
ŷb
τ,t,h

)
τ=τ1,...,τK ,h=1,...,H

}T

t=R+1

.

5Note that we use θ†
i to denote the possible dependence of the forecast for series i on a forecasting model.
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We then construct a corresponding bootstrap estimator given by:

β̂
b

h,G(τk) = arg min
bG∈B

1

P

T∑
s=R+1

G∑
i=1

(
ρτ

(
ybi,s −Xi,τk,s,h(θ̂

b′
i,τk,s,h

bG

))
.

The final bootstrap statistic becomes:

Û b
MMZ =

κ∑
s=1

(√
T (m̂b

s,G − m̂s,G)
)2

,

where m̂b
s,G is equal to α̂b

i,h(τk) or β̂
b
i,h(τk)− 1, respectively. Constructing critical values on the basis

of Û b
MMZ, b = 1, . . . , B, as in Subsection 3.2, the following corollary holds:

Corollary 2. Assume that Assumptions A1 to A7 hold for every i = 1, . . . , G, with yt, Xτk,t,h(θ
†
τk,h

),

and θ̂τk,t,h replaced by yi,t, Xi,τk,t,h(θ
†
i,τk,h

), and θ̂i,τk,t,h, respectively. Then, under HMMZ
0 :

lim
T,B→∞

Pr
(
ÛMMZ > cB,P,(1−α)

)
= α.

5 Monte Carlo Simulations

In this section we will present results to explore the finite sample properties of the Mincer-Zarnowitz

and augmented Mincer-Zarnowitz tests described above using a variety of set-ups, DGPs and sample

sizes.

5.1 Mincer-Zarnowitz Simulations

We first develop a set-up which is designed to assess the size and power of the Mincer-Zarnowitz test.

Here we explore a case where the target variable is generated according to a simple AR(1) process.

The forecasts, on the other hand, will be computed using a potentially incorrect value for the AR(1)

parameter which will drive cases of mis-calibration. Specifically, the DGP for yt is:

yt = byt−1 + εt (19)

where we generate εt as an i.i.d. normal variable with mean zero and variance 1 − b2 which fixes

the variance of yt to unity. The optimal h-step ahead quantile forecast is therefore qt+h(τ |Ft) =

bhyt +
√
1− b2hΦ−1(τ).

The actual quantile forecasts for quantile level τ are generated with the same functional form as

the optimal forecast but using a (potentially) incorrect value b̃ for the AR(1) parameter instead of b.

In other words:

q̂inct+h(τ) = b̃hyt +

√
1− b̃2hΦ−1(τ). (20)

In this specification, the forecasts are autocalibrated when we have b̃ = b whereas we have miscal-

ibration when b̃ ̸= b. This gives us a simple way to assess the size and power of the Mincer-Zarnowitz

type test: in the former case we expect the slope coefficient in the Mincer-Zarnowitz regression (2)

to be equal to unity and we are under the null hypothesis in (4), whereas in the latter case it is not
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equal to unity and we are under the alternative hypothesis in (5).6 We will use values of b = 0.6 and

b̃ = {0.6, 0.8}, where the case with b̃ = 0.6 allows us to assess the size performance and b̃ = 0.8 will

assess power.

We perform the simulations for a range of evaluation sample sizes P ∈ {120, 240, 480} and we let

there be a total of H = 4 horizons. We will generate a sample of size P + H + 1 for this AR(1)

case which includes the single initial condition (drawn from the stationary distribution of the AR(1)

process) and allows for up to H-step ahead forecasts to be made for all P periods. We will consider

multiple quantile levels T = {0.25, 0.5, 0.75}. For the bootstrap we will use various block lengths

l ∈ {4, 8, 12} and we will perform B = 1999 Monte Carlo replications, saving a single bootstrap draw

each time as in the Warp Speed bootstrap of Giacomini et al. (2013). We compute rejection rates for

a nominal size of α = 0.05.

We now present the size and power results for the moment equality Mincer-Zarnowitz test in (8).

Table 1 presents the rejection rates of the test with b̃ set to 0.6 which assesses the size of the test. The

results are displayed for the different bootstrap block lengths and sample sizes discussed above. Then

the power of the test is displayed in Table 2 for the case when b̃ = 0.8 which results in mis-calibration.

Table 1: MZ Test - Size - b̃ = 0.6

P = 120 P = 240 P = 480

l = 4 0.037 0.051 0.055
l = 8 0.053 0.038 0.034
l = 12 0.039 0.044 0.045

Table 2: MZ Test - Power - b̃ = 0.8

P = 120 P = 240 P = 480

l = 4 0.792 0.970 1.000
l = 8 0.747 0.959 1.000
l = 12 0.740 0.961 1.000

The results in Table 1 show that the test has fairly good size properties for a reasonable block

length selection. For instance, we see rejection rates very close to nominal size (5.1% and 5.5%) for

block length l = 4 for the two larger samples size P = 240 and P = 480. Even in smaller samples the

size is fairly close to nominal size. Regarding the power of the test, Table 2 shows very good power

properties with rejection rates roughly 75% or above, even at the lowest sample size P = 120. These

rejection rates rise to above 95% as the sample size increases to P = 240 and are equal to unity when

P = 480.

5.2 Augmented Mincer-Zarnowitz Simulations

In order to display the properties of the augmented Mincer-Zarnowitz test, we take the simplest

possible case where Zt comprises a single variable zt which is to be included in the regression described

6Note that an analytical expression for the Mincer-Zarnowitz coefficients is simple to derive in the case of making
mean predictions. In that case, with MSFE being the criterion used to assess the forecasts, it can be shown that the
slope of the Mincer-Zarnowitz regression is (β/b)h which is different from unity when b ̸= β. An analogous result will
hold in the quantile case.
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in (11). We also generate this variable according to an AR(1) process:

zt = dzt−1 + νt (21)

where νt is similarly drawn from an i.i.d. normal distribution with mean zero and variance 1−d2, and

for simplicity we set the AR parameter d equal to that in (19), in other words d = b.

We can easily assess the size of the augmented MZ test if we let (19) be the true DGP and we use

the augmented MZ regression (11) with the additional regressor zt which will enter the MZ equation

with a coefficient of zero. If we use the forecasts described in (20) with b̃ = b = 0.6 we are therefore

under the null hypothesis in (12). On the other hand, to display the power of the augmented MZ

test, we need to use an additional DGP for yt which involves zt and a set of forecasts which omit this

additional variable. As such we propose an ADL(1,1) process for yt:

yt = byt−1 + czt−1 + εt (22)

where we use the same parameter values and random draws b and εt as in (19) with the addition of

zt which is drawn according to (21) and we set c = 0.5. If we make the forecasts in the same way

as (20) above, which only makes use of the variable yt then the coefficient on zt in the augmented

MZ regression is non-zero which violates the condition in the null in (12). For the b̃ coefficient used

in making the forecast, we use the projection coefficient of yt on yt−1, which leads to autocalibrated

forecasts, that is, the null of the basic MZ test is not violated. The null of the augmented MZ test is,

however, violated, and both coefficients (β and γ) differ from their values under the null in (12). For

the parameter values described above, the projection coefficient of yt on yt−1 under (22) is roughly

b̃ = 0.70.

The results for size and power are displayed in Tables 3 and 4 below. The size results show that

the augmented MZ test has good size properties with rejection rates fairly close to the nominal size of

5% across sample sizes and block lengths. This shows that the augmented version of the test, indeed,

has similar size properties to the standard MZ test. For the power, we also see results in line with

what is expected. In Table 4 we see that power is above 60% in the small sample size P = 120. This

rapidly improves to above 95% as the sample size rises to P = 240 and to unity when P = 480.

6 Empirical Applications

In this section, we provide two empirical applications. The first is a finance application applying the

MZ test to test the optimality of GARCH predictions of the tail quantiles of financial returns. The

second application uses the MZ test extensions to assess the optimality of GaR forecasts made across

a range of U.S. macroeconomic variables.

