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1 Introduction

Expectations play a key role in economic decision-making and largely determine policy

outcomes. This is particularly true for monetary policy, as its effects heavily depend on

expectations. For this reason, central banks around the world regularly run surveys of

professional forecasters to gather information about private agents’ expectations.

Survey respondents are asked to report their point forecasts for a set of macroeco-

nomic fundamentals and, increasingly, to provide a density forecast that describes the

predicted probability distribution of the variables of interest. Compared to the more

popular point forecasts, density forecasts provide a wider understanding of the uncer-

tainty associated with the prediction, see Fair (1980) and Dawid (1984) for some early

references, and Tay and Wallis (2000) for a more recent detailed discussion.

Well-known examples of survey density forecasts include the Survey of Professional

Forecasters (SPF) currently managed by the Federal Reserve Bank of Philadelphia, the

Survey of External Forecasters managed by the Bank of England and the European

Central Bank’s Survey of Professional Forecasters (ECB SPF). A large amount of work

has been devoted to analysing the density forecasts provided by the US SPF, see among

others Diebold, Tay and Wallis (1999) and Clements (2014), and the Bank of England’s

Survey of External Forecasters, see among others Boero, Smith and Wallis (2008) and

Mitchell and Hall (2005). The literature dedicated to density forecasts provided by the

ECB SPF is more limited, see de Vincent-Humphreys, Dimitrova, Falck and Henkel

(2019) for a survey, possibly because the ECB SPF started only recently, in 1999.

A challenge in forecast comparison studies for survey data is that traditional inference

methods suffer from relevant small sample size distortions, which can lead to spurious

results, as well documented by Clark (1999) for the Diebold and Mariano (1995) equal

predictive accuracy test. This shortcoming is of course especially relevant when the

analysis is performed on subsamples, as for example when only using the post-great

financial crisis sample.
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In this paper, we apply fixed-b and fixed-m asymptotics to address the small sample

bias of density forecast comparison tests. We compare alternative density forecasts by

testing two null hypotheses. The first hypothesis is the null of equal predictive accuracy

of two forecasts, this is the Diebold and Mariano (1995) equal predictive ability test. The

second one is the null of forecast encompassing in Harvey et al. (1998), which involves

testing whether one forecast is encompassed by the other. To accommodate forecasts

reported as probabilities for intervals, or bins, as typical for survey forecasts, we use

two loss functions: the Quadratic Probability Score by Brier (1950) and the Ranked

Probability Score by Epstein (1969). With these loss functions, we show that both tests

can be performed in the framework of semiparametric inference on the mean of a process.

In the case of the test of equal predictive accuracy, this coincides with the framework in

Diebold and Mariano (1995), so we will loosely refer to it as the DM framework in the

remainder of the paper, even when we apply it to the forecast encompassing test.

The DM framework is particularly appealing as it is simple and the test statistic is

easy to compute. To overcome the small sample bias of the DM framework, we use an

alternative approach based on fixed-smoothing asymptotics. In particular, we consider

fixed-b asymptotics by Kiefer and Vogelsang (2005) and fixed-m asymptotics by Hualde

and Iacone (2017). This approach proved capable of eliminating size distortion in the

equal predictive accuracy test for comparing point forecasts, see Coroneo and Iacone

(2020). In an original Monte Carlo exercise, we first document that standard asymptotics

deliver unreliable density forecast comparison tests in small samples, and we then verify

that fixed-b and fixed-m asymptotics can be used with success to perform tests of equal

predictive accuracy and encompassing for density forecasts.

We apply the proposed density forecast comparison tests to assess the accuracy

of the ECB SPF density forecasts for three key macroeconomic variables (real GDP

growth, inflation and the unemployment rate). We are interested in establishing whether

ECB SPF density forecasts can beat and/or encompass simple benchmarks, such as
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an unconditional Gaussian, a Gaussian distribution based on the assumption that the

target variable follows a random walk without drift, and a naive forecast taken from the

previous round of ECB SPF forecasts. All benchmark forecasts are produced in real-

time, by using the same information available to professional forecasters at each survey

deadline.

Results indicate that ECB SPF density forecasts for unemployment and real GDP

growth outperformed and sometimes encompassed the benchmarks, especially at one-

year ahead and in the second subsample. On the other hand, survey forecasts for inflation

do not easily outperform nor encompass the benchmarks. For all the variables, however,

we find evidence of an improvement in predictive ability since 2010, supporting the

anecdotal evidence of a change in the forecasting practice after the financial crisis. We

also find that the ECB SPF easily outperforms and encompasses the naive benchmark,

indicating that professional forecasters update their information set when making their

predictions and that previous round forecasts are uninformative.

This paper contributes to the literature on forecast evaluation by introducing fixed-

smoothing asymptotics to density forecast comparison tests. This type of asymptotics is

becoming popular for point forecast comparison, see Choi and Kiefer (2010), Harvey et

al. (2017), Li and Patton (2018), Coroneo and Iacone (2020), Coroneo et al. (2022), but,

to the best of our knowledge, their properties for density forecast comparison tests have

not been analysed. Our novel Monte Carlo exercise confirms the small sample bias of

standard density forecast comparison tests, and indicates that fixed-smoothing asymp-

totics successfully addresses this issue. We also contribute to the literature on forecast

encompassing by showing how the forecast encompassing test for density forecasts can

be implemented in the DM framework: Clements and Harvey (2010) introduce it for

dichotomic variables but we extend it to continuously distributed variables.

The remainder of the paper is organised as follows. In section 2 we describe how to

perform tests of equal predictive accuracy and encompassing for survey density forecasts.
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In section 3, we show how to apply fixed-smoothing asymptotics to these tests. We

investigate the properties of the tests in Section 4, where we present a Monte Carlo

exercise and provide recommendations for the bandwidths. In Section 5 we carry out

the empirical study, and in Section 6 we conclude.

2 Density forecast comparison

We compare two h-step ahead density forecasts made at time t − h for the variable of

interest yt using loss functions. The h-step ahead survey density forecast i specifies the

probability that the variable of interest yt falls in bin k given the information available

at time t− h, ft,i = [f 1
t,i, . . . , f

k
t,i, . . . , f

K
t,i ]

′, where fk
t,i = Pt−h,i(yt ∈ k) for k = 1, . . . , K.

The vector of realisations is yt = [y1t , . . . , y
k
t , . . . , y

K
t ]′, where the indicator variable

ykt = I(yt ∈ k) takes the value of 1 if the outcome at time t falls in bin k and zero

otherwise, so that K − 1 elements of yt are set to 0 and one takes value 1. The forecast

error is then et,i = yt − ft,i.

The cumulative distribution function of the density forecast is Ft,i = [F 1
t,i, . . . , F

k
t,i, . . . , F

K
t,i ]

′,

where F k
t,i =

∑k
l=1 f

l
t,i, and the cumulative outcome variable isYt = [Y 1

t , . . . , Y
k
t , . . . , Y

K
t ]′,

where Y k
t =

∑k
l=1 y

l
t. Finally, the cumulative forecast error is given by Et,i = Yt − Fi,t.

We consider two loss functions that naturally accommodate forecasts reported as

histograms: the Quadratic Probability Score by Brier (1950) and the Ranked Probability

Score by Epstein (1969). The Quadratic Probability Score (QPS) associated with each

forecast is given by

QPSt,i =
K∑
k=1

(ykt − fk
t,i)

2 = e′t,iet,i. (1)

This loss function penalizes equally any probability assigned to events that do not occur.

As a consequence, forecasts that assign a large probability in a neighbourhood of the

realised outcome are treated in the same way as forecasts that assign a small probability

to that same neighbourhood and put more probability on very distant outcomes. This
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may be appropriate in some situations; in many cases, however, it is desirable to consider

the forecast clustering more probability in the intervals near the realised outcome as more

precise. For this reason, we also consider the Ranked Probability Score (RPS) associated

with each forecast, given by

RPSt,i =
K∑
k=1

(Y k
t − F k

t,i)
2 = E′

t,iEt,i. (2)

This loss function has the advantage of considering the overall tendency of the forecast

probability density function, as it penalizes less severely density forecasts assigning rel-

atively larger probabilities to outcomes that are close to the true outcome. Therefore,

the RPS has the desirable property of being proper in the sense that encourages the

forecasters to reveal their true beliefs, see Gneiting and Raftery (2007).

