Price Selection in the Microdata

by P. Karadi, R. Schoenle, J. Wursten

discussion by Francesco Lippi (LUISS University & EIEF)

ECB Annual Research Conference, September 2022

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わんで

Sticky-prices in a GHF framework: overview of paper

- Empirically analyze price setting behavior through a GHF framework
- Discuss implications for shock propagation: how important is selection?
- More specifically: measure firms' desired adjustment $\hat{x}_{i,t}$ and :
 - 1. use micro data to estimates a GHF : $\Lambda(\hat{x}_{i,t})$, and other moments
 - 2. identify a time series for aggregate "monetary" shocks: ϵ_t
 - 3. use OLS to study effect of $\hat{x}_{i,t}$, ϵ_t , $\hat{x}_{i,t} \cdot \epsilon_t$ on prob. of adjustment

"selection

Sticky-prices in a GHF framework: overview of paper

- Empirically analyze price setting behavior through a GHF framework
- Discuss implications for shock propagation: how important is selection?
- More specifically: measure firms' desired adjustment $\hat{x}_{i,t}$ and :
 - 1. use micro data to estimates a GHF : $\Lambda(\hat{x}_{i,t})$, and other moments
 - 2. identify a time series for aggregate "monetary" shocks: ϵ_t
 - 3. use OLS to study effect of $\hat{x}_{i,t}$, ϵ_t , $\hat{x}_{i,t} \cdot \epsilon_t$ on prob. of adjustment

"selection

- Main results (emphasized in the paper):
 - Price-setting behavior shows strong elements of state dependence
 - The GHF linear in $|\hat{x}|$, as in Eichenbaum, Jaimovich, Rebelo (AER 2011)
 - Find no role for interaction term: $\hat{x}_{i,t} \cdot \epsilon_t$ (selection is overrated!)

Short summary of GHF models (Caballero-Engel)

Setup for models with fixed cost of adjustment:

Firm *i* controls gap: $x_i \equiv (p_i - mc_i) - \mu^*$ where μ^* is the ideal markup

- Uncontrolled state x_i follows diffusion: $dx_i = \sigma dW_i$
- Optimal policy gives GHF: $\Lambda(x_i)$ if $x_i \in (\underline{x}, \overline{x})$, adjust otherwise
- Upon adjustment state is reset to $x^* = 0$ ("closing the gap")

Short summary of GHF models (Caballero-Engel)

Setup for models with fixed cost of adjustment:

- Firm *i* controls gap: $x_i \equiv (p_i mc_i) \mu^*$ where μ^* is the ideal markup
- Uncontrolled state x_i follows diffusion: $dx_i = \sigma dW_i$
- Optimal policy gives GHF: $\Lambda(x_i)$ if $x_i \in (\underline{x}, \overline{x})$, adjust otherwise
- Upon adjustment state is reset to x* = 0 ("closing the gap")
- Aggregation for many firms: Given $\{\Lambda(\cdot), \underline{x}, \overline{x}, \sigma\}$ we have
 - cross-section distribution of gaps: f(x) KFE: $\Lambda(x)f(x) = \frac{\sigma^2}{2}f''(x)$
 - Frequency of price changes: **N** , $N = 2 \int_0^{\bar{x}} \Lambda(x) f(x) dx \sigma^2 f'(\bar{x})$
 - cross-section distribution of price changes: $q(\Delta x)$, $q(-\Delta x) = \frac{\Lambda(x)f(x)}{N}$

Interesting Results: New important facts (fig. 2)

Price changes: Δx

GHF $\Lambda(x)$

density: f(x)

Interesting Results: New important facts (fig. 2)

Price changes: Δx closing the gap!

GHF $\Lambda(x)$ linear and symmetric! (no fairies in sight) density: f(x)Convex and Symmetric

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ 釣へで

Interesting Results: New important facts (fig. 2)

If price-setting follows GHF model, then shock propagation fully known

Shock propagation in GHF models: analytic results

three models with same frequency N and different aggregate flexibility

GHF encodes all you need to study shock propagation

Authors' analysis of "selection" in the empirical model

Price setting probability depends on "gap", "shock", and "selection"

Linear probability model

$$I_{pst,t+h}^{\pm} = \beta_{xih}^{\pm} x_{pst-1} \hat{ebp}_t + \beta_{xh}^{\pm} x_{pst-1} + \beta_{ih}^{\pm} \hat{ebp}_t + \gamma_h^{\pm} T_{pst-1} + \Gamma_h^{\pm} \Phi(L) X_t + \alpha_{psh}^{\pm} + \alpha_{mh}^{\pm} + \varepsilon_{psth}^{\pm}$$