6.1 Empirical Application 1: Financial Returns

Forecasts of lower tail quantiles of returns distributions (or upper tail quantiles of loss distributions)

play an important role in financial risk management as the most prominent risk measures are either

themselves tail quantiles or defined in terms of tail quantiles (see He et al. (2022) for a recent overview).
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Table 3: Augmented MZ Test - Size - b̃ = 0.6

P = 120 P = 240 P = 480

l = 4 0.053 0.058 0.052
l = 8 0.034 0.055 0.058
l = 12 0.039 0.038 0.052

Notes: DGP for size is equation (19).

Table 4: Augmented MZ Test - Power - b̃ = 0.70

P = 120 P = 240 P = 480

l = 4 0.667 0.979 1.000
l = 8 0.646 0.983 1.000
l = 12 0.638 0.976 1.000

Notes: DGP for power is equation (22).

For instance, the VaR at level τ is just the τ -quantile of the return distribution yt,

V aR(τ) = q(τ),

where usually τ is chosen to be either 0.05 or 0.01. Expected shortfall, which is a coherent risk measure

and more sensitive to the shape of the tail distribution beyond the VaR, is just the expectation of this

tail distribution and can be written as an integral over all quantiles with levels below τ :

ES(τ) =
1

τ

∫ τ

0
V aR(α)dα.

Median shortfall, a natural alternative to expected shortfall, is the median of the tail distribution and

just a quantile itself:

MS(τ) = V aR
(τ
2

)
.

Producing and backtesting VaR forecasts is a central task in financial risk management. Therefore,

as discussed above, the majority of contributions to quantile forecast optimality testing was motivated

by this problem. The evaluation of expected shortfall forecasts is more difficult as they cannot be

evaluated on their own due to the non-identifiability and non-elicitability of expected shortfall (Fissler

and Ziegel, 2016; Fissler et al., 2015). Bayer and Dimitriadis (2022) exploit the joint identifiability

of expected shortfall and VaR to jointly test their optimality for a given quantile level and horizon,

while Kratz et al. (2018) propose to test optimality of expected shortfall forecasts implicitly by testing

forecasts for multiple quantiles of the tail distribution for a given horizon. The latter is possible

naturally in our multi-quantile evaluation framework, and so our tests can give guidance regarding the

optimality of forecasts for all three risk measures. In addition, note that risk management requires

forecasts of risk measures over multiple horizons, e.g. for one day ahead and cumulative losses over

the next ten trading days. Nevertheless, extant evaluation methods focus on a single horizon and

consequently one-day-ahead forecasts are usually evaluated. Our tests solve this problem as they

enable joint evaluation of risk measure forecasts over multiple horizons.

To illustrate the use of the Mincer-Zarnowitz test for the evaluation of forecasts of financial risk
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measures, we apply it to multi-horizon, multi-quantile forecasts for daily S&P 500 returns. We

consider horizons from h = 1 through h = 10 in terms of trading days and three quantile levels

τ ∈ {0.01, 0.025, 0.05}. The classic model for return volatility and VaR forecasting is the GARCH(1,1)

model (Bollerslev, 1986). As no closed-form formula for multi-period-ahead GARCH quantile forecasts

is available, except for the case of Gaussian innovations (Abadir et al., 2022), we use the GARCH

bootstrap of Pascual et al. (2006). It draws standardised residuals from the estimated one-period-

ahead model to simulate draws multiple periods in the future, from which quantiles can be obtained.7

We employ 1000 bootstrap draws for the generation of each forecast and choose student-t errors for

the estimation of the model.

Our sample consists of daily S&P 500 returns from January 3rd 2000 to June 27th 2022, amounting

to 5634 observations.8 We use recursive pseudo-out-of-sample forecasting with an initial estimation

window of size 3000 for h = 10 or, in other words, R = 3009, leading to an evaluation sample of size

P = 2625. Figure 1 displays the one-day ahead forecasts for the three quantiles and the realisations.

The forecasts for the other horizons look very similar, but are expectedly a bit wider.

Figure 1: Quantile Forecasts and Realisations, h = 1
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We first use our Mincer-Zarnowitz test over the three quantiles, T = {0.01, 0.025, 0.05}, and ten

horizons, H = {1, ..., 10}. We use B = 1000 bootstrap draws and a block length of l = 10. Table 5

presents the results. With a p-value of 0.01 there is clear evidence against the null of autocalibration.

Alternative block length choices of l = 5 and l = 20 lead to very similar p-values (0.011 and 0.015)

which is promising in that the results are insensitive to block length.

Table 5: Mincer-Zarnowitz Test Results, Finance Application

Stat 90% 95% 99% p-value

9834.131 5009.153 6569.754 9821.539 0.01

As the test statistic from (8) can directly be interpreted as an empirical distance from the null,

7We use the implementation of the GARCH bootstrap from the rugarch package in R (Ghalanos, 2022).
8Data taken from the Oxford-Man Realized Library: https://realized.oxford-man.ox.ac.uk/data/download [Last ac-

cessed: 05/07/22]
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consisting of squared deviations of all the Mincer-Zarnowitz regression coefficients from their values

under the null, we can also look at the individual contributions to this statistic from single quantiles

and single horizons or single quantile-horizon combinations. Table 6 contains these individual con-

tributions. That is, for a certain quantile-horizon combination it contains the scaled (by
√
P ) sum

of the squared intercept and the squared difference between the slope and unity. From this table a

clear picture emerges. The outer quantiles and the longer forecast horizons contribute more to the

test statistic, and thus show stronger evidence for miscalibration.

Table 6: Individual Contributions to Test Statistic, Mincer-Zarnowitz Test, Finance Application

τ = 0.01 τ = 0.025 τ = 0.05 Sum

h = 1 427.463 81.455 39.217 548.135
h = 2 439.467 195.77 50.126 685.363
h = 3 672.67 266.256 127.524 1066.45
h = 4 591.907 265.84 99.559 957.306
h = 5 549.574 431.091 141.886 1122.551
h = 6 553.68 431.926 114.26 1099.866
h = 7 149.554 291.555 230.722 671.831
h = 8 258.922 298.486 223.656 781.063
h = 9 560.313 405.563 402.132 1368.008
h = 10 497.402 562.498 473.658 1533.558
Sum 4700.952 3230.439 1902.74 9834.131

Since risk management is typically concerned about the performance of a certain risk model such

as the GARCH(1,1) across a range of quantile levels or horizons, this also demonstrates that a common

practice to evaluate those models only for a specific choice of the latter may lead to wrong conclusions

about the overall performance of the prediction model. In fact, Table 9 in part D of the Appendix,

which contains the p-values for individual autocalibration tests at given values τ and h, illustrates that

such ‘telescoping’ practice may indeed be misleading. For instance, we observe that for the quantile

level 0.05 and at smaller forecast horizons there is no strong evidence against autocalibration from

those individual test results.

The tests may also convey information about how models could be improved by a closer look at

the Mincer-Zarnowitz regression lines themselves. Specifically, Tables 10 and 11 in part D of the

Appendix report the estimated intercepts and slopes of these regression lines for all horizons and

quantiles considered. Remarkably, all estimated intercepts are negative and all slopes smaller than

one. We use h = 1 and τ = 0.01 as an illustrative and representative example in Figure 2. The figure

contains a version of a quantile calibration plot or quantile reliability diagram (Pohle, 2020; Gneiting

and Resin, 2021; Gneiting et al., 2022). It shows the scatter plot of forecast-observation pairs alongside

the estimated Mincer-Zarnowitz regression line and the diagonal. The latter represents the population

regression line under HMZ
0 , in other words when α†

1(0.01) = 0 and β†
1(0.01) = 1, respectively. The

discrepancy between the Mincer-Zarnowitz regression line and the diagonal thus suggests that the

forecasts are in fact mis-calibrated. Contrasting the two, it becomes clear that in calmer times (when

the forecasts and realizations are less extreme, i.e. closer to 0) the GARCH(1,1) forecasts tend to

under-predict the actual risk, in other words the quantile forecasts are not extreme enough, while in

more volatile times the forecasts tend to overestimate risk.