Another appealing property of the QPS and the RPS is that they are always defined,

even when the realisation falls in a histogram bin to which the survey forecast has

assigned a zero probability. On the contrary, the more popular logarithmic score would

be undefined in this case.

We use two approaches to compare the performance of two density forecasts. The

first involves testing the null hypothesis of equal predictive accuracy of the two forecasts

according to the QPS or the RPS loss function. This can be implemented with the test

for equal predictive accuracy proposed by Diebold and Mariano (1995). The second

approach involves testing for whether one density forecast is encompassed by the other

one, in the sense that the predictive accuracy (according to the QPS or the RPS loss

function) of the encompassing density forecast cannot be improved by a linear combi-

nation with the encompassed forecast. This is the forecast encompassing test and, for

point forecasts, Harvey et al. (1998) show that, by redefining the loss differential, it is

possible to implement it using the DM framework.

In what follows, we first show how the DM framework can be used also to perform

the forecast encompassing test for density forecasts. We then discuss the limitations of
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standard asymptotics when applied to the DM framework, and apply fixed-smoothing

asymptotics to the DM framework for density forecast comparison.

2.1 Equal predictive accuracy

A test of equal predictive accuracy allows testing the null hypothesis that two alternative

forecasts have equal forecasting accuracy according to a user-chosen loss function, which

in the case of density forecasts can be the QPS or the RPS loss function.

Denote by Li the loss function for i = 1, 2, so that Li
t = QPSt,i if the QPS loss is

used or Li
t = RPSt,i if the RPS loss is used, and the loss differential by

dt = L1
t − L2

t , (3)

the null hypothesis of equal forecasting ability is

H0 : {E(dt) = 0}. (4)

2.2 Forecast encompassing

A forecast encompassing test involves testing whether one set of forecasts encompasses

another one, in the sense that the accuracy of one set of (encompassing) forecasts ft,1

cannot be improved through a linear combination with a second set of (encompassed)

forecasts ft,2. To this end, we consider the density forecast combination

ft,c(λ) = (1− λ)ft,1 + λft,2 (5)

where λ (0 ≤ λ ≤ 1) is a scalar and denotes the weight associated with forecasts ft,2.

In this context, ft,1 encompasses ft,2 if the optimal weight in the QPS (or RPS) sense is

equal to zero.
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In Appendix A, we show that if we define dt as

dt =


e′t,1(et,1 − et,2), for QPS,

E′
t,1(Et,1 − Et,2), for RPS,

(6)

then the null of density forecast encompassing can be expressed as

H0 : {E(dt) = 0}

and the density forecast encompassing test can be conducted against the one-sided al-

ternative E(dt) > 0 (i.e., λ > 0), given the assumption of a non-negative combination

weight.

2.3 Diebold-Mariano framework

In sections 2.1-2.2, we showed how both the equal predictive accuracy and the forecast

encompassing tests can be performed in the framework of inference on the mean of the

process dt also in the context of density forecast evaluation. The difference between the

two tests lies in how the process dt is defined. For the test for equal predictive accuracy,

dt is defined as in (3), while for the test for density forecast encompassing dt is defined

as in (6).

Denoting the sample average as d = 1
T

∑T
t=1 dt and the long run variance as σ2

T =

var(
√
T d), then the test statistic is

√
T d/σT . Under regularity conditions, including

mixing at a sufficient rate for dt, sufficient moments for |dt| and σT > 0, the assumptions

as in Giacomini and White (2006) hold, yielding a central limit theorem for
√
T d. Then,

under H0,
√
T

d

σT

→d N(0, 1). (7)

The test statistic in (7) is unfeasible as σT is unknown, but this may be replaced by
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an estimate, say σ̂. If the latter is consistent, in the sense σ̂ − σT = op(1), the feasible

statistic obtained in this way retains the standard normal limiting distribution.

One estimate that, under regularity conditions, fits this purpose, is the Weighted

Covariance Estimate

σ̂2
WCE = γ̂0 + 2

T−1∑
j=1

k(j/M)γ̂j

where γ̂j =
1

T

∑T−j
t=1 (dt − d)(dt+j − d) is the sample autocovariance, k(.) is a kernel

function and M is a bandwidth parameter. A popular kernel is the triangular (Bartlett)

kernel

kB(j/M) = 1− j

M
for j ≤ M

yielding the estimate

σ̂2
WCE−B = γ̂0 + 2

M∑
j=1

(
M − j

M

)
γ̂j.

Regularity conditions to ensure consistency include M → ∞ and M/T → 0 as T → ∞.

A second class of estimates of the long run variance is the Weighted Periodogram

Estimate

σ̂2
WPE = 2π

T/2∑
j=1

KM(λj)I(λj) (8)

where KM(λj) is a symmetric kernel function, and I(λj) = | 1√
2πT

∑T
t=1 dte

iλjt|2 is the

periodogram of dt computed at the Fourier frequencies λj =
2πj
T

for j = 1, . . . , T/2. A

popular kernel in this case is the Daniell kernel

KD
M(j) =

1

m
for j ≤ m

where m is a user-chosen parameter that is linked to the bandwidth M (and it is, with a

slight abuse of notation, referred to as bandwidth too). This kernel is often a convenient

choice, as the Daniell kernel estimate of the long run variance has a very simple formula
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in the frequency domain,

σ̂2
WPE−D = 2π

1

m

m∑
j=1

I(λj). (9)

When m → ∞ and m/T → 0 as T → ∞, the estimate is consistent. An extension of this

class of estimates is introduced in Phillips (2005), that shows that σT can be consistently

estimated by regressing the series of interest on an orthonormal series (although Phillips

(2005) actually only considers a constant long term variance, his argument also applies

to the more general context we consider here). This orthonormal series may be a set of

trigonometric polynomials, but this does not necessarily have to be the case.

Unfortunately, the DM framework is subject to severe size distortion in small and

medium-sized samples, as documented, for example, in Clark (1999). Obviously, finite

sample size distortion is not a problem affecting only the DM framework, it is common

to any test that makes inference on the mean (or on a regression parameter) using a

heteroskedasticity autocorrelation consistent estimate of the long run variance and main-

taining the limit normality assumption for the standardised statistic, see for example

Newey and West (1994). In fact, in any finite sample, the ratio M/T is still non-zero,

and in a moderate size sample this ratio may be non-negligible. Thus, this size distortion

may be more severe in the context of forecast comparisons, as in many cases the sample

size is relatively small, when compared to other macro and financial applications.

3 Fixed-smoothing asymptotics

Neave (1970) shows that treating the ratioM/T as constant can provide a better measure

of the variance of the weighted covariance estimate of a spectral estimate. Kiefer and

Vogelsang (2002a,b, 2005) apply the same intuition to the problem of testing hypothesis

about the mean for a weakly dependent process, deriving the distribution of the feasible

test statistic when M/T → b ∈ (0, 1] as T → ∞. Under this assumption σ̂2 is not

consistent, and the test statistic has a non-standard limit distribution that depends both
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on b and on the kernel choice. Because of the dependence on b of the limit distribution,

this approach is often referred to as “fixed-b”.

In the context of the DM framework, for the Bartlett kernel the results of Kiefer and

Vogelsang (2005) imply that, under H0 and regularity conditions, when M/T → b ∈

(0, 1] as T → ∞,
√
T

d

σ̂WCE−B

→d Φ
B(b) (10)

ΦB(b) is characterised in Kiefer and Vogelsang (2005) and a cubic equation is provided

for critical values.

In the frequency domain, fixed-b corresponds to keepingm constant when the Daniell

kernel is used. This naturally leads to considering asymptotics for fixed m. Under H0

and regularity conditions, Hualde and Iacone (2017) consider m constant as T → ∞, in

this case we have
√
T

d

σ̂WPE−D

→d t2m. (11)

Sun (2013) shows that a limit of this kind also holds for the general orthonormal series

variance estimator.

Fixed-b and fixed-m asymptotics can be heuristically understood as undersmoothing

in the context of estimating the spectral density at frequency zero. For this reason,

many references, for example Sun (2013), refers to them collectively as fixed-smoothing.

