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Abstract

We find that central bank reserves injected by QE crowd out bank lending. We estimate
a structural model with cross-sectional instrumental variables for deposit and loan
demand. Our results are determined by the elasticity of loan demand and the impact
of reserve holdings on the cost of supplying loans. We find that the reserves injected
by QE raise loan rates by 15.6 bps, and each dollar of reserves reduces bank lending
by 19 cents. Our results imply that a large injection of central bank reserves has the
unintended consequence of crowding out bank loans because of bank balance sheet
costs.
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1 Introduction

There has been a massive expansion of central bank reserves issued by the Federal Reserve in the
last 15 years. As seen in Figure 1, reserves on bank balance sheets amounted to less than $50 billion
in 2008Q1, but reached $2.8 trillion in 2015 and exceeded $3 trillion in 2021. These reserves were
created in the aftermath of the 2008–2009 financial crisis and the 2020 Covid-19 pandemic, when
the Federal Reserve purchased trillions of dollars of assets in its Quantiative Easing (QE) program
to stimulate the economy. In QE, the Federal Reserve buys assets such as Treasuries, which are
primarily held outside of the banking sector. In 2008Q1, only 1.1% of Treasuries outstanding were
held by US banks. The Federal Reserve then pays with central bank reserves, which are a special
interest-bearing asset that can only be held within the banking system. QE therefore results in a
net injection of liquid assets to bank balance sheets. While a large literature has studied the effect
of QE’s asset purchases, less is known about how QE’s injection of trillions of dollars of reserves
impacted the key functions of the banking system—lending and deposit-taking. We show the
unintended consequence that central bank reserves crowds out bank lending to the real economy,
i.e., the “reserve supply channel”.

In principle, an increase in the supply of central bank reserves could either increase or decrease
bank lending. If a mismatch between holding illiquid assets (mortgages and loans) and issuing
liquid liabilities (deposits) raises the risk of a bank run, increasing the supply of liquid reserves
could increase banks’ willingness to lend. Conversely, regulatory constraints can make it costly
for banks to expand their asset holdings so that a bank which holds more reserves will want to
reduce its holdings of other assets such as loans.
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Figure 1: Supply of Central Bank Reserves and Bank Asset Illiquidity

1



In aggregate time series data, we find suggestive evidence that reserves crowd out bank lend-
ing. As reserves increased from $0.02 trillion in 2006Q1 to $3.88 trillion in 2021Q1, the proportion
of illiquid assets on bank balance sheets declined from 83% to 63% (see Figure 1).1 However, re-
serves were injected by QE to simulate the economy during recessions so the observed substitution
away from holding illiquid assets may reflect poor economic fundamentals such as low demand
for bank loans and may not necessarily be caused by the increase in reserve supply itself.

To quantify the impact of the reserve injection on the banking system without relying on ag-
gregate time series data, we develop a structural model that can be transparently estimated with a
series of linear regressions using plausibly exogenous cross-sectional instruments. On the demand
side, in each region of the country, banks compete in imperfectly competitive markets to provide
deposits, loans, and mortgages. Our demand-side setting is similar to other structural banking pa-
pers such as Egan, Hortaçsu, and Matvos (2017) and Wang, Whited, Wu, and Xiao (2020). The
supply side of our model is novel in quantifying how a bank’s costs depend on its holdings of de-
posits, mortgages, loans, and reserves. Our specification allows a bank’s cost of lending to depend
on the quantity of reserves it holds, so our framework is uniquely suited for quantifying the impact
of a reserve injection.

There are two key quantities we need to estimate to quantify the reserve supply channel. First,
we estimate how the quantity of loans demanded changes when the banking system changes loan
interest rates. Second, we estimate how the banking system’s overall cost of providing loans
changes when it is forced to hold additional reserves. With our estimated model, we show that
the reserves injected during QE from 2007 to 2018 crowded out a total of $611 billion of bank
lending, so the reserve supply channel suggests a counterproductive reduction in the supply of
bank loans. We note that this crowding out exists in addition to the effects of asset purchases that
have been identified in the literature. Hence, the reserve supply channel is important in understand-
ing the true effectiveness of QE. Indeed, Elenev, Landvoigt, Shultz, and Van Nieuwerburgh (2021)
find evidence consistent with the quantitative importance of the reserve supply channel in a DSGE
model.

To estimate the demand for bank loans, we need to observe how the quantity of loans demanded
from a bank varies when it exogenously changes its loan interest rate. We apply an instrument from
the reduced-form literature based on banks’ reallocation of funds in their internal capital markets
after a natural disaster. As Cortés and Strahan (2017) show, loan demand in a region increases
after it is hit by a disaster. Banks reallocate funds away from non-disaster regions to provide funds

1Illiquid assets include assets except for cash, reserves, Fed funds, repos, Treasury securities and agency securities.
Data is for all U.S.-Chartered Depository Institutions from the Flow of Funds.
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to the disaster region, and this creates an exogenous shock to the interest rates the bank chooses in
non-disaster regions. This reallocation provides precisely the exogenous interest rate shock needed
to estimate a bank’s loan demand curve under the assumption that natural disasters do not impact
the demand for borrowing and lending far away from the regions where they occur. We estimate
demand curves for mortgages and deposits in a similar way.

Our demand estimates show that the total demand for bank loans is more interest-rate sensitive
than the demand for deposits and mortgages. If all banks in a market raise their corporate loan
interest rates by 10 basis points in 2007, the quantity of corporate loans demanded falls by 16.1%.
In comparison, a 10 basis point increase in rates would raise deposit demand by 1.3% and would
lower mortgage demand by 4.0%. If banks change their deposit, loan, and mortgage interest rates
by similar amounts, their loan quantities will respond by a larger amount than their mortgage or
deposit quantities. This explains why we find that corporate loan quantities respond most to a
larger reserve supply.

Next, we estimate how a bank’s cost of providing loans, mortgages, and deposits depends on
the composition of its balance sheet, i.e., the quantity of loans, mortgages, deposits, and liquid
securities. The interdependence between the components of a bank’s balance sheet poses a diffi-
cult identification problem because a bank can adjust several components of its balance sheet in
response to a demand shock. We solve this problem by first running a series of reduced-form re-
gressions of a bank’s marginal costs and balance sheet quantities on two distinct exogenous demand
shocks. In addition to the disaster instrument mentioned above, we use a Bartik-style instrument
for deposit demand using cross-sectional variation in deposit growth across regions of the country
to provide the needed exogenous variation.2 We then choose our cost function parameters to match
these reduced form regressions, providing a relatively transparent approach to estimation.

Our estimates imply that increasing a bank’s reserve holdings crowds out mortgage and cor-
porate lending and crowds in deposit issuance. In other words, reserves and bank lending are
substitutes rather than complements for banks. One reason could be that bank balance sheet space
is costly due to regulation. Acharya and Rajan (2021) argue that reserves may amplify liquidity
strains during stress epsiodes, which may also render lending more costly. Quantitatively, a $100
million increase in reserves held by a bank per branch increases its marginal cost of providing
mortgages and loans by 31.7 bps and 26.4 bps, respectively. At the same time, the marginal cost
of deposits decreases by 21.9 bps.

We use our estimated model to quantify how an increase in reserve supply affects lending
2In appendix G, we show that for a firm that sells goods in multiple markets, demand shocks in one market can be
used to estimate both the demand curves the firm faces in other markets as well as the firm’s marginal cost curve.
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and deposit-taking by the banking system. We first shock the reserve supply, allow each bank to
trade reserves and adjust its deposit, loan, and mortgage rates, and then determine its quantities of
loans, mortgages, and deposits using the demand system.3 We find that reserve injections affect
the interest rates on loans, mortgages, and deposits to a similar extent. However, a larger reserve
supply predominantly crowds out bank lending to firms, while the effect on mortgage and deposit
quantities is more muted. We estimate that the reserve injections due to QE from 2008 to 2017
crowded out 19 cents of bank lending per dollar of reserves injected. Further, we find that the
spread between the interest paid on reserves and risk-free rates available to non-bank investors
generated by the model approximately matches the dynamics of a proxy for this spread in the data.

Our findings imply that requiring banks to hold the trillions in reserves created by QE causes
a counterproductive reduction in bank lending to firms. We conclude by discussing two potential
ways to reduce the crowding out of loans: reducing banks’ cost of holding reserves and lowering
the proportion of reservce injections trapped in the banking sector.

Our structural model belongs to a growing recent literature on structural estimation in bank-
ing. Closely related is Wang, Whited, Wu, and Xiao (2020), who use a structural model of banking
to study conventional monetary policy transmission, while our structural model estimates the ef-
fect of reserve injections from unconventional monetary policy on the banking system. Several
other papers estimate models of imperfect competition in banking similar to ours (Egan, Hortaçsu,
and Matvos, 2017; Xiao, 2020; Buchak, Matvos, Piskorski, and Seru, 2018; Albertazzi, Burlon,
Jankauskas, and Pavanini, 2022), while others estimate models of networks and matching (Akkus,
Cookson, and Hortacsu, 2016; Schwert, 2018; Craig and Ma, 2018). Our application of demand
systems in banking complements work that applies demand systems in other financial markets
(Koijen and Yogo, 2019, 2020; Koijen, Richmond, and Yogo, 2020; Bretscher, Schmid, Sen, and
Sharma, 2020; Jiang, Richmond, and Zhang, 2020). In particular, Koijen, Koulischer, Nguyen, and
Yogo (2021) quantify the effect of asset purchases from QE using a demand system, whereas our
focus is on the reserves injected by QE.

This paper also contributes to the empirical literature on how quantiative easing impacts the
banking system. Existing work in this literature has mostly focused on the effect of asset purchases.
For example, Rodnyansky and Darmouni (2017) and Chakraborty, Goldstein, and MacKinlay
(2020), focus on the mortgage-backed securities purchased in QE and show that banks with more
mortgage-backed securities increase their mortgage lending by more relative to those that hold
fewer mortgage-backed securities. Another set of papers study the effect of asset purchases on

3The vector of all new rates and portfolio choices in our simulation is over 38,000 dimensions, and the symbolic
Jacobian for our model provided in the appendix is crucial to make this numerically tractable.
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flattening the long-term yield curve (Gagnon, Raskin, Remache, and Sack, 2010; Krishnamurthy
and Vissing-Jorgensen, 2011). The effect of reserve expansion has received little attention. One
exception is theoretical work by Acharya and Rajan (2021) who point to another unintended con-
sequence of reserve injection in exacerbating liquidity strains during stress epsiodes. Christensen
and Krogstrup (2019) find that long-term government yields are lowered even when short-term
assets are purchased. Kandrac and Schlusche (2021) show that loan growth at foreign banks was
higher than at domestic banks after a change in regulation caused a redistribution of reserves from
domestic to foreign banks. Our paper is the first to quantify the aggregate effect of central bank
reserve injection in the US banking system on bank lending and deposit-taking. Our “reserve sup-
ply channel” points to an important unintended consequence of central bank reserves in crowding
out bank lending from bank balance sheets that complements the transmission channels from asset
purchases in the literature. Elenev, Landvoigt, Shultz, and Van Nieuwerburgh (2021) study the
effect of QE in a DSGE model and find evidence consistent with the importance of our reserve
supply channel.

Our work also relates to a recent literature demonstrating the role of imperfect competition
in deposit markets (Drechsler, Savov, and Schnabl, 2017; Li, Ma, and Zhao, 2019) and mortgage
markets (Scharfstein and Sunderam, 2016) in the transmission of conventional monetary policy.
Our work shows that demand elasticity is an important determinant of the reserve supply channel,
since highly price-elastic corporate loan demand is impacted much more by reserve supply than
deposit and mortgage demand.

Finally, our estimates of the synergies between the different components of bank balance sheets
is novel and sheds lights on how banks’ marginal cost of lending is shaped by a number of seminal
banking theories, see e.g. Diamond and Rajan (2000); Kashyap, Rajan, and Stein (2002); Hanson,
Shleifer, Stein, and Vishny (2015); Diamond (2019).

2 A Model of Bank Balance Sheets

This section introduces the theoretical framework that guides our structural analysis. The goal of
the model is to quantify how the banking system responds to policy interventions, such as an in-
crease in reserve supply caused by QE. This response depends on two key model components: the
demand that banks face and the balance sheet costs that banks incur in supplying loans, mortgages,
and deposits. We first provide a graphical illustration of the demand and supply systems in Sub-
section 2.1. Then, in Subsection 2.2, we formally set up the model and derive the banking sector’s
response to an increase in reserve supply.
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2.1 A Graphical Illustration

We first present a simplified, visual depiction of our model using a single bank as an illustration.
In the model, banks provide loans, mortgages, and deposits in imperfectly competitive markets.
Each bank faces a demand curve that determines quantities given the interest rate they choose in
each market. In Figure 2, the loan demand for a given bank, i.e., the green line, pins down the loan
quantity, QL, based on the loan rate it chooses. Like any firm facing a downward-sloping demand
curve, banks choose their interest rate so that the marginal cost equals the marginal revenue. In
Figure 2, the bank chooses the loan rate RL at which its marginal cost of supplying loans, i.e., the
red line, equals the marginal revenue from loans lending, i.e., the blue line.

Banks’ holdings of liquid reserves may impact their marginal cost of lending. For example,
having more liquid assets may prevent fire-sales of illiquid assets and help comply with liquidity
regulations. However, a larger supply of reserves also uses up balance sheet space and may add to
the cost of meeting capital requirements when bank equity is costly. We will formally set up and
estimate a cost function, but for now, suppose that the increase in reserve supply shifts the marginal
cost of lending as illustrated in Figure 2, then the bank would raise its loan rate to RL′ , at which
the new marginal cost meets the marginal revenue. In the new equilibrium, the quantity of loans
supplied by the bank would drop to Q′

L, as implied by the loan demand curve at the new loan rate,
RL′ . Hence, the increase in loan rate and the drop in loan volume as a result of reserve injection
would be RL′ −RL and QL −Q′

L, respectively.

Our empirical approach to quantify the banking system’s response to an increase in reserves is
similar to the framework in Figure 2. We first estimate the loan demand curve, which determines
the marginal revenue. In the full model, banks compete with each other so we extend the loan
demand curve for a single bank to a demand system that captures how banks’ chosen loan rates
affect their own and each other’s quantities. Next, we estimate a bank’s cost of lending as a function
of its balance sheet composition, i.e., its volume of loans, mortgages, securities, and deposits.
Then, we can infer how an incresase in reserve supply shifts the bank’s marginal cost curve to
trace out the equilibrium change in loan rates and volumes. The same estimation is performed for
deposits and mortgages.

2.2 Model

We consider a set of banks indexed by m that operate in a set of markets indexed by n at each time
t. Banks invest in loans, L, mortgages, M , and liquid securities, S, backed by deposits, D. Each
bank m chooses market-specific rates RD,nmt, RM,nmt, and RL,nmt for its deposits, mortgages, and
loans, respectively. Taking the vector of rates chosen by their competitor banks as given, banks

6



Figure 2: This figure illustrates the effect of an increase in reserves on the loan market. An increase in
reserve supply shifts the bank’s marginal cost curve for lending. This results in a new intersection with the
marginal revenue curve, yielding a new interest rate, RL

′
. The new loan quantity, Q′

L, is then pinned down
by the demand curve.

choose their own rates to maximize their profits. In terms of loans, for example, bank m takes
the rates of its competitor banks −m, RL,n(−m)t, as given. The quantity of funds it lends is given
by the residual demand curve QL,nmt(RL,nmt, RL,n(−m)t). Similarly, its residual demand curves
for mortgages and deposits are QM,nmt(RM,nmt, RM,n(−m)t) and QD,nmt(RD,nmt, RD,n(−m)t). For
simplicity, we supress the arguments of the residual demand functions, writing QL,nmt, QM,nmt,
and QD,nmt going forward. Liquid securities, QS,mt, trade in a competitive market at an interest
rate RS,t. Loans, mortgages, deposits, and securities have cash flows that are discounted at rates
RL,m
t , RM,m

t , RD,m
t , and RS,m

t reflecting their respective riskiness.

