TAX HOUSING OR LAND? DISTRIBUTIONAL EFFECTS OF PROPERTY TAXATION IN GERMANY

Rafael Barbosa*1 and Simon Skipka*2

 ^{1}IMF

²German Federal Ministry of Finance

16 December, 2021

^{*}The views expressed herein are those of the authors and do not necessarily reflect those of the respective Institutions, Executive Board, or management.

Property Taxation: House Value Tax or Land Value Tax (LVT)?

- Property Taxation: House Value Tax or Land Value Tax (LVT)?
- LVT more efficient, but uncertain distributional impact is an obstacle to its widespread implementation.

- Property Taxation: House Value Tax or Land Value Tax (LVT)?
- LVT more efficient, but uncertain distributional impact is an obstacle to its widespread implementation.
- **Research Question**: What are the aggregate and distributional effects of replacing a property tax based on house values with a LVT?

- Property Taxation: House Value Tax or Land Value Tax (LVT)?
- LVT more efficient, but uncertain distributional impact is an obstacle to its widespread implementation.
- **Research Question**: What are the aggregate and distributional effects of replacing a property tax based on house values with a LVT?
- This project:
 - O We offer new empirical evidence on the distributional impact at a household level of a switch from housing taxation to LVT, building a unique data set for Germany.
 - O We build the first theoretical model which incorporates both the distributional impacts and the efficiency gains from adopting a Land Value Tax.

Empirical

- Papers on distributional consequences are scarce and inconclusive (regional analysis only):
 - \bigcirc England and Zhao (2005): Data from New Hamphshire \rightarrow Regressive LVT.
 - O Plummer (2010): Data from Texas \rightarrow **Progressive LVT**.

Empirical

- Papers on distributional consequences are scarce and inconclusive (regional analysis only):
 - \bigcirc England and Zhao (2005): Data from New Hamphshire \rightarrow Regressive LVT.
 - O Plummer (2010): Data from Texas \rightarrow **Progressive LVT**.
- We contribute to the literature by performing the first household level analysis based on official land value estimates.

Empirical

- Papers on distributional consequences are scarce and inconclusive (regional analysis only):
 - \bigcirc England and Zhao (2005): Data from New Hamphshire \rightarrow **Regressive LVT**.
 - O Plummer (2010): Data from Texas \rightarrow **Progressive LVT**.
- We contribute to the literature by performing the first household level analysis based on official land value estimates.

Theoretical

Theoretical literature has focused on efficiency and intergenerational inequality (OLG models).

Empirical

- Papers on distributional consequences are **scarce and inconclusive** (regional analysis only):
 - \bigcirc England and Zhao (2005): Data from New Hamphshire \rightarrow **Regressive LVT**.
 - O Plummer (2010): Data from Texas \rightarrow **Progressive LVT**.
- We contribute to the literature by performing the first household level analysis based on official land value estimates.

Theoretical

- Theoretical literature has focused on efficiency and intergenerational inequality (OLG models).
- We contribute to the literature by building the first model which replicates our novel empirical
 findings and allows for policy experiments which captures efficiency-equity trade-off in a model
 with heterogeneous households and regions.

Preview of Results

Empirical

- O Average land value share is 33% with substantial dispersion, between and within regions.
- We find potential for substantial differences in tax burdens under the different regimes.
- O Concerning **relation with income**, we find a revenue neutral switch to a LVT to be slightly regressive (in partial equilibrium).

Model

- Switch to a land tax leads to more investment in structures and lower housing rents, benefiting renters.
- O Slight regressive tendency for landowners. Most landowners benefit or are mostly unaffected.
- O Social welfare improves with a land tax.

DATA

FIGURE: Land value data for the city of Dusseldorf in \in per m^2 . Log scale.

- Start from German Household Survey (SOEP) for 2017 and expand it with
 - Land value data (Bodenrichtwerte): euros per square meter.
 - O Lot data (ALKIS).
 - Municipal data: Tax revenues.

DATA

FIGURE: Land value data for the city of Dusseldorf in \in per m^2 . Log scale.