Monte Carlo simulations in Kiefer and Vogelsang (2005) suggest that critical values

obtained using fixed-b asymptotics result in better empirical size for tests. This was

later justified theoretically by Sun (2014), that shows that fixed-b asymptotics provides

a higher order refinement. Moreover, fixed-smoothing asymptotics gives a justification

(and suitable critical values) even for bandwidths that researchers would not consider

when using standard asymptotics: it is even possible to choose M = T when using the

weighted covariance Bartlett estimate, or to choose m = 1 when using the weighted

periodogram Daniell estimate. This allows a further correction in the empirical size, as

in Monte Carlo simulations larger bandwidths M (smaller m) are associated to better
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empirical size. For example, Monte Carlo simulations in Coroneo and Iacone (2020)

indicate that it is possible to completely eliminate the size distortion documented by

Clark (1999).

Assumption 1 Partial sums of dt are such that the functional central limit theorem

(FCLT) holds
√
T

T

1

σT

⌊rT ⌋∑
t=1

dt ⇒ W (r)

where ⌊.⌋ denotes the integer part of a number, r ∈ [0, 1] and W (r) is a standard Brow-

nian motion.

Assumption 1 is sufficient to establish the fixed-smoothing limits (10) and (11). This

assumption is not primitive, but it is convenient because it may be established under a

range of conditions. For example, Phillips and Solo (1992) consider linear processes of

independent, identically distributed innovations of martingale difference sequences. On

the other hand, Wooldridge and White (1988) consider mixing processes, thus allowing

for forms of heteroskedasticity that may also induce non-stationarity, under the addi-

tional assumption that V ar
(√

T/T 1/σT

∑⌊rT ⌋
t=1 dt

)
→ r. In view of the non-linearity in

the loss function, establishing a linear representation for dt from primitive assumptions

on fk,i
t and ykt may be very challenging, whereas establishing mixing properties may be

easier, especially when fk,i
t and ykt are limited to being M -dependent processes. How-

ever, as the two classes may overlap but are not included in each other, see discussion

in Phillips and Solo (1992) and Andrews (1984), we prefer the more general assumption

given here, that encompasses them both.

4 Monte Carlo study of size and power

We analyse the empirical size and power of the tests of equal predictive accuracy and of

encompassing for density forecast by means of a Monte Carlo experiment. Since Kiefer
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and Vogelsang (2005), simulation studies have by now covered a fairly wide range of

situations, including inference in regression models, in non-linear models, and others.

We refer to Lazarus, Lewis, Stock and Watson (2018) for a recent, comprehensive study.

In point forecasting, studies include Coroneo and Iacone (2020) on forecast evaluation

in small samples, Harvey, Leybourne and Whitehouse (2017) on forecast encompassing,

and Li and Patton (2018) on forecast evaluation in large samples.

We already noticed that simulation studies find that fixed-smoothing asymptotics

yield better approximation of the empirical size, and that this improvement is stronger

the larger is the bandwidth M (the smaller is m). These works also find that the

finite sample power is decreasing with the bandwidth, therefore documenting the exis-

tence of a trade-off between correct size and power. Lazarus, Lewis, Stock and Watson

(2018), drawing on their extensive simulation study, recommend M = ⌊1.3T 1/2⌋ and

m = ⌊0.2T 2/3⌋.

In this section, we check whether the size improvements for the equal predictive

ability and forecast encompassing tests still hold in the case of density comparisons. We

use a rather small sample that replicates the dimension of the sample of our dataset. We

also examine the issue of bandwidth selection, and compare our results with Lazarus,

Lewis, Stock and Watson (2018) and Coroneo and Iacone (2020).

In our Monte Carlo study, for simplicity, we only consider the QPS loss function.

We consider a sample of T observations, and we assume that the probability that the

variable of interest yt falls in bin k, for k = 1, 2, 3, is given by y′
t = (0, 1, 0). We also

assume that we have two density forecasts that assign the probability that yt falls in bin

k as follows

f ′1,t = (At, 1− At, 0);

f ′2,t = (0, 1−Bt, Bt);
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where

At = at + at−1 + ...+ at−Q;

Bt = bt + bt−1 + ...+ bt−Q;

and at, ..., at−Q are realisations from a uniform distribution in [0, α/(Q+1)], bt, ..., bt−Q

are realisations from a uniform distribution in [0, β/(Q+1)], and at, ..., at−Q, bt, ..., bt−Q

are all independently distributed.

The forecast errors are then given by

e′1,t = (−At, At, 0);

e′2,t = (0, Bt,−Bt).

In this setting, E(e′1,te1,t) = E(2A2
t ), E(e′2,te2,t) = E(2B2

t ). This means that the null

hypothesis of the equal predictive ability test, E(dt) = E(e′1,te1,t) − E(e′2,te2,t) = 0,

follows from setting α = β. For the forecast encompassing test, E(e′1,t(e1,t − e2,t)) =

2E(A2
t )−E(At)E(Bt), so to obtain the null hypothesis E(dt) = E(e′1,t(e1,t − e2,t)) = 0,

we set β = 8 4+3Q
12(Q+1)

α. We can investigate the power of the equal predictive ability test

setting β =
√

α2 − 3/2× c/
√
T as we increase the value of c.

In our experiment we set α = β = 1 for the equal predictive accuracy test and α = 3/8

for the forecast encompassing test, and Q up to 6, with sample size set at T = 40, 80,

and we repeat the experiment for 10,000 replications. Our sample size is much smaller

than the sample size of Lazarus, Lewis, Stock and Watson (2018), and it matches the

dimension of the sample available for our empirical study. Indeed, checking the empirical

performance in such small samples is one reason of interest in this experiment.

In Tables 1 and 2, we report the empirical size of the test with one-sided alternative

H1 : {E(dt) > 0} when 5% critical values from both standard asymptotics and fixed-

smoothing asymptotics are used. In columns WCE, the long run variance estimate is
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Table 1: Empirical size of the test of equal predictive ability

Panel A: standard asymptotics
WCE WPE

T Q ⌊T 1/3⌋ ⌊T 1/2⌋ T ⌊T 1/4⌋ ⌊T 1/3⌋ ⌊T 1/2⌋ ⌊T 2/3⌋

40

0 0.067 0.079 0.204 0.089 0.075 0.064 0.061
2 0.102 0.098 0.218 0.084 0.078 0.082 0.117
4 0.159 0.129 0.234 0.101 0.096 0.130 0.192
6 0.197 0.152 0.244 0.109 0.117 0.176 0.232

80

0 0.060 0.068 0.201 0.085 0.069 0.058 0.056
2 0.082 0.080 0.206 0.086 0.067 0.066 0.092
4 0.117 0.098 0.220 0.090 0.077 0.087 0.160
6 0.148 0.111 0.221 0.092 0.083 0.112 0.194

Panel B: fixed-smoothing asymptotics
WCE WPE

T Q ⌊T 1/3⌋ ⌊T 1/2⌋ T ⌊T 1/4⌋ ⌊T 1/3⌋ ⌊T 1/2⌋ ⌊T 2/3⌋

40

0 0.047 0.045 0.049 0.052 0.051 0.051 0.055
2 0.076 0.058 0.057 0.047 0.051 0.067 0.108
4 0.129 0.083 0.070 0.058 0.069 0.113 0.183
6 0.166 0.105 0.079 0.066 0.082 0.157 0.222

80

0 0.048 0.047 0.048 0.050 0.051 0.050 0.053
2 0.067 0.053 0.052 0.050 0.049 0.057 0.085
4 0.100 0.072 0.059 0.054 0.058 0.077 0.152
6 0.131 0.082 0.061 0.053 0.062 0.100 0.188

Note: empirical size of the equal predictive ability test with standard asymptotics (panel A) and fixed-
smoothing asymptotics (panel B). The theoretical size is 5%, for a one-sided alternative hypothesis. Q
indicates the dependence in the process. WCE refers to the test statistic with Weighted Covariance
Estimate with Bartlett kernel for the long run variance; WPE refers to the test statistic with Weighted
Periodogram Estimate with Daniell kernel for the long run variance.
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Table 2: Empirical size of the forecast encompassing test