Banks face a cost C(Θmt) of providing loans, deposits, and mortgages that depends on all of
the items Θmt on its balance sheet. Θmt is a vector of bankm’s balance sheet components, QD,nmt,
QM,nmt, QL,nmt, and QS,mt. In general, this cost function quantities the various ways that a bank’s
decisions for one part of its balance sheet can impact its costs for another. For example, having
more liquid securities on balance sheets may reduce the cost of selling illiquid loans or mortgages
in the event of large deposit withdrawals in a bank run (Diamond and Dybvig, 1983). In addition,
bank regulations such as the SLR (which constrains a bank’s leverage) and the Liquidity Coverage
Ratio (which constrains the mismatch between a bank’s holding of illiquid assets and issuance
of liquid deposits) impose costs that depend on multiple balance sheet components. We show in
Section 4 how the bank’s overall cost depends on the composition of its balance sheet.
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In this setting, bank m chooses its rates RD,nmt, RM,nmt, and RL,nmt and security quantities
QS,mt at time t to maximize the expected present value of its profits at t+1 in all markets n, which
are given by4

max
(RD,nmt,RM,nmt,RL,nmt,QS,mt)

∑
n

QL,nmt(RL,nmt −RL,m
t ) +

∑
n

QM,nmt(RM,nmt −RL,m
t )

+QS,mt(RS,t −RS,m
t )−

∑
n

QD,nmt(RD,nmt −RD,m
t )− C(Θmt). (1)

In words, bank m’s profits are the sum of its revenue from loans, mortgages, and securities, less
the nominal cost of deposit funding and the balance sheet costs C(Θmt). The first order conditions
of bank profits with respect to the choice variables, RD,nmt, RM,nmt, RL,nmt, and QS,mt, are

Marginal Revenue︷ ︸︸ ︷
∂

∂RD,nmt

[QD,nmt(R
D,m
t −RD,nmt)] =

Marginal Cost︷ ︸︸ ︷
∂C(Θmt)

∂QD,nmt

∂QD,nmt

∂RD,nmt

, (2)

∂

∂RM,nmt

[QM,nmt(RM,nmt −RM,m
t )] =

∂C(Θmt)

∂QM,nmt

∂QM,nmt

∂RM,nmt

, (3)

∂

∂RL,nmt

[QL,nmt(RL,nmt −RL,m
t )] =

∂C(Θmt)

∂QL,nmt

∂QL,nmt

∂RL,nmt

, (4)

RS,t −RS,m
t =

∂C(Θmt)

∂QS,mt

. (5)

The left hand side of equations (2)) to (4) is the marginal revenue from changing each of the bank’s
interest rates (the blue curve in Figure 2). This is because the bank’s “revenue” from loans, for
example, can be seen as the quantity QL,nmt of loans times its interest rate spread RL,nmt − RL,m

t

above the loan discount rate RL,m
t . On the right hand side of equations (2) to (5), we have the

marginal costs from changing each of the bank’s interest rates. Liquid securities are traded in a
competitive market, so the first order condition for securities holdings QS,mt in equations (5) sets
priceRS,t−RS,m

t equal to marginal cost of holding these securities ∂C(Θmt)
∂QS,mt

. Based on equation (5),

we refer to ∂C(Θmt)
∂QS,mt

as the “reserve spread”—the difference between risk-free rates RS,t available
only to banks and risk-free rates RS,m

t available to non-bank investors as well.

When the supply of liquid securities increases, as in the increase in reserve supply from QE,
banks respond by optimally changing their interest rates in all markets as well as their securities
holdings. The interest rates they choose still satisfy the first order conditions in equations (2)
to (5), which allows us to solve for the equilibiurm quantities of loans, mortgages, and deposits.
Specifically, the comparative statics with respect to a change in bank m’s liquid security holdings

4In Online Appendix F, we show that this static optimization problem is consistent with a model in which the bank
maximizes the expected present value of profits over an infinite horizon.
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QS,mt are

∂
(
RD,m
t −RD,nmt − QD,nmt

∂QD,nmt/∂RD,nmt

)
∂QD,nmt

∂QD,nmt

∂QS,mt

=
∂2C(Θmt)

∂QD,nmt∂Θmt

· ∂Θmt

∂QS,mt

, (6)

∂
(
RM,m
t −RM,nmt − QM,nmt

∂QM,nmt/∂RM,nmt

)
∂QM,nmt

∂QM,nmt

∂QS,mt

= − ∂2C(Θmt)

∂QM,nmt∂Θmt

· ∂Θmt

∂QS,mt

, (7)

∂
(
RL,m
t −RL,nmt − QL,nmt

∂QL,nmt/∂RL,nmt

)
∂QL,nmt

∂QL,nmt

∂QS,mt

= − ∂2C(Θmt)

∂QL,nmt∂Θmt

· ∂Θmt

∂QS,mt

, (8)

∂QS,mt

∂QS,mt

= 1, (9)

where ∂QD,nmt

∂QS,mt
,∂QM,nmt

∂QS,mt
, ∂QD,nmt

∂QS,mt
are the responses of each individual bank branch quantity to the re-

serve increase, and Θmt is the vector of balance sheet quantities (QD,nmt, QM,nmt, QL,nmt, QS,mt).
Please see Appendix A.1 for detailed derivations.

To determine the equilibrium response of the banking system to a change in the supply of
liquid securities, we need empirical estimates of the components of equations (6) to (8). The left
hand side is determined by the bank’s loan, mortgages, and deposit demand curves. In Section
3, we estimate this term with an industrial organization style demand system by observing how
each bank’s quantities respond to shocks to the interest rates they and other banks choose.5 On the
right hand side is an expression reflecting how a bank’s marginal cost of borrowing or lending in
a market changes with the composition of its entire balance sheet. We therefore need to estimate
how a bank’s marginal costs of lending and borrowing depend on the different components its
balance sheet. In Section 4, we develop and apply a novel econometric approach to estimate this
cost function. Taken together, our estimates of the demand for a bank’s services and its cost of
providing them allow us to infer the aggregate effect of an increased supply of reserves caused by
QE—the policy we intend to analyze.

3 Demand Systems

This section estimates the demand systems for deposits, mortgages, and loans. Section 3.1 in-
troduces the logit demand systems and their estimation strategy. Section 3.2 details the data and
instruments we use for estimating the demand systems. The estimation results are reported in
Section 3.3.
5This section considers a single bank in isolation, while our full model allows for competition between banks. Thus,
we need to estimate a demand system across all banks rather than just a demand curve faced by an individual bank.
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3.1 Estimation Strategy

3.1.1 Demand Curves

Our first step is to estimate the demand curves that individual banks face in deposit, loan, and
mortgage markets. For deposits, we let depositors have a total supply of funds FD,nt in each mar-
ket n at time t. They can either invest in deposits at banks m that have branches in the market
or an unobserved outside option 0. This outside option reflects the availability of investment op-
tions other than deposits that are not in our data such as money market fund shares. An observed
quantity QD,nmt of deposits is invested in bank m’s branches in market n in time t. In addition, an
unobserved quantity QD,n0t is invested in the outside option.

Similarly, borrowers of mortgages and loans have total funding needs FM,nt and FL,nt, respec-
tively. They can either borrow from banks or resort to the outside option, which includes borrowing
from non-banks or not borrowing altogether. QM,nmt and QL,nmt denote the observed quantities of
mortgages and loans borrowed from bank m in market n at time t, while QM,n0t and QL,n0t denote
the unobserved quantities of the respective outside options.

Preferences of borrowers and depositors follow a standard logit demand system (Berry, 1994;
McFadden, 1974). For example, depositor j investing in bank m in market n has the following
utility:6

uD,jnmt = αDRD,nmt +XD,nmtβD + δD,nmt + εD,jnmt. (10)

The first term is the the interest rate RD,nmt paid on deposits times the depositor’s preference for
receiving interest, αD. We expect the price disutility parameter for deposits, αD, to be positive
because depositors should prefer a higher deposit rate, all else equal. In constrast, we expect the
corresponding price disutility parameter for mortgage and loan borrowers to be negative because
they prefer a lower funding cost. Depositors’ utility is also affected by the desirability of bank m’s
deposits, which depends on a vector of observed characteristics, XD,nmt, preferences for observed
charecteristics, βD, and unobserved characteristics, δD,nmt. Finally, the error term, εD,jnmt, is
assumed to be i.i.d. and follow a type one extreme value distrubtion. We normalize the utility of
outside options to zero without loss of generality since only differences in utility across the choices
available to a depositor impact her decisions. Each depositor chooses the good for which she has
the highest realized utility.

6The demand curves for mortgages and loans are defined similarly. We use the subscript M for mortgages and L for
loans to describe these demand systems.
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According to equation (10) in McFadden (1974), the quantity of deposits invested in branches
of bank m in market n at time t satisfies

QD,nmt = FD,nt
exp(αDRD,nmt +XD,nmtβD + δD,nmt)

1 +
∑

m′ exp(αDRD,nm′t +XD,nm′tβD + δD,nm′t)
(11)

under the standard assumptions in a logit demand system.

Taking the log of equation (11) yields

logQD,nmt = ζD,nt + αDRD,nmt +XD,nmtβD + δD,nmt, (12)

where ζD,nt = log(
FD,nt

1+
∑

m′ exp(αDRD,nm′t+XD,nm′tβD+δD,nm′t)
) is a market-time specific term that is

the same across banks m. To estimate the deposit demand curve for bank m in market n, we need
to know how its quantity QD,nmt is impacted by changes in the rate RD,nmt that it pays. This
relation is given by

∂ logQD,nmt

∂RD,nmt

=
∂ζD,nt
∂RD,nmt

+ αD. (13)

To estimate the demand curve in equation (13), we first estimate αD by controlling for the impact
of ζD,nt with market-time fixed effects. We then present a method for estimating the impact of
changes in banks’ interest rates on the term ζD,nt that impacts all banks in the market.

Our first goal is to estimate the price disutility parameter, αD. We face the endogeneity prob-
lem that banks may choose an interest rate that is correlated with its unobserved charecteristics
δD,nmt. Directly regressing log market shares, logQD,nmt, on interest rates, RD,nmt, observable
characteristics, XD,nmt, and a market-time fixed effect to absorb ζD,nt may yield biased estimates
because a bank with unobservably high-quality banking services, δD,nmt, can pay a lower deposit
rate than a bank with low quality banking services and still attract depositors. To address the en-
dogeneity concern, we require an instrument zD,nmt that impacts banks’ interest rate choices but is
not correlated with unobserved quality δD,nmt. With such an instrument, we can estimate αD and
βD using the following two-stage least squares specification:

RD,nmt = γD,nt + γDzD,nmt +XD,mtγD + eD,nmt, (14)

logQD,nmt = χnt + ED,ntδD,nmt + αDRD,nmt +XD,nmtβD + εnmt, (15)

where χnt = ζD,nt + ED,ntδD,nmt and εnmt = δD,nmt − ED,ntδD,nmt. The term ED,ntδD,nmt is the
market-specific mean of the unobserved characteristics, δD,nmt. The mean ED,ntδD,nmt is added
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to ζD,nt because it will be absorbed by the market-time fixed effect in equations (15). Thus, the
residual in the regression is δD,nmt − ED,ntδD,nmt rather than δD,nmt. The demand for mortgages
and loans is defined similarly.

3.1.2 Market Size

To estimate the price disutility parameter, αD, we used market-time fixed effects that control for
any market-level shocks to the desirability of bank deposits. With this fixed effect added, we
inferred αD from observing how differences in banks’ log-quantities are impacted by differences
in the rates they pay. To fully characterize the demand curves banks face, we also need to know
how the overall quantity of deposits in a market would respond if every bank in the market changed
its interest rate. This section develops a novel approach to estimating how the overall quantity in a
market changes with an aggregate change in rates, which is the final piece of information needed
to complete the estimation of our demand systems.

We again use deposits as an example to illustrate how the elasticity of substitution between the
market-level deposit volume and the outside options is estimated. Denoting the total quantity of
deposits in a market as QD,nt, we obtain

QD,nt = FD,nt

∑
m exp(αDRD,nmt +XD,nmtβD + δD,nmt)

1 +
∑

m′ exp(αDRD,nm′t +XD,nm′tβD + δD,nm′t)
(16)

by summing the deposit quantities of bank branches operating in market n given in equation (11).

We define
ψD,nt = log(

∑
m

exp(αDRD,nmt +XD,nmtβD + δD,nmt)) (17)

to represent the desirability of a “composite good” provided by all banks operating in the market.
Then, QD,nt = FD,nt

exp(ψD,nt)

1+exp(ψD,nt)
, and using a log-linear approximation,

logQD,nt ≈ logFD,nt + βD,oψD,nt. (18)

From this equation, we can estimate how logQD,nt changes with the value of ψD,nt to learn the
value of βD,o. The parameter βD,o quantifies the sensitivity of total deposit quantities to changes in
the overall desirability of deposits. In Online Appendix D, we present a slight modification of our
logit demand system where equation (18) holds exactly.7

7This modification differs from our logit demand system only in that depositors have heterogeneous values of con-
suming the outside option.
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We apply an instrumental variables approach to estimate parameter βD,o. From our estimation
of the price disutility parameters in equations (14) and (15), we can observe all terms in equation
(17) that definesψD,nt except the mean of δD,nmt. We therefore decomposeψD,nt into an observable
component, ψoD,nt, and an unobservable component, ψuD,nt, where8

ψuD,nt =
1

Nnt

∑
m

δD,nmt, (19)

ψoD,nt = log

(∑
m′

exp(αDRD,nmt +XD,nmtβD + δD,nmt − ψuD,nt)

)
. (20)

We need an instrumental variable zD,nt that is uncorrelated with the unobserved component,
logFD,nt+βD,oψ

u
D,nt, to consistently estimate βD,o using two-stage least squares. Specifically, we

have

ψoD,nt = ρD,t + θDzD,nt + χD,ntθD + εoD,nt, (21)

logQD,nt = αD,t + βD,oψ
o
D,nt + χD,ntρD + ηD,nt, (22)

where χD,nt is a vector of controls.

3.2 Instruments and Data

Estimating our demand systems requires information on deposits, mortgages, loans, and bank
characteristics. In addition we construct an instrumental variable from property damage data. We
first introduce the data we use and then explain how our instruments are constructed. Summary
statistics for the demand-side variables are reported in Table 1.

Deposits. County-level deposit volumes are obtained from the FDIC, which covers the uni-
verse of US bank branches at an annual frequency from June 2001 to June 2017. We exclude
branches that consolidate deposits in another location, do not accept deposis, or are owned by for-
eign banks. We define each county-year as a deposit market and sum branch-level deposits at the
bank-county-year level. Our sample is from 2001 to 2017. Table 1 reports the summary statistics.

County-level deposit rates are obtained from RateWatch, which collects weekly branch-level
deposit rates by product. Data coverage varies by product, especially in the earlier years. To
maximize the sample size, we focus on the most commonly available savings account type, which
is the 10K money market account. We collapse the data at the bank-county-year level from June

8Equation (A12) in Appendix A.2.1 provides an expression for ψo
D,nt in terms of observable data.
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Table 1: Summary Statistics (Market-Bank-Year Level)

This table reports summary statistics of bank deposits, mortgages, and loans at the market-bank-year level.
Rates are reported in basis points and volumes are in millions. The instrument refers to property losses due
to natural disasters. The sample period is from 2001 to 2017.