- Start from German Household Survey (SOEP) for 2017 and expand it with
 - Land value data (Bodenrichtwerte): euros per square meter.
 - O Lot data (ALKIS).
 - Municipal data: Tax revenues.
- Data on five German States → Condition on primary residences of homeowners

DATA

FIGURE: Land value data for the city of Dusseldorf in \in per m^2 . Log scale.

- Start from German Household Survey (SOEP) for 2017 and expand it with
 - Land value data (Bodenrichtwerte): euros per square meter.
 - O Lot data (ALKIS).
 - Municipal data: Tax revenues.
- Data on five German States → Condition on primary residences of homeowners
- Geographically match the location of each household in the survey to its respective land value and lot characteristics.

REGIONAL RESULTS

 $\label{eq:Figure: Figure: Approx} Figure: \mbox{ Map of Average Municipality Land Prices for the German states in sample.}$

Log scale.

- Large regional heterogeneity in average land values
- Exponential growth in cities (and within cities)
- Total land value is 1.5 € trillion, **1.2 times** GDP → Annual land rents between 4 and 10% of output in developed nations.
- 90% is non-agricultural land.
- Average revenue revenue land value tax rates are 0.6% on average.

DISTRIBUTIONAL RESULTS

 ${
m FIGURE}$: Histogram of Land Value Share at household level. Vertical led line represents average of full sample.

- Land values are more concentrated than House values.
- Average Land Value Share (LVS) of full sample is 33% (regional heterogeneity).

DISTRIBUTIONAL RESULTS

FIGURE: Histogram of Land Value Share at household level. Vertical led line represents average of full sample.

- Land values are more concentrated than House values.
- Average Land Value Share (LVS) of full sample is 33% (regional heterogeneity).
- lacktriangle Substantial dispersion ightarrow potential for large changes in tax burden.

DISTRIBUTIONAL RESULTS

 $FIGURE: \mbox{ Histogram of Land Value Share at household level. Vertical led line represents average of full sample.}$

- Land values are more concentrated than House values.
- Average Land Value Share (LVS) of full sample is 33% (regional heterogeneity).
- $lackbox{ Substantial dispersion } o$ potential for large changes in tax burden.
- Novel findings on LVS
 - Large heterogeneity within region.
 - Substantial dispersion within income level.
 - Negative correlation with income within region. → Equity cost. More

• Purpose: Include general equilibrium effects and renters to capture potential Efficiency-Equity trade-off.

MODEL OVERVIEW

- Purpose: Include general equilibrium effects and renters to capture potential Efficiency-Equity trade-off.
- Infinitely lived agents.
- 3 sectors: Consumption good (tradable), Housing and Structures (non-tradable).

- Purpose: Include general equilibrium effects and renters to capture potential Efficiency-Equity trade-off.
- Infinitely lived agents.
- 3 sectors: Consumption good (tradable), Housing and Structures (non-tradable).
- 2 heterogeneous regions (different size and productivity levels).
 - O Common market for consumption good (numeraire). All other markets are regional.

- Purpose: Include general equilibrium effects and renters to capture potential Efficiency-Equity trade-off.
- Infinitely lived agents.
- 3 sectors: Consumption good (tradable), Housing and Structures (non-tradable).
- 2 heterogeneous regions (different size and productivity levels).
 - O Common market for consumption good (numeraire). All other markets are regional.
- Capital supplied at exogenous interest rate from international markets.

- Purpose: Include general equilibrium effects and renters to capture potential Efficiency-Equity trade-off.
- Infinitely lived agents.
- 3 sectors: Consumption good (tradable), Housing and Structures (non-tradable).
- 2 heterogeneous regions (different size and productivity levels).
 - O Common market for consumption good (numeraire). All other markets are regional.
- Capital supplied at exogenous interest rate from international markets.
- Land in fixed supply within each region z: $T_{L,z} + T_{F,z} = T_z$
 - \bigcirc Exogenous share of land held by a housing firm (T_F) which rents housing to renter households and consumption good firm.
 - \bigcirc Rest of land held by landowner households (T_L).