Panel A: standard asymptotics
WCE WPE

T Q ⌊T 1/3⌋ ⌊T 1/2⌋ T ⌊T 1/4⌋ ⌊T 1/3⌋ ⌊T 1/2⌋ ⌊T 2/3⌋

40

0 0.046 0.061 0.189 0.073 0.059 0.045 0.040
2 0.075 0.067 0.203 0.062 0.050 0.052 0.094
4 0.122 0.092 0.222 0.075 0.064 0.091 0.167
6 0.163 0.128 0.208 0.088 0.096 0.151 0.194

80

0 0.047 0.056 0.187 0.075 0.055 0.046 0.043
2 0.049 0.042 0.170 0.052 0.040 0.035 0.055
4 0.088 0.068 0.182 0.066 0.050 0.055 0.120
6 0.110 0.071 0.182 0.062 0.049 0.074 0.155

Panel B: fixed-smoothing asymptotics
WCE WPE

T Q ⌊T 1/3⌋ ⌊T 1/2⌋ T ⌊T 1/4⌋ ⌊T 1/3⌋ ⌊T 1/2⌋ ⌊T 2/3⌋

40

0 0.030 0.029 0.035 0.039 0.037 0.035 0.033
2 0.050 0.037 0.037 0.032 0.031 0.042 0.077
4 0.092 0.051 0.057 0.038 0.042 0.077 0.157
6 0.139 0.082 0.065 0.047 0.060 0.132 0.185

80

0 0.034 0.034 0.040 0.040 0.038 0.037 0.039
2 0.039 0.028 0.029 0.030 0.029 0.028 0.054
4 0.070 0.042 0.036 0.037 0.040 0.045 0.115
6 0.090 0.050 0.040 0.035 0.035 0.062 0.148

Note: empirical size of the forecast encompassing test with standard asymptotics (panel A) and fixed-
smoothing asymptotics (panel B). The theoretical size is 5%, for a one-sided alternative hypothesis. Q
indicates the dependence in the process. WCE refers to the test statistic with Weighted Covariance
Estimate with Bartlett kernel for the long run variance; WPE refers to the test statistic with Weighted
Periodogram Estimate with Daniell kernel for the long run variance.
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Figure 1: Finite sample power
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Note: power performances of the equal predictive ability test in a samples of size T = 40 and T = 80,
for the theoretical size 5% and for a one-sided alternative hypothesis. The dashed lines refer to power
performances using size-adjusted critical values while solid lines use fixed-smoothing asymptotics. The
parameter c indicates the distance from the null hypothesis. WCE refers to the test statistic with
Weighted Covariance Estimate with Bartlett kernel for the long run variance; WPE refers to the test
statistic with Weighted Periodogram Estimate with Daniell kernel for the long run variance.

computed using a Bartlett kernel with bandwidthsM = ⌊T 1/3⌋,M = ⌊T 1/2⌋ andM = T .

In columns WPE, we use the Daniell kernel with bandwidths m = ⌊T 1/4⌋, m = ⌊T 1/3⌋,

m = ⌊T 1/2⌋ and m = ⌊T 2/3⌋. Consistently with results from other simulation studies,

standard asymptotics are associated with size distortions. The performance deteriorates

as the dependence increases with Q, especially when the bandwidth m is too long (or,

to a lesser extent, when M is too short), reflecting the fact that the dependence causes a

curvature in the spectral density at larger frequencies, and thus a bias in the estimation of

17



the spectral density in zero. The second source of distortion is due to the approximation

of the average periodogram as its probability limit, and this is more evident when m

is too short (m = ⌊T 1/4⌋), and when the bandwidth M is too long (M = T ). Using

fixed-smoothing asymptotics always improves the empirical size. As usual, the best

performance is for for M = T or the smallest m (as the size distortion due to the

curvature of the spectral density is least, in this case), but on balance we observe correctly

sized tests with WCE already with bandwidth M = ⌊T 1/2⌋, likewise, we observe correct

size with WPE already with bandwidth m = ⌊T 1/3⌋.

For the power study we only consider the equal predictive ability test. We set Q = 0

and increasing values of c up to 4. In this case, we only consider bandwidths that

are associated to good empirical size properties, namely WCE with M = ⌊T 1/2⌋ and

M = T , and WPE withm = ⌊T 1/4⌋ andm = ⌊T 1/3⌋, in all cases only for fixed-smoothing

asymptotics. For the purpose of comparison only, we also plot the size adjusted power.

Power performances are reported in Figure 1. In all cases the empirical power is a very

good approximation of the size adjusted power, again offering support to the assumption

that fixed-smoothing asymptotic is a valuable instrument for inference. We also find

that, as a general rule, larger bandwidths M (smaller m) are associated to lower power,

consistently with other similar simulation studies. Overall we suggest M = ⌊T 1/2⌋

and m = ⌊T 1/3⌋. Given our sample size, these bandwidth rules seem in line with the

recommendation in Lazarus, Lewis, Stock and Watson (2018).

5 Application

We use the proposed density forecast evaluation tests with fixed-smoothing asymptotics

to evaluate the predictive ability of density forecasts from the European Central Bank’s

Survey of Professional Forecasters (ECB SPF) for HICP inflation, the unemployment

rate and real GDP growth against three simple benchmarks: an unconditional Gaussian

density, a Gaussian random walk density, and naive benchmark that uses the latest
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survey value for the same forecast horizon. Of course, one can use more sophisticated

benchmarks, but here our objective is to assess whether the ECB SPF survey forecasts

can at least beat three very simple benchmarks.

5.1 The ECB Survey of Professional Forecasters

We use aggregate ECB SPF density forecasts at 1 and 2 years ahead for inflation (year-

on-year percentage change of the Harmonised Index of Consumer Prices, HICP), real

GDP growth (year-on-year percentage change of real GDP) and the unemployment rate

(as percentage of the labour force).

The ECB SPF is administered quarterly to a panel of forecasters (about 80 institu-

tions with an average of 60 responses each round). Participants are experts affiliated

with financial or non-financial institutions based within the European Union, and form

an heterogeneous group to guarantee the representativeness and independence of the

expectations collected.

Participants are asked to provide a forecast for the current calendar year, the follow-

ing calendar year, the calendar year after that, a long term horizon, a rolling horizon one

year ahead of the latest available data and a rolling horizon two years ahead of the latest

available data. For more information on the ECB SPF see Garcia (2003) and Bowles,

Friz, Genre, Kenny, Meyler and Rautanen (2007).

To report their density forecasts, participants are given a set of specific ranges and are

asked to predict the probability that the target variable will fall in each specific range,

or bin, with the first and the last being open intervals. The number of ranges given in

every survey round can change but their width is fixed. The ECB SPF reports both the

anonymised individual density forecasts and the aggregate density forecast, constructed

by summing up the individual probabilities reported in the SPF and dividing by the

number of respondents. For example, in Figure 2 we present the one year-ahead density

forecast for the December 2016 HICP produced in the 2016.Q1 survey round.
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Figure 2: ECB SPF density forecast for HICP one-year ahead, December 2016
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Note: histogram of the one-year ahead aggregate density forecast for HICP from the 2016.Q1 survey
round. Participants are asked to report a probability for the realisation in December 2016 to fall in
each bin.

5.2 Benchmark Forecasts

We compare ECB SPF density forecasts against three simple benchmarks: an uncondi-

tional Gaussian density forecast, a Gaussian random walk density forecast that repre-

sents a standard benchmark for forecasting, and a naive forecast based on the lagged

ECB SPF density forecast that, as such, incorporates all the information available at

the previous survey round.

As forecasters operate using data as available at the time the forecasts are made, we

construct the Gaussian benchmark density forecasts using only the real-time information

available to professional forecasters up to the deadline for responding to each survey

round by using the historical vintages from the Real-time Database for the euro area

built by Giannone, Henry, Lalik and Modugno (2012) and available on the European

Central Bank Statistical Data Warehouse.

For the unconditional Gaussian benchmark, we use a Gaussian distribution with

mean and variance obtained from the historical observations of the target variable as
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available at each survey deadline. For the Gaussian random walk benchmark, we use

a normal distribution with conditional expectation µt = yt−h and variance calculated

using all historical observations as available at each survey deadline. From these normal

distributions, we compute the probability that the realization of the target variable falls

inside each bin.