Num. of Obs. Mean 25th Pct. 50th Pct. 75th Pct. Std. Dev.
Log Deposit Market Share 74007 −2.67 −3.45 −2.33 −1.50 1.69
Deposit Volume 74007 188.47 23.05 47.82 103.16 2287.78
Deposit Rate 45894 58.04 10.00 20.00 80.00 77.98
Log Mortgage Market Share 38957 −4.12 −5.32 −3.73 −2.56 2.08
Mortgage Volume 38957 23.67 1.23 3.79 11.62 209.53
Mortgage Rate 11735 457.62 332.50 450.55 570.00 126.41
Log Loan Market Share 25943 −5.06 −6.62 −4.95 −3.45 2.09
Loan Volume 25989 977.24 40.25 132.00 553.78 3218.81
Loan Spread 25943 183.52 101.38 171.43 250.00 120.46

2001 to June 2017 to match with the reporting of the branch-level deposit volumes from the FDIC.

The branch-level identifier in Ratewatch (accountnumber) is matched to the branch-level iden-
tifier in the FDIC data (uninumbr) using the mapping file developed by Bord (2017).9

Mortgages. We use data on mortgage originations made available under the Home Mortgage
Disclosure Act (HMDA). The data available to us is at the annual frequency and includes informa-
tion on the lender, loan size, location of the property, loan type, and loan purpose. Any depository
institution with a home office or branch in a Central Business Statistical Area (CBSA) is required
to report data under HMDA if it has made or refinanced a home purchase loan and if it has assets
above $30 million. As explained by Cortés and Strahan (2017), the bulk of residential mortgage
lending activity is likely to be reported under this criterion.10 We define each county-year as a
mortgage market and sum mortgage loan volumes at the bank-county-year level. Our sample is
from 2001 to 2017.

County-level mortgage rates are obtained from RateWatch, which collects weekly branch-level
mortgages rates by product. Data coverage varies by product, especially in the earlier years. To
maximize the sample size, we focus on the most commonly available mortgage loan product, which
is the 15-year Fixed Rate Mortgage. We collapse data at the bank-county-year level from 2001 to
2017 to match with the reporting of the mortgage volume data from the HMDA.

9Special thanks to Vitaly Bord for sharing the mapping file with us.
10Any non-depository institution with at least 10% of its loan portfolio composed of home purchase loans must also

report HMDA data if its asset size is above $ million. These institutions are not included in our sample given our
focus on deposit-taking commercial banks.
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We first merge bank-level identifiers in HMDA to the FDIC bank-level identifiers using the
mapping file developed by Bob Avery.11 Then, the branch-level identifier in the FDIC data (un-
inumbr) is merged with the branch-level identifier in Ratewatch (accountnumber) using the map-
ping file developed by Bord (2017).

Loans. We use data on syndicated loans from Thomson Reuters Dealscan database. We
select all loans originated by US banks and sum loan volumes at the bank-state-year level, where
the location of the borrower is given in Dealscan. We define loan markets at the state-year level
instead of the county-year level because firm borrowers tend to be less geographically confined
than individual depositors. Similarly, we collapse loan spreads at the bank-state-year level. Our
sample is from 2001 to 2017.

We build on the mapping file used in Chakraborty et al. (2018) to hand-match lenders in
Dealscan to Call Report bank identifiers (RSSD).12

Bank Characteristics. We use Call Reports to obtain bank-level characteristics as control
variables. Specifically, we calculate the ratio of insured deposits as insured deposits over total
liabilities and the ratio of loan loss provision as loan loss provisions over total loans. We collapse
the data at the bank-year level from 2001 to 2017.

Property losses from natural disasters. Property losses from natural disasters are obtained
from the Spatial Hazard Events and Losses Database for the United States (SHELDUS). This
dataset records the location, time, and damage brought about by natural disasters in the US . We
include all reported disasters in the database and calculate the total property losses for each county-
year from 2001 to 2017 for our instrument.

Instruments. We first explain our instrument, zD,nmt, for estimating the price disutility of
deposits. Recall that interest rates may be correlated with unobserved product quality. Hence,
we use a two-stage least squares approach with a supply shock as the instrument to estimate the
price disutility parameter of our demand systems as in equations (14) and (15). Following Cortés
and Strahan (2017), we construct the instrument based on property losses from natural disasters
and banks’ branch networks. As Cortés and Strahan (2017) show, natural disasters increase the
demand for loans in the local area, which means that banks present in the area allocate funds from
branches in other branches to branches in affected counties through their internal capital markets.
Hence, property losses to bank m’s branches in regions n′ constitute a supply shock to bank m’s

11The version we used is available here https://sites.google.com/site/neilbhutta/data.
12Special thanks to Indraneel Chakraborty, Itay Goldstein, and Andrew MacKinlay for sharing the mapping file with

us.
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branches in county n, which allows us to trace out the demand curves. Appendix G formalizes this
argument.

Formally, our natural disaster instrument zD,nmt measures for bank m’s branches in county n
and year t the property losses from natural disasters accrued to the bank’s branches in all other
counties n′:

zD,nmt =
1

Nu
mt

log

(∑
n′

damagen′t ·
QD,n′mt∑
n0
QD,n0mt

)
,

where Nu
mt is the number of branches of bank m that are not affected by natural disasters, and

damagen′t is the property loss in county n′. Following Cortés and Strahan (2017), we scale
damagen′t by the fraction of deposits belonging to branches of bank m in county n and take logs
after summing the scaled damage losses. The former adjustment captures the portion of the de-
mand shock in county n absorbed by branches of bank m, while the latter ensures that the largest
shocks (e.g. Hurricane Katrina) do not drive the overall result. The instrument for mortgages
follows that of deposits. For commercial loans, we use the same instrument constructed at the
bank-state-year level instead of the bank-county-year level, where the state is determined by the
location of the borrower’s headquarters.

One concern for our identification could be that the effect of disasters spills over to affect local
demand in unaffected counties. To this end, notice that our exclusion restriction does not require
the absence of spillover effects altogether. It only requires that any potential influence of natural
disasters on unobserved deposit characteristics in unaffected areas is not correlated with banks’
branch networks. We include the log property damage to each county in all specifications to help
account for any direct effects of disaster losses on demand. Another concern could be that loan
losses from the disaster itself directly influence interest rates. To this end, we also include banks’
loan loss provision as control variable in all specifications.

Next, to estimate the sensitivity of total deposit quantities to changes in the overall desirabil-
ity of deposits as in equations (21) and (22), we average our market-bank-time level instrument,
zD,mnt, at the market-year level to construct

zD,nt =
1

Nnt

∑
m

zD,nmt.

This instrument captures how exposed a region is to indirect rate changes coming through internal
capital markets. The identifying assumption is that the indirect shocks through banks’ internal
capital markets are uncorrelated with the log-size of each market, logFD,nt, and with the average
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unobservable quality, ψuD,nt. The corresponding instrument for mortgages is constructed in the
same way.

3.3 Estimation Results

Table 2 reports the first-stage and second-stage results for the price disutility estimation for de-
posits, mortgages, and loans in equations (14) and (15). Since our deposit volume is a stock
measure, whereas new issuances of mortgages and loans are flow measures, we include the lagged
deposit market share to account for persistence in the stock of deposits and the share of insured
deposits to capture differences in the deposit base.

The price disutility parameters reported in the first row of panel (b) of Table 2 are positive for
deposits and negative for mortgages and loans. Intuitively, deposit rates are paid by the bank so
that raising deposit rate increases a bank’s market share. In contrast, mortgage, and loan rates are
paid by borrowers, so a bank can improve its market share by offering lower mortgage and loan
rates. Quantitatively, the coefficients imply that when an infinitely small bank raises its deposit
rate in one county by 10 basis points, its deposit volume will increase by 4.7%.13 When the same
bank lowers its mortgage and loan rates in one market by 10 basis points, its mortgage and loan
volumes increase by 57.5% and 48.7%, respectively. The price disutility of deposits is an order of
magnitude smaller than that for mortgages and loans, consistent with depositors being less attentive
to interest rates than firm and mortgage borrowers.

Regarding the outside option, we estimate the sensitivity of market-level quantities QP,nt to
the market-level desirability parameter ψoP,nt as in equations (21) and (22) for deposits and mort-
gages. We include the average age, average income, the share of residents with a college degree,
log population, growth of house prices, log property damage due to natural disasters, and lagged
quantities as county-level control variables.

Panel (b) in Table 3 reports the sensitivity of market-level quantities QP,nt to the market-level
desirability parameter ψoP,nt to be 0.28 for deposits and 0.07 for mortgages. Hence, as we show in
equation (A22), the increase in deposit quantity when all banks in a county raise their deposit rates
by 10 basis points is given by

∂ logQD,nt

∂RD,nt

=
∂ logQD,nt

∂ψoD,nt

∂ψoD,nt
∂RD,nt

= 0.28× 4.7% = 1.3%.

13The magnitude of the price disutility parameters can be interpreted for an infinitely small bank because the interest
rates of that bank will have a negligible impact on the observed desirability of the aggregate deposits at the county
level, i.e., when ∂ζD,nt

∂RD,nmt
= 0 in equation (13).
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Table 2: Demand System Estimates

This table reports the two-stage least squares results for estimating price disutility of deposit, mortgage, and
loan demand systems as in equations (14) and (15). These regressions are run at the market-bank-year level.
Loan loss provision is the ratio of loan loss provision over total loans, lag deposit market share is the deposit
market share in the county lagged by 1 year, lag insured deposit ratio is the ratio of insured deposits over
total liabilities lagged by 1 year, and log property damage is the direct property loss from natural disasters at
the county level. For the deposit, mortgage and loan rates, 0.01 means 1%. The sample period is from 2001
to 2017. *, **, and *** denote significance at the 10%, 5%, and 1% level, respectively. Standard errors are
clustered at the year level.

Panel (a): First Stage Panel Regression

(1) (2) (3)

Deposit Rate Mortgage Rate Loan Rate

IV 1.76∗∗∗ 10.82∗∗∗ 2.15∗∗∗

(0.22) (1.66) (0.28)
Loan Loss Provision 0.01∗∗∗ −0.02∗∗∗ 0.02∗

(0.003) (0.01) (0.01)
Lag Insured Deposit Ratio 0.004∗∗∗

(0.001)
Log Property Damage −0.0003∗∗∗ −0.0003∗∗∗

(0.0001) (0.0000)

Observations 217,623 77,329 25,115
R2 0.82 0.91 0.19
Adjusted R2 0.77 0.85 0.16
Market-Year F.E. Y Y Y

Panel (b): 2SLS Panel Regression

(1) (2) (3)

Deposit Market Share Mortgage Market Share Loan Market Share

Rate (with IV) 11.26∗∗ −574.89∗∗∗ −487.30∗∗∗

(4.86) (72.33) (76.96)
Loan Loss Provision −0.75∗ −15.47∗∗∗ 8.41

(0.39) (5.21) (5.23)
Lag Insured Deposit Ratio −0.02

(0.03)
Log Property Damage −0.01∗∗∗ 0.77∗∗∗

(0.003) (0.04)

Observations 217,623 77,329 25,115
Market-Year F.E. Y Y Y
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Table 3: Outside Option Estimates (Deposits and Mortgages)

This table reports two-stage least squares results for estimating the sensitivity of market-level quantities
to the aggregate observed desirability parameter ψont as in equations (21) and (22). The regression is run
at the market-year level. We include market-year level controls, including average age and income of the
population, fraction of residents college degree, log population, annual house price growth, log property
loss due to natural disaster, and lag log deposit quantity. For the deposit and mortgage rates, 0.01 means
1%. The sample period is 2001-2017. *, **, and *** denote significance at the 10%, 5%, and 1% level,
respectively. Standard errors are clustered by year.

Panel (a): First Stage

(1) (2)

Deposit Rate Mortgage Rate

IV 0.01 −0.87∗∗∗

(0.01) (0.21)

Observations 39,053 25,234
R2 0.69 0.88
Controls Y Y
Market-Year F.E. Y Y

Panel (b): 2SLS

(1) (2)

Deposit Share Mortgage Share

ψo (with IV) 0.19 0.07
(0.14) (0.04)

Observations 39,053 25,234
R2 0.99 0.91
Controls Y Y
Market-Year F.E. Y Y

Similarly, when all banks in a county lower their mortgage rates by 10 basis points, the mortgage
quantity increases by 0.07× 57.5% = 4.0%.

For loans, our estimate of the quantity of firms choosing the outside option uses the fact that
we can observe both firms that do and do not borrow. We count the number of firms in the Dealscan
database that did not borrow in a given year and state and the divide the number by four, which
reflects the average loan maturity. We then multiply this number of firms times the average size of
a loan in its market. The average loan size is linearly projected from the existing loans in that year
with state fixed effect to account for state-level heterogeneity in the size of loans. The underlying
assumption is that potential borrowers would have on average obtained a loan of the same size as
the existing ones in the market that year.

We report the outside option size for firms at the state-year level in the Online Appendix Table
OA1. In 2007, for example, the implied βo is 0.33. This means that when all banks in a state
lower their loan rates by 10 basis points, the loan quantity increases by 0.33 × 48.7% = 16.1%.
Notice that the demand elasticity of loans is higher than that of mortgages because although their
price disutility parameters are of similar magnitudes, the outside option of loans responds much
more to changes in observed desirability than in the case of mortgages. One reason could be that
borrowers in the syndicated loan market have more flexibility to borrow from other sources such
as the bond market. Although our focus is on bank lending to firms, our framework could be

19



extended to account for a potential substitution from loans to bonds with public firm-level data on
bond financing. Deposits have a low sensitivity along both dimensions, which leads to a highly
inelastic deposit demand curve.

In absolute terms, if all banks raise their deposit rates by 10 basis points based on 2007 levels,
the aggregate deposit volume will increase by $36.9 billion; if all banks lowered their mortgage
rates by 10 basis points, the aggregate mortgage volume will increase by $13.8 billion; and if all
banks lowered their loan rates by 10 basis points, the aggregate loan volume would increase by
$236.8 billion.

When a bank adjusts its deposit rate, its impact on the observed desirability of aggregate de-
posits at the county level also influences its deposit demand. In equation (A19) of Appendix A.2.1,
we show that the sensitivity of a bank’s deposit quantity to its deposit rate is given by

∂ logQD,nmt

∂RD,nmt

= αD + αD(βD,o − 1)
QD,nmt

QD,nt

. (23)

Using our previous estimates of αD and βD,o and the sample of banks active in all 3 markets in
2007, we find by averaging this expression across banks that the response of an average bank’s
deposit quantity in a given county is 3.4%, or 17.6 million dollars, with respect to a 10 basis points
increase in deposit rate. Similarly, the response of an average bank’s mortgage quantity in a given
county is 52.4%, or 5.1 million dollars, with respect to a 10 basis points decrease in the mortgage
rate. The average response in the average bank’s loan quantity in a given state is 47.1%, or 630
million dollars, with respect to a 10 basis points decrease in the loan rate.

Because our result that the reserves created by QE crowd out loans relies on our estimate of
the elasticity of loan demand, we present an alternative estimation approach in Online Appendix
B. This approach to estimating firms’ demand for loans exploits the fact that firms tend to borrow
persistently from the same bank multiple times, even though they have the option of borrowing
from a new bank. Because of this persistence, we can identify firms’ elasticity of credit demand
by observing how much they decrease their total borrowing when there is a negative credit supply
shock to a bank from which they have already borrowed. We find similar results to our benchmark
estimates, as we discuss in Online Appendix B.

4 Cost Function

This section specifies and estimates the bank’s cost function for producing deposits, mortgages, and
loans. Quantifying the cost function is challenging because banks choose all their balance sheet
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components simultaneously. We propose a specification of how banks’ costs depend on their bal-
ance sheet components that can be feasibly estimated using multiple instrumental variables. In our
novel estimation method, we first perform a reduced form analysis of how banks’ marginal costs
respond to exogenous shocks to the demand for borrowing and lending across different markets.
Next, we estimate the bank’s cost function by choosing its parameters to replicate these reduced
form results. This estimated cost function tells us how a bank’s marginal costs are impacted when
the supply of reserves in the banking system changes.

