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Abstract

Forecast comparison tests are widely implemented to compare the performances of

two or more competing forecasts. The critical value is often obtained by the classical

central limit theorem (CLT) or by the stationary bootstrap (Politis and Romano, 1994)

with regularity conditions, including the one where the second moment of the loss

difference is bounded. However, the heavy-tailed nature of the financial variables can

violate this moment condition. We show that if the moment condition is violated,

the size of the test using the classical Normal asymptotics can be heavily distorted.

The distortion is large especially when the tail of the marginal distribution of the loss

differences is heavy. As an alternative approach, we propose to use a subsampling

method (Politis, Romano, and Wolf, 1999) that is robust to fat tails. In the empirical

study, we analyze several variance forecast tests by Hansen and Lunde (2006) and

Bollerslev, Patton, and Quaedvlieg (2016). Examining several tail index estimators, we

show that the second moment of the loss difference is likely to be unbounded especially

when the popular squared error (SE) function is used as a loss function. We also find

that the outcome of the tests may change if the subsampling is used.
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1 Introduction

Forecast comparison tests are widely conducted in finance to evaluate performances of two

or more competing forecasts of the financial variable. For example, an equal predictive

ability (EPA) test suggested by Diebold and Mariano (1995) and West (1996) is a standard

method used to compare two forecasts. White (2000) introduced the reality check (RC) for

data snooping, which is a framework to compare multiple forecasts. Hansen (2005) then

extended it to a superior predictive ability (SPA) test. Based on these tests, Hansen, Lunde,

and Nason (2011) introduced a model confidence set, which is widely applied in the empirical

studies. Whereas these tests deal with the null hypothesis defined with the unconditional

mean, Giacomini and White (2006) study a setting in which the null hypothesis is defined

with a conditional mean. Moreover, Giacomini and White (2006) suggest comparing the

forecasting methods that include the model selection, the estimation method, the window

of the data used for estimation, and so on.

These tests are conducted by computing the difference of losses from each forecast, and

the common loss functions include the squared error (SE), absolute error (AE) and so on.

In case of Diebold-Mariano-West type test, the null hypothesis is that the mean of the

loss difference is zero, implying that the two forecasts perform equally on average. The

p-value of the test statistic is computed either by the central limit theorem (CLT) or by the

stationary bootstrap (Politis and Romano, 1994). In either case it is necessary to rely on

the regularity conditions. Typically it is assumed that the loss difference process is strictly

stationary and satisfies a suitable mixing condition with a sufficiently fast rate of mixing as

well as existence of (2 + δ)th moment for δ > 0.

However, the condition that the loss difference has a finite second moment may be

violated in some situations, i.e., the second moment of the loss differences may not exist.

Numerous studies indicate that the financial variables, such as financial returns and foreign

exchange rates, have heavy-tailed distributions compared with the Normal distribution.

Recent empirical studies find that the fourth moment of the financial returns are infinite

(see amongst others Loretan and Phillips (1994), Gabaix (2009), Ibragimov (2009) and the

references therein). If this is the case, the second moment of the realized variance (RV) can

be unbounded.1

Noting that the second moment of the realized variance (RV) may be unbounded, we

1In a continuous model without jumps and without market microstructure noise, the fourth moment of
returns is unbounded if and only if the second moment of the instantaneous variance infinite.
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mainly focus our analysis on variance forecast tests. An equal predictive ability (EPA) test

for the variance forecasts is typically conducted with the realized variance RVt and two

competing variance forecasts denoted by F1t and F2t, respectively. The loss difference with

squared error function is given by

dt = (RVt − F1t)
2 − (RVt − F2t)

2 = F 2
1t − F 2

2t − 2RVt(F1t − F2t)

Then, taking the square, we have

d2t = (F 2
1t − F 2

2t)
2 + 4RV 2

t (F1t − F2t)− 4RVt(F1t − F2t)(F
2
1t − F 2

2t)

Then it is easy to invent an example where the second moment of the loss difference (dt)

is unbounded. If the third component is negligible and the second moment of the realized

variance is unbounded, the second moment of dt would also be unbounded.

We first review the generalized central limit theorem (CLT) with fat tails. With some

assumptions, the asymptotic distribution is given by the Stable distribution (Feller, 1971).