For the naive benchmark, we simply use the last available ECB SPF density forecast

for the same horizon, i.e. fk,Naive
t = fk,SPF

t−1 . In the case of different bins available from

a survey round to the following, the forecasts are adjusted to accommodate the new

bin structure. If in the new survey round there are more bins than in the previous, the

probability of the last bin is equally split across the additional bins available; if there

are less bins in the current survey round than the previous round, the probabilities of

extreme bins are added up and placed in the only available bin. For additional discussion

about the changing bin structure see D’Amico et al. (2008) and Manzan (2021).

5.3 Empirical Results

We analyse the ECB SPF aggregate density forecasts at the rolling horizons of one and

two years for HICP inflation, the unemployment rate and real GDP growth, for the

surveys between 2000.Q1 and 2019.Q4, corresponding to a total of 80 quarterly observa-

tions. We also split the sample in two equally sized subsamples: 2000.Q1-2009.Q4 and

2010.Q1-2019.Q4, of 40 observations each. As shown in Section 4, with such small sam-

ple sizes the DM framework with standard asymptotics suffers from large size distortions

but fixed-smoothing asymptotics can still provide reliable inference.

Summary statistics for the test statistics dt for unemployment, GDP and HCPI

forecasts are in Tables 3-5. We report the full sample mean, the standard deviation,

and autocorrelations up to the fourth lag and the eighth lag for the RPS and QPS loss

functions.

Results for the equal predictive ability statistic are in the top panel of each table.
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Table 3: Summary Statistics of dt for unemployment rate

Panel A: Equal Predictive Ability Statistic
1 year ahead 2 years ahead

Loss UG GRW Näıve UG GRW Näıve

RPS

Mean 1.24 0.24 0.25 0.70 0.21 0.21
STD 1.15 0.37 0.40 1.57 0.63 0.48
AC1 0.82 0.54 0.31 0.86 0.73 0.35
AC2 0.60 0.20 -0.06 0.64 0.37 0.02
AC3 0.36 0.00 -0.06 0.42 0.20 -0.04
AC4 0.18 0.01 -0.06 0.24 0.16 -0.02
AC8 -0.28 0.02 0.01 -0.24 -0.02 -0.07

QPS

Mean 0.16 0.05 0.10 0.06 0.00 0.05
STD 0.24 0.22 0.18 0.23 0.16 0.14
AC1 0.54 0.37 0.32 0.75 0.56 0.14
AC2 0.33 0.31 -0.07 0.41 0.16 -0.08
AC3 0.07 0.06 0.06 0.19 -0.06 -0.02
AC4 0.02 0.07 0.06 0.08 -0.12 0.17
AC8 -0.02 -0.06 0.17 -0.09 -0.32 0.06

Panel B: Forecast Encompassing Statistic
1 year ahead 2 years ahead

Loss UG GRW Näıve UG GRW Näıve

RPS

Mean 0.05 0.01 -0.07 0.28 0.01 -0.07
STD 0.48 0.16 0.16 0.87 0.28 0.19
AC1 0.71 0.47 0.29 0.86 0.68 0.40
AC2 0.44 0.01 -0.14 0.63 0.27 0.08
AC3 0.28 0.07 -0.05 0.44 0.14 -0.05
AC4 0.20 0.21 -0.10 0.27 0.17 -0.05
AC8 -0.12 0.36 0.25 -0.26 0.27 -0.01

QPS

Mean 0.02 0.02 -0.03 0.05 0.03 -0.01
STD 0.11 0.10 0.07 0.12 0.07 0.05
AC1 0.47 0.35 0.32 0.76 0.55 0.13
AC2 0.26 0.24 -0.11 0.40 0.07 -0.10
AC3 0.02 0.02 0.10 0.18 -0.12 -0.08
AC4 0.03 0.01 0.03 0.08 -0.11 0.08
AC8 0.05 -0.08 0.25 -0.14 -0.27 0.10

Note: sample mean, standard deviation (STD), and autocorrelation coefficients up to order 4, and order
8 (AC1, AC2, AC3, AC4, AC8) of dt for the unemployment rate. The top panel refers to dt as defined
for the equal predictive ability test in (3), and the bottom panel refers to dt as defined for the forecast
encompassing test in (6).
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Table 4: Summary Statistics of dt for GDP growth

Panel A: Equal Predictive Ability Statistic
1 year ahead 2 years ahead

Loss UG GRW Näıve UG GRW Näıve

RPS

Mean 0.53 0.75 0.28 -0.28 0.59 0.03
STD 1.21 1.70 0.60 0.86 1.95 0.25
AC1 0.66 0.72 0.50 0.82 0.75 0.15
AC2 0.32 0.45 0.18 0.60 0.34 -0.22
AC3 0.09 0.28 0.18 0.44 0.02 -0.22
AC4 -0.01 0.13 0.14 0.37 -0.10 -0.15
AC8 -0.06 0.04 0.11 0.31 -0.05 0.11

QPS

Mean 0.04 0.09 0.04 -0.07 0.02 0.00
STD 0.26 0.31 0.17 0.20 0.26 0.05
AC1 0.48 0.47 0.17 0.75 0.72 0.17
AC2 0.00 0.08 -0.04 0.45 0.37 -0.29
AC3 -0.10 0.00 0.05 0.30 0.20 -0.22
AC4 -0.11 0.01 -0.05 0.25 0.07 -0.01
AC8 0.07 -0.06 0.03 0.19 -0.12 0.08

Panel B: Forecast Encompassing Statistic
1 year ahead 2 years ahead

Loss UG GRW Näıve UG GRW Näıve

RPS

Mean 0.03 0.01 -0.08 0.30 0.17 -0.01
STD 0.34 0.41 0.21 0.51 0.49 0.13
AC1 0.51 0.71 0.45 0.84 0.79 0.12
AC2 0.25 0.41 -0.01 0.60 0.49 -0.24
AC3 0.04 0.15 -0.03 0.42 0.25 -0.23
AC4 0.01 0.03 0.04 0.35 0.12 -0.17
AC8 0.08 0.17 0.19 0.35 0.14 0.12

QPS

Mean 0.05 0.05 0.00 0.08 0.08 0.00
STD 0.12 0.13 0.07 0.11 0.11 0.03
AC1 0.49 0.48 0.11 0.77 0.76 0.13
AC2 0.02 0.05 -0.13 0.49 0.49 -0.24
AC3 -0.05 -0.06 0.03 0.34 0.34 -0.16
AC4 -0.07 -0.10 -0.11 0.28 0.23 -0.04
AC8 0.11 0.13 0.07 0.22 0.16 0.07

Note: sample mean, standard deviation (STD), and autocorrelation coefficients up to order 4, and order
8 (AC1, AC2, AC3, AC4, AC8) of dt for GDP growth. The top panel refers to dt as defined for the equal
predictive ability test in (3), and the bottom panel refers to dt as defined for the forecast encompassing
test in (6).
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Table 5: Summary Statistics of dt for HCPI

Panel A: Equal Predictive Ability Statistic
1 year ahead 2 years ahead

Loss UG GRW Näıve UG GRW Näıve

RPS

Mean 0.15 0.18 0.05 0.07 0.54 0.01
STD 0.75 0.90 0.23 0.57 1.17 0.11
AC1 0.71 0.54 0.16 0.75 0.65 -0.02
AC2 0.60 0.33 -0.30 0.55 0.38 -0.02
AC3 0.53 0.22 -0.03 0.38 0.25 0.03
AC4 0.35 0.04 0.13 0.20 0.11 0.20
AC8 0.03 -0.30 0.10 -0.01 -0.35 -0.09

QPS

Mean -0.04 0.01 0.00 -0.02 0.08 0.00
STD 0.21 0.25 0.09 0.18 0.31 0.06
AC1 0.18 0.37 -0.14 0.35 0.60 -0.25
AC2 0.17 0.19 -0.20 0.16 0.41 -0.12
AC3 0.14 0.19 0.03 0.03 0.21 0.14
AC4 -0.03 -0.03 -0.04 -0.24 -0.08 0.00
AC8 -0.15 -0.20 0.01 -0.06 -0.19 -0.12