We first set up the cost function in Section 4.1 and then explain how we estimate it in Section
4.2. Section 4.3 describes the data and instruments we use and Section 4.4 reports our estimation
results.

4.1 Cost Function Specification

We proceed to formally set up the the bank’s cost function. For bank m at time t, we let the cost
function be

C(Θmt) = H(QD,mt, QM,mt, QL,mt, QS,mt) (24)

+
∑
n

(QM,nmtε
Q
M,nmt +QL,nmtε

Q
L,nmt +QD,nmtε

Q
D,nmt) +QS,mtε

S
mt.

This includes a term H(QD,mt, QM,mt, QL,mt, QS,mt), which depends on the bank-level quantities
of deposits, mortgages, loans, and securities. This specification allows, for example, for the bank’s
holding of securities to impact its cost of mortgage lending.14 In addition, the cost function fea-
tures shocks to the cost of borrowing or lending in individual markets (given by each of the εnmt
variables). These market-specific shocks are assumed to be linear in the bank’s market-specific
quantities and give us the flexibility to match observed rates and quantities. However, as shown
in equations (6) to (8), the response of our model to external shocks such as an increase in reser
supply depends only on the second derivatives of the bank’s cost function, which are fully reflected
in the function H that we estimate.

To model how a bank’s costs depend on the composition of its balance sheet in a manner that
is flexible and yet restrictive enough to be identified from data, we assume the following functional

14This dependence is allowed for at the bank-level rather than at the bank-market level, which is consistent with
banks optimizing over their bank-level balance sheets considering their bank-level balance sheet composition. This
bank-level dependence is also consistent with banking regulation applied to bank-level balance sheets.
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form for H

H(QD,mt, QM,mt, QL,mt, QS,mt) = µDQD,mt + µMQM,mt + µLQL,mt + µQQS,mt

+
1

2
(K1E2

mt +K2I2
mt +K3Q

2
D,mt + 2K4ImtQD,mt + 2K5EmtQD,mt), (25)

where Emt = QM,mt + QL,mt + QS,mt − QD,mt and Imt = QS,mt + ωMQM,mt + ωLQL,mt. The
term Emt can be interpreted as the bank’s equity and non-deposit debt funding because it equals the
gap between the value of bank assets that we observe on the bank’s balance sheet and its deposit
financing.15 The term Imt measures the liquidity of a bank’s assets, where the coefficients ωM and
ωL capture how much less liquid mortgages and loans are than reserves.

This cost function has two key features. First, it is quadratic in all bank-level quantities,
which implies that a bank’s marginal costs of borrowing and lending are linear in the quantities
on the bank’s balance sheet. This will allow us to use linear instrumental-variable regressions as
a straightforward tool for estimating its parameters. Second, the quadratic component of the cost
function has 7 unknown parameters (ωM ,ωL,K1,K2,K3,K4,K5). As we show in Appendix A.3, this
is precisely the number of parameters that can be estimated by observing how our bank responds
to two different cross-sectional instrumental variables.

While this cost function can flexibly incorporate a range of different frictions, we present one
consistent microfoundation for it in Appendix C based on Kashyap et al. (2002). In Kashyap et al.
(2002), banks must meet liquidity demands due to both their runnable deposit liabilities as well
as their assets such as credit lines that borrowers can draw down. We assume that liquidity de-
mands from bank depositors are imperfectly correlated with liquidity demands from bank borrow-
ers and that banks face a quadratic cost of raising new funds. This imperfect correlation provides
banks with a degree of liquidity insurance that is reflected in the interaction terms ImtQD,mt and
EmtQD,mt. Alternatively, the cost function can also reflect frictions ranging from exogenous costs
from bank regulation such as the leverage ratio requirements, the risk of having to sell illiquid
assets during a bank run, and incentives to take excessive risk due to the availability of deposit in-
surance. For our purpose, it is only necessary to quantify how a bank’s cost of capital is impacted
by an increase in reserve supply rather than to take a stand on the specific mechanism at play.

4.2 Estimation Strategy

This section uses our quadratic cost function to derive linear expressions for banks’ marginal costs
that are tractable to estimate. Differentiating equation (24) implies that the marginal costs of

15Emt is not a perfect measure of a bank’s equity and non-deposit debt financing. It also incorporates the small amount
of assets held on the bank’s balance sheet that are not included in our measures of loans, mortgages, and securities.
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deposits, mortgages and loans for bank m in market n at time t are

∂C

∂QD,nmt

= µD −K1Emt +K3QD,mt +K4Imt +K5(Emt −QD,mt) + εDnmt, (26)

∂C

∂QM,nmt

= µM +K1Emt +K2ImtωM +K4QD,mtωM +K5QD,mt + εMnmt, (27)

∂C

∂QL,nmt

= µL +K1Emt +K2ImtωL +K4QD,mtωL +K5QD,mt + εLnmt, (28)

∂C

∂QS,mt

= µS +K1Emt +K2Imt +K4QD,mt +K5QD,mt + εSmt. (29)

Banks’ marginal costs of providing deposits, mortgages, and loans on the left hand side of
equations (26) to (29) can be obtained using our estimated demand systems. Recall the first order
conditions for a bank’s profit maximizing choices, equations (2) to (4). These first order conditions
can be rewritten as

− QD,nmt

∂QD,nmt/∂RD,nmt

−RD,nmt = −RD,m
t +

∂C(Θmt)

∂QD,nmt

(30)

− QM,nmt

∂QM,nmt/∂RM,nmt

−RM,nmt = −RM,m
t − ∂C(Θmt)

∂QM,nmt

, (31)

− QL,nmt

∂QL,nmt/∂RL,nmt

−RL,nmt = −RL,m
t − ∂C(Θmt)

∂QL,nmt

. (32)

Equations (30) to (32) tell us that if banks are maximizing profits facing the demand systems
we estimated, the interest rates they chose reveal what their marginal costs must be. The left
hand side of equations (30) to (32) depend only on observed interest rates and markups so we
can infer the marginal costs ∂C(Θmt)

∂QD,nmt
, ∂C(Θmt)
∂QM,nmt

, and ∂C(Θmt)
∂QL,nmt

up to the value of unknown constants
RD,m
t , RM,m

t , RL,m
t . These constants are market-wide discount rates reflecting the riskiness of cash

flows from deposits, mortgages, and loans, so they do not depend on the composition Θmt of the
bank’s balance sheet. Hence, we can replace the marginal costs on the left hand sides of equations
(26) to (29) with their observable counterparts from equations (30) to (32). The right hand sides
would change only in their intercept since the discount ratesRD,m

t , RM,m
t , RL,m

t does not depend on
the composition of the bank’s balance sheet. Averaging equations (26) to (28) across the markets
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n in which the bank operates yields

1

Nmt

∑
n

(
∂C

∂QD,nmt

−Rt

)
= µ∗

D −K1Emt +K3QD,mt +K4Imt +K5(Emt −QD,mt) + εDmt, (33)

1

Nmt

∑
n

(
∂C

∂QM,nmt

+RM,m
t

)
= µ∗

M +K1Emt +K2ImtωM +K4QD,mtωM +K5QD,mt + εMmt, (34)

1

Nmt

∑
n

(
∂C

∂QL,nmt

+RL,m
t

)
= µ∗

L +K1Emt +K2ImtωL +K4QD,mtωL +K5QD,mt + εLmt, (35)

where each intercept µ is now some other constant µ∗ due to the changed left hand side.

To estimate the parameters in equations (33) to (35), we need to see how the marginal costs
on the left hand side of each equation respond to changes in the bank balance sheet quantities on
the right hand side. Because banks may face unobservable shocks to their cost of borrowing or
lending that may affect their choice of balance sheet quantities, we need exogenous variation in
the quantities on the right hand side of each equation that is uncorrelated with the ε cost shocks.
Further, there are multiple endogenous variables on the right hand side of each equation. For
example, if we see how a bank’s marginal cost of mortgage lending responds to an increase in both
its deposit quantities and its mortgage quantities, we need to know how each of these two quantity
changes individually impacted the bank’s marginal cost. To overcome this problem, we use two
cross-sectional instrumental variables z1mt, and z2mt that are both uncorrelated with the cost shocks
εmt.

We then regress a bank’s marginal cost of providing deposits, mortgages, and loans on instru-
ments zimt, where i = 1, 2,

1

Nmt

∑
n

(
∂C

∂QD,nmt

−Rt

)
= θDt + κi,Dzimt + uQD,mt, (36)

1

Nmt

∑
n

(
∂C

∂QM,nmt

+RM,m
t

)
= θMt + κi,Mzimt + uQL,mt, (37)

1

Nmt

∑
n

(
∂C

∂QL,nmt

+RL,m
t

)
= θLt + κi,Lzimt + uQL,mt. (38)
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In addition, we regress each of the bank’s balance sheet quantities on each instrument as well:

QD,mt = αDt + γi,Dzimt + εQD,mt (39)

QM,mt = αMt + γi,Mzimt + εQM,mt (40)

QL,mt = αLt + γi,Lzimt + εQL,mt (41)

QS,mt = αSt + γi,Szimt + εQS,mt. (42)

If our instruments are uncorrelated with all unobserved error terms, these regressions tell us that
adding γi,D deposits, γi,M mortgages, γi,L loans, and γi,S securities to the bank’s balance sheet
changes its marginal cost of providing deposits by κi,D. This provides one relationship inferred us-
ing reduced form regressions that our cost functionH must satisfy. Similarly, adding γi,D, γi,M , γi,L,
and γi,S in deposit, mortgage, loan, and security quantities result in mortgage and loan cost changes
of κi,M and κi,L, respectively. We include time fixed effects in all of these regressions so that we
rely only on cross-sectional variation across banks for identification. We assume that our instru-
ments do not trigger cross-sectional changes in the costs of securities, i.e., κi,S = 0, because
securities trade in a competitive market where marginal costs are equalized across banks.

We must use all of these reduced form results jointly to identify our cost function. No cost
function parameter would be identified from just observing the response of our costs and quan-
tiies to just a single instrument z1mt. For example, if we observed that a bank’s marginal cost of
providing deposits increases after being hit by instrument z1mt but that several quantities on the
bank’s balance sheet change, we do not know how much of this cost change is due to specifically
to the change γi,D in deposit quantities and how much is due to the change in the banks’ other
balance sheet quantities. In effect, the bank’s balance sheet quantities QD,mt, QM,mt, QL,mt, QS,mt

are all endogenous variables that respond to our exogenous instruments. Multiple instruments are
needed for identification when there are multiple endogenous variables. Appendix A.3 presents a
system of equations that uniquely determines our cost function H so that it is consistent with our
reduced-form regressions in equations (37) to (42).

4.3 Data and Instruments

Marginal Costs As explained in section 4.2, we infer the marginal costs for mortgages, deposits,
and loans using our demand system estimates in section 3.3. We then average these estimated
marginal costs to the bank-year level.

Deposits, Loans, Mortgages, and Securities We obtain bank-level quantities from Call Re-
ports, which allows us to keep track of the volume of deposits, loans, mortgages, and securities that
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are actually retained on bank balance sheets to affect banks’ costs. Mortgages loans are mapped
to residential loans and commercial loans make up the remainder of loans from Call Reports. We
further include bank-level securities from Call Reports, which is the sum of cash, Fed funds, repos,
Treasury securities, and agency securities. Finally, we normalize all bank-level volume variables
by the number of counties in which the bank operates in. This normalization prevents our estimates
from being driven mostly by a few banks with a very large number of deposits.

Instruments We need two instruments, z1mt and z2mt, to identify the cost function parameters.
These instruments are at the bank-level and must be independent of banks’ cost shocks in the
cross-section.

Our first instrument is simply the natural disaster losses that a bank’s branches are directly
exposed to. Unlike in the instrument for demand systems, we are no longer in need of a branch-
level supply shock. Rather, disaster losses to an area increase the need to rebuild and repair local
infrastructure and housing, which directly comprise a bank-level demand shock for bank lending.
These disaster losses are also plausibly unrelated to variations in banks’ marginal costs in the
cross-section. Hence, we construct the instrument by adding up the disaster losses that each bank
is exposed to through its branches. Specifically, for bank m at time t, we have

z1mt =
1

Nmt

log

(∑
n

damagent ·
QD,nmt∑
n0
QD,n0mt

)
,

where
∑

n damagent ·
QD,nmt∑
n0
QD,n0mt

is the sum of disaster losses accrued to branches of bank m in
county n and Nmt is the number of branches of bank m. We mathematically show in appendix G
that for a firm that sells a good in several markets, a demand shock in one market can be used to
estimate the firm’s marginal cost curve.

Our second instrument is a Bartik deposit instrument. Following Bartik (1991), we construct
our instrument based on the average growth rates of deposits in markets where banks have branches
in. Intuitively, we make use of the fact that counties experience different rates of deposit growth
and that banks operate branches in different counties to construct our Bartik deposit instrument.
The identifying assumption is that the deposit growth rates in different counties that a bank is
exposed to arise from county-level economic conditions rather than shocks to the bank’s cost of
supplying deposits, mortgages, and loans. Specifically, for bank m in year t, we have

z2mt =
1

Nmt

(∑
n

QD,nt −QD,nt−1

QD,nt−1

)
,
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where QD,nt−QD,nt−1

QD,nt−1
is the deposit market growth rate in county n and Nmt is the number of

branches. In the baseline specification, we use a simple average to compute the bank-level expo-
sure to county-level deposit growth, but our qualitative results are robust to using value-weighted
exposures as well.

While the Bartik instrument should primarily serve as a shock to deposit demand while the
natural disasters instrument should primarily serve as a shock to loan demand, we do not require
them to only affect deposit or loan demand. The exclusion restiction should continue to hold even
if the intruments affect the demand for other bank balence sheet components. The only requirement
for identifiying our parameters is that the effects of the two instruments are not perfectly collinear,
which we show is satisfied in the data.

4.4 Estimation Results

Table 4 reports the coefficients from regressing marginal costs and bank-level quantities on each
of the two instruments, i.e., (κi,D, κi,M , κi,L, γi,D, γi,M , γi,L, γi,Q). Since these parameters are
instrument-specific, we report the parameter values corresponding to the bank-level natural dis-
aster shock in Panel (a) and the parameter values corresponding to the bank-level Bartik deposit
shock in Panel (b).

According to Panel (a), banks with branches in areas with larger natural disaster losses also
increase the volume of deposits, mortgages, loans, and securities on their balance sheets. At the
same time, mortgage and loans become more costly to provide while deposits become less costly
to provide for these banks. Taken together, we infer that the increase in volumes is consistent
with an increase in loan and mortgage demand following natural disasters. From Panel (b), banks
experiencing a positive Bartik deposit shock also increase their deposits, mortgages, loans, and
securities. Deposit costs become less negative, implying that deposits become more costly to
provide. At the same time, the costs of lending to firms and issuing mortgage loans declines as
deposits become more abundant. Hence, the increase in balance sheet size in this case is aligned
with a positive deposit demand shock, as expected from the Bartik deposit instrument.

Based on these coefficient estimates, we solve for the cost function’s Hessian H and present
the results in Table 5. First notice that all diagonal terms are positive, which means that a higher
stock of deposits leads to a higher marginal cost on deposits, a higher mortgage stock leads to a
higher marginal cost on mortgages, etc. Regarding the off-diagonal terms, the marginal cost of
mortgages, loans, and securities are decreasing in deposits, which reflects a lower cost of lending
and holding securities when deposit funding is more abundant. In other words, there are cost syn-
ergies between banks’ deposit-taking and lending that support the joint provision of deposits and
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Table 4: Cost Function Estimates

This table reports the sensitivity of bank-level costs and quantities to losses from natural disasters and a
Bartik deposit shock as in equations (36) to (42). Sheldus Instrument refers to property losses due to natural
disasters as explained in Section 4.3. Bartik Deposit Instrument refers to a bartik-style instrument of deposit
growth as explained in Section 4.3. Rates are in basis points and quantities are in millions. The sample
period is from 2001 to 2017. *, **, and *** denote significance at the 10%, 5%, and 1% level, respectively.