Finally, as a robustness check, we executed our analysis with a shorter sample ending in 2019 to
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Figure 2: Scatter Plot of Forecast-Realisation Pairs with Mincer-Zarnowitz Regression Line (red) and
Diagonal (orange) for h = 1 and τ = 0.01
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exclude the COVID-19 period. The results did not change qualitatively, but the p-values tended to be

even smaller, that is, the rejections of autocalibration were even more pronounced. Furthermore, we

also experimented with the GJR-GARCH model (Glosten et al., 1993), but results remained virtually

unchanged.

6.2 Empirical Application 2: U.S. Macro Series

In this section we use our tests to explore the optimality of model-based forecasts of various U.S.

macroeconomic series. The analysis of quantile forecasts for macroeconomic series has become widespread

since studies like Manzan (2015). More recently, the GaR literature has emerged to provide a tool to

monitor downside risk to economic growth using quantile predictions. This approach typically analy-

ses quarterly real GDP growth using financial conditions indicators (see Adrian et al., 2019), and has

been subsequently applied to other quarterly macro series like employment and inflation by Adams

et al. (2021).

However, in spite of the increasing interest in quantile forecasting in macroeconomics, none of

these papers subject their models to the type of forecast optimality test we develop in this paper. We

aim to fill this gap in the empirical literature, applying our tests to shed light on the optimality of

commonly-used models in predicting various macro series.

Instead of using quarterly data we propose the use of monthly variables (also used recently in

similar contexts by Chavleishvili and Manganelli, 2019, and Corradi et al., 2021) and we will focus on

the same four target variables analysed in Manzan (2015). These series, all transformed to stationarity

using the growth rate, are the Consumer Price Index for All Urban Consumers (CPIAUCSL), Indus-

trial Production: Total Index (INDPRO), All Employees, Total Nonfarm (PAYEMS) and Personal

Consumption Expenditures Excluding Food and Energy (Chain-Type Price Index) (PCEPILFE).9

These series are very close in nature to the quarterly series analysed in Adams et al. (2021). These

will be regressed on an autoregressive term and the Chicago Fed National Financial Conditions Index

9All series in the study are taken from the Federal Reserve Economic Data (FRED). Url: https://fred.stlouisfed.org/
[Last accessed: 08/03/22]
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(NFCI) as in Adrian et al. (2019).

Specifically, we use the direct forecasting scheme to generate quantile forecasts at quantile levels

τk for k = 1, ...,K and horizons h = 1, ...,H as follows:

ŷτk,t,h = γ̂0,h,t(τk) + γ̂1,h,t(τk)yt−h + γ̂2,h,t(τk)xt−h (23)

where yt−h is the autoregressive term corresponding to one of the four target variables mentioned

above and xt−h is the NFCI. The parameter estimates are obtained by the standard quantile regression

estimator and are indexed both by τk and h to denote that a separate quantile regression is run at

each quantile and horizon as in the direct scheme, as well as by t as the forecasts are generate in a

pseudo out-of-sample fashion as mentioned below. In essence, equation (23) boils down to a forecast

made by a quantile autoregressive distributed lag (QADL) model (Galvao Jr. et al., 2013) using the

direct forecasting scheme.

The data series span the period 1984M1 to 2019M12, giving a total number of T = 432 monthly

observations. We use the recursive out-of-sample scheme and split the sample into equal portions

for the initial estimation sample and the evaluation sample, R = P = 216. This gives an evaluation

sample size, P , around the middle of the range of Monte Carlo simulations above. In making forecasts

using (23) we will use horizons h = 1, ..., 12 and quantile levels τk ∈ {0.1, 0.25, 0.5}. The use of these

quantile levels allows us to focus on the left part of the distribution, as is common in GaR studies such

as Adams et al. (2021), but also includes the median as an important case of predicting the centre of

the distribution. For the bootstrap implementation we use B = 1000 bootstrap draws and employ a

block length of l = 4 as this is seen to work well in the simulation study.

The results in Table 7 display the results of the Mincer-Zarnowitz tests for autocalibration. To

give some graphical insight into the behaviour of the out-of-sample predictions, some time series plots

for h = 1 are given in section E.1 in the Appendix. We first analyse the joint Mincer-Zarnowitz

test (“Joint”) which works on multiple time series, as described above, where in this context we have

G = 4 target variables and we jointly test for autocalibration across all series to avoid the multiple

testing problem. The results in the first row of Table 7 show that there is indeed some evidence

against autocalibration when looking across all four macro series. The p-value of 0.07 indicates that

there is evidence at the 10% significance level that the QADL-type model does not produce well-

calibrated forecasts jointly across these four series, for forecast horizons h = 1, ..., 12 and quantile

levels τk ∈ {0.1, 0.25, 0.5}.

Table 7: Mincer-Zarnowitz Test Results

Stat 90% 95% 99% p-value

Joint 38264.280 28908.454 45259.085 86531.304 0.067

CPIAUCSL 18269.966 18033.852 32452.813 66594.353 0.099
INDPRO 4258.078 7578.204 11224.918 24413.160 0.222
PAYEMS 871.704 1574.085 2060.305 4994.712 0.308
PCEPILFE 14864.532 2316.907 2792.387 3678.394 0.000

With this in mind, it is useful to dig further into the individual series to see which of them are likely

to be causing the rejection of the joint null of autocalibration. The remainder of Table 7 displays the

Mincer-Zarnowitz test when performed individually for each series. For the two real series, industrial
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production and employment, we see little evidence against the null. On the other hand, for the two

price-type series we see somewhat different results with a clear rejection in the case of PCEPILFE and

a p-value just under 10% for CPIAUCSL. This suggests that the QADL-type approach suggested by

Adrian et al. (2019) does appear appropriate for real macroeconomic series but less-so for price series.

As a next step of the analysis, for the price series one can also consider digging even further into

the test statistics for each series to try and isolate which specific horizons and/or quantile levels are

contributing most to the rejection of the null hypothesis. We report these results in Table 12 in the

Appendix. For both PCEPILFE and CPIAUCSL we find that the smallest contribution to the test

statistic comes from quantile level τk = 0.5, whereas there is a much larger contribution from the

τk = 0.1 quantile level. Except for h = 1, where the contributions to the test statistic are much

smaller, there is no systematic conclusion when looking across horizons h = 2, ..., 12. This seems

to indicate that further study should consider investigating the types of series which might deliver

better-calibrated predictions in the far-left tail of the distribution of inflation-type series. We could dig

even further by analysing the single MZ regression coefficients and drawing similar forecast-realisation

scatter plots as in the previous application. We content ourselves with providing one example of such

plots in Appendix E.2 for h = 1 and τ = 0.1.

One final exercise we perform is to apply the augmented MZ test where we use additional predictors

in the MZ regression. Table 8 displays the results for each of the four series above, where in each case

the remaining three variables were used as the augmenting regressors. This serves as a simple check

to see if any of these other variables would have been able to improve the forecasts if they were added

to the forecasting model, especially for the real variables for which the weaker null of autocalibration

was not rejected. However, the results in Table 8 are similar to the non-augmented version of the test.

As expected, the stronger null is rejected as well for the inflation type series, which already showed

rejections for the weaker null of autocalibration. More interestingly, for the real variables, we still get

no rejections. This suggests that we are not able to improve these forecasts by the addition of inflation

type variables to the forecasting model.