• Inelastic labor supply. Eat consumption good and housing.

Model

- Inelastic labor supply. Eat consumption good and housing.
- 2 main types:
 - \bigcirc Renters (R): homogeneous
 - \bigcirc Landowners (L): heterogeneous (productivity, land holdings, 5 levels each).
- Renters don't own land. Buy housing services from a housing firm.
- Landowners own some exogenous level of land which they combine with structures to produce housing.
 - Land is exogenously distributed to replicate heterogeneous land value shares (LVS) across households seen empirically.

- Inelastic labor supply. Eat consumption good and housing.
- 2 main types:
 - \bigcirc Renters (R): homogeneous
 - \bigcirc Landowners (L): heterogeneous (productivity, land holdings, 5 levels each).
- Renters don't own land. Buy housing services from a housing firm.
- Landowners own some exogenous level of land which they combine with structures to produce housing.
 - Land is exogenously distributed to replicate heterogeneous land value shares (LVS) across households seen empirically.
- Fixed total share of Renters and Landowners in the economy spread across the two regions. Renters
 can move between regions; Landowners cannot.

- Inelastic labor supply. Eat consumption good and housing.
- 2 main types:
 - \bigcirc Renters (R): homogeneous
 - \bigcirc Landowners (L): heterogeneous (productivity, land holdings, 5 levels each).
- Renters don't own land. Buy housing services from a housing firm.
- Landowners own some exogenous level of land which they combine with structures to produce housing.
 - Land is exogenously distributed to replicate heterogeneous land value shares (LVS) across households seen empirically.
- Fixed total share of Renters and Landowners in the economy spread across the two regions. Renters
 can move between regions; Landowners cannot.
- Mechanism: House value tax increases marginal cost of structures investment (of households and housing firm) through higher tax burden, decreasing housing in the economy. Land value tax does not.

POLICY EXPERIMENT - AGGREGATE

	Urban	Rural
Prices		
Wage	0.28	0.31
Price of Housing	-2.14	-0.78
Price of Land	-3.59	7.17
Quantities		
Population	-1.30	4.35
Structures (Firm)	2.06	7.93
Housing (Firm)	0.84	6.96
Structures (Landlords)	2.36	5.18
Housing (Landlords)	1.77	5.04
Output	-0.84	3.78
Renters		
Consumption	0.29	0.11
Housing	2.48	0.90
Utility	1.11	0.40
LVS (Landlord)	-3.35	1.54

TABLE: Changes (in %) from steady state of model with regional housing taxes. Change in utility of renters measured using consumption equivalent variation.

Calibrated to replicate main empirical findings. More

Policy Experiment - Aggregate

	Urban	Rural
Prices		
Wage	0.28	0.31
Price of Housing	-2.14	-0.78
Price of Land	-3.59	7.17
Quantities		
Population	-1.30	4.35
Structures (Firm)	2.06	7.93
Housing (Firm)	0.84	6.96
Structures (Landlords)	2.36	5.18
Housing (Landlords)	1.77	5.04
Output	-0.84	3.78
Renters		
Consumption	0.29	0.11
Housing	2.48	0.90
Utility	1.11	0.40
LVS (Landlord)	-3.35	1.54

TABLE: Changes (in %) from steady state of model with regional housing taxes. Change in utility of renters measured using consumption equivalent variation.

- Calibrated to replicate main empirical findings. More
- Policy Experiment: Revenue neutral switch (at regional level) from housing tax to land tax.

Policy Experiment - Aggregate

	Urban	Rural
Prices		
Wage	0.28	0.31
Price of Housing	-2.14	-0.78
Price of Land	-3.59	7.17
Quantities		
Population	-1.30	4.35
Structures (Firm)	2.06	7.93
Housing (Firm)	0.84	6.96
Structures (Landlords)	2.36	5.18
Housing (Landlords)	1.77	5.04
Output	-0.84	3.78
Renters		
Consumption	0.29	0.11
Housing	2.48	0.90
Utility	1.11	0.40
LVS (Landlord)	-3.35	1.54

TABLE: Changes (in %) from steady state of model with regional housing taxes. Change in utility of renters measured using consumption equivalent variation.