Panel (a): Results using Natural Disaster Instrument

Dep Cost Mtg Cost Loan Cost Dep Vol Mtg Vol Loan Vol Sec Vol

(1) (2) (3) (4) (5) (6) (7)

Sheldus Instrument −1.04∗∗∗ 1.24∗∗∗ 2.14∗∗∗ 11.11∗∗∗ 1.09∗∗∗ 8.84∗∗∗ 3.62∗∗∗

(0.10) (0.19) (0.70) (1.77) (0.33) (1.40) (0.81)
Loan Loss Provision −1.28 −16.55∗∗∗ 4.86∗ 8.10∗∗ 27.00∗∗∗ 536.38∗∗∗ 1.13

(1.30) (2.83) (2.59) (3.81) (4.18) (17.48) (1.74)

Observations 52,752 12,208 2,953 118,942 119,236 119,236 118,923
R2 0.59 0.77 0.18 0.002 0.002 0.01 0.001

Panel (b): Results using Bartik Deposit Shock

Dep Cost Mtg Cost Loan Cost Dep Vol Mtg Vol Loan Vol Sec Vol

(1) (2) (3) (4) (5) (6) (7)

Bartik Instrument 64.39∗∗∗ −52.06∗∗∗ 1.44 1, 414.31∗∗∗ 345.34∗∗∗ 315.13∗∗∗ 439.36∗∗∗

(5.30) (12.14) (45.04) (173.95) (17.37) (43.36) (86.24)
Loan Loss Provision −0.15 −16.68∗∗∗ 3.99 31.07 24.35∗∗∗ 161.54∗∗∗ −16.77

(1.27) (3.00) (8.69) (36.38) (4.17) (10.41) (18.04)

Observations 49,265 10,446 2,512 62,352 66,839 66,839 62,346
R2 0.46 0.77 0.18 0.002 0.01 0.005 0.001

loans by the same institution. However, the marginal cost of loans and mortgages are increasing in
securities holdings, which suggests that banks’ holdings of reserves and other liquid assets make
it not cheaper but more costly to give out loans and mortgages. This increase in the marginal cost
of lending will be a crucial determinant for the crowding out of loans following resserve injections
in our counterfactual. It also implies that the crowding out effect of reserves on lending dominates
potential cost synergies between liquid assets like reserves and illiquid assets like bank loans on
bank balance sheets.

The coefficients imply that a $100 million increase in reserves for each bank branch would
increase the marginal cost for mortgages and loans by 100× 0.317 =31.7 bps and 100× 0.264 =

26.4 bps, respectively. At the same time, the marginal cost of deposits decreases by 21.9 bps.
To put these numbers in context, if $1 trillion in reserves were injected and equally distributed
across bank branches in 2008, each bank branch would receive $39.4 million in reserves, which
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Table 5: Cost Function Estimate

This table reports the cost function estimates including parametersK and ω, and the implied Hessian matrix
H . Please refer to Section 4 for a detailed description of the estimation. The Hessian matrix reports impact
of an extra $1 million dollars per branch of a balance sheet quantity on the number of basis points by which
a bank’s marginal cost changes.

Parameter Estimates
K1 K2 K3 K4 K5 ωM ωL
0.283 −0.018 0.043 0.014 0.050 −1.900 1.080

Implied Hessian H
∂C
∂QD

∂C
∂QM

∂C
∂QL

∂C
∂QS

QD 0.225 −0.260 −0.218 −0.219
QM −0.260 0.220 0.319 0.317
QL −0.218 0.319 0.263 0.264
QS −0.219 0.317 0.264 0.266

would increase the marginal costs of mortgages and loans by 12.5 bps and 10.4 bps, respectively.
Of course, the change in marginal costs may differ in equilibrium, where reserves are not equally
distributed. The eventual effect on equilibrium quantities of mortgages and loans also depends on
our estimated demand elasticities. To quantify the equilibrium impact of reserve injections in the
banking system, we present a counterfactual analysis using both our estimated cost function and
demand system in the next section.

5 Counterfactual Exercise

We use our estimated model to compute the effect of an increase in the supply of central bank
reserves, as was caused by the Federal Reserve’s QE Programs. These reserves are safe, liquid
assets that must only be held by banks, so this increased supply forces banks to hold a larger
portfolio of safe assets. While QE is an exchange between Treasuries and reserves, commercial
banks only hold a very small proportion of Treasuries on bank balance sheets. Thus, the reserve
injection comprises a net increase in banks’ liquid asset holdings in our counterfactual.

The impact of this increased reserve supply has two main effects. First, an increase in reserve
holdings changes banks’ marginal cost of providing deposits, mortgages, and loans. This change
in marginal cost is quantified by our estimated cost function in equation (24). Second, because of
these cost changes, banks change the interest rates they choose to for deposits, loans, and mort-
gages. Given our estimated demand systems, we can compute how the equilibrium quantities of
deposits, loans, and mortgages respond to these changes in the rates that banks choose. As a result,
our model tells us how an increase in the supply of central bank reserves passes through to changes
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in both interest rates and quantities of deposits, mortgages, and loans provided by the banking
system.

We note that our results focus on the effect of reserve injection on the banking system, which
is an integral part of QE. Our results complement other transmission channels of QE that have been
analyzed in the literature.16 These transmission channels primarily depend on the effect of asset
purchases, while our work is novel in that we zoom in on the effect of reserves that the central
bank uses to finance asset purchases.

5.1 Computational Strategy

To compute our counterfactual, we need to determine each bank’s holdings of reserves as well as
the quantity and interest rate each bank charges for loans, deposits, and mortgages in each market
after an injection in reserves. Formally, we need to compute an equilibrium set of interest rates and
quantities that solve the bank’s first order conditions in equations (2)-(5) with an increased supply
of reserves. This is an over 38,000-dimensional problem, since we need to solve for interest rates
for mortgages, deposits, and loans at every branch of every bank. Nevertheless, we can reduce the
dimensionality considerably, and the model is tractable to solve. We define a function in equation
(OA55) of the Appendix that maps the set of bank-level deposit, mortgage, and loan quantities to
itself whose fixed point yields the equilibrium of our model.

We posit an increase R in the interest paid on securities above the yield earned in the data. We
then compute the quantity of reserves the central bank must add to the financial system to attain
this interest rate increase. Let Qi

D,mt, Q
i
M,mt, Q

i
L,mt, and Qi

S,mt, where i stands for initial, be the
bank level quantities of deposits, mortgages, loans, and securities observed in the data. First, we
start with a hypothesized vector of bank-level quantities QD,mt, QM,mt, QL,mt. Second, for each
bank, we compute a security quantity QS,mt so that the bank’s marginal cost of holding securi-
ties is consistent with the rise R in the yield on securities. Third, given the vector of bank-level
quantities QD,mt, QM,mt, QL,mt, QS,mt, we use our estimated cost function to compute a bank’s
marginal cost of holding deposits, mortgages, loans, and securities. Fourth, we compute the op-
timal interest rates banks choose that are jointly consistent with all of their marginal costs. Fifth,
given the rates chosen in each market, we compute the bank-market-level quantities demanded by
depositors/borrowers. Finally, we sum up the bank-market level quantities from the previous step
and compute the difference from the hypothesized bank-level quantities QD,mt, QM,mt, QL,mt. The
market is in equilibrium when this difference is 0. Please refer to Appendix E for further details.

16For example, Gagnon et al. (2010); Krishnamurthy and Vissing-Jorgensen (2011); Christensen and Krogstrup (2019);
Rodnyansky and Darmouni (2017); Chakraborty et al. (2020), as discussed in our literature review.

30



Table 6: Counterfactual Results: QE

This table reports the results of our counterfactual analysis that injects the actual amount of reserves
QE supplied for each year from 2008 to 2017. We compute the effects on rates and quantities, and
report the average across years.

Average Change in Rates (in Basis Points) Average Change in Quantities (in Trn Dollars)
Deposits Mortages Loans Securities Deposits Mortages Loans Securities
12.6728 18.8151 15.6384 15.9824 0.1224 -0.0218 -0.3530 1.8258

5.2 Counterfactual Results: The Reserve Supply Channel of QE

We conduct a year-by-year counterfactual with the amount of reserves supplied by QE in each year
from 2008 to 2017. On average, this amounted to a reserve supply increase of $1.8 trillion per year.
The average changes in interest rates and quantities that resulted are shown in Table 6. From the
table, we observe that the interest rate paid on reserves increases by an average of 16.0 bps. The
increase in reserve yields are passed through to the interest rates on deposits, mortgages, and loans
by 12.7 bps, 18.8 bps, and 15.6 bps, respectively. In terms of quantities, bank loans extended to
firms respond the most with an average decline of $353.0 billion, which implies that each $1 of
reserves injected crowds out 19 cents of lending to firms. Mortgage and deposit volumes respond
by less with an average annual drop of $21.8 billion and an annual increase of $122.4 billion,
respectively.

We then zoom in on lending to firms where the impact of the reserve injection is largest.
In Figure 3 we show the volume of reserves that were in the banking system each year and our
estimated impact on bank loan quantities. The volume of reserves injected from QE increased
from 2008 to 2014 and remained at elevated levels until 2017. The reduction in firm loans extended
follows a very similar trend, reaching a maximum annual volume of $557.7 billion in 2015.

Discussion Our first key finding is that reserves crowd out bank lending to firms and that
mortgage and deposit quantities respond by less. A larger reserve supply reduces lending because
holding reserves raises the cost of providing loans, as our cost function estimates in Table 5 show.
This implies that in a plentiful reserve environment, the benefits from holding additional liquid
assets on bank balance sheets proposed by the theoretical literature are limited. On net, central
bank reserves take up balance sheet space to crowd out bank lending capacity to the real economy.
Therefore, our findings suggest that the increase in reserve supply following QE may bring about
a counterproductive effect on the banking system.

Lending to firms is crowded out the most because the aggregate elasticity of loan demand
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Figure 3: Reserve Supply and Reduction in Corporate Loan Issuance

is considerably larger than the aggregate elasticity of mortgage or deposit demand, as discussed
in Section 3.3. While loan, mortgage, and deposit rates increase by similar amounts, this higher
elasticity implies that corporate loan quantities are much more sensitive than deposit or mortgage
quantities to an increase in reserve injections.

Another take-away from our results is that the model-implied mapping between reserve supply
and the reserve spread largely follows that in the data. Adding the same volume of reserves as were
injected through QE leads to a 17.0 bps increase in the model-implied reserve yield. In comparison,
the average spread between the interest on excess reserves (IOER) and the federal funds rate was
in the same ballpark at 11.6 bps.17 Changes in our reserve yield also appear to move in tandem
withchanges in the IOER-Fed funds spread with a correlation of 0.69. This comovement provides
evidence in support of our model and estimation. The IOER-fed funds spread measures the higher
risk-free yield available to banks, who can earn the interest rate paid by excess reserves, than is
available to other market participants, who can invest at the federal funds rates. Economically, it
should move in tandem with the spread at which banks hold reserves relative to the risk free rate,
which is the reserve spread in our model. Magnitude wise, the reserve spread and the IOER-fed
funds spread are in the same ballpark. The IOER-fed funds spread is lower likely because the
federal funds rate also provides a small amount of convenience premium relative to the theoretical
risk-free rate in our model. Note that the comovement and resemblance are not assumed nor
mechnical. Our model is identified from cross-sectional variation in how banks respond to natural

17We calculate the IOER-fed funds spread as the median spread in December of each year because of year-end volatil-
ity in the federal funds market.
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disaster shocks and Bartik shocks to deposit demand. No data directly from the implementation of
QE or on IOER is used in our estimation.

Policy Implications While the focus of our model and estimation is on the banking system’s
response to an increase in reserve resully, it has some qualitative policy implications. We pro-
pose two ways to reduce the crowding out of loans: reducing banks’ cost of holding reserves and
lowering the proportion of reserves trapped in the banking sector.

To the extent that bank loans to firms are useful for stimulating the economy, the reserve supply
channel of QE may detract from QE’s goal of providing stimulus. This crowding out of loans could
be reduced by lowering banks’ cost of holding reserves. One possibility would be through relaxing
the SLR, which constrains banks’ leverage ratio that increases with reserve holdings financed by
deposits or other forms of debt. As a result, this regulation could induce banks to hold fewer
loans to offset their increased holding of reserves. Exempting reserves from the calcuation of the
SLR as was temporarily implemented following the Covid-19 crisis, may be one way to reduce
the crowding out of bank lending. With that said, our cost function captures the overall costs
depending on banks’ balance sheet composition. Future work may examine bank balance sheets
and specific regulatory requirements at a more granular level.

An alternative way to reduce the crowding out of loans we document is for the Federal Reserve
to reduce the quantity of reserves that QE forces banks to hold. In particular, the Federeal Reserve
could extend reserve access to non-banks, which would reduce the pressure for the banking system
to absorb the entire reserve injection. One step in this direction is the Reverse Repo (RPP) Facility
that allows money market funds to hold secured deposits with the Federal Reserve. Expanding the
size and eligibility of the RRP Facility is one potential approach to preserve bank balance sheet
space during future rounds of QE. A more ambitious approach would be to use a Central Bank
Digital Currency that could be traded outside of the banking system to pay for assets in future
rounds of QE.

6 Conclusion

There has been a large expansion in the amount of central bank reserves outstanding following
multiple rounds of QE. This paper develops and estimates a structural model of the U.S. banking
system to analyze the effect of an increase in central bank reserve supply on bank lending and
deposit taking. Our framework has two key factors that determine the impact of reserve injections
on the banking system. The first one is the demand elasticity banks face in their respective deposit
and loan markets. The second one is how banks’ cost of capital depends on their balance sheet
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composition, where the effect of reserve holdings on the cost of capital is of particular importance.

One main challenge in estimating our model is that reserve supply increases are endogenus.
In particular, reserve supply increased due to QE, which was implemented in response to the 2008
financial crisis and the Covid-19 pandemic. To avoid confounding by the direct effect of these
crises, we estimate our structural model only using cross-sectional variation unrelated to QE in the
time series.

In our estimated model, the increase in reserve supply from 2008 to 2017 reduces firm loans
extended by an average of $353.0 billion, which amounts to 19 cents in bank lending crowded
out per dollar of reserves injected. The impact on mortgage lending and deposit taking is more
attenuated. Our model-generated reserve spread is similar to the observed IOER-Fed funds spread
in the data. Importantly, the reduction in bank lending to firms following reserve increases may
counteract the stimulative impacts of QE’s asset purchases. This counterproductive effect of the
reserve supply channel we document is important to consider when thinking about the design of
unconventional monetary policy and bank regulation going forward.
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Appendix

A Additional Proofs and Derivations

A.1 Derivation of Equations (6)-(8) in Section 2

Taking the derivatives on the left hand side of equations (2) to (4) yields

∂QD,nmt

∂RD,nmt

(RD,m
t −RD,nmt)−QD,nmt =

∂C(Θmt)

∂QD,nmt

∂QD,nmt

∂RD,nmt

, (A1)

∂QM,nmt

∂RM,nmt

(RM,nmt −RM,m
t ) +QM,nmt =

∂C(Θmt)

∂QM,nmt

∂QM,nmt

∂RM,nmt

, (A2)

∂QL,nmt

∂RL,nmt

(RL,nmt −RL,m
t ) +QL,nmt =

∂C(Θmt)

∂QL,nmt

∂QL,nmt

∂RL,nmt

, (A3)

RS,t −RS,m
t =

∂C(Θmt)

∂QS,mt

. (A4)
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Dividing equations (A1)-(A3) respectively by ∂QD,nmt

∂RD,nmt
, ∂QM,nmt

∂RM,nmt
, and ∂QL,nmt

∂RL,nmt
yields

RD,m
t −RD,nmt −

QD,nmt

∂QD,nmt/∂RD,nmt

=
∂C(Θmt)

∂QD,nmt

, (A5)

RM,nmt −RM,m
t +

QM,nmt

∂QM,nmt/∂RM,nmt

=
∂C(Θmt)

∂QM,nmt

, (A6)

RL,nmt −RL,m
t +

QL,nmt

∂QL,nmt/∂RL,nmt

=
∂C(Θmt)

∂QL,nmt

, (A7)

RS,t −RS,m
t =

∂C(Θmt)

∂QS,mt

. (A8)

If we take the left hand side of equations (A5) - (A7) as a function respectively of the quantities
QD,nmt, QM,nmt andQL,nmt, we can implicitly differentiate this system of equations to see how the
bank responds to an exogenous increase in its its security holdings QS,mt. If we differentiate this
system with respect to QS,mt, we obtain equations (6)- (8) in the main text.