Table 8: Augmented Mincer-Zarnowitz Test Results

Stat 90% 95% 99% p-value

CPIAUCSL 21984.030 19794.203 29896.138 57657.304 0.085
INDPRO 5194.690 8722.551 12596.841 27604.813 0.224
PAYEMS 723.354 1494.399 2011.985 4470.360 0.350
PCEPILFE 15648.207 2455.174 2938.071 3801.048 0.000

7 Conclusion

This paper deals with the absolute evaluation of quantile forecasts in situations where prediction

are made over multiple horizons and possibly multiple quantile levels. We propose multi-horizon,

multi-quantile tests for optimality employing quantile Mincer-Zarnowitz regressions and a moment

equality framework with a bootstrap methodology which avoids the estimation of a large covariance

matrix. The main quantile Mincer-Zarnowitz test is of the null hypothesis of autocalibration, which

is a fundamental property of forecast consistency. We also provide two extensions. The first extension

tests a stronger null hypothesis, which allows us to add further important variables to the information
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set with respect to which optimality is tested. This augmented quantile Mincer-Zarnowitz test thus

makes it possible to examine if the information contained in those variables was used optimally by

the forecaster. The second extension is a multivariate quantile Mincer-Zarnowitz test and allows us to

check autocalibration of forecasts for multiple time series at possibly multiple horizons and quantiles.

Our tests allow for an overall decision about the quality of a forecasting approach, whether it

is a single model used over multiple horizons and quantiles or a mix of different models and expert

judgement employed by an institution. Crucially, it avoids the multiple testing problem inherent to

most practical situations, where many forecasts are made over horizons, quantiles or multiple variables.

Importantly, our testing framework is constructive in that it does not only provide a formal procedure

to reach this overall decision, but may also provide valuable feedback about possible weaknesses of

the forecasting approach under consideration and how it could be improved.

There are many possible future avenues arising from our work, for instance the evaluation of

distributional or probabilistic forecasts that have attracted substantial interest in recent years (Tay and

Wallis, 2000; Gneiting and Katzfuss, 2014). Since these distributional forecasts are considered quantile

calibrated (Gneiting and Resin, 2021) when the corresponding quantile forecasts for all quantiles are

autocalibrated, one future extension of our work may look into optimality testing across many quantiles

requiring the use of many moment equality tests (Chernozhukov et al., 2021).
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Appendix

A Characterisations of Optimality

Lemma A.1. Let ŷ∗τ,t,h be an optimal h-step ahead forecast for the τ -quantile (cf. Definition 1). Then

ŷ∗τ,t,h is optimal relative to It ⊂ Ft as well.

Proof of Lemma A.1: By optimality it holds for ŷ∗τ,t,h that

E
[
Lτ

(
yt − ŷ∗τ,t,h

)
|Ft−h

]
≤ E [Lτ (yt − ŷτ,t,h)| Ft−h]

for all possible forecasts ŷτ,t,h based on Ft−h. By monotonicity of (conditional) expectation and the

law of iterated expectation, this implies

E
[
Lτ

(
yt − ŷ∗τ,t,h

)
|It−h

]
≤ E [Lτ (yt − ŷτ,t,h) |It−h] ,

which proves the claim. ■

B Proofs of Lemmas and Theorems

This section provides an asymptotic linear Bahadur representation for the quantile regression estimator

and a stochastic equicontinuity result in Lemma B.1, which is subsequently used in the proof of

Theorem 1. The proof of the auxiliary Lemma B.1 follows at the end of this section.

Lemma B.1. Under Assumptions A1 and A7, it holds that:

(i) For each τ ∈ T and h ∈ H: ∥∥∥β̂h(τ)− β†
h(τ)

∥∥∥ = oPr(1),

where β†
h(τ) is defined in Equation (3) and β̂h(τ) in Equation (6).

(ii) The empirical process:

1√
P

T∑
t=R+1

(
Xτ,t,h(θ)

(
1
{
yt ≤ Xτ,t,h(θ)

′β
}
− τ
)
− E

(
Xτ,t,h(θ)

(
1
{
yt ≤ Xτ,t,h(θ)

′β
}
− τ
)))

is stochastically equicontinuous in θ ∈ Θ, β ∈ B, and τ ∈ T w.r.t. the L2 pseudo-metric:

ρΘ×B×T ((θ1,β1, τ1), (θ2,β2, τ2))
2

=max
l∈d

E
((

Xl,t,h(θ1)
(
1
{
yt ≤ Xτ,t,h(θ1)

′β
}
− τ
)
−Xl,t,h(θ2)

(
1
{
yt ≤ Xτ,t,h(θ2)

′β2

}
− τ2

))2)
where Xl,t,h(θ) denotes the l-th element of Xτ,t,h(θ) and d is the dimension of Xτ,t,h(θ).

(iii) For each τ ∈ T and h ∈ H:

√
P
(
β̂h(τ)− β†

h(τ)
)

= Jh (τ)
−1

(
1√
P

T∑
t=R+1

Xτ,t,h(θ
†
τ,h)

(
1
{
yt ≤ Xτ,t,h(θ

†
τ,h)

′β† (τ)
}
− τ
))

+ oPr(1),
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where Jh (τ) is defined in Assumption A3.

Proof of Theorem 1: Under A1-A7 and Lemma B.1, it follows under the null hypothesis that:

√
Pm̂s

d→ N(0,Ωs),

for each given s ∈ {1, . . . , κ}, where Ωs is a diagonal element of the 2× 2 matrix:

τk(1− τk)Jh (τk)
−1 E

(
Xτk,t,h(θ

†
h)Xτk,t,h(θ

†
h)

′
)
Jh (τk)

−1

for a given h and τk, see also Corollary 2 of Koenker and Xiao (2006). Thus, under HMZ
0 and by

continuous mapping:
κ∑

s=1

(√
Pm̂s

)2 d→
κ∑

s=1

Z2
s ,

where Zs is an element of:

Z =


Z1

...

Zκ

 ∼ N (0,Σ) .

and Σ is the asymptotic variance-covariance matrix of:

√
P





α̂1(τ1)

β̂1(τ1)
...

α̂H(τK)

β̂H(τK)


−



0

1
...

0

1




.

Note also that the first stage estimation error does not feature into this asymptotic variance when

π = 0 as shown in the proof of Lemma B.1. As a result, we may directly resample from the generated

forecasts. That is, under A1 to A7 and the block length condition, the first order validity of the MBB

follows from Theorem 2 of Gregory et al. (2018) as a special case of the SETBB using untapered blocks

for each τk and h. That is, pointwise in τk ∈ T , h ∈ H, and for any ν > 0:

Pr

(
sup
x∈R2

∣∣∣Prb (√P (β̂
b

h(τk)− β̂h(τk)) ≤ x
)
− Pr

(√
P (β̂h(τk)− β†

h(τk)) ≤ x
)∣∣∣ > ν

)
→ 0

Then, since m̂b
s either m̂

b
s = α̂b

h(τk) or m̂
b
s = β̂b

h(τk)−1, the result follows again by continuous mapping.

■

Proof of Lemma B.1:

(i) First, observe that for any value β ∈ B, τ ∈ T , and h ∈ H:

QP (θ̂τ,j,h; τ,β) = QP (θ
†
τ,h; τ,β)−

(
QP (θ̂τ,j,h; τ,β)−QP (θ

†
τ,h; τ,β)

)
(24)

where:

Q̂P (θ̂τ,j,h; τ,β) ≡
1

P

T∑
j=R+1

ρτ (yj −Xj(θ̂τ,j,h)
′β)
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and

QP (θ
†
τ,h; τ,β) ≡

1

P

P∑
j=R+1

ρτ (yj −Xj(θ
†
τ,h)

′β).