Using the results of Davis (1983) and Davis and Hsing (1995), we characterize the asymptotic

distribution of the test statistic for the equal predictive ability (EPA) test and we show

that it is a ratio of two correlated Stable random variable. We show that, when the left

and the right tails are “well balanced”, the asymptotic distribution of the test statistics

is symmetric with tails similar to the Normal distribution, regardless of the tail index

of the loss difference. However, when the tails are not “well balanced”, the asymptotic

distribution becomes asymmetric and skewed. Especially when the tail is heavier, the tail

of the asymptotic distribution is more different from the Normal distribution. In these

cases, the size property of a test using the Normal asymptotics is heavily distorted. We

also provide an analysis of four important components that determine the tails of the loss

difference, namely the tails of variable to be forecast and two competing forecasts and the

choice of the loss function. We consider Bregman class and characterize the relation of the

four components.

We then propose the subsampling method (Politis, Romano, and Wolf, 1999) as an

alternative approach. It is well known that the subsampling is asymptotically valid in

face of the fat tails unlike a bootstrap (Athreya (1987), Knight (1987)). We show in the

simulation that the choice of the block size has a crucial impact on the validity of the

subsampling in the finite sample, and that the appropriate block size depends on the tail



4

index and the skewness parameter of the marginal distribution of the loss difference. We

propose two data-driven selection methods that are combined with the minimum volatility

method of Romano and Wolf (2001).

Finally, we conduct an empirical study. Motivated by the heavy tail in the realized

variance (RV), we focus our analysis on tests to compare the variance forecasts. First, we

inspect the estimators for the tail index parameter α and the tail balance parameter p of

the loss difference. There are several estimators for α, such as the Hill estimator (Hill, 1975)

and the log-log estimator (Gabaix and Ibragimov, 2011). We also obtain estimators under

an assumption of the Stable distribution (Fama and Roll (1971) and McCulloch (1986)).

Overall, the moment condition is more likely to be violated with the squared error (SE)

function rather than the QLIKE function. When the squared error function is utilized, there

are cases in which the tail index estimates for the loss difference are below one, indicating

that even the first moment of the loss difference may be unbounded and the null hypothesis

is not well defined. In addition, the outcome of the test may change when we implement

the subsampling instead of the classical methods, such as the stationary bootstrap.

Throughout this paper, we denote by ` the slowly varying function at infinity, i.e., `

satisfies limx→∞
`(tx)
`(x) = 1 for all t > 0. They are not necessarily the same according to

the context. Also we use the notation f1(x) ∼ f2(x) as x → ∞ when the relationship
f1(x)
f2(x)

→ c <∞.

1.1 Forecast comparison test

We consider a variable to be forecast yt and two different forecasts, F1t and F2t where F1t

and F2t are Ft−1−measurable. Defining a loss function L(·), the null hypothesis of equal

predictive ability test is given by

H0 : E [L(yt, F1t)] = E [L(yt, F2t)].

In this paper, we mainly analyze two loss functions, SE and QLIKE, which are widely used

in the literature, see Hansen and Lunde (2005), Patton (2011) among others. The two

functions are defined as follows.

SE : L(yt, Ft) = (yt − Ft)2

QLIKE : L(yt, Ft) = yt/Ft − log(yt/Ft)
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Defining the loss difference sequence dt ≡ L(yt, F1t) − L(yt, F2t), the null hypothesis is

equivalent to H0 : E[dt] = 0. The test statistic denoted by τhac is defined as

τhac =
1/T

∑T
t=1 dt√

Ω̂T /T
(1)

where Ω̂T is the heteroskedasticity and autocorrelation consistent (HAC) estimator of the

long-run variance of dt. With some regularity assumptions, the critical values can be ob-

tained either by a central limit theorem with Normal asymptotics or by the stationary

bootstrap (Politis and Romano, 1994). These methodologies are justified under the regu-

larity conditions, and the existence of second moment of dt is one of them. For the central

limit theorem (CLT) with Normal asymptotics are shown in Ibragimov (1962), Oodaira and

Yoshihara (1972) and Doukhan (1994), 2 and the conditions for the stationary bootstrap is

shown in Hansen (2005).3

In this paper, we focus on the case where the second moment of the loss difference

is unbounded, but its first moment is bounded. If the marginal distribution of the loss

difference has even heavier tails, and the first moment of the loss difference does not exist,

the null hypothesis E[dt] = 0 is not well-defined any more and it is beyond the scope of our

analysis.