A.2 Detailed Derivations for Section 3

A.2.1 Explicit Expression for ψoD,nt

Using the expressions for QD,nmt in equation (11) and for QD,nt in equation (16) yields

QD,nmt

QD,nt

=
exp(αDRD,nmt +XD,nmtβD + δD,nmt)∑
m′ exp(αDRD,nm′t +XD,nm′tβD + δD,nm′t)

. (A9)

With the definition of ψD,nt in equation (17), this becomes

log
QD,nmt

QD,nt

= αDRD,nmt +XD,nmtβD + δD,nmt − ψD,nt. (A10)

Averaging this expression across the Nnt different banks m in market n at time t yields

1

Nnt

∑
m

log
QD,nmt

QD,nt

=
1

Nnt

∑
m

(αDRD,nmt +XD,nmtβD)− ψoD,nt, (A11)

since the market-specific mean of δD,nmt is ψuD,nt and ψoD,nt + ψuD,nt = ψD,nt. This yields the
expression we use for ψoD,nt

ψoD,nt =
1

Nnt

∑
m

(αDRD,nmt +XD,nmtβD)−
1

Nnt

∑
m

log
QD,nmt

QD,nt

. (A12)
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A.2.2 Derivation of Individal Bank and Market-Level Demand Curves

From equations (11) and (16) we have that

QD,nmt = QD,nt

exp(αDRD,nmt +XD,nmtβD + δD,nmt)∑
m′ exp(αDRD,nm′t +XD,nm′tβD + δD,nm′t)

(A13)

logQD,nmt = logQD,nt + log
exp(αDRD,nmt +XD,nmtβD + δD,nmt)∑
m′ exp(αDRD,nm′t +XD,nm′tβD + δD,nm′t)

(A14)

= logQD,nt + αDRD,nmt +XD,nmtβD + δD,nmt − ψoD,nt. (A15)

This implies that an individual bank’s demand curve is given by

∂ logQD,nmt

∂RD,nmt

= αD +
∂ logQD,nt

∂RD,nmt

−
∂ψoD,nt
∂RD,nmt

(A16)

= αD +

(
∂ logQD,nt

∂ψoD,nt
− 1

)
∂ψoD,nt
∂RD,nmt

(A17)

= αD + αD

(
∂ logQD,nt

∂ψoD,nt
− 1

)
QD,nmt

QD,nt

(A18)

= αD + αD(βD,o − 1)
QD,nmt

QD,nt

. (A19)

In equation (A19), we apply our log-linear approximation in equation (18) which yields βD,o =
∂ logQD,nt

∂ψo
D,nt

.

This same log-linear approximation also allows us to derive an expression for the impact of an
individual bank’s rates on market-level quantities:

logQD,nt = logFD,nt + βD,o(ψ
o
D,nt + ψuD,nt) (A20)

∂ logQD,nt

∂RD,nmt

= βD,o
∂ψoD,nt
∂RD,nmt

=
1

Nnt

αDβD,o (A21)

where in the last equality we use the expression for ψoD,nt in equation (A12). Summing this across
all Nnt banks in the market gives an expression for how total quantites respond when all banks
raise their rates:

∂ logQD,nt

∂RD,nt

= αDβD,o (A22)

38



A.3 Cost Function Estimation

This appendix shows how to use our regression results from estimating equations (33)-(35) and
(37)-(42) to identify the bank’s cost function. These regression results tell us that a one unit change
in instrument zimt changes bank deposit, mortgage, loan, and security quantities respectively by
γi,D, γi,M , γi,L, γi,s. This same one unit change in instrument zimt results in changes in the marginal
costs of providing deposits, loans, and securities of κi,D, κi,M , κi,L. Because our cost function
specification only depends on the deposit quantity QD,mt and the aggregates Emt = QM,mt +

QL,mt + QS,mt − QD,mt and Imt = QS,mt + ωMQM,mt + ωLQL,mt, it is useful to define γi,E =

γi,Q + γi,M + γi,L− γi,D and γi,I = γi,Q + ωMγ
i,M + ωLγ

i,L. The terms γi,E and γi,I tells us how
much Emt and Imt are impacted by a one unit change in the instrument zimt.

Using the expressions for a bank’s marginal costs in equations (26)-(29), these regression
coefficients must satisfy

κi,D = −K1γ
i,E +K3γ

i,D +K4γ
i,I +K5[γ

i,E − γi,D] (A23)

κi,M = K1γ
i,E +K2γ

i,IωM +K4γ
i,DωM +K5γ

i,D (A24)

κi,L = K1γ
i,E +K2γ

i,IωL +K4γ
i,DωL +K5γ

i,D (A25)

0 = K1γ
i,E +K2γ

i,I +K4γ
i,D +K5γ

i,D, (A26)

where every marginal cost in equations (26)-(29) is replaced by its associated κ variable and every
quantity is replaced by its associated γ variable. The zero on the left hand size of equation (A26)
reflects the fact that securities trade in a competitive market, so in equilibrium there cannot be any
cross-sectional dispersion in the marginal cost of holding securities across banks.

Using two instruments, we have two sets of these equations, or 8 equations in total. However,
the rank of this system of equations is only 7, so we are only able to identify a 7-parameter cost
funtion18. To estimate the 7 parameters (K1 through K5 and ωL and ωM ), we minimize the sum
of squared deviations between the left and right hand size of Eq. (A23) through (A26). To do so,
we first pick a value of (ωL, ωM) and solve for K1, . . . , K5 in an inner loop. With (ωL, ωM) fixed,
choosing K1, . . . K5 to minimize our loss function is a least squares solution of 8 linear equations
with 5 unknowns, for which there is a closed-form solution. We then globally search over the
parameters (ωL, ωM) to find the value of all 7 parameters which jointly minimize our loss function.
We verified that there is a unique set of parameter values for which our loss function is minimized,

18To see this rank deficiency, note that our model implies ωL = 1 + κi,L

κi,M (ωM − 1) for the values from both of the
instruments i = 1, 2, which cannot be satisfied simultaneously. This rank deficiency is not specific to the functional
form of our cost function. It is a consequence of the fact that the Hessian of any cost function is a symmetric matrix.
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which we report in the main text and use to compute the implied Hessian matrix H .
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Online Appendix

This document contains additional theoretical and empirical results. It contains two sections on (A)

additional empirical results, (B) an extended demand system of bank loans with relationship banking,

(C) a microfoundation for the log-linear modification of our logit demand system, (D) computation

details for our counterfactuals, and (E) an extension of our model to infinite horizon.

A Loan Outside Option

Table OA1: Outside Option estimates (Loans)

This table reports the outside option size for loans in trillions of dollars. The implied βo is obtained
using equation (OA4) below.

Year Size of Outside Option Implied βo
2001 0.32 0.50
2002 0.32 0.53
2003 0.34 0.56
2004 0.29 0.42
2005 0.29 0.36
2006 0.31 0.33
2007 0.36 0.33
2008 0.56 0.63
2009 0.65 0.76
2010 0.53 0.59
2011 0.40 0.41
2012 0.43 0.46
2013 0.37 0.34
2014 0.40 0.37
2015 0.48 0.44
2016 0.50 0.43
2017 0.49 0.37
2018 0.46 0.35

The estimate of the implied βo can be inferred from knowing the overall market size FD,nt, which

is possible once the outside option is observed. The total quantity of deposits and total market size

are related by

QD,nt = FD,nt
exp(ψD,nt)

1 + exp(ψD,nt)
. (OA1)

Equation (OA1) can be used to solve for ψD,nt from observed data. Moreover, in this exact model,

∂log(QD,nt)

∂ψD,nt
= ψD,nt −

exp(ψD,nt
1 + ψD,nt

=
1

1 + exp(ψD,nt)
(OA2)
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while in our log-linear model

logQD,nt ≈ logFD,nt + βD,oψD,nt (OA3)

which implies ∂log(QD,nt)

∂ψD,nt
= βD,o.

Our approximation (derived here for deposits D but also identically for loans L) is therefore

βD,o =
1

1 + exp(ψD,nt)
. (OA4)
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B A Model of Relationship-Based Bank Loans

This appendix presents a modification of our logit demand system that allows us to exploit data on

firm-bank relationships in the DealScan dataset. In the main text, we relied on a proxy for the number

of firms in the market that did not borrow from a bank to infer the overall elasticity of loan demand.

In contrast, we were able to estimate this aggregate elasticity of demand directly from the data for

mortgages and deposits. Exploiting data on firm-bank relationships in DealScan allows us to estimate

the aggregate elasticity of loan demand in a manner somewhat similar to our approach for deposits

and mortgages.

Our modified model is identical to a logit demand system except that firms get extra utility k from

borrowing from a bank they previously borrowed from. At time t, firm i in market n has the choice

to borrow from banks indexed by m. We assume each firm i has the same expected amount FL,nt as

all other firms in the market. Firm i gets utility

αLRL,nmt +XL,nmtβL + δL,nmt + kli,mt + ϵi,nmt (OA5)

from choosing to borrow from bank m and selects its bank to maximize utility, where kli,mt is the

new term that describes the utility from prior relationships: if this firm borrowed from this bank in the

past, then, li,mt = 1; otherwise li,mt = 0. We expect k > 0 so that firms prefer to borrow from banks

with prior relationships. ϵi,nmt are standard logit draws, i.i.d. across firms. Firms also have an outside

option yielding utility 0 from not borrowing. The probability firm i borrows from bank m is

exp(αLRL,nmt +XL,nmtβL + δL,nmt + kli,mt)

1 +
∑

m′ exp(αLRL,nm′t +XL,nm′tβL + δL,nm′t + kli,m′t)
, (OA6)

and the expected amount it borrows from this bank is

QL,i,nmt = FL,nt
exp(αLRL,nmt +XL,nmtβL + δL,nmt + kli,mt)

1 +
∑

m′ exp(αLRL,nm′t +XL,nm′tβL + δL,nm′t + kli,m′t)
. (OA7)

The crucial feature of this modified demand system is that if firms prefer to borrow from the same

banks the have previously, a firm’s total borrowing quantity is more sensitive to the rates charges by

its relationship banks than the rates charge by other banks. That is, if k > 0, ∂QL,i,nmt

∂RL,nmt
is larger if

li,m′t = 1 than if li,m′t = 0. Once we have estimated k, we can infer the aggregate elasticity of loan

demand by observing how a shock to a bank’s rates impacts the borrowing quantities of its relationship

firms relative to the borrowing quantities of other firms.
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B.1 Estimating the price disutility parameter αL from new borrowers

We first consider the borrowing decisions of those firms which have no previous banking relationships.

If there a large numberN of such firms, then (by the law of large numbers) the amount borrowed from

bank m by firms with no previous borrowing relationships is

Qnew
nmt = NFL,i,nt

exp(αLRL,nmt +XL,nmtβL + δL,nmt)

1 +
∑

m′ exp(αLRL,nm′t +XL,nm′tβL + δL,nm′t)
. (OA8)

Taking the log of equation (OA8) yields

log(Qnew
nmt)− log(Qnew

nm′t) = αL(RL,nmt +RL,nm′t) + (XL,nmt −XL,nm′t)βL + (δL,nmt − δL,nm′t).(OA9)

This log-linear expression allows us to estimate the demand parameters of our model exactly

in the same manner as in our baseline setting, which is a standard logit demand system. The only

difference is that here we use the quantities of borrowing by the subset of firms with no previous

relationships. Because the latent demand term δL,nmt may be correlated with the lending rate, we

use the two stage least squares specification (with the same instrument following Cortés and Strahan

(2017) as in the main text)

log(Qnew
nmt) = (ζL,nt + EL,ntδL,nmt) + αLRL,nmt +XL,nmtβL + (δL,nmt − EL,ntδL,nmt)

RL,nmt = γL,nt + γLzL,nmt +XL,nmtγD + eL,nmt.

This provides us with a consistent estimate of αL. Table OA2 reports the result from this regression.

The price disutility parameter αl = −489.5 is very similar to our main text estimate αL = −487.3.

B.2 Estimating the relationship stickiness parameter k

Having estimated αL and βL, we next infer how much firms value borrowing from a bank with which

they have a past relationship. We do so by comparing the distribution of borrowing by new firms to

the borrowing of firms that have past relationships. Because the unobserved latent demand δ shows

up in the borrowing choices of all firms, we can use data on the borrowing decisions of new firms to

control for the endogeneity problem.

It is useful to classify firms by their “relationship vector” l, which equals 1 for every bank m the

firm has previously borrowed from and equals 0 otherwise. For such a firm with relationship vector

l, its probability of borrowing from a bank with which it already has a relationship conditional on
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Table OA2: Demand System Estimates

This table reports the two-stage least squares results for the estimating price disutility parameter αL
of our loan demand system. These regressions are run at the market-bank-year level, with a control
for loan loss provision as in the main text. The sample period is from 2001 to 2017. *, **, and ***
denote significance at the 10%, 5%, and 1% level, respectively.

Dependent variable:

Loan Market Share

Rate (with IV) −489.46∗∗∗

(117.14)
Loan Loss Provision 27.98∗∗

(10.20)

Observations 13,184

borrowing at all is∑
m∈l exp(αLRL,nmt +XL,nmtβL + δL,nmt + k)∑

m′ exp(αLRL,nm′t +XL,nm′tβL + δL,nm′t + k1m′∈l)
=

∑
m∈l exp(log

∑
nQ

new
nm′t + k)∑

m′ exp(log
∑

nQ
new
nm′t + k1m′∈l)

,

(OA10)

where
∑

nQ
new
nm′t is the aggregate quantity of lending from bankm′ to only new firms with no previous

relationships. This equation follows from equation (OA9).

The ratio in equation (OA9) can be compared to the observed data Plt|borrow, the fraction of

observed borrowing by firms with relationship vector l that is from banks the firms have previous

relationships with. Choosing the parameter k to make Plt|borrow −
∑

m∈l exp(log
∑

nQ
new
nm′t+k)∑

m′ exp(log
∑

nQ
new
nm′t+k1m′∈l)

as close

as possible to 0 provides an estimate of k. We use this to construct a moment condition that aggregates

across all possible relationship vectors, weighted by their total loan quantities:

∑
l

Ql,rel

[
Plt|borrow −

∑
m∈l exp(log

∑
nQ

new
nm′t + k)∑

m′ exp(log
∑

nQ
new
nm′t + k1m′∈l)

]
= 0. (OA11)

Solving equation (OA11) yields our estimate of k. Our solution is k = 2.27, which means that holding

other characteristics constant, firms are exp(k) = 9.66 times more likely to borrow from banks with

past relationships relative to the decisions of new borrowers.