- Calibrated to replicate main empirical findings.
- Policy Experiment: Revenue neutral switch (at regional level) from housing tax to land tax.
- Revenue neutral land tax rate higher in rural region (11.2 vs 31%)
- lacktriangle Structures investment increases more in rural areas (land scarcity) ightarrow same for housing
- Migration from urban region → Land tax promotes regional convergence.

Policy Experiment - Aggregate

	Urban	Rural
Prices		
Wage	0.28	0.31
Price of Housing	-2.14	-0.78
Price of Land	-3.59	7.17
Quantities		
Population	-1.30	4.35
Structures (Firm)	2.06	7.93
Housing (Firm)	0.84	6.96
Structures (Landlords)	2.36	5.18
Housing (Landlords)	1.77	5.04
Output	-0.84	3.78
Renters		
Consumption	0.29	0.11
Housing	2.48	0.90
Utility	1.11	0.40
LVS (Landlord)	-3.35	1.54

TABLE: Changes (in %) from steady state of model with regional housing taxes. Change in utility of renters measured using consumption equivalent variation.

- Calibrated to replicate main empirical findings.
- Policy Experiment: Revenue neutral switch (at regional level) from housing tax to land tax.
- Revenue neutral land tax rate higher in rural region (11.2 vs 31%)
- lacktriangle Structures investment increases more in rural areas (land scarcity) ightarrow same for housing
- Migration from urban region → Land tax promotes regional convergence.
- Renters benefit (especially in urban regions)

Policy Experiment - Distributional

- Landowners in Urban region
 - O Slight regressive tendency in cities.
 - Overall, small changes in utility for landowners in urban areas.
 - O Low productivity landowners with high land can lose close to 2% in consumption equivalence terms.

POLICY EXPERIMENT - DISTRIBUTIONAL

Landowners in Urban region

- Slight regressive tendency in cities.
- Overall, small changes in utility for landowners in urban areas.
- O Low productivity landowners with high land can lose close to 2% in consumption equivalence terms.

Landowners in Rural region

- O Landowners benefit, on average, between 2 and 4% in CE terms, across productivy levels.
- Only landowners with high land holdings lose, with low productivity landowners losing the most More

POLICY EXPERIMENT - DISTRIBUTIONAL

- Landowners in Urban region
 - Slight regressive tendency in cities.
 - Overall, small changes in utility for landowners in urban areas.
 - O Low productivity landowners with high land can lose close to 2% in consumption equivalence terms.
- Landowners in Rural region
 - O Landowners benefit, on average, between 2 and 4% in CE terms, across productivy levels.
 - Only landowners with high land holdings lose, with low productivity landowners losing the most More
- Overall, social welfare improves with a land tax due to effect on renters and rural landowners.

CONCLUSION

Empirical

- Household level dataset based on official land values.
- O Identify houshehold distributions of land and house value and their relation to income.
- O Large heterogeneity in land value share. Land values more concentrated than house values but less correlated with income.

CONCLUSION

Empirical

- Household level dataset based on official land values.
- Identify houshehold distributions of land and house value and their relation to income.
- O Large heterogeneity in land value share. Land values more concentrated than house values but less correlated with income.

Theoretical

- First to model the efficiency equity trade-off of implementing a LVT.
- Using this model, we arrive at new results on the aggregate and distributional impact of replacing a house value tax with a land value tax.
- We find land tax does increase housing substantially, promotes regional convergence, and increases welfare through positive effects on renters and rural landowners.

CONCLUSION

E	-: .	.:
	IDII	ıca
	Em	Empir

- Household level dataset based on official land values.
- Oldentify houshehold distributions of land and house value and their relation to income.
- O Large heterogeneity in land value share. Land values more concentrated than house values but less correlated with income.