1.2 Related Literature

This paper is related to the papers which deal with the problems arising from fat tails and

the works with the forecast comparison tests, especially the tests for variance forecasts.

There are several papers which consider the fat tails of the conditional variance and the

high-frequency data such as the realized variance (RV). Kim and Meddahi (2020) analyze

the behavior of the OLS estimator in the volatility regression. They find that the fat tail

causes the estimator to converge to a random variable, rather than its true value. They

propose an instrumental varriable (IV) estimation which is robust to the fat tails. Ibragimov

(2007) studies the efficiency of linear estimators under the fat tails. Hill and Renault (2011)

2Let the stationary sequence Xt be centered at expectation and α-mixing. If
∑∞
n=0 α

δ/(2+δ)
n <

∞,E[X2+δ
1 ] < ∞ for some δ > 0 and σ2 = E[X2

1 ] + 2
∑∞
k=1 E[X1Xk] > 0, then the sequence of pro-

cesses {S[nt]/σn : t ∈ [0, 1]} converges in the Skorohod topology to a standard Brownian Motion W on [0, 1]

where S[nt] =
∑[nt]
s=1Xs, σ

2
n = E[S2

n].
3The vector of relative loss variables, {dt} is (strictly) stationary and α-mixing of size−(2+δ)(r+δ)/(r−2)

for some r > 2, δ > 0 where E|dt|r+δ <∞ and V ar(dk,t) > 0 for all k = 1, · · · ,m.
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considers a tail trimming approach. Hill and Prokhorov (2016) considers a GARCH process

with heavy tails and proposes a GEL estimator. Other estimation methods with Stable

errors are proposed by Blattberg and Sargent (1971), Jurec̆ková, Koenker, and Portnoy

(2001), Samorodnitsky, Rachev, Kurz-Kim, and Stoyanov (2007), Andrews, Calder, and

Davis (2009), Hallin, Swan, Verdebout, and Veredas (2013), Nolan and Ojeda-Revah (2013)

and so on. Also, Mikosch and de Vries (2013) derives explicitly the finite sample expressions

for the tail probabilities of the distribution of the OLS estimator, when the noise has heavy

tails. Loretan and Phillips (1994) considers a stationarity test for a heavy-tailed time series

processes. Ibragimov and Walden (2007) and Ibragimov (2009) analyze the impact of fat

tails in portfolio selections or diversifications.

Forecast comparison tests are widely used in econometrics. In the variance forecasting,

the problem of using a proxy of the latent variable has been studied in Patton (2011), Liu,

Patton, and Sheppard (2015) and Li and Patton (2018). Patton (2020) considers a forecast

comparison test with possibly misspecified forecasts. This paper is also related in spirit

to Zhu and Timmermann (2020), who consider the Giacomini-White test and study the

validity of the null hypothesis under a rolling window scheme. Our analysis with fat tails

also concerns the validity of the null hypothesis when the first moment of the loss difference

is unbounded.

2 Stable distribution

An α-stable distribution Sα(σ, β, µ) is characterized by four parameters: stable parameter

α ∈ (0, 2], shit parameter µ ∈ R, scale parameter σ ≥ 0, and skewness parameter β ∈
[−1, 1]. If a random variable X has a Stable distribution, we write X ∼ Sα(σ, β, µ) and its

characteristic function is the following:

E[eiuX ] =

{
exp(iµu− σα|u|α(1− iβ sign(u) tan(πα/2))), α 6= 1

exp(iµu− σ|u|(1 + (2/π)iβ sign(u) log |u|)), α = 1
(2)

The special case arises when α = 2, and a Stable distribution is a Normal distribution,

i.e., S2(σ, 0, µ) = N (µ, 2σ2). When α = 1, it is a Cauchy distribution, i.e., S1(σ, 0, µ).

When α < 2, the second moment does not exist. For details about the Stable distribution,

see Ibragimov and Linnik (1971), Brockwell and Davis (1991), Samorodnitsky and Taqqu

(1994), Borodin and Ibragimov (1995) and Embrechts, Klüppelberg, and Mikosch (1997).