Next, note that:

sup
θ̂τ,j,h; j≥R+1

sup
β∈B

∣∣∣(QP (θ̂τ,j,h; τ,β)−QP (θ
†
τ,h; τ,β)

)∣∣∣
≤ sup

θ̂τ,j,h; j≥R+1

sup
β∈B

 1

P

T∑
j=R+1

∣∣∣ρτ (yj −Xj(θ̂τ,j,h)
′β
)
− ρτ

(
yj −Xj(θ

†
τ,h)

′β
)∣∣∣


≤ sup
θ̂τ,j,h; j≥R+1

 1

P

T∑
j=R+1

∥∥∥Xj(θ̂τ,j,h)−Xj(θ
†
τ,h)
∥∥∥
× sup

β∈B
∥β∥ ×max{τ, 1− τ}

≤ 1

P

T∑
j=R+1

sup
θ̂τ,j,h; j≥R+1

∥∥∥Xj(θ̂τ,j,h)−Xj(θ
†
τ,h)
∥∥∥× sup

β∈B
∥β∥

≤C ·OPr

(
R− 1

2

)
for some generic constant C > 0, where the second inequality follows from the properties of the

‘check function’, the third one from Jensen’s inequality, and the last one from Markov’s inequality

and Assumptions A3 and A6. The rest of the proof can now proceed by standard arguments from

the quantile regression literature. In particular, observe that the definition of QP (θ
†
τ,h; τ,β) (and

QP (θ̂τ,j,h; τ,β)) may be changed to:

QP (θ
†
τ,h; τ,β) ≡

1

P

T∑
j=R+1

(
ρτ (yj −Xj(θ

†
τ,h)

′β)− ρτ (yj −Xj(θ
†
τ,h)

′β†
h(τ))

)
without affecting minimisation or any of the preceeding arguments. In addition, note that by A2, A3,

and A4, it follows that:

Q∞(τ,β) ≡ E
[(

ρτ (yj −Xj(θ
†
τ,h)

′β)− ρτ (yj −Xj(θ
†
τ,h)

′β†
h(τ))

)]
= O(1).

As a result, pointwise in β, τ , h, QP (θ
†
τ,h; τ,β)

Pr→ Q∞,θ†(τ,β) by A1, A3, and McLeish’s law of large

numbers for strong mixing processes. Consistency of β̂ for β†
h(τ) pointwise in τ and h then follows

since Q∞(τ,β) is uniquely minimised at β†
h(τ) by the stated assumptions.

(ii) To establish stochastic equicontinuity w.r.t. the pseudo-metric ρΘ×B×T (·, ·), note that Xj(θ)

belongs to a type II class function as defined in Andrews (1994) with envelope maxR+1≤j≤T ∥Xj(θ)∥,
where by A2:

Pr

(
max

R+1≤j≤T
∥Xj(θ)∥ > P

1
2

)
≤

T∑
j=R+1

Pr
(
∥Xj(θ)∥ > P

1
2

)
≤ E

[
∥Xj(θ)∥4+ϵ

]
/P

4+ϵ
2 = o(1).

In addition, note that:

(1{yj ≤ Xj(θ)
′β} − τ)
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can be shown to belong to a type IV class function as defined in Andrews (1994) by A2, A3, A4, and A6.

Now, given the α-mixing condition in Assumption A1, stochastic equicontinuity in (θ,β, τ) ∈ Θ×B×T
follows from repeated applications of Theorems 5 and 6 together with Theorem 4 in Andrews (1994).

(iii) By Equation (6) and A2 (see e.g. Gregory et al., 2018), it holds that:∥∥∥∥∥∥ 1√
P

T∑
j=R+1

Xj(θ̂τ,t,h)
(
1
{
yj ≤ Xj(θ̂τ,t,h)

′β̂P (τ)
}
− τ
)∥∥∥∥∥∥ (25)

≤ d max
R+1≤j≤T

∥∥∥Xj(θ
†
τ,h)
∥∥∥ 1√

P

T∑
j=R+1

1
{
yj = Xj(θ̂τ,t,h)

′β̂P (τ)
}
+ oPr(1) = oPr(1),

where the inequality follows from A6, and the last equality follows again from the fact that for every

τ ∈ T and h ∈ H:

max
R+1≤j≤T

∥∥∥Xj(θ
†
τ,h)
∥∥∥ = oPr(P

1
2 ).

Moreover, denoting ET [·] the expectation conditional on the original sample observations, we have

that:

1√
P

T∑
j=R+1

Xj(θ̂τ,t,h)
(
1
{
yj ≤ Xj(θ̂τ,t,h)

′β̂P (τ)
}
− τ
)

=
1√
P

T∑
j=R+1

Xj(θ
†
τ,h)

(
1
{
yj ≤ Xj(θ

†
τ,h)

′β̂P (τ)
}
− τ
)
+

 1√
P

T∑
j=R+1

(
Xj(θ̂τ,t,h)

(
1
{
yj ≤ Xj(θ̂τ,t,h)

′β̂P (τ)
}
− τ
)
− ET

[
Xj(θ̂τ,t,h)

(
1
{
yj ≤ Xj(θ̂τ,t,h)

′β̂P (τ)
}
− τ
)])

− 1√
P

T∑
j=R+1

(
Xj(θ

†
τ,h)

(
1
{
yj ≤ Xj(θ

†
τ,h)

′β̂P (τ)
}
− τ
)
− ET

[
Xj(θ

†
τ,h)

(
1
{
yj ≤ Xj(θ

†
τ,h)

′β̂P (τ)
}
− τ
)])

+
√
PET

[
Xj(θ̂τ,t,h)

(
1
{
yj ≤ Xj(θ̂τ,t,h)

′β̂P (τ)
}
− τ
)
−Xj(θ

†
τ,h)

(
1
{
yj ≤ Xj(θ

†
τ,h)

′β̂P (τ)
}
− τ
)]

=I1,P + I2,P + I3,P

By part (ii) of this lemma as well as A6 and A7, we have that, conditional on the original sample,

|I2,P | = oPr(1). In addition, note that:

|I3,P | ≤ sup
β∈B

∣∣∣√PET

[(
(Xj(θ̂τ,t,h)−Xj(θ

†
τ,h))

′β
)
(1{yj ≤ Xj(θ

†
τ,h)

′β} − τ)
]∣∣∣

+ sup
β∈B

∣∣∣√PET

[(
yj −Xj(θ

†
τ,h)

′β
)
(1{yj ≤ Xj(θ̂τ,t,h)

′β} − 1{yj ≤ Xj(θ
†
τ,h)

′β})
]∣∣∣

+ sup
β∈B

∣∣∣√PET

[(
(Xj(θ̂τ,t,h)−Xj(θ

†
τ,h))

′β
)
(1{yj ≤ Xj(θ̂τ,t,h)

′β} − 1{yj ≤ Xj(θ
†
τ,h)

′β})
]∣∣∣

= sup
β∈B

|A1,P (τ,β)|+ sup
β∈B

|A2,P (τ,β)|+ sup
β∈B

|A3,P (τ,β)|

Defining δβ = β − β†
h(τ) and εj = yj −Xj(θ

†
τ,h)

′β†
h(τ), note that by iterated expectations, A3, A6,
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for some constants C̃,
˜̃
C > 0:

sup
β∈B

|A1,P (τ,β)| ≤ C̃

√
P

R

∫
B(Xτk,j,h) sup

β∈B

∣∣∣Fεj |X(Xj(θ
†
τ,h)

′δβ|Xj)− τ
∣∣∣ fX(Xj)dXj

≤ ˜̃
C

√
P

R
sup

t≥R+1
E [B(Xτk,t,h)] = o(1).