Theoretical

- First to model the **efficiency equity trade-off** of implementing a LVT.
- Using this model, we arrive at new results on the aggregate and distributional impact of replacing a house value tax with a land value tax.
- We find land tax does increase housing substantially, promotes regional convergence, and increases welfare through positive effects on renters and rural landowners.
- Land tax shows promise, but implementation should consider adverse distributional effects.

THANK YOU!

APPENDIX

LAND VALUE SHARE AND INCOME

	(1)	(2)	(3)	
Intercept	-1.191***	-2.781***	-1.599***	
	(0.246)	(0.068)	(0.224)	
Average Land Value		0.294***	0.310***	
		(0.014)	(0.014)	
Income	-0.019		-0.155***	
	(0.030)		(0.028)	
N .	2359	2359	2359	
R^2	0.000	0.164	0.174	

TABLE: Log-log regressions of household Land Value Share.

- Average land value of region has a strong impact on LVS, around 0.3.
- Coefficient on income controlling for average land value: -0.155.
- LVT is, on average, less progressive than a standard property tax at a regional level.
- Reason: Land value is more concentrated, but correlates less strongly with income than house value.

LVS AND INCOME - FEDERAL IMPLEMENTATION

• OLS coefficient is not statistically different from zero. Back

Households - Landowners

- Intertemporal problem. Choose consumption and investment in structures, $s_{L,t}$, (subject to depreciation).
- 25 i subtypes ($\{\theta, \eta\}$ pairings):
 - \bigcirc 5 Productivity (θ) subtypes
 - \bigcirc 5 Land holding (η_T) subtypes

$$\max_{\{C_{Li,t},S_{Li,t}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^{t} \frac{\left(C_{Li,t}^{\gamma} H_{Li,t}^{1-\gamma}\right)^{\sigma}}{\sigma}$$
 (1a)

s.to

$$(1 - \tau^{L})\theta_{Li}w_{z,t}L_{Li} - \tau_{z}^{H}p_{z,t}^{H}H_{Li,t} - \tau_{z}^{T}p_{z,t}^{T}\eta_{T,i}T_{L,z} + \eta_{F,i}\Pi_{H,z} \ge C_{Li,t} + p_{z,t}^{S}s_{Li,t}$$
(1b)

$$H_{Li,t}^{S} = G(\eta_{T,i}T_{L,z}, S_{Li,t}) = \phi_{H} \left[aS_{Li,t}^{\chi} + (1-a)(\eta_{T,i}T_{L,z})^{\chi} \right]^{\frac{1}{\chi}}$$
 (1c)

$$S_{Li,t} = (1 - \delta)S_{Li,t-1} + s_{Li,t}$$
 (1d)

- Pay taxes on labor earnings and house rents or land rents.
- Produce housing using land and structures with CES function.
 Back

Households - Landowners

Housing tax increases marginal cost of investment in structures today and tomorrow.

$$\frac{\partial U}{\partial H}\frac{\partial H}{\partial S} + \beta(1-\delta)\frac{\partial U}{\partial H}\frac{\partial H}{\partial S} = \lambda_{L,t}\left[p_{z,t}^S + \tau^H p_{z,t}^H \frac{\partial H}{\partial S}\right] + \lambda_{L,t+1}\left[\tau^H p_{z,t+1}^H (1-\delta)\frac{\partial H}{\partial S}\right]$$

- Taxation of land rents does not distort marginal incentives to build structures, nor does it
 reduce the overall quantity of land in the economy.
- Housing firm (owns rest of the land) is subject to a similar problem, which will impact its profits.
- Solve recursive problem computationally.

Housing firm

Problem of housing firm:

$$\max_{\{S_{F,z,t}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^{t} \left[(1 - \tau_{z}^{H}) p_{z,t}^{H} H_{F,z,t} - p_{z,t}^{S} s_{F,z,t} - \tau_{z}^{T} p_{z,t}^{T} T_{F,z} \right]$$
(2a)

s.to

$$H_{F,z,t} = H(T_{F,z}, S_{F,z,t}) = \phi_H \left[a S_{F,z,t}^{\chi} + (1-a) T_{F,z}^{\chi} \right]^{\frac{1}{\chi}}$$
 (2b)

$$S_{F,z,t} = (1 - \delta)S_{F,z,t-1} + s_{F,z,t}$$
 (2c)

- Inputs: Land and Structures (CES with constant returns to scale). Chooses structures to buy from structures' firm.
- Sells housing services to renter and consumption good firm (apartment vs. office buildings.)
- Pays taxes on housing or land, like landowner households.
- Price of land = marginal productivity of land
- Profits (rents from land and existing structures) distributed to landowners.