When β is positive (negative), the distribution is skewed to the right (left) respectively.
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When β = 0, the distribution is symmetric. As α approaches to 2, β loses its effect and

the distribution approaches to the Normal distribution regardless of value of β. Table 1

shows the quantile of a random variable Sα(1, β, 0). Observe that when µ = 0 and β > 0,

the distribution is skewed to the right and it is centered in the negative region so that the

mean is zero.

When simulating a Stable random variable with σ = 1 and µ = 0, i.e., Sα(1, β, 0), the

following formula can be used from Theorem 3.1 of Weron (1996), or more explicitly from

the equation (3.3) of Weron (1995):4:

Sα(1, β, 0) =d
(

1 + β2 tan2 πα

2

)1/(2α) sinα(γ − γ0)
(cos γ)1/α

(
cos(γ − α(γ − γ0))

W

)(1−α)/α
(3)

for α 6= 1. γ is uniform on (−π/2, π/2), γ0 = −1/α arctan(β tan(πα/2)). W is standard

exponential, and γ andW are mutually independent. Note that when β = 0, the distribution

is symmetric and reduced to the formula given by equation (1.7.3) of Samorodnitsky and

Taqqu (1994). Then, a Stable random variable Sα(σ, β, µ) can be generated by σX + µ

where X ∼ Sα(1, β, 0).

3 Asymptotics under fat tails

This section studies the asymptotic distribution of the test statistics. The classical central

limit theorem (CLT) to the Normal distribution is justified when the second moment of dt

is bounded. When the second moment of dt is unbounded, it is still possible to derive the

central limit theorem (CLT) under certain assumptions on the tail behavior. Let us define

these assumptions with a notation of R(α, p).

Definition 1. R(α, p) Let {Xt} be a strictly stationary sequence of random variables with

marginal distribution function F (x). Suppose that there exists α > 0 such that

P(|Xt| > z) = z−α `(z) (4)

Moreover, the so-called tail-balance condition (Jessen and Mikosch, 2006)

P(Xt > z)

P(|Xt| > z)
→ p,

P(Xt < −z)
P(|Xt| > z)

→ 1− p (5)

4This is related to the equation (2.3) of Chambers, Mallows, and Stuck (1976).



8

hold as z →∞ for p ∈ [0, 1]. Then we write Xt ∼ R(α, p). We call α the tail index of Xt,

and p the tail-balance parameter.

Example 1. Suppose that X is a standardized Stable random variable, X ∼ Sα(1, β, 0).

When β > −1, as x→∞

P(X > x) ∼ (1 + β)Cασ
αx−α, β > −1

P(X < −x) = P(−X > x) ∼ (1− β)Cασ
αx−α, β < 1

where

Cα =

(
2

∫ ∞
0

x−α sinxdx

)−1
=

1

π
Γ(α) sin

(απ
2

)
holds (Property 1.2.15, Samorodnitsky and Taqqu (1994)). When β = −1 (β = 1), the

right (left) tail decays faster than a power. Therefore the tail balance parameter p is given

as a function of β and it is

P(X > x)

P(|X| > x)
=

(1 + β)Cαx
−α

((1 + β)Cαx−α) + ((1− β)Cαx−α)
=

1 + β

2
(6)

For the details, see for example Fofack and Nolan (1999).

If Xt ∼ iid.R(α, p) with α ∈ (0, 2), Xt is said to belong to the domain of attraction of

the α-Stable distribution (Davis and Resnick, 1985) and the central limit theorem (CLT)

to the Stable distribution (Feller, 1971) holds:

1

aT

T∑
t=1

(Xt − bT )
d−−−−→

T→∞
Sα(σ, β, 0) (7)

where aT > 0 and bT > 0 satisfy the following conditions:

T P(|Xt| > aTx)→ x−α as T →∞, x > 0 (8)

bT =

∫ aT

−aT
xdF (x) (9)

The problem of (7) is that the scaling factor aT is difficult to obtain, since it depends

on the tail index α. Motivated by this problem, the asymptotics of the self-normlized sum

is often discussed, as it eliminates the scaling series aT (Logan, Mallows, Rice, and Shepp,
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1973). For some r > α, the self-normalized sum denoted by ST (r) is defined as

ST (r) =

∑T
t=1Xt(∑T

t=1 |Xt|r
)1/r .