Turning to A2,P (τ,β), observe that:

sup
β∈B

|A2,P (τ,β)|

= sup
β∈B

∣∣∣√PET

[(
yj −Xj(θ

†
τ,h)

′β
)
(1{Xj(θ̂τ,t,h)

′β ≤ yj ≤ Xj(θ
†
τ,h)

′β}

+1{Xj(θ
†
τ,h)

′β ≤ yj ≤ Xj(θ̂τ,t,h)
′β})

]∣∣∣
By Cauchy-Schwarz:

sup
β∈B

|A2,P (τ,β)|

≤ sup
β∈B

(
E

[(
yj −Xj(θ

†
τ,h)

′β
)2]) 1

2

× sup
β∈B

(√
PET

[((
1{Xj(θ̂τ,t,h)

′β ≤ yj ≤ Xj(θ
†
τ,h)

′β}+ 1{Xj(θ
†
τ,h)

′β ≤ yj ≤ Xj(θ̂τ,t,h)
′β}
))2]) 1

2

The first term on the Right Hand Side (RHS) is of order O(1) by A2, A3, and A4. Focusing on

1{Xj(θ
†
τ,h)

′β ≤ yj ≤ Xj(θ̂τ,t,h)
′β} (the other term and the cross-product follow by similar arguments)

and recalling the definition of δβ = β − β†
h(τ) and εj , we have again conditional on the sample and

by iterated expectations:

√
P sup

β∈B

∫ ∣∣∣Fεj |X(Xj(θ
†
τ,h)

′δβ + Vj(Xj ; θ̂τ,t,h)|Xj)− Fεj |X(Xj(θ
†
τ,h)

′δβ|Xj)
∣∣∣ fX(Xj)dXj

with:

Vj(Xj ; θ̂τ,t,h) = (Xj(θ̂τ,t,h)−Xj(θ
†
τ,h))

′β†
h(τ) + (Xj(θ̂τ,t,h)−Xj(θ

†
τ,h))

′δβ

Using A3, A4, A6 together with a mean value expansion around Xj(θ
†
τ,h)

′δβ, the last term can be

bounded by: √
P

R
C sup

θ̂τ,t,h; t≥R+1

E [∥B(Xτ,j,h)∥] diam(B) = o(1)

for some constant C > 0, where diam(B) denotes the diameter of B and the equality follows from A7.

Finally, the cross-product term A3,P (τ,β) can be shown to be o(1) uniformly in β ∈ B by Cauchy-

Schwarz and similar arguments to before, which establishes that for the second term on the RHS of

(24) it holds that:

|I3,P | = O

(√
P√
R

)
= o(1),
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conditional on the sample. Now, using parts (i) and (ii), stochastic equicontinuity again yields that:

1√
P

T∑
j=R+1

(
Xj(θ

†
τ,h)

(
1
{
yj ≤ Xj(θ

†
τ,h)

′β̂P (τ)
}
− τ
)
− ET

[
Xj(θ

†
τ,h)

(
1
{
yj ≤ Xj(θ

†
τ,h)

′β̂P (τ)
}
− τ
)])

=
1√
P

T∑
j=R+1

Xj(θ
†
τ,h)

(
1
{
yj ≤ Xj(θ

†
τ,h)

′β† (τ)
}
− τ
)
− ET

[
Xj(θ

†
τ,h)

(
1
{
yj ≤ Xj(θ

†
τ,h)

′β† (τ)
}
− τ
])

︸ ︷︷ ︸
=0


+ oPr(1).

Combining this result with (25), we obtain:

√
PET

[
Xj(θ

†
τ,h)

(
1
{
yj ≤ Xj(θ

†
τ,h)

′β̂P (τ)
}
− τ
)]

=
1√
P

T∑
j=R+1

Xj(θ
†
τ,h)

(
1
{
yj ≤ Xj(θ

†
τ,h)

′β† (τ)
}
− τ
)
+ oPr(1).

Applying again iterated expectations and a mean value expansion of the left hand side around β† (τ),

we have by A4 and A5 that:

√
PET

[
Xj(θ

†
τ,h)

(
1
{
yj ≤ Xj(θ

†
τ,h)

′β̂P (τ)
}
− τ
)]

=
√
P

(∫
fεj |X(U j |Xj)Xj(θ

†
τ,h)Xj(θ

†
τ,h)

′fX(Xj)dXj

)(
β̂ (τ)− β† (τ)

)
,

where the intermediate value U j lies between 0 and Xj(θ
†)′
(
β̂ (τ)− β† (τ)

)
. Therefore:

1√
P

T∑
j=R+1

Xj(θ
†)
(
1
{
yj ≤ Xj(θ

†)′β† (τ)
}
− τ
)
= J (τ)

√
P
(
β̂ (τ)− β† (τ)

)
+ oPr(1)

where J (τ) = Jh (τk). Since J (τ) is positive definite, the Bahadur representation for
√
P
(
β̂ (τ)− β† (τ)

)
follows. ■

C Horizon Monotonicity Test

In this section, we outline a further possibility to test for quantile forecast optimality, namely across

forecast horizons when forecasts are reported at multiple horizons. The test exploits the fact that,

under optimality, expected quantile loss is monotonically non-decreasing in the forecast horizon. More

specifically, let ŷ∗τ,t,h, h ∈ H = {1, . . . ,H}, be optimal forecasts for the τ -quantile. It then holds that

E
[
Lτ

(
yt,hi

− ŷ∗τ,t,hi

)]
≤ E

[
Lτ

(
yt,h − ŷ∗τ,t,hj

)]
for all hi, hj ∈ H with hi < hj , which follows from strict stationarity, iterated expectations, and the

monotonicity of conditional expectations. The result is akin to Patton and Timmermann (2012) who

demonstrated that the mean squared forecast error (MSFE) of optimal multi-horizon conditional mean

forecasts does not decrease with the forecast horizon, and similar tests have in fact been constructed
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for mean forecasts (see Fosten and Gutknecht, 2020, and references therein). Intuitively, forecasting

becomes more difficult the longer the forecast horizon gets as the information set gets smaller, so

optimal forecasts should display non-decreasing expected loss. A decrease in expected loss from a

certain horizon to the next therefore indicates non-optimal forecasts, meaning that forecasts further

into the future are systematically more accurate than the forecasts at the shorter horizon. This can

arise, for instance, if different models are used for short and long-term forecasting or if different

specifications of models are selected and estimated at different horizons. The latter is often the case

in quantile forecasting where the direct scheme is typically used, as opposed to the iterative scheme,

and e.g. relevant variables may be excluded at shorter horizons, or modelled and processed in a way

such that non-monotonicity in the information content over the horizons arises.

The notation is as in the previous sections, although we will treat estimation error here as implicit

since arguably the most relevant applications (unless different models are used at different horizons) are

to situations where forecasts are reported without model like in the case of the Survey of Professional

Forecasters. We are interested in the following hypothesis:

HMH
0 : E[Lτk(yt − ŷτk,t,hi

)− Lτk(yt − ŷτk,t,hj
)] ≥ 0 (26)

for all hi, hj ∈ H s.t. hi < hj and τk ∈ T versus:

HMH
1 : E[Lτk(yt − ŷτk,t,hi

)− Lτk(yt − ŷτk,t,hj
)] < 0 (27)

for at least some hi, hj ∈ H and τk ∈ T . As before, define the set:

CMH = {(hi, hj , τk) : (hi, hj) ∈ H s.t. hi < hj , τk ∈ T } .

We use the same test statistic as in Andrews and Soares (2010). Hereafter, denote

F0 =
{
F0 : HMH

0 holds
}

as the set of null DGPs such that (26) and Assumptions C1 to C3 below hold. Also, denote, with some

abuse of notation, |CMH| = κ the cardinality of the set CMH and define Lτk,t,hj
≡ Lτk(yt − ŷτk,t,hj

) as

well as Lτk,t,hi
≡ Lτk(yt − ŷτk,t,hi

), where Ls,t stands for the difference Lτk,t,hj
− Lτk,t,hi

for a specific

τk, hi, and hj combination. That is, under the null hypothesis, for every s ∈ {1, . . . , κ}:

EF0 [Ls,t] ≡ ms ≥ 0

We also let (with some abuse of notation):

m̂s =
1

P

T∑
t=R+1

Ls,t

denote the empirical moment condition. As mentioned above, we keep implicit the (possible) depen-
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dence of Ls,t on estimated parameters. The test statistic is then given by:

ÛMH =

κ∑
s=1

[√
Pm̂s

σ̂s,s

]2
−

, (28)

where [x]− = x1{x < 0} and σ̂2
s,s is an estimator of the diagonal element of Σ, the variance-covariance

matrix of the moment inequalities. That is, the statistic in (28) gives positive weight only to those

empirical moment inequalities which are indeed violated. A corresponding HAC estimator of Σ may

be chosen as:

Σ̂T =
1

P

T−sT∑
t=R+sT

sT∑
k=−sT

λk,t

(
mt − m̂T

)(
mt+k − m̂T

)′
.

where:

mt =


L1,t

...