B.3 Estimating the aggregate elasticity of loan demand

To estimate the aggregate elasticity of loan demand, we need to observe how the quantity that a firm

borrows is impacted by shocks to the supply of credit. For a firm with relationship vector l, the
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probability that it borrows from a bank instead of choosing the outside option is∑
m′ exp(αLRL,nm′t +XL,nm′tβL + δL,nm′t + kli,m′t)

1 +
∑

m′ exp(αLRL,nm′t +XL,nm′tβL + δL,nm′t + kli,m′t)
= H(ψi,nt)

where H(x) = exp(x)/(1 + exp(x)) and ψi,nt = log(
∑

m′ exp(αLRL,nm′t +XL,nm′tβL + δL,nm′t +

kli,m′t)). If k were equal to 0, then ψi,nt would not depend on the firm i and would be identical to

ψD,nt in the main text. As for ψD,nt in the main text, every term in ψi,nt except for the mean of δL,nm′t,

so we define

ψui,nt = ψunt =
1

Nnt

∑
m

δL,nmt. (OA12)

ψoi,nt = log

(∑
m

exp(αLRL,nmt +XL,nmtβL + δL,nmt − ψui,nt + kli,mt)

)
. (OA13)

Here, ψoi,nt is observable but ψunt is not and ψoi,nt + ψunt = ψi,nt. The expected quantity
∑

i∈lQi,t

borrowed by a firm with relationship vector l is

log(
∑
i∈l

Qi,t) = log(FL,nt) + log(H(ψoi,nt + ψui,nt)) ≈ log(FL,nt) + βL,o(ψ
o
i,nt + ψunt)

after log-linearizing.

We can estimate βL,o with a firm level instrument zi,nt by

log(
∑
i∈l

Qi,t) = log(FL,nt) + β(ψoi,nt + ψunt) + ϵint (OA14)

ψoi,nt = κo + λozi,nt + ηint. (OA15)

To construct our instrument, we take for each firm the average amount of natural disaster damage

done in regions where its relationship banks have branches.

The above expressions depend on knowing observed value of ψoi,nt, which were first initially

inferred from looking at the quantity of borrowing from new firms. While ψoi,nt, can be inferred from

observed data, this step has to be done jointly with the estimate of βL,o.

The fraction of observed borrowing, under our log-linear approximation to the function H() that

goes to bank m is
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∑
iQL,i,nmt∑

m

∑
iQL,i,nmt

=

∑
i

exp(αLRL,nmt+XL,nmtβL+δL,nmt+kli,mt)∑
m′ exp(αLRL,nm′t+XL,nm′tβL+δL,nm′t+kli,mt)

exp(βL,o(ψ
o
i,nt + ψui,nt))∑

i

∑
m

exp(αLRL,nmt+XL,nmtβL+δL,nmt+kli,mt)∑
m′ exp(αLRL,nm′t+XL,nm′tβL+δL,nm′t+kli,mt)

exp(βL,o(ψoi,nt + ψui,nt))
.(OA16)

This expression depends on the unobserved variable βL,o that we aim to estimate. For a postulated

value of βL,o, we solve this system of equations given by equation (OA16) for the values of δL,nmt.

There is one fewer equation than unknown, so we solve for the δL,nmt up to the value of their unknown

mean. We then use these values to construct the variable ψoi,nt (which does not depend on the mean

of the δL,nmt’s) and run the 2 stage least square regressions (OA14) and (OA15) above to get a new

estimate of βL,o. We iterate this procedure until βL,o reaches a fixed point.

The result is reported in Table OA3. We find β = 0.30. Compared to Table 4 in the main text,

this estimate is close to the implied value of 0.33 as in the year of 2007, which is the input for our

counterfactual analysis.

Table OA3: Outside Option Estimates

This table reports the two-stage least squares results for estimating the outside option parameter βL,o
in the loan market. The sample period is from 2001 to 2017.

βL,o 0.30

Observations 44,529

Finally, we use our parameters to compute the implied aggregate elasticity of loan demand. For

this, we need an expression for how the quantity of total loans varies when every bank raises its loan

rates by the same amount. We will denote the total quantity borrowed by Q and a change in every

bank’s rate a derivative with respect to R.

Equation (OA14) implies that the total quantity of borrowing is

Q =
∑
l

NlFL,nt exp(βL,o(ψ
o
i,nt + ψunt)). (OA17)

Note that

∂ψoi,nt
∂R

=

(
αL
∑

m exp(αLRL,nmt +XL,nmtβL + δL,nmt − ψui,nt + kli,mt)
)(∑

m exp(αLRL,nmt +XL,nmtβL + δL,nmt − ψui,nt + kli,mt)
) = αL (OA18)
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is the same for all firms i. The derivative of the borrowing quantity in equation (OA17) with respect

to an equal increase in the rates of every bank is

dQ

dR
=
∑
l

[NlFL,ntexp(βL,o(ψ
o
i,nt + ψunt))]βL,o

∂ψoi,nt
∂R

= QβL,oαL (OA19)

It follows that dlogQ
dR

= αLβL,o just like in the demand systems in the main text. Plugging in our

estimates αL = −489, βL,o = .30, we get that a 10 basis point increase in all bank rates leads to a

decline in total loan quantities of .30 × 48.9% = 14.7%. This is close to the main text estimate of

0.33× 48.7% = 16.1% using our main text estimate of αL = −487 and the year 2007 outside option

estimate of 0.33 on which we based our benchmark counterfactual.

C Microfoundation for Bank’s Cost Function

This section presents an economic model that yields the bank’s cost function in equation (25). We

first rewrite this cost function as

H (QD,mt, QM,mt, QL,mt, QS,mt) = µDQD,mt + µMQM,mt + µLQL,mt + µQQS,mt (OA20)

+
1

2
(K1(Amt −QD,mt)

2 +K2I2
mt +K3Q

2
D,mt + 2K4ImtQD,mt + 2K5(Amt −QD,mt)QD,mt),

where Amt = QM,mt+QL,mt+QS,mt = Emt+QD,mt. The quadratic terms of H in equation (OA20)

can be rewritten as

1

2
(K1[A2

mt − 2AmtQD,mt +Q2
D,mt] +K2I2

mt +K3Q
2
D,mt (OA21)

+2K4ImtQD,mt + 2K5(AmtQD,mt −Q2
D,mt))

=
1

2
(K1A2

mt +K2I2
mt + (K1 +K3 − 2K5)Q

2
D,mt + 2K4ImtQD,mt + 2(K5 −K1)AmtQD,mt)

According to our estimates in table 5 , we have K1 > 0, K2 > 0, K1 + K3 − 2K5 > 0, K4 >

0, 2(K5 −K1) < 0.

We present a simple microfoundation for this cost function based on the need of banks to manage

liquidity risk. For simplicity, we abstract from costs due to regulation even though these likely play an

important role in practice. First, banks face a standard quadratic cost of issuing equity ex ante before

shocks are realized. This cost is, for some constant Q0 > 0,

Q0(Amt −QD,mt)
2 = Q0A2

mt − 2Q0AmtQD,mt +Q0Q
2
D,mt. (OA22)

48



Second, following Kashyap et al. (2002), banks jointly face the risk of outflows on both the asset

and liability sides of their balance sheets. This is motivated by the fact that depositors can always

withdraw from a bank, and borrowers with revolving lines of credit can demand cash at any time as

well. In addition, term loans could potentially be renegotiated as well. For simplicity, we assume that

in a withdrawal event, banks have a total funding outflow of (k1Amt − k2QD,mt). Banks have again a

quadratic cost of raising new funds to meet this redemption, but with a different constantQ1 reflecting

the fact that raising funds in a redemption crisis pay be particularly expensive. This yields a cost of

Q1(k
2
1A2

mt + k22Q
2
D,mt − 2k1k2AmtQD,mt). (OA23)

Third, the bank faces the risk of an identical outflow shock, except that the outflows on its asset

side are proportional to its liquidity weighted assets Imt instead of its overall assets Amt. Here, the

bank faces a quadratic cost of raising new funds afther the redemption but with a new constant Q2.

The total withdrawal is now (k3Imt − k4QD,mt) resulting in a total cost of

Q2(k
2
3I2

mt + k24Q
2
D,mt − 2k3k4ImtQD,mt). (OA24)

Summing up equations (OA22) -(OA24), we get the bank’s cost function

(Q0+Q1k
2
1)A2

mt+Q2k
2
3I

2
mt+(Q0+Q1k

2
2+Q2k

2
4)Q

2
D,mt−2Q2k3k4QD,mtImt−(2Q0+2k1k2)AmtQD,mt.

(OA25)

Note that depending on whether k1 has the same sign as k2 and whether k3 has the same sign as k4, the

coefficients on QD,mtImt and AmtQD,mt can be either positive or negative. This reflects the fact that

in some financial crises, such as 2008, banks faced drawdowns on their credit lines while also facing

a large inflow of deposits. It is also possible, however, for a bank to have a run where depositors

and creditors all want cash at the same time. However, the first three terms for A2
mt, I

2
mt, Q

2
D,mt must

be positive (as we find in our estimates). This expression is therefore flexible enough to match our

estimated cost function parameters.

D Microfoundation for Log-Linear Modification of Logit Demand System

This appendix provides a specification of consumer preferences that exactly yields the log-linear

approximation to a logit demand system we use in the paper’s main text (starting with equation (18)).

We again use the deposit market as an example. The model is identical to a logit demand system
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except that there is heterogeneity in how much depositors value the outside good. As in equation

(10), depositor j gets from any good m > 0 in region n at time t utility

uD,jnmt = αDRD,nmt +XD,nmtβD + δD,nmt + εD,jnmt. (OA26)

In addition, there is an outside good m=0 for which our depositor gets utillity

ujn0t = δD,jn0t + εD,jn0t. (OA27)

In a standard logit demand system we would have δD,jn0t = 0 for all depositors. In our modified

demand system, δD,jn0t varies across depositors and is distributed according to a measure µ which

has density f. The realization of δD,jn0t is assumed to be independent of all εD,jnmt. Conditional on

a realized δD,jn0t, our model is a logit demand system where the depositor’s probability of choosing

good m is

exp(αDRD,nmt +XD,nmtβD + δD,nmt)

exp(δD,jn0t) +
∑

m>0 exp(αDRD,nmt +XD,nmtβD + δD,nmt)

The quantity purchased of good m is, integrating the measure µ over the value of the outside good,

QD,nmt = FD,nt

∫ ∞

−∞

exp(αDRD,nmt +XD,nmtβD + δD,nmt)

exp(δD,jn0t) +
∑

m>0 exp(αDRD,nmt +XD,nmtβD + δD,nmt)
dµ(δD,jn0t) (OA28)

This implies

log(QD,nmt)− log(QD,nm′t) = αD(RD,nmt −RD,nm′t) + (XD,nmt −XD,nmt)βD + (δD,nmt − δD,n′t) (OA29)

as in a logit demand system. Equation (OA29) implies that of the funds invested in goods other

than the outside option, our demand system yields the same distribution of these funds between the

individual goods available. If in addition, our model yields the same total quantity of funds invested

as in equation (18), it will exactly match the log-linear approximation to a logit demand system used

in the main text. The total quantity of funds invested in our model is, summing equation (OA28) over

all m > 0 is

QD,nt = FD,nt

∫ ∞

−∞

exp(ψD,nt)

exp(δD,jn0t) + exp(ψD,nt)
dµ(δD,jn0t),

where ψD,nt = log(
∑

m>0 exp(αDRD,nmt +XD,nmtβD + δD,nmt)).
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To exactly match our log-linear approximation for QD,nt in equation (18), we must have that

log

[ ∫ ∞

−∞

exp(ψD,nt)

exp(δD,jn0t) + exp(ψD,nt)
dµ(δD,jn0t)

]
= βD,oψD,nt,

for a constant 0 < βD,o < 1. We want to choose our distrubtion µ of outside option utilities to yield

this expression. That is, we must pick the distribution µ so that

exp(βD,oψD,nt) =

∫ ∞

−∞

exp(ψD,nt)

exp(δD,jn0t) + exp(ψD,nt)
dµ(δD,jn0t) (OA30)

Denote K = exp(ψD,nt) and k = exp(δD,jn0t), equation (OA30) can be written as

KβD,o−1 =

∫ ∞

0

dµe(k)

k +K
(OA31)

where µe is the measure induced on exp(δD,jn0t) by having a measure µ over δD,jn0t.

As a special case, if K = 1,

1 =

∫ ∞

0

dµe(k)

k + 1
(OA32)

which implies that for all K > 0,∫ ∞

0

K1−βD,odµe(k)

k +K
=

∫ ∞

0

dµe(k)

k + 1
. (OA33)

We first charecterize a class of measures µe that satisfy equation (OA33) and then choose one

from this class for which
∫∞
0

dµe(k)
k+1

= 1. If we write our measure µe in terms of its density f e, i.e.,

dµe(k) = f e(k)dk, we have ∫ ∞

0

K1−βD,of e(k)dk

k +K
=

∫ ∞

0

f e(k)dk

k + 1
(OA34)

If we u-substitute u = k
K
, du = 1

K
dk, we get∫ ∞

0

K1−βD,oKf e(Ku)du

K(u+ 1)
=

∫ ∞

0

K1−βD,of e(Ku)du

(u+ 1)
=

∫ ∞

0

f e(k)dk

k + 1
. (OA35)

Equation (OA35) holds if K1−βD,of e(Ku) does not depend on the value of K, which is the case
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precisely when f e(u) = CuβD,o−1 for some constant C. The constant C is then determined by

1 =

∫ ∞

0

CkβD,o−1dk

k + 1
, (OA36)

noting that the integral
∫∞
0

k
βD,o−1

dk
k+1

≤
∫ 1

0
kβD,o−1dk +

∫∞
1
kβD,o−2dk = 1

βD,o
+ 1

1−βD,o
is convergent

for any 0 < βD,o < 1. This implies that if all depositors have preferences following equations (OA26)

and (OA27), with the exponent of the utility they get from the outside option having density

f e(u) =
uβ−1∫∞

0
k
βD,o−1

dk
k+1

, (OA37)

they choose exactly the quantities given by our log-linear approximation to a logit demand system.

E Computational Details for Counterfactual

E.1 Demand Systems under Log-linear Approximation

Each bank m has deposits QD,nmt in region n at time t. The total quantity of deposits in the region is

QD,nt =
∑

mQD,nmt. Let δnmt denote the desirability of its deposit:

δnmt = αDRD,nmt +XnmtβD + δD,nmt (OA38)

and deposits QD,nmt can be expressed as

QD,nmt = QD,nt

exp(δnmt)∑
m′ exp(δnm′t)

. (OA39)

Let Q
i

D,nt and δo,int denote the actual value in the data (i for initial). Next, we approximate the

variation in QD,nt by

∂ logQD,nt

∂δoD,nt
= βo (OA40)

which implies that

QD,nt = Q
i

D,nt exp(∆fD,nt) exp(βo(δ
o
D,nt − δo,int )) (OA41)

= Q
i

D,nt exp(βo(log
∑
m′

exp(δnm′t)− log
∑
m′

exp(δinm′t))) (OA42)
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Here we also consider a “demand shock” ∆fD,nt that increases the total size of the deposit market

uniformly.

Then,

QD,nmt = QD,nt

exp(δnmt)∑
m′ exp(δnm′t)

= Q
i

D,nt exp(∆fD,nt)
(
∑

m′ exp(δnm′t))
βo−1

(
∑

m′ exp(δinm′t))
βo

exp(δnmt). (OA43)

Note that the value of this expression is unchanged if we add a constant to all δ and δi variables in

region n at time t. We also have the the difference between the δ of any two goods in the same market

is the difference in their log quantities sold. It follows that we can simply use δinmt = log(Qi
D,nmt) to

compute it (since δinmt − log(Qi
D,nmt) is the constant across all goods in each market):

δnmt = δinmt + αD(rnmt − rinmt) (OA44)

Under our maintained assumption that only prices and not product qualities change in counter-

factuals, we can write δnmt = δinmt + α(∆rnmt) where ∆rnmt = RD,nmt − Ri
D,nmt is the change in

interest rates relative to the pre-counterfactual data. We can therefore write QD,nmt as

QD,nmt = Q
i

D,nt exp(∆fD,nt)
(
∑

m′ exp(δinm′t + α(∆rnm′t)))
βo−1

(
∑

m′ exp(δinm′t))
βo

exp(δinmt + α(∆rnmt)).(OA45)

E.2 Marginal Cost from Optimality Condition

The optimal pricing-implied marginal cost comes from the first order condition is

RD,nmt = RD
t − QD,nmt(RD,nmt)

Q′
D,nmt(RD,nmt)

− ∂C(QD,nmt(RD,nmt), . . .)