Indeed, the denominator and the numerator have the same scaling factor and thus, the

term aT disappears. LePage, Woodroofe, and Zinn (1981) characterize the asymptotics of

the self-normalized sum in an i.i.d. setting, and Davis (1983) and Davis and Hsing (1995)

extended it in the time series context.

Now we modify our definition of our test statistics from τhac to τvar so that the results

of self-normalized sums are directly applied.

Definition 2. In testing the null hypothesis E[dt] = 0 against E[dt] > 0, our test statistic

is denoted by τvar and it is given by

τvar =
1/T

∑T
t=1 dt

(σ̂T /T )1/2
, σ̂T =

1

T − 1

T∑
t=1

(
dt −

1

T

T∑
t=1

dt

)2

(10)

While τhac considers the long-run variance, τvar has the sample variance in the de-

nominator. When α ∈ (0, 2), it is easily shown that τvar converges weakly to the same

distribution to the self-normalized sum with r = 2. The following proposition results from

this observation and from Davis (1983).

Assumption 1. Suppose that {dt} is a strictly stationary process. We assume that {dt}
satisfies the following mixing condition. For any choice of integers,

1 ≤ i1 < · · · < ip < j1 < · · · jq ≤ n, j1 − ip > `,

|E(Ui1n · · ·UipnUj1n · · ·Ujqn)− E(Ui1n · · ·Uipn)E(Uj1n · · ·Ujqn)| ≤ αn,`

where αn,` is non-increasing in ` and αn,`(n) → 0 as n → ∞ for some sequence `(n) → ∞
with `(n) = o(n). This condition is weaker than the usual mixing conditions (Davis, 1983).
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We also assume that a local dependence assumption: for all x > 0,

lim sup
n→∞

Sk,n(x) = o(1) as k →∞where

Sk,n(x) = n

n/k∑
j=2

{P(X1 > anx,Xj > anx) + P(X1 > anx,Xj ≤ −anx)

+P(X1 ≤ −anx,Xj > anx) + P(X1 ≤ −anx,Xj ≤ −anx)}.

Now we are ready to introduce the following proposition, stating the asymptotic distri-

bution of the test statistics under the null hypothesis.

Proposition 1. Suppose that the loss difference sequence is strictly stationary and dt ∼
R(α, p) with α ∈ (1, 2) satisfying the Assumption 1. Then, under the null hypothesis that

E[dt] = 0,

τvar
d−−−−→

T→∞
M(α, p)

where M(α, p) is a ratio of two correlated Stable random variables and it is represented by

M(α, p) =

∑∞
j=1(δjZj − (2p− 1)E[ZjIZj∈(0,1]])− (2p− 1)α/(α− 1)

(
∑∞

j=1 Z
2
j )1/2

(11)

where 1 is an indicator function, (δj)j=1,2,··· is an i.i.d. random sequence with P(δj = 1) = p

and P(δj = −1) = 1 − p for all j. (Zj)j=1,2,··· is independent of (δj) and for each j,

Zj = (
∑j

k=1Ek)
−1/α where (Ek)k=1,2,··· is a sequence of independent random variable with

exponential distribution with mean 1.

Proof. See Theorem 3.1 and Remark 3.1 of Davis and Hsing (1995). Regarding the conver-

gence of types, consult Theorem A1.5 (page 554) of Embrechts, Klüppelberg, and Mikosch

(1997).

Proposition 1 argues that when α ∈ (1, 2), the limiting distribution of τvar is not a

standard Normal distribution under the null hypothesis. It is represented as a ratio of two

correlated Stable random variables. The shape of the distribution depends on the tail index

α and the tail balance parameter p. Therefore, if α < 2 but a researcher wrongly assumes

that it is greater than 2, then the test result may suffer from size distortions. If a researcher

takes into account the fact, obtaining the critical value is still challenging since the value of

(α, p) is not known and thus must be estimated.
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Figure 1 shows the approximated density function of Mα,p for α = 1.1, 1.5, 1.9 and for

p = 0.0, 0.5, 1.0. When p = 0 (the left tail is heavier), the asymptotic distribution is heavily

skewed to the right and most of them are positive. On the other hand, when p = 1.0 (the

right tail is heavier), the asymptotic distribution is heavily skewed to the left and most of

them are negative. When p = 0.5, they are symmetric around zero.