Panel B: Forecast Encompassing Statistic
1 year ahead 2 years ahead

Loss UG GRW Näıve UG GRW Näıve

RPS

Mean 0.08 0.17 -0.02 0.07 0.03 0.00
STD 0.33 0.49 0.11 0.28 0.42 0.05
AC1 0.62 0.71 0.12 0.73 0.60 -0.02
AC2 0.50 0.57 -0.31 0.52 0.43 -0.02
AC3 0.44 0.32 -0.02 0.34 0.30 0.05
AC4 0.26 0.11 0.13 0.15 0.08 0.19
AC8 0.03 -0.21 0.08 -0.08 -0.26 -0.11

QPS

Mean 0.07 0.07 0.00 0.04 0.04 0.00
STD 0.10 0.12 0.04 0.09 0.10 0.03
AC1 0.19 0.34 -0.17 0.35 0.34 -0.26
AC2 0.18 0.26 -0.17 0.14 0.20 -0.12
AC3 0.14 0.14 0.02 0.02 0.04 0.16
AC4 -0.03 0.01 -0.07 -0.26 -0.25 -0.01
AC8 -0.15 -0.26 0.00 -0.07 -0.11 -0.12

Note: sample mean, standard deviation (STD), and autocorrelation coefficients up to order 4, and
order 8 (AC1, AC2, AC3, AC4, AC8) of dt for HCPI. The top panel refers to dt as defined for the equal
predictive ability test in (3), and the bottom panel refers to dt as defined for the forecast encompassing
test in (6).
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A positive entry for the sample mean indicates that the forecasters are more accurate

that the benchmark. We can see that this is usually the case, although occasionally the

opposite also took place (most notably, for GDP at two years against the unconditional

Gaussian benchmark; two instances have also been recorded for the QPS loss function

for the HCPI, but for values very close to 0). The autocorrelation profile seems usually

more relevant when the unconditional Gaussian benchmark is used. This may be worth

noticing because in presence of large autocorrelation (relative to the sample size), the

test may have low power, see Coroneo and Iacone (2021). Fortunately, in this case we can

see that the autocorrelation coefficients at lag eight are usually quite small, indicating

a quick decay of the dependence.

Results for the forecast encompassing statistic are in the bottom panel of each table.

A negative entry for the sample mean is associated to an unrestricted negative estimate

of the weight in the forecasts combination (which is not feasible given that the weight

needs to be null or positive). We interpret this result as evidence that the SPF forecast

cannot be improved through a linear combination with the benchmark. This happens in

almost all cases for the naive benchmark. In Table 6, we report the estimated forecast

combination weights for the full sample (from 2000.Q1 to 2019.Q4) and the two sub-

samples (2000.Q1 to 2009.Q4 and 2010.Q1 to 2019.Q4). The naive benchmark is usually

associated with the smallest weight, the most notable exception being for real GDP

growth forecast at two years ahead using the QPS loss function. Comparing across the

two subsamples, we can see that the estimated forecast combination weights are similar

across the two subsamples for the unemployment rate, but they are smaller in the second

subsample for real GDP growth (and to a lesser extent for inflation), suggesting that the

benchmarks contained less additional information about real GDP growth in the second

part of the sample.

Density forecast evaluation test results are reported in Table 7, for the full sample,

and in Tables 8 and 9, for the two subsamples. In Panel A, we report the equal predictive
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Table 6: Estimated forecast combination weights

Full sample Q1.2000 - Q4.2019, T = 80.
1 year ahead 2 years ahead

Variable Loss UG GRW Näıve UG GRW Näıve

UN
RPS 0.03 0.03 0.00 0.22 0.04 0.00
QPS 0.11 0.24 0.00 0.33 0.49 0.00

GDP
RPS 0.05 0.01 0.00 0.92 0.18 0.00
QPS 0.35 0.25 0.00 0.83 0.43 0.50

HCPI
RPS 0.26 0.32 0.00 0.33 0.05 0.00
QPS 0.71 0.46 0.35 0.63 0.24 0.29

Subsample Q1.2000 - Q4.2009, T = 40.
1 year ahead 2 years ahead

Variable Loss UG GRW Näıve UG GRW Näıve

UN
RPS 0.06 0.09 0.00 0.33 0.23 0.00
QPS 0.11 0.20 0.00 0.34 0.45 0.00

GDP
RPS 0.12 0.06 0.00 1.00 0.17 0.00
QPS 0.47 0.35 0.08 1.00 0.61 0.29

HCPI
RPS 0.58 0.24 0.00 0.70 0.07 0.76
QPS 0.76 0.34 0.79 0.65 0.20 0.93

Subsample Q1.2010 - Q4.2019, T = 40.
1 year ahead 2 years ahead

Variable Loss UG GRW Näıve UG GRW Näıve

UN
RPS 0.01 0.00 0.00 0.07 0.00 0.00
QPS 0.12 0.33 0.00 0.30 0.58 0.00

GDP
RPS 0.00 0.00 0.00 0.45 0.20 0.00
QPS 0.20 0.15 0.00 0.48 0.24 0.95

HCPI
RPS 0.00 0.50 0.00 0.00 0.01 0.00
QPS 0.64 0.81 0.00 0.58 0.34 0.00

Note: LS estimate of λ in (5). The top panel refers to the full sample (Q1.2000 - Q4.2019, T = 80),
the middle panel to the first half-sample (Q1.2000 - Q4.2009, T = 40) and the bottom panel to the
second-half sample (Q1.2010 - Q4.2019, T = 40).

accuracy test, and in Panel B we report the forecast encompassing test. A negative value

of the equal predictive accuracy test indicates that the benchmark is performing better

than the ECB SPF forecast, while a negative value for the forecast encompassing test

indicates that the unrestricted weight on the benchmark is negative, as it does not

have any additional information with respect to the ECB SPF forecast. Rejections
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from standard asymptotics critical values are indicated shading the appropriate cell;

and indicate, respectively, one-sided significance at the 5% and 10% level. Rejections

using fixed-smoothing asymptotics critical values are reported using ** and * to indicate,

respectively, one-sided significance at the 5% and 10% level.

For each variable and each test (equal predictive accuracy and forecast encompass-

ing), we report results with both the Ranked Probability Score (RPS) and the Quadratic

Probability Score (QPS) loss functions. The long run variance is estimated using WCE

with the Bartlett kernel and bandwidth M = ⌊T 1/2⌋ and WPE with Daniell kernel and

bandwidth m = ⌊T 1/3⌋.

For the unemployment rate, results for the equal predictive ability test indicate that

one-year ahead ECB SPF forecasts outperforms the unconditional Gaussian and the

naive benchmarks in all three samples; while they outperform the Gaussian random

walk only according to the RPS loss function. For the two-years ahead forecasts, the

surveys again beat the unconditional Gaussian benchmark, and the ECB SPF forecasts

superiority is more marked in the second half of the sample. As for the forecast en-

compassing test, the ECB SPF encompasses all the benchmarks at all horizons, with

the RPS loss function; when using the QPS loss function we find that the two Gaussian

benchmarks are not encompassed by the ECB SPF. Overall, these results indicate that

for unemployment the ECB SPF provides more accurate one year-ahead predictions than

the benchmarks, however for two-year ahead predictions the ECB SPF forecasts can be

improved by combining them with the Gaussian benchmarks.

Results for real GDP growth are less favourable for the ECB SPF, especially when

using fixed-smoothing asymptotics. At one-year ahead, there is not conclusive evidence

that it delivers more accurate predictions than the benchmarks in the first subsample.

On the other hand, in the second subsample, at one year ahead the null of equal forecast

accuracy using the RPS loss is rejected for all benchmarks. At two years ahead, we

cannot reject the null of equal forecast accuracy of the ECB SPF forecasts and the
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Table 7: Forecast evaluation tests. Full sample Q1.2000 - Q4.2019, T = 80.