• Preferences and technology parameters from Garriga et al. (2019)

- Preferences and technology parameters from Garriga et al. (2019)
- Calibrate exogenous distribution of land and households across regions to match relevant statistics for Germany.
 - O Home ownership rate (50%).
 - O Share of homeowners in urban regions (44%).
 - O Size of urban and rural regions (determined using municipal and land value data).
 - O Average regional land value shares.

- Preferences and technology parameters from Garriga et al. (2019)
- Calibrate exogenous distribution of land and households across regions to match relevant statistics for Germany.
 - O Home ownership rate (50%).
 - O Share of homeowners in urban regions (44%).
 - Size of urban and rural regions (determined using municipal and land value data).
 - Average regional land value shares.
- Regional productivity differential calibrated to match share of urban population (77%). Fixed afterwards and renters allowed to migrate.

Preferences and	technology	parameters from	Garriga et	al. (2	2019)
i iciciciices and	teermology	parameters nom	Garriga Ct	ai. (2	-0101

- Calibrate exogenous distribution of land and households across regions to match relevant statistics for Germany.
 - Home ownership rate (50%).
 - O Share of homeowners in urban regions (44%).
 - Size of urban and rural regions (determined using municipal and land value data).
 - Average regional land value shares.
- Regional productivity differential calibrated to match share of urban population (77%). Fixed afterwards
 and renters allowed to migrate.
- Distribution of household productivity and land holdings.
 - O Split into 5 quintiles and match mean and standard deviation.
 - O Calibrate covariance to match empirical relation between LVS and income (70% correlation).

- Preferences and technology parameters from Garriga et al. (2019)
- Calibrate exogenous distribution of land and households across regions to match relevant statistics for Germany.
 - O Home ownership rate (50%).
 - O Share of homeowners in urban regions (44%).
 - Size of urban and rural regions (determined using municipal and land value data).
 - Average regional land value shares.
- Regional productivity differential calibrated to match share of urban population (77%). Fixed afterwards and renters allowed to migrate.
- Distribution of household productivity and land holdings.
 - O Split into 5 quintiles and match mean and standard deviation.
 - O Calibrate covariance to match empirical relation between LVS and income (70% correlation).
- **Tax on housing** set to match percentage of property tax revenue in GDP (1.2%). Back

 Model does a good job replicating regional differences in prices (wages, housing and land)

- Model does a good job replicating regional differences in prices (wages, housing and land)
- Households in rural region consume more housing and less tradable good.

More

- Model does a good job replicating regional differences in prices (wages, housing and land)
- Households in rural region consume more housing and less tradable good.
- Model land value shares match:

FIGURE: Boxplots of land value share for the baseline model.

FIGURE: Boxplots of land value share for the baseline model.

- Model does a good job replicating regional differences in prices (wages, housing and land)
- Households in rural region consume more housing and less tradable good.
- Model land value shares match:
 - O Different regional averages
 - Negative relation with income
 - Substantial dispersion within income level

FIGURE: Boxplots of land value share for the baseline model.

- Model does a good job replicating regional differences in prices (wages, housing and land)
- Households in rural region consume more housing and less tradable good.
- Model land value shares match:
 - O Different regional averages
 - Negative relation with income
 - Substantial dispersion within income level

Policy Experiment - Distributional 2

FIGURE: Change in welfare from switching to land tax (consumption equivalent variation).

- Bigger changes in rural region
 - Bigger impact
 - Different relative size of housing firm
- In rural region, most benefit.
- Landowners with high land holdings can lose significantly (especially rural and low income)
- Social welfare increases under a LVT Back