- ▶ $I_{pst,t+h}^{\pm}$ indicator of price increase (resp. decrease) of product *p* in store *s* between *t* and t + h
- x_{pst-1}: price gap (to control for its regular effect)
- ebp_t is the aggregate shock (to control for its average effect)
- x_{pst-1}ebp_t gap-shock interaction (selection: focus of analysis)

Probability model: estimates

	(1)	(2)	(3)	(4)	(5)	(6)
	Price increase $\left(I_{pst,t+24}^+\right)$			Price decrease $\left(I_{pst,t+24}^{-}\right)$		
${\rm Gap}(x_{pst-1})$	-1.75^{***}	-1.75^{***}		1.55^{***}	1.55^{***}	
	(0.06)	(0.06)		(0.06)	(0.06)	
Shock (ebp_t)	-0.03^{***}		-0.04^{***}	0.03***		0.03***
	(0.01)		(0.01)	(0.01)		(0.01)
Selection $(x_{pst-1}\hat{ebp}_t)$	-0.00	-0.00		0.01	0.01	
	(0.04)	(0.04)		(0.05)	(0.04)	
Age (T_{pst-1})	0.02***	0.02***	0.02***	0.00**	0.01***	0.01***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)

Table 3: Estimates, scanner data, competitor-price gap, credit shock

・ロ> <回> <目> <目> <目> <目> <回> <回> <

Key question: should we expect the interaction term to matter?

Key question: should we expect the interaction term to matter?

- monetary shock ϵ_t affects firm's marginal cost \implies Prob P-change
 - Recall definition $x_i \equiv (p_i mc_t) \mu^*$ and ϵ_t affects mc_t
 - Paper measures gap $\hat{x}_i = p_i p$ where p is competitors avg. price
 - theory-based gap: $x_i = \hat{x}_i + \alpha \epsilon_t$ and hazard: $\Lambda(x_{i,t}) = \Lambda(\hat{x}_{i,t} + \alpha \epsilon_t)$

Key question: should we expect the interaction term to matter?

- monetary shock ϵ_t affects firm's marginal cost \implies Prob P-change
 - Recall definition $x_i \equiv (p_i mc_t) \mu^*$ and ϵ_t affects mc_t
 - Paper measures gap $\hat{x}_i = p_i p$ where p is competitors avg. price
 - theory-based gap: $\mathbf{x}_i = \hat{\mathbf{x}}_i + \alpha \epsilon_t$ and hazard: $\Lambda(\mathbf{x}_{i,t}) = \Lambda(\hat{\mathbf{x}}_{i,t} + \alpha \epsilon_t)$

example #1 :
$$\Lambda(\hat{x}_{i,t} + \alpha \epsilon_t) = |\hat{x}_{i,t} + \alpha \epsilon_t|$$

Key question: should we expect the interaction term to matter?

- monetary shock ϵ_t affects firm's marginal cost \implies Prob P-change
 - Recall definition $x_i \equiv (p_i mc_t) \mu^*$ and ϵ_t affects mc_t
 - Paper measures gap $\hat{x}_i = p_i p$ where p is competitors avg. price
 - theory-based gap: $x_i = \hat{x}_i + \alpha \epsilon_t$ and hazard: $\Lambda(x_{i,t}) = \Lambda(\hat{x}_{i,t} + \alpha \epsilon_t)$

example #1 :
$$\Lambda(\hat{x}_{i,t} + \alpha \epsilon_t) = \left| \hat{x}_{i,t} + \alpha \epsilon_t \right|$$

example #2 :
$$\Lambda(\hat{x}_{i,t} + \alpha \epsilon_t) = \left(\hat{x}_{i,t} + \alpha \epsilon_t \right)^2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Use theory as a LAB to test the metrics example #1 $\Lambda(\hat{x}_{i,t-1} + \alpha \epsilon_t) = |\hat{x}_{i,t-1} + \alpha \epsilon_t|$ with $\alpha = 1$

Dependent variable: Prob of price decrease I_{t+h}^{-}

12 aggr. shocks per year, 10 years data, 50 k products (🚔 asymptotic stats)

Use theory as a LAB to test the metrics

example #1 $\Lambda(\hat{x}_{i,t-1} + \alpha \epsilon_t) = |\hat{x}_{i,t-1} + \alpha \epsilon_t|$ with $\alpha = 1$

Dependent variable: Prob of price decrease I_{t+h}^-

h period	+1 daily		
$\hat{\mathbf{x}}_{i,t-1} + \alpha \epsilon_t$ t-stat	0.055 130		
û ,,t−1 t-stat	-		
€ _t t-stat	-		
$\hat{\mathbf{x}}_{i,t-1} \cdot \epsilon_t$ t-stat	-0.005 -0.1		
age _t t-stat			