Panel A: Equal Predictive Ability Test
1 year ahead 2 years ahead

Variable Loss LRV UG GRW Näıve UG GRW Näıve

UN

RPS
WCE 4.95** 3.95** 5.42** 1.98** 1.68* 3.74**
WPE 4.17** 3.63** 6.58** 1.71* 1.53* 4.99**

QPS
WCE 3.89** 1.47* 4.22** 1.25 0.05 2.97**
WPE 3.68** 1.37 4.13** 1.10 0.05 3.46**

GDP

RPS
WCE 2.39** 2.13** 2.70** -1.38 1.68* 1.47*
WPE 2.22** 1.79* 2.44** -1.12 1.52* 1.57*

QPS
WCE 1.07 1.99** 1.91* -1.51 0.48 0.02
WPE 0.88 1.59* 1.72* -1.27 0.43 0.02

HCPI

RPS
WCE 0.87 1.13 2.19** 0.56 2.40** 1.14
WPE 0.74 1.09 1.74* 0.50 2.47** 0.99

QPS
WCE -1.41 0.33 0.40 -0.70 1.51* 0.31
WPE -1.40 0.38 0.37 -0.71 1.51* 0.27

Panel B: Forecast Encompassing Test
1 year ahead 2 years ahead

Variable Loss LRV UG GRW Näıve UG GRW Näıve

UN

RPS
WCE 0.46 0.24 -4.18 1.39 0.18 -2.83
WPE 0.36 0.21 -4.24 1.11 0.16 -3.53

QPS
WCE 1.24 1.58* -2.68 2.30** 3.13** -1.74
WPE 1.16 1.49* -2.40 1.96** 3.06** -1.89

GDP

RPS
WCE 0.53 0.11 -2.63 2.60** 1.59* -0.52
WPE 0.47 0.10 -2.46 2.09** 1.40* -0.60

QPS
WCE 2.46** 2.50** -0.04 3.48** 3.27** 1.47*
WPE 2.03** 2.01** -0.03 2.86** 2.76** 1.54*

HCPI

RPS
WCE 1.12 1.71* -1.47 1.11 0.35 -0.57
WPE 0.97 1.43* -1.18 1.00 0.33 -0.50

QPS
WCE 4.65** 3.97** 0.95 3.59** 2.71** 0.43
WPE 4.75** 3.44** 0.92 3.91** 2.59** 0.37

Note: Equal predictive ability test statistics and the forecast encompassing test statistics for one-
year and two-year ahead ECB SPF density forecasts against the unconditional Gaussian, the Gaussian
random walk and the naive benchmark forecasts on the full sample Q1.2000 - Q4.2019 (T = 80). A
negative equal predictive ability test statistic sign implies that benchmark performs better than the ECB
SPF, and a negative value for the forecast encompassing test indicates that the estimated unrestricted
weight on the benchmark is negative. Long run variances are estimated using WCE with Bartlett
kernel and bandwidth M = ⌊T 1/2⌋ and WPE with Daniell kernel and bandwidth m = ⌊T 1/3⌋. and

indicate, respectively, one-sided significance at the 5% and 10% level using standard asymptotics.
Rejections using fixed-smoothing asymptotics are reported using ** and * to indicate, respectively,
one-sided significance at the 5% and 10% level.
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Table 8: Forecast evaluation tests. Subsample Q1.2000 - Q4.2009, T = 40.

Panel A: Equal Predictive Ability Test
1 year ahead 2 years ahead

Variable Loss LRV UG GRW Näıve UG GRW Näıve

UN

RPS
WCE 3.52** 3.22** 2.80** 0.81 1.25 2.27**
WPE 2.98** 2.90** 2.37** 0.71 1.25 1.87*

QPS
WCE 2.69** 1.34 2.15** 0.89 0.20 2.31**
WPE 2.25** 1.08 1.93* 0.78 0.16 2.15**

GDP

RPS
WCE 1.34 1.61* 2.20** -2.21 1.24 1.04
WPE 1.10 1.46* 2.11** -1.98 1.12 1.31

QPS
WCE 0.17 1.00 1.36 -4.24 -1.05 0.63
WPE 0.14 0.81 1.35 -4.07 -0.92 0.62

HCPI

RPS
WCE -0.46 1.62* 0.90 -0.83 1.85* -0.27
WPE -0.38 1.47* 0.83 -0.71 1.53* -0.26

QPS
WCE -1.47 1.40 -0.54 -0.71 1.56* -0.49
WPE -1.30 1.11 -0.49 -0.58 1.51* -0.48

Panel B: Forecast Encompassing Test
1 year ahead 2 years ahead

Variable Loss LRV UG GRW Näıve UG GRW Näıve

UN

RPS
WCE 0.50 1.32 -1.74 1.46 1.41 -1.70
WPE 0.43 1.06 -1.93 1.24 1.63* -1.41

QPS
WCE 0.73 0.99 -0.89 1.82* 2.08** -1.23
WPE 0.61 0.81 -0.86 1.54* 1.76* -1.15

GDP

RPS
WCE 0.91 0.39 -1.99 2.76** 1.09 -0.13
WPE 0.75 0.35 -2.05 2.48** 1.00 -0.17

QPS
WCE 2.73** 2.61** 0.35 5.50** 4.86** 0.75
WPE 2.45** 2.30** 0.36 5.43** 4.90** 0.77

HCPI

RPS
WCE 4.08** 1.04 -0.30 2.76** 0.52 0.69
WPE 3.43** 0.96 -0.29 2.48** 0.49 0.67

QPS
WCE 4.13** 2.98** 1.58* 3.33** 2.78** 1.00
WPE 3.62** 2.97** 1.48* 2.65** 2.17** 1.01

Note: Equal predictive ability test statistics and the forecast encompassing test statistics for one-year
and two-year ahead ECB SPF density forecasts against the unconditional Gaussian, the Gaussian ran-
dom walk and the naive benchmark forecasts on the subsample Q1.2000 - Q4.2009 (T = 40). A negative
equal predictive ability sign implies that the benchmark performs better than the ECB SPF, and a neg-
ative value for the forecast encompassing test indicates that the unrestricted weight on the benchmark is
negative. Long run variances are estimated using WCE with Bartlett kernel and bandwidthM = ⌊T 1/2⌋
and WPE with Daniell kernel and bandwidth m = ⌊T 1/3⌋. and indicate, respectively, one-sided
significance at the 5% and 10% level using standard asymptotics. Rejections using fixed-smoothing
asymptotics are reported using ** and * to indicate, respectively, one-sided significance at the 5% and
10% level.
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Table 9: Forecast evaluation tests. Subsample Q1.2010 - Q4.2019, T = 40.

Panel A: Equal Predictive Ability Test
1 year ahead 2 years ahead

Variable Loss LRV UG GRW Näıve UG GRW Näıve

UN

RPS
WCE 3.80** 2.23** 5.10** 2.71** 1.35 2.34**
WPE 3.17** 2.00** 4.82** 2.39** 1.26 2.10**

QPS
WCE 3.30** 0.73 5.29** 0.92 -0.32 2.40**
WPE 2.77** 0.66 5.46** 0.79 -0.30 2.18**

GDP

RPS
WCE 3.19** 2.82** 2.67** 0.14 1.80* 0.86
WPE 2.69** 3.35** 2.50** 0.13 1.97** 0.73

QPS
WCE 1.58* 2.01** 1.91* 0.07 1.16 -0.61
WPE 1.49* 2.10** 1.53* 0.06 1.20 -0.58

HCPI

RPS
WCE 1.23 -0.01 2.32** 1.34 1.62* 1.98**
WPE 1.10 -0.01 1.90* 1.15 1.25 1.97**

QPS
WCE -0.49 -0.92 1.80* -0.24 0.47 1.40
WPE -0.41 -0.74 2.03** -0.21 0.38 1.54*

Panel B: Forecast Encompassing Test
1 year ahead 2 years ahead

Variable Loss LRV UG GRW Näıve UG GRW Näıve

UN

RPS
WCE 0.15 -0.51 -4.80 0.46 -0.50 -1.84
WPE 0.12 -0.45 -4.79 0.41 -0.46 -1.67

QPS
WCE 1.63* 1.67* -4.18 1.64* 2.58** -1.41
WPE 1.44* 1.53* -4.32 1.45* 2.34** -1.31

GDP

RPS
WCE -0.50 -0.71 -2.25 1.35 1.54* -0.53
WPE -0.42 -1.02 -2.12 1.28 1.25 -0.44

QPS
WCE 1.04 1.15 -0.91 1.39 1.35 1.33
WPE 0.97 1.14 -0.73 1.30 1.24 1.26

HCPI

RPS
WCE -0.08 1.72* -1.76 -0.33 0.03 -1.63
WPE -0.07 1.39 -1.41 -0.28 0.02 -1.65

QPS
WCE 2.41** 2.59** -0.66 2.00** 1.22 -0.82
WPE 1.96** 2.10** -0.72 1.78* 0.99 -0.91

Note: Equal predictive ability test statistic and forecast encompassing test statistics values for one-
year and two-year ahead ECB SPF density forecasts against the unconditional Gaussian, the Gaussian
random walk and the naive benchmark forecasts on the subsample Q1.2010 - Q4.2019 (T = 40). A
negative value for the equal predictive ability test indicates that benchmarks perform better than the
ECB SPF, and a negative value for the forecast encompassing test indicates that the unrestricted
weight on the benchmark is negative. Long run variances are estimated using WCE with Bartlett
kernel and bandwidth M = ⌊T 1/2⌋ and WPE with Daniell kernel and bandwidth m = ⌊T 1/3⌋. and