Table 5 shows some tail characteristics of Mα,p. The left columns are the quantiles of 1,

5, 95 and 99%. The right columns indicates the p-values of ±2.32 and ±1.64. In the classical

case where dt has a finite second moment, the p-values are 1 and 5%. When p = 0.5, the

p-values are somewhat similar to 1% and 5%, implying that there are mild size distortions.

When p = 0 and p = 1 however, the size is heavily distorted. Suppose that we test the null

hypothesis H0 : E[dt] = 0 against an alternative hypothesis H1 : E[dt] > 0 using a critical

value 1.64. When p = 0, we reject the null hypothesis for over 75% of time. On the other

hand, if the alternative hypothesis is given by H1 : E[dt] < 0, then we never reject the null

hypothesis.

Proposition 2 introduces the asymptotics under the alternative hypothesis. It shows

that the test statistic τvar diverges under the alternative hypothesis, and therefore the test

is consistent regardless of the value (α, p). One remark is that the divergence rate can be

slower when α is smaller, i.e., when the marginal distribution of dt has a heavier tail.

Proposition 2. Suppose that dt ∼ R(α, p), and the test statistic τvar is given by (10).

Under the alternative hypothesis E[dt] > 0, τvar
p−→ ∞ and thus the test is consistent. The

divergence rate is T 1−1/α`(T ) if 1 < α < 2 and T 1/2 if α > 2, where `(·) is given by (4). In

a special case where `(T ) = 1, τ diverges more slowly if the value of α is smaller.

4 Tail relations

We have shown possible size distortions when the marginal distribution of the loss difference

dt has a fat tail. In this section, we analyze the relationship between the tails of the loss

difference and those of the variable to be forecast (yt), two competing forecasts (F1t and

F2t) as well as the choice of a loss function (L). It is obvious that the choice of a loss

function is important and forecast evaluation depends heavily on the choice.

Among many loss functions, we consider a homogeneous Bregman class. A function

that belongs to the Bregman class has the form

L(y, f) = φ(y)− φ(f)− φ′(f)(y − f),
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where φ is a convex function with subgradient φ′ (Savage, 1971). Functions of Bregman

class are known to be consistent for the conditional mean, i.e., no other quantity leads to

a lower expected loss than the conditional mean (Geiting (2011), Patton (2020)), and the

squared error (SE), QLIKE functions are examples of Bregman class. Efron (1991) and

Patton (2011) then argue that homogeneity or scale invariance is a desirable property of

a loss function, i.e., L(cy, cf) = |c|bL(y, f) holds for all c ∈ R and y, f ∈ D, where D is

the domain of y, f . For example, if D = R and φ(x) = |x|a with a > 1, then the Bregman

representation yields the loss function

La(y, f) = |y|a − |f |a − a× sign(f)|f |a−1(y − f)

which is homogeneous of order a and it nests the squared error that arises when a = 2.

Patton (2011) introduced a rich and flexible family of homogeneous Bregman function on

D = (0,∞),5 namely

La(y, f) =


|y|a − |f |a − a|f |a−1(y − f) if a ∈ R \ {0, 1}

y/f − log(y/f)− 1 if a = 0

y log(y/f)− y + f if a = 1

Clearly, L2(y, f) is the squared error loss and L0(y, f) is the QLIKE.

4.1 Homogeneous Bregman with a > 1

Suppose that the target variable yt and two forecasts have the following relation.

yt = F1t + F2t + εt

where

εt ∼ iid.Sα, F1t ∼ iid.Sα1 , F2t ∼ iid.Sα2

and εt, F1t and F2t are independent each other. In this example, each forecast indicates a

part of the conditional mean of yt, and εt stands for the unforecastable component. Also,

the tail index of yt is given by min{α, α1, α2}.
5Patton (2011) studies the variance forecast tests, and thus the support of the target variable (conditional

variance) and its forecast is given by (0,∞).
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4.1.1 Squared error (a = 2)

Suppose that we select the squared error (SE) as the loss function.

L(y, F ) = (y − F )2.

Then the loss difference dt is given by

dt = (yt − F1t)
2 − (yt − F2t)

2 = (F2t + εt)
2 − (F1t + εt)

2

= F 2
2t − F 2

1t + 2εt(F2t − F1t)

Under the independence assumption, we have E[d2t ] <∞ if

α1, α2 > 4, α > 2.