Lκ,t

 and m̂T =


1
P

∑T
t=R+1 L1,t

...
1
P

∑T
t=R+1 Lκ,t

 .

Note, however, that the statistic in (28) in principle only requires estimates of the diagonal elements,

which may be an advantage when H and T are large. The downside, of course, is that the limiting

distribution is again non-pivotal as it depends on the (unknown) correlation structure between the

different moment (in-)equalities. Thus, as in the Mincer-Zarnowitz tests, we will generate bootstrap

critical values using the MBB of Künsch (1989) with the resampling as explained before. For each

bootstrap sample, we obtain the bootstrap equivalent of Ls,t, say Lb
s,t, to construct the bootstrap

statistic as:

Û b
MH =

κ∑
s=1

√P (m̂
b
s − m̂s)

σ̂
b
s,s

2

−

1

{
m̂s

σ̂s,s

≤
√
2 ln(ln(P ))/P

}
, (29)

where m̂
b
s is defined as before but using the bootstrap series instead of the original sample, i.e.:

m̂
b
s =

1

P

T∑
t=R+1

Lb
s,t.

The term
(
σ̂
b
s,s

)2
, on the other hand, is the bootstrap variance estimator, which requires more careful

consideration for first order validity of the bootstrap variance estimator (Götze and Künsch, 1996;

Goncalves and White, 2004). More specifically, we follow Goncalves and White (2004) and use the

following bootstrap variance estimator:

(
σ̂
b
s,s

)2
=

1

Kb

Kb∑
k=1

1

l

(
l∑

i=1

(
Lb
s,Ik+i −

1

P

T∑
t=R+1

Lb
s,t

))2

Finally, note that the second term on the right hand side of (29) implements the Generalised Moment

Selection (GMS) procedure introduced by Andrews and Soares (2010) that uses information about

the slackness of the sample moment conditions to infer which population moment conditions are most

likely to be binding, and thus will enter into the limiting distribution. The critical value will then be

based on the (1− α) quantile of the empirical bootstrap distribution of Û b
MH over B draws, which we
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denote by cB,P,(1−α). We make the following additional assumptions:

C1: For all s ∈ {1, . . . , κ} and F0 ∈ F0, Ls,t is strictly stationary with α-mixing coefficients satisfying

the mixing condition from A1 and EF0 [|Ls,t|3r] ≤ M < ∞ with r = 2 + ϵ, ϵ > 0.

C2: For all s ∈ {1, . . . , κ}, F0 ∈ F0, and some 0 < δ ≤ 2, it holds that:

1

P

T∑
t=R+1

∣∣∣∣∣EF0 [Ls,t]−
1

P

P∑
t=R+1

EF0 [Ls,t]

∣∣∣∣∣
2+δ

= o(l−1−δ/2).

C3: The variance-covariance matrix Σ is positive definite for any F0 ∈ F0. Moreover, it holds that:

D̂
− 1

2

T Σ̂T D̂
− 1

2

T

PrF0→ D
− 1

2ΣD
− 1

2 ,

where D̂T = diag(σ̂1,1, . . . , σ̂κ,κ) and D = diag(σ1,1, . . . , σκ,κ) are (κ× κ) diagonal matrices and:

σ̂s,s/σs,s

PrF0→ 1

for all s ∈ {1, . . . , κ}.

Assumption C1 corresponds to Assumption 2.1 in Goncalves and White (2002) and, together with

C2, ensures the first order validity of the block bootstrap procedure in our set-up. It entails, for

expositional simplicity, a homogeneity assumption across s ∈ {1, . . . , κ}, which is stronger than what

is required in Goncalves and White (2002). The latter allows for considerable heterogeneity across

the series. Assumption C2 on the other hand is identical Assumption A.2.2′ in Goncalves and White

(2004). We obtain the following result:

Theorem C.1. Assume that C1 to C3 hold, and T → ∞, B → ∞, l → ∞, l√
T

→ 0. Then, under

HMH
0 :

lim sup
T,B→∞

sup
F0∈F0

PrF0

(
ÛMH > cB,P,(1−α)

)
≤ α.

Theorem C.1 states that the monotonicity test proposed in this section has asymptotic size at

most equal α. As pointed out in Andrews and Soares (2010), the test is non-conservative whenever

some weak inequality hold with equality. Note also that Theorem C.1 required a tightening of the

block length condition for the (first order) validity of the bootstrap variance estimator.

In analogy to the extension of the autocalibration test in Section 3 to a multivariate set-up, the

Horizon Monotonicity test may also be extended to a group of time series. More specifically, we may

be interested in testing the following null hypothesis:

HMMH
0 : E[Lτk(yi,t − ŷi,τk,t,hi

)− Lτk(yi,t − ŷi,τk,t,hj
)] ≥ 0 (30)

for all hl, hj ∈ H s.t. hl < hj , τk ∈ T , i = 1, . . . , G, versus:

HMMH
1 : E[Lτk(yi,t − ŷi,τk,t,hi

)− Lτk(yi,t − ŷi,τk,t,hj
)] < 0 (31)

for at least some hl, hj ∈ H, τk ∈ T , i = 1, . . . , G. As before, define the set:

CMMH = {(i, hl, hj , τk) : i ∈ {1, . . . , G}, (hl, hj) ∈ H s.t. hl < hj , τk ∈ T } ,
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with κ denoting the cardinality again. Then, for every difference Li,τk,t,hj
− Li,τk,t,hl

with Li,τk,t,hj
≡

Li,τk(yi,t − ŷi,τk,t,hj
) and Li,τk,t,hl

≡ Li,τk(yi,t − ŷi,τk,t,hl
), which we denote by Ls,t, s ∈ {1, . . . , κ}, we

may test:

E
[
Ls,t

]
≡ ms,G ≥ 0, s ∈ {1, . . . , κ}.

This population moment inequality can be replaced by its sample analogue:

m̂s,G =
1

P

T∑
t=R+1

Ls,t.

The test statistic ÛMMH and the bootstrap statistic Û b
MMH is then constructed in analogy to before,

with the only difference consisting in the fact that for t = R + 1, . . . , T , the series to be resampled

comes again in array form as in the multivariate extension of Subsection 4.2. Under Assumptions

C1-C3, the bootstrap distribution of Û b
MMH, b = 1, . . . , B, provides asymptotically valid critical values

that yield a test of size at most α by Theorem C.1.

Proof of Theorem C.1: Firstly, let:

hs = lim
P→∞

√
PEF0 [Ls,t] .

Then, under the null hypothesis and Assumptions C1 and C3, it holds by arguments from the proof

of Theorem 1 in Andrews and Guggenberger (2009) that for a given F0 ∈ F0:

κ∑
s=1

[√
Pm̂s

σ̂s,s

]2
−

d→
κ∑

s=1

 κ∑
j=1

ωs,jZs + hs

2

−

, (32)

where Zs is an element of:

Z =


Z1

...

Zκ

 ∼ N (0, I) , (33)

and ωs,j is the square root of a generic element of the correlation matrix:

Ω = D− 1
2ΣD− 1

2 ,

with D = Diag(Σ) and Σ denoting the population variance-covariance matrix of the moment inequal-

ities.10 Next we need to show that the (1 − α) percentile of this limiting distribution is accurately

approximated by the corresponding (1−α) percentile of the bootstrap (limiting) distribution. To this

end, note that for all s ∈ {1, . . . , κ} it holds by Assumptions C1 and the law of iterated logarithms

(Oodaira and Yoshihara, 1971, Theorem 5) that:

lim
P→∞

sup

(
P

2 ln(ln(P ))

) 1
2

(
m̂s

σs,s

)
= 1

10Note that in the case where hs = −∞, it follows by definition that Zs + hs = −∞.
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a.s. under PrF0 when EF0 [Ls,t] = 0, while

lim
P→∞

(
P

2 ln(ln(P ))

) 1
2

(
m̂s

σs,s

)
> 1

a.s. under PrF0 when EF0 [Ls,t] > 0. Moreover, note that by C10 for all s it holds that
σ̂s,s

σs,s

PrF0→ 1, so

that by standard arguments:

lim
P→∞

PrF0

((
P

2 ln(ln(P ))

) 1
2

(
m̂s

σ̂s,s

)
> 1

)
= 0

when EF0 [Ls,t] = 0, while

lim
P→∞

PrF0

((
P

2 ln(ln(P ))

) 1
2

(
m̂s

σ̂s,s

)
> 1

)
= 1

when EF0 [Ls,t] > 0. Thus, for sufficiently large T only moment conditions holding with equality will

contribute to the bootstrap limiting distribution, and the probability of eliminating a binding moment

equality approaches zero as T → ∞.