indicate, respectively, one-sided significance at the 5% and 10% level using standard asymptotics.
Rejections using fixed-smoothing asymptotics are reported using ** and * to indicate, respectively,
one-sided significance at the 5% and 10% level.
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benchmarks. This is confirmed by the forecast encompassing test, that indicates that at

two-years ahead the Gaussian benchmarks are not encompassed by the ECB SPF in the

full sample and the first subsample. Overall, these results indicate that for real GDP

growth, ECB SPF forecasters can outperform simple benchmarks at least at one-year

horizon, especially in the second subsample.

In the case of inflation, there is no statistical evidence that ECB SPF density forecasts

outperform the benchmarks from the equal predictive ability test, as the null hypothesis

of equal forecast accuracy is almost never rejected. However, in the second subsample

the ECB SPF ourperforms the naive benchmark. The forecast encompassing test results

indicate that the ECB SPF density forecast for inflation do not encompass the Gaussian

benchmarks, suggesting that more accurate density forecasts for inflation can be obtained

by combining these benchmarks with the ECB SPF.

Overall, using the QPS yields qualitatively the same outcome as using the RPS,

although significant results for the equal predictive ability (forecast rationality) tests

are less (more) frequent when the QPS is used, see for example the case of the real GDP

growth. For the forecast encompassing test, we find that the null of no encompassing is

rejected more often with the QPS, indicating that the ECB SPF place more probability

in the neighbourhood of the effective outcome, often near-missing the true realization.

As for the benchmarks, the ECB SPF easily outperforms and encompasses the naive

benchmark, indicating that the professional forecasters update their information set

when making their predictions and that previous round forecasts are completely unin-

formative. On the other hand, the unconditional Gaussian benchmark seems the most

difficult to outperform and encompass, especially for two-years ahead forecasts.

Comparing the application of standard asymptotics with fixed-smoothing asymp-

totics, we reject the null of equal predictive ability more frequently for the tests with

standard asymptotics, especially when the sample is split in two parts, and for long-

horizon forecasts. This is due to the fact that in the subsamples the tests are performed
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only on 40 observations, exacerbating the size distortions induced by standard asymp-

totics, see Section 4. For example, in Table 9 both tests with standard asymptotics reject

at 10% significance level the null of no encompassing for GDP growth, at the two-year

ahead horizon. This could be interpreted as indication that the benchmarks are not

encompassed by the SPF. However, these results are mostly not confirmed when using

fixed-smoothing asymptotics, indicating that they are partially spurious and demon-

strating the risks of using standard asymptotics in a small sample.

6 Conclusions

In this paper, we apply fixed-b and fixed-m asymptotics to tests of equal predictive

accuracy and encompassing for survey density forecasts. In an original Monte Carlo

design, we verify that fixed-smoothing asymptotics delivers correctly sized tests in this

framework, even when only a small number of out of sample observations is available.

We apply the density forecast evaluation tests with fixed-smoothing asymptotics to

evaluate the predictive ability of density forecasts from the European Central Bank’s

Survey of Professional Forecasters (ECB SPF) over the period 2001.Q1-2019.Q4, taking

as benchmarks simple forecasts generated from an unconditional Gaussian distributions,

a Gaussian random walk and the previous survey round.

Our results indicate that ECB SPF density forecasts for unemployment and real

GDP growth outperformed and sometimes encompassed the benchmarks, especially at

one-year ahead and in the second subsample. On the contrary, survey forecasts for

inflation do not easily outperform nor encompass the benchmarks. For all the variables,

however, we find evidence of an improvement in predictive ability since 2010, supporting

the anecdotal evidence of a change in the forecasting practice after the financial crisis.
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A Density forecast encompassing test

In this Appendix, we show the null hypothesis of density forecast encompassing can be

tested using the DM framework by defining dt as in (6).

If we denote the forecast errors associated with ft,c(λ) in (5) as et,c(λ) = yt − ft,c(λ),

then, the optimal weight in the minimum QPS sense has

λ̂ = argmin
T∑
t=1

(et,c(λ)
′et,c(λ)). (12)

The derivative is

∂

∂λ

T∑
t=1

(et,c(λ)
′et,c(λ)) =

T∑
t=1

2(yt − ft,c(λ))
′ ∂

∂λ
(−ft,c(λ)) =

T∑
t=1

2(yt − ft,c(λ))
′(ft,1 − ft,2)

and the first order condition therefore gives

T∑
t=1

2(yt − ft,c(λ))
′(ft,1 − ft,2) = 0.

which is met for λ = λ̂ (i.e., λ̂ is defined in this way).

Let

dt(λ) = −(yt − ft,c(λ))
′(ft,1 − ft,2)

If yt, f1,t and f2,t are jointly mixing with a sufficient rate, then so is dt(λ).

Denoting σ2
T (λ) = V ar(

√
T 1

T

∑T
t=1 dt(λ)) as the long run variance, assuming that

dt(λ) is mixing with sufficient rate and σT (λ) > 0 then we have a CLT for standardised

sum of dt(λ). This suggests a LM type test for forecast encompassing. Mimicking the

first order condition, denote λ0 as the value of λ that gives E(dt(λ))|λ=λ0 = 0, then

√
T
1/T

∑T
t=1 dt(λ0)

σT (λ0)
→d N(0, 1)
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and, under H0 : {λ0 = 0} then

√
T
1/T

∑T
t=1 dt

σT

→d N(0, 1)

where we used dt and σT in place of dt(0) and σT (0) to shorten the notation.

Rewriting

dt(λ) = −(yt − ft,1 − λ(ft,1 − ft,2))
′(ft,1 − ft,2)

then

dt = e′t,1(et,1 − et,2)

These facts suggest for H0 : {λ0 = 0} the test statistic

√
T
1/T

∑T
t=1 dt

σ̂
=

√
T
1/T

∑T
t=1 e

′
t,1(et,1 − et,2)

σ̂

for an appropriate estimate of the long rung variance σ̂.

To complete the specification of the test and to check the power, we rewrite

√
T

T

T∑
t=1

dt =

√
T

T

T∑
t=1

(dt − dt(λ0) + dt(λ0))

=

√
T

T

T∑
t=1

(dt − dt(λ0))) +

√
T

T

T∑
t=1

(dt(λ0))

=

√
T

T

T∑
t=1

(dt − dt(λ0)) +Op(1)

and notice that

dt − dt(λ0) =− (yt − ft,c(0))
′(ft,1 − ft,2) + (yt − ft,c(λ0))

′(ft,1 − ft,2)

=(ft,c(0)− ft,c(λ0))
′(ft,1 − ft,2)

=(ft,1 − (1− λ0)ft,1 − λ0ft,2)
′(ft,1 − ft,2)

=λ0(ft,1 − ft,2)
′(ft,1 − ft,2) = λ0(et,1 − et,2)

′(et,1 − et,2)
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Thus, for the alternative HA : {λ0 > 0} the null hypothesis is rejected if the test statistic

takes a value larger than the critical value.

Notice that the value that solves E(dt(λ0)) = 0 is

λ0 =
E(e′t,1(et,1 − et,2))

E(et,1 − et,2)′(et,1 − et,2)

so if, for example, et,1 and et,2 are vectors of independent, identically distributed sequen-

cies, independent from each other, then λ0 = 1/2. On the other hand, if E(e′t,1(et,1 −

et,2)) = 0 then λ0 = 0.

The Ranked Probability Score (RPS) may be treated in the same way, using the

cumulative distribution functions of each density forecast Ft,i and of the individual

realisation Yt.
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