∂QD,nmt

. (OA46)

Because

log(QD,nmt) = log(Q
i

D,nt) + ∆fD,nt + (βo − 1) log(
∑
m′

exp(δinm′t + α(∆rnm′t))) (OA47)

− βo log(
∑
m′

exp(δinm′t)) + (δinmt + α(∆rnmt)). (OA48)
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we have

∂ log(QD,nmt)

∂∆rnmt
= α + α(βo − 1)

exp(δinmt + α(∆rnmt))∑
m′ exp(δinm′t + α(∆rnm′t))

(OA49)

This implies

∂C

∂QD,nmt

= RD
t −

[
∂ log(QD,nmt)

∂rnmt

]−1

−RD,nmt (OA50)

= RD
t −

[
α + α(βo − 1)

exp(δinmt + α(∆rnmt))∑
m′ exp(δinm′t + α(∆rnm′t))

]−1

−RD,nmt (OA51)

and thus this demand system on its own implies a marginal cost of providing deposits coming from

the optimal rate setting first order condition:

∂C

∂QD,nmt

− ∂Ci

∂QD,nmt

=

[
α +

α(βo − 1) exp(δinmt)∑
m′ exp(δinm′t)

]−1

(OA52)

−
[
α +

α(βo − 1) exp(δinmt + α(∆rnmt))∑
m′ exp(δinm′t + α(∆rnm′t))

]−1

−∆rnmt

E.3 Jacobian of marginal cost from optimality condition

For numerical accuracy, the Jacobian of equation (OA52) is needed. The derivative of this marginal

cost is only non-zero with respect to other rates in the same region and time. The change of bank m’s

marginal cost with respect to bank m∗’s rate is give by

∂

∂∆rnm∗t

∂C

∂QD,nmt

=
∂

∂rnm∗t

(
−
[
α +

α(βo − 1) exp(δinmt + α(∆rnmt))∑
m′ exp(δinm′t + α(∆rnm′t))

]−1

−∆rnmt

)
(OA53)

= −
[
1 +

(βo − 1) exp(δinmt + α(∆rnmt))∑
m′ exp(δinm′t + α(∆rnm′t))

]−2

· (βo − 1)

(
exp(δinmt + α(∆rnmt)) exp(δ

i
nm∗t + α(∆rnm∗t))

(
∑

m′ exp(δinm′t + α(∆rnm′t)))
2

+ 1{m=m∗}
exp(δinmt + α(∆rnmt))∑
m′ exp(δinm′t + α(∆rnm′t))

)
− 1{m=m∗}

= −
[
1 +

(βo − 1) exp(δinmt + α(∆rnmt))∑
m′ exp(δinm′t + α(∆rnm′t))

]−2

(βo − 1)

· exp(δinmt + α(∆rnmt))∑
m′ exp(δinm′t + α(∆rnm′t))

(
exp(δinm∗t + α(∆rnm∗t))∑
m′ exp(δinm′t + α(∆rnm′t))

+ 1{m=m∗}

)
− 1{m=m∗}.
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Let B be the number of banks and V be the space of 3B dimensional vectors representing each

bank’s deposit, loan, and mortgage quantities. We want to compute how these quantities change

when the central bank raises the supply of reserves so that increases security yields by R. We define

a function fR : V → V that equals 0 after the economy equilibrates in response to this increased

reserve supply.

First, we define a function f ∗,R
1 from bank level deposit, mortgage, and loan quantities to an as-

sociated security quantity consistent with the rate rise R. For each bank, this function is given by

(where Bi is the number of branches of the bank) R = 1
Bi

(
∂2C

∂QD∂QS

∂2C
∂QM∂QS

∂2C
∂QL∂QS

∂2C
∂QS∂QS

)
∗

QD,i −Qo
D,i

QM,i −Qo
M,i

QL,i −Qo
L,i

QS,i −Qo
S,i

 This implies Si = So+
Bi
∂2C

∂QS∂QS

(R− 1
Bi

(
∂2C

∂QD∂QS

∂2C
∂QM∂QS

∂2C
∂QL∂QS

)
∗

QD,i −Qo
D,i

QM,i −Qo
M,i

QL,i −Qo
L,i

)

The Jacobian of this function is −1
∂2C

∂QS∂QS

(
∂2C

∂QD∂QS

∂2C
∂QM∂QS

∂2C
∂QL∂QS

)
for the effect of bank i’s quan-

tities on bank i’s security quantity and 0 for the effect of any other bank j on bank i’s quantities. Let

fR1 be given by (id : V → V , f ∗,R
1 )- which maps each banks 3 given quantities to themselves together

with this implied security quantity.

Next, we define a map f2 from each bank’s quantities Di,Mi, Li, Si to the change in its marginal

costs from those before the counterfactual. This change in marginal costs is given byMCD,i −MCo
D,i

MCM,i −MCo
M,i

MCL,i −MCo
L,i

 = 1
Bi


∂2C

∂QD∂QD

∂2C
∂QM∂QD

∂2C
∂QL∂QD

∂2C
∂QS∂QD

∂2C
∂QD∂QD

∂2C
∂QM∂QM

∂2C
∂QL∂QM

∂2C
∂QS∂QM

∂2C
∂QD∂QL

∂2C
∂QM∂QL

∂2C
∂QL∂QL

∂2C
∂QS∂QL

 ∗


QD,i −Qo

D,i

QM,i −Qo
M,i

QL,i −Qo
L,i

QS,i −Qo
S,i

. The Ja-

cobian of f2 is 1
Bi


∂2C

∂QD∂QD

∂2C
∂QM∂QD

∂2C
∂QL∂QD

∂2C
∂QS∂QD

∂2C
∂QD∂QD

∂2C
∂QM∂QM

∂2C
∂QL∂QM

∂2C
∂QS∂QM

∂2C
∂QD∂QL

∂2C
∂QM∂QL

∂2C
∂QL∂QL

∂2C
∂QS∂QL

 from a bank’s own quantities to its

marginal cost changes and 0 for all other terms in the Jacobian matrix.

In each market, given the marginal cost changes of each bank in the market, we now compute

the change in the bank’s chosen interest rates that are consistent with the marginal cost changes. That

is, each bank’s change in interest rates ∆rnmt from that observed in the data is chosen so that they

all solve equation (OA52). This system of equations must be solved numerically, but it is tractable

since it can be solved seperately market by market. In market n, equation (OA52) defines a function

g from a vector of rate changes for each bank in the market to an expression for that bank’s change in

marginal cost from that implied in the data. By solving g to equal our vector of marginal cost changes,
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we are computing the function f3 = g−1. The Jacobian of f3 = g−1 is the inverse of the Jacobian of

g, which is given by equation (OA53).

Having solved in each market for the change in bank-market-level interest rate changes that are

consistent with our marginal cost changes, we next compute the bank-level quantities implies by

plugging these new interest rate changes into our demand system. The total quantity of deposits on a

bank’s balance sheet is, summing equation (OA45) across markets,

QD,mt =
∑
n

QD,nmt =
∑
n

Q
i

D,nt

(
∑

m′ exp(δinm′t + α(∆rnm′t)))
βo−1

(
∑

m′ exp(δinm′t))
βo

exp(δinmt + α(∆rnmt)).

Analogous expressions for the quantity of mortgages and loans also hold.

QM,mt =
∑
n

QM,nmt =
∑
n

Q
i

M,nt

(
∑

m′ exp(δ
i,M
nm′t + αM(∆rnm′t)))

βM
o −1

(
∑

m′ exp(δ
i,M
nm′t))

βM
o

exp(δi,Mnmt + αM(∆rQM,nmt))

This defines a function f4 from the rate changes we computed above back to a list of bank-level

deposit, mortgage, and loan quantities. The Jacobian of this function is given by

∂

∂∆rnm∗t
Dmt (OA54)

= (βo − 1)αQ
i

D,nt

(
∑

m′ exp(δinm′t + α(∆rnm′t)))
βo−2

(
∑

m′ exp(δinm′t))
βo

exp(δinm∗t + α(∆rnm∗t)) exp(δ
i
nmt + α(∆rnmt))

+ 1{m=m∗}αQ
i

D,nt

(
∑

m′ exp(δinm′t + α(∆rnm′t)))
βo−1

(
∑

m′ exp(δinm′t))
βo

exp(δinmt + α(∆rnmt))

= αQ
i

D,nt

(βo − 1)

(∑
m′

exp(δinm′t + α(∆rnm′t))

)−1

exp(δinm∗t + α(∆rnm∗t)) + 1{m=m∗}

 .

Thus,

fR = fR1 ◦ f2 ◦ f3 ◦ f4 (OA55)

maps V to V, and a fixed point of fR yields a counterfactual equilibrium of the economy. The Jacobian

of this function is (by the expression for the Jacobian of composed functions) J(fR1 ) × J(f2) ×
J(f3) × J(f4), where J(.) denotes the Jacobian of each individual function. We provided closed

form expressions for all of these Jacobians except f3, which was a function defined by solving a

system of equations (that must be computed numerically). However, f3 is given by the inverse of our

function g that does have a closed form Jacobian, which can be used to give the Jacobian of f3 at its

computed numerical solution. We compute our counterfactual by solving the equation fR(v)− v = 0
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numerically, using our analytic expression for its Jacobian to speed computation.

F Infinite-Horizon Model

This section presents an infinite-horizon profit maximization problem for each bank that results in the

same optimal behaviour as the two-period model presented in the main text. Each bank m chooses

market-specific rates RP,nmt, where P corresponds to D, M , and L, for its deposits, mortgages and

corporate loans in market n at time t. These markets are imperfectly competitive, and bank m faces

demand curves that determine its quantities QP,nmt(RP,nmt, ωt) of deposits (D), mortgages (M ), and

loans (L) in market n at time t. These demand curves depend on the bank’s own chosen rates as well

as a vector ωt of variables the bank does not choose, such as competitors’ rates and exogenous shocks.

In addition, bank m chooses its quantity QS,mt of liquid securities at time t that trade in a competitive

market paying an interest rate RS,t.

In period t+ 1, bank m makes a payout to its equity holders of

Πm,t+1 = (OA56)∑
n

QL,nmt(1 +RL,nmt) +
∑
n

QM,nmt(1 +RM,nmt) +QS,mt(1 +RS,t)−
∑
n

QD,nmt(1 +RD,nmt)

−

(∑
n

QL,nm,t+1 +
∑
n

QM,nm,t+1 +QS,m,t+1 −
∑
n

QD,nm,t+1

)
− C(Θmt),

The bank’s equity holder has a pricing kernel Λt,t+j and maximizes the present value of its payouts

max
(RD,nmt,RM,nmt,RL,nmt,Qmt)

∞∑
j=0

Et[Λt,t+jΠm,t+j] (OA57)

subject to equation (OA56). Note that each rate chosen at time t+j only impacts Πm,t+j and Πm,t+j+1
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The first-order conditions for the bank’s problem are 19

∂QD,nmt

∂RD,nmt

=
1

1 +RD,m
t

(
∂QD,nmt

∂RD,nmt

(1 +RD,nmt) +QD,nmt +
∂QD,nmt

∂RD,nmt

∂C(Θmt)

∂QD,nmt

)
(OA58)

∂QL,nmt

∂RL,nmt

=
1

1 +RL,m
t

(
∂QL,nmt

∂RL,nmt

(1 +RL,nmt) +QL,nmt −
∂QL,nmt

∂RL,nmt

∂C(Θmt)

∂QL,nmt

)
(OA59)

∂QM,nmt

∂RM,nmt

=
1

1 +RM,m
t

(
∂QM,nmt

∂RM,nmt

(1 +RM,nmt) +QM,nmt −
∂QM,nmt

∂RM,nmt

∂C(Θmt)

∂QM,nmt

)
(OA60)

1 =
1

1 +RS,m
t

(
(1 +RS,t)−

∂C(Θmt)

∂QS,mt

)
. (OA61)

These are equivalent to equations (2)-(5).

G Estimating Demand and Cost Curves for Firms in Multiple Markets

This appendix analyzes the decisions of a firm that sells goods in multiple markets. The key result is

that a demand shock in one market can be used both to identify the demand curves the firm faces in

other markets as well as to identify the firm’s marginal cost curve of production. A firm sets price Pn
for the goods it sells in market n, facing demand curveDn(Pn, λn). The parameter λn is an exogenous

shock that shifts demands for the good only in market n. There is a total of N markets. The firm faces

a cost C(
∑

nDn(Pn, λn)) +
∑

n ϵnDn(Pn, λn) of production. The firm maximizes its profits∑
n

PnDn(Pn, λn)− C(
∑
n

Dn(Pn, λn))−
∑
n

ϵnDn(Pn, λn) (OA62)

yielding first-order condition for Pn

Dn(Pn, λn) + Pn[
∂(Dn)(Pn, λn)

∂Pn
]− (C ′(

∑
n

Dn(Pn, λn)) + ϵn)(Dn)
′(Pn, λn) = 0 (OA63)

Dn(Pn, λn)
∂(Dn)(Pn,λn)

∂Pn

+ Pn − C ′(
∑
n

Dn(Pn, λn)) + ϵn) = 0 (OA64)

When this system of equations has a unique solution, it implicitly defines a function P (λ), mapping

the vector of the λn demand shocks to a vector of prices, with price Pn(λ) in market n. For j not

19For simplicity, we assume that the riskiness of a bank’s entire deposit base is the same (and respectively all of its
mortgages and all of its loans). This allows us to define bank-asset-specific discount rates (RD,m

t ,RM,m
t ,RL,m

t ,RQ,m
t in

each first order condition implied by the pricing kernel Λt,t+j .
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equal to n, we have that

d

dλj
[Dn(Pn, λn)] =

∂Dn(Pn, λn)

∂Pn

∂Pn
∂λj

(OA65)

d
dλj

[Dn(Pn, λn)]

∂Pn

∂λj

=
∂Dn(Pn, λn)

∂Pn
(OA66)

It follows that if we divide the response of quantities in market n to the demand shock λj by the

response of prices in market n to the demand shock λj , we get the slope ∂Dn(Pi,λi)
∂Pn

of the demand

curve. This implies that a 2 stage least squares regression estimates the impact of Pn on Dn using the

demand shock λj as an instrument identifies the slope of the demand curve in market i. This is the

approach we take when using a natural disaster instrument to estimate our demand system.

Having estimated the demand curves Di faced by the firm, we identify the average MC of the

firm’s marginal costs across markets by

MC = C ′(
∑
n

Dn(Pn, λn)) +
1

N

∑
n

ϵn (OA67)

The response of this marginal cost cost to a shock to any given λj is

dMC

dλj
= C ′′(

∑
n

Dn(Pn, λn))
d[
∑

nDn(Pn(λ), λn)]

dλj
(OA68)

It follows that if we regress the marginal cost MC on the demand shock λj and then regress the

total quantity
∑

nDn(Pn(λ), λj) on the demand shock λj , the ratio of these regression coefficients

identifies the slope C ′′() of the firm’s marginal cost curve. This shows how in a setting where firms

are active in multiple markets, we can use a demand shock in a given market to identify both the

demand curve the firm faces in other markets as well as the firm’s marginal cost curve.
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