Moreover, from Theorem 2.2 of Goncalves and White (2002), it follows by C1 and C2 that for any

ν > 0 and F0 ∈ F0:

PrF0

(
sup
x∈R

∣∣∣PrbF0

(√
T (m̂

b
s − m̂s) ≤ x

)
− PrF0

(√
T (m̂s −ms) ≤ x

)∣∣∣ > ν

)
→ 0

for all s ∈ {1, . . . , κ}, where PrbF0
denotes the probability measure induced by the bootstrap under F0.

Likewise, for a given F0 ∈ F0, by Lemma B1 in Goncalves and White (2004) we have that for any

ϵ > 0:

PrF0

(
PrbF0

(
|σ̂b2

s,s − σ̂
2
s,s| > ν

)
> ν

)
→ 0

This suggests that for any ν > 0 and a given F0:

PrF0

sup
x∈R

∣∣∣∣∣∣PrbF0

√
T (m̂

b
s − m̂s)

σ̂
b
s,s

≤ x

− PrF0

(√
T (m̂s −ms)

σ̂s,s

≤ x

)∣∣∣∣∣∣ > ν

→ 0

for all s ∈ {1, . . . , κ}.
Now, let cB,P,(1−α) be the (1 − α) critical value of Û b

MH based on B bootstrap replications. Also,

consider a sequence {γP }∞P=1 with γP = (γ1,P , ..., γκ,P ) and each γP ∈ F0 such that
√
PγP → h =

(h1, . . . , hκ)
′ and (ln(ln(P )))−1

√
PγP → ξ where h, ξ ∈ Rκ

−,∞ with R− = {x ∈ R : x ≤ 0} and

R−,∞ = R− ∪ {−∞}. Then, let cP,1−α be the (1− α) critical values of ÛMH,γ defined as:

ÛMH,γ =
κ∑

s=1

[√
P (m̂s − γs,P )

σ̂s,s

]2
−

.

By Lemma 2(a) in the supplement of Andrews and Soares (2010), cbP,1−α ≤ cP,(1−α) almost surely

for all P for a sequence such that cbP,1−α

PrF0→ cb1−α = limB,T→∞ cbB,P,1−α noting that the assumptions
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together with the HAC estimator σ̂s,s satisfy conditions (A.2) and (A.3) of Andrews and Soares (2010)

for dependent data. Also, under the drifting sequence {γP , P ≥ 1}, limP→∞ cP,(1−α) = c†1−α which is

the (1− α) critical value of the limiting distribution of ÛMH in Theorem C.1. The result then follows

from subsequence arguments analogous to the ones used in the proof of Theorem 1(i)-(ii) in Andrews

and Soares (2010). ■

D Additional Results - Empirical Application 1

D.1 Table: Individual p-values

Table 9: Individual p-values, Mincer-Zarnowitz Test, Finance Application

τ = 0.01 τ = 0.025 τ = 0.05 all

h = 1 0.000 0.092 0.294 0.006
h = 2 0.000 0.011 0.161 0.002
h = 3 0.008 0.011 0.131 0.001
h = 4 0.002 0.023 0.176 0.008
h = 5 0.005 0.001 0.141 0.010
h = 6 0.010 0.032 0.236 0.012
h = 7 0.312 0.073 0.069 0.137
h = 8 0.228 0.065 0.091 0.125
h = 9 0.030 0.113 0.029 0.028
h = 10 0.122 0.044 0.021 0.010
all 0.013 0.011 0.063 0.010

D.2 Tables: Intercepts and Slopes of MZ Regressions

Table 10: Intercepts, Mincer-Zarnowitz Regressions, Finance Application

τ = 0.01 τ = 0.025 τ = 0.05

h=1 -0.009 -0.003 -0.001
h=2 -0.009 -0.004 -0.002
h=3 -0.011 -0.006 -0.003
h=4 -0.011 -0.006 -0.002
h=5 -0.011 -0.007 -0.003
h=6 -0.011 -0.007 -0.003
h=7 -0.006 -0.006 -0.004
h=8 -0.008 -0.007 -0.004
h=9 -0.012 -0.007 -0.005
h=10 -0.011 -0.009 -0.005
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Table 11: Slopes, Mincer-Zarnowitz Regressions, Finance Application

τ = 0.01 τ = 0.025 τ = 0.05

h=1 0.597 0.824 0.878
h=2 0.591 0.727 0.862
h=3 0.494 0.682 0.78
h=4 0.525 0.682 0.805
h=5 0.543 0.595 0.768
h=6 0.541 0.594 0.791
h=7 0.761 0.667 0.704
h=8 0.686 0.663 0.708
h=9 0.538 0.607 0.609
h=10 0.565 0.537 0.575

E Additional Results - Empirical Application 2

E.1 Figures: Out-of-sample Predictions for h = 1
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E.2 Figures: MZ Regression Lines for h = 1 and τ = 0.1
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E.3 Table: Horizon and Quantile Contributions

Table 12: Contributions to the Test Statistic by Horizon and Quantile Level

CPIAUCSL INDPRO

τ = 0.1 τ = 0.25 τ = 0.5 τ = 0.1 τ = 0.25 τ = 0.5

h = 1 20.848 0.441 0.778 h = 1 5.720 4.196 18.968
h = 2 647.848 900.753 168.374 h = 2 1.340 6.251 4.954
h = 3 603.497 544.596 356.875 h = 3 6.800 1.778 9.367
h = 4 743.235 768.847 93.374 h = 4 3.014 1.558 21.279
h = 5 386.648 544.058 264.158 h = 5 7.245 52.469 31.338
h = 6 781.774 720.688 314.995 h = 6 43.711 15.228 96.149
h = 7 498.539 1070.123 325.264 h = 7 9.559 46.382 284.909
h = 8 1133.387 1758.585 721.687 h = 8 99.920 41.575 288.573
h = 9 1349.857 857.559 510.451 h = 9 10.912 215.386 288.707
h = 10 217.077 174.061 226.312 h = 10 108.957 330.662 310.437
h = 11 361.884 230.551 252.698 h = 11 221.439 404.278 318.836
h = 12 174.499 232.623 313.021 h = 12 226.706 406.279 313.196

PAYEMS PCEPILFE

τ = 0.1 τ = 0.25 τ = 0.5 τ = 0.1 τ = 0.25 τ = 0.5

h = 1 0.280 0.316 0.046 h = 1 49.667 83.078 124.573
h = 2 0.297 0.483 0.067 h = 2 442.858 127.057 279.434
h = 3 0.836 4.267 9.897 h = 3 622.015 529.844 245.981
h = 4 0.022 1.628 20.176 h = 4 350.324 281.311 281.12
h = 5 0.170 11.645 26.387 h = 5 755.340 483.032 275.909
h = 6 0.007 9.931 38.356 h = 6 311.629 312.997 299.373
h = 7 29.247 53.612 31.944 h = 7 1226.937 687.718 306.836
h = 8 4.018 40.909 48.416 h = 8 711.826 431.873 313.763
h = 9 19.371 52.964 53.312 h = 9 787.800 326.569 279.552
h = 10 27.079 51.491 34.155 h = 10 388.266 337.273 365.069
h = 11 12.010 80.984 36.712 h = 11 885.383 300.752 321.414
h = 12 6.047 92.947 71.674 h = 12 659.990 337.922 340.049
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