12 aggr. shocks per year, 10 years data, 50 k products (🚔 asymptotic stats)

Use theory as a LAB to test the metrics

example #1 $\Lambda(\hat{x}_{i,t-1} + \alpha \epsilon_t) = |\hat{x}_{i,t-1} + \alpha \epsilon_t|$ with $\alpha = 1$

Dependent variable: Prob of price decrease I_{t+h}^-

h period	+1 daily	+1 daily
$\begin{vmatrix} \hat{\mathbf{x}}_{i,t-1} + \alpha \ \epsilon_t \\ \text{t-stat} \end{vmatrix}$	0.055 130	
Â _{i,t−1} t-stat	-	0.027 200
<mark>€</mark> t t-stat	-	0.026 14
$\hat{\mathbf{X}}_{i,t-1} \cdot \epsilon_t$ t-stat	-0.005 -0.1	0.14 9
<i>age_t</i> t-stat		0.0036 130

12 aggr. shocks per year, 10 years data, 50 k products (🔿 asymptotic stats)

Use theory as a LAB to test the metrics

example #1
$$\Lambda(\hat{x}_{i,t-1} + \alpha \epsilon_t) = |\hat{x}_{i,t-1} + \alpha \epsilon_t|$$
 with $\alpha = 1$

Dependent variable: Prob of price decrease I_{t+h}^{-}

h	+1	+1	+1
period	daily	daily	monthly
$\begin{vmatrix} \hat{\mathbf{x}}_{i,t-1} + \alpha \ \epsilon_t \end{vmatrix}$ t-stat	0.055 130		
Â _{i,t−1}	-	0.027	0.76
t-stat		200	400
€ _t	-	0.026	0.84
t-stat		14	270
$\hat{\pmb{x}}_{i,t-1} \cdot \epsilon_t$ t-stat	-0.005	0.14	4.3
	-0.1	9	140
age _t		0.0036	0.12
t-stat		130	430

12 aggr. shocks per year, 10 years data, 50 k products (🔿 asymptotic stats)

Are price setters attentive? yes they are. Decisions depend on state

Are price setters attentive? yes they are. Decisions depend on state

- Time or state-dependent models? should we care?
- Matters under stress: energy shocks, supply bottlenecks, trade wars, ...
 Karadi-Reiff, Fischer-Bonadio-Saure, Auer-Burnstein, Alvarez-Neumeyer

Are price setters attentive? yes they are. Decisions depend on state

- Time or state-dependent models? should we care?
- Matters under stress: energy shocks, supply bottlenecks, trade wars, ...
 Karadi-Reiff, Fischer-Bonadio-Saure, Auer-Burnstein, Alvarez-Neumeyer

► Calvo or GL? neither really, and even a good GHF is still "not enough" Look for strategic complementarities? Λ(x, X)

- The paper has some very interesting micro evidence
- Direct evidence on GHF and behavior upon adjustment (closing the gap)

くして (四)・(日)・(日)・(日)

Results are new and important for macro! (no Calvo behavior)

- The paper has some very interesting micro evidence
- Direct evidence on GHF and behavior upon adjustment (closing the gap)
- Results are new and important for macro! (no Calvo behavior)
- The discussion of "selection" needs a tighter link to theory
 - Does "interaction" matter? depends on fct form of Λ , horizon *h*, sample size

- The paper has some very interesting micro evidence
- Direct evidence on GHF and behavior upon adjustment (closing the gap)
- Results are new and important for macro! (no Calvo behavior)
- The discussion of "selection" needs a tighter link to theory
 - Does "interaction" matter? depends on fct form of Λ , horizon h, sample size
- The data could be used to test strategic complementarities $\Lambda(x, X)$

Background material

Eichenbaum, Jaimovich, Rebelo, AER 2011

Roughly linear hazard (in absolute value)

イロン イヨン イヨン ・

э.

data from large US supermarket chain

Pitfalls of the Euristic approach

State dependence (extending Caballero and Engel, 2007)

- Focus: shape of the adjustment hazard $\Lambda(x)$.
- Steep hazard: price changes are large unconditionally (state-dependence, not selection)

$$\pi^{-} = \int_{x \ge 0} -x \Lambda(x) f(x) dx = -\bar{x}^{-} \overline{\Lambda}^{-} + \underbrace{\operatorname{Cov}\left(-x, \Lambda(x) | x \ge 0\right)}_{\text{state-dependence}},$$