In particular, if α1 < 4, α2 < 4 or α < 2, then E[d2t ] = ∞ (see Cline and Samorodnitsky

(1994) for example). Note also that E|dt| <∞ if

α1, α2 > 2, α > 1,

which is required to construct a meaningful null hypothesis E[dt] = 0. We show in this very

simple example that, if the squared error loss function is utilized, the necessary condition

for the second moment of the loss difference to be existent is that the tail index of the target

variable yt is larger than 2 (recall that the tail index of yt is given by the minimum among

α, α1, α2). Suppose that the tail index of the target variable yt is below 2, then the second

moment of the loss difference is infinite.

4.1.2 Homogeneous Bregman Class with a > 1

Now consider a Bregman loss function with a > 1

La(y, f) = |y|a − |f |a − a× sign(f)|f |a−1(y − f).
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Then the loss difference dt is given by

dt = La(yt, F1t)− La(yt, F2t)

= |F2t|a − |F1t|a + a× sign(F2t)|F2t|a−1(F1t + εt)− a× sign(F1t)|F1t|a−1(F2t + εt)

We can show that E[d2t ] <∞ if

α1, α2 > 2a, α > 2.

In particular, we can show that if α1 < 2a, α2 < 2a or α < 2, then E[d2t ] = ∞. Note also

that E|dt| <∞ holds if

α1, α2 > a, α > 1.

Note that for any value of a, the necessary condition for the second moment of the loss

difference to be existent is that the tail index of the target variable yt is larger than 2, as

in the case of the squared error (SE) function. The moment condition becomes more strict

as a increases.

4.2 QLIKE loss function (a = 0)

It is more convenient to consider a different relationship between the target variable yt and

the two competing forecasts. Suppose that yt is given by a product of two forecasts:

yt = F1tF2t

and both F1t and F2t are defined on (0,∞), and they are independent each other. We further

assume that E[F1t] = E[F2t] = 1 for simplicity. We now assume that Fit ∼ iidS + (α) with

α > 1, where S+(α) is a stable distribution (or similar concept (see, e.g., Davis and Mikosch,

1998)) defined on (0,∞) with a tail index α. It then follows immediately that

E[dt] = E[F2t − F1t − (logF2t − logF1t)] = 0

since F1t and F2t are identically distributed. Moreover, it is easy to see that if α < 2, then

E[d2t ] =∞.
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5 Differenciation and cancellation of tails

In this section, we examine if taking the difference of the losses cancels out the heavy tails.

Suppose that the target variable yt is given by

yt = Ft + εt

where Ft has a fat tail. Suppose that there are two forecasts, Fjt, j ∈ {1, 2} that captures

the component Ft:

Fjt = λjFt + ujt, for j ∈ {1, 2}

Then, under MSE,

L(yt, Fjt) = (1− λj)2F 2
t + (εt − ujt)2 + 2(1− λj)(εt − ujt)Ft

and thus the loss difference is given by

dt = (λ21 − λ22 − 2(λ1 − λ2))F 2
t + (u21t − u22t − 2(u1t − u2t))

+2 [(1− λ1)(εt − u1t)− (1− λ2)(εt − u2t)]Ftaseroiaoeriuaoeiu

and thus, the fat-tail cancels out when λ1 = λ2. However, as long as λ1 6= λ2, the tail of

dt is given by the tail of F 2
t . If the fourth moment of Ft is unbounded, then the second

moment of dt is also unbounded.

6 Subsampling

6.1 Asymptotic theory of subsampling

In the previous section, we show that the use of the central limit theorem (CLT) with the

Normal asymptotics can lead to a size distortion if the marginal distribution of {dt} has

fat tails. We also show that the degree of distortions depends on the tail index and the tail

balance parameter.

Then it is natural to ask if there is a robust alternative way to obtain the critical value,

when one thinks that the second moment of the loss difference may be unbounded. One

possible way is to use Proposition 1. Once the estimators for (α, p) is obtained, we can
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obtain the quantiles of Mα̂,p̂ by simulation. However, estimating (α, p) precisely is difficult

in the finite sample, and it is more reasonable not to rely on the central limit theorem

(CLT) since the quantiles of Mα,p are sensitive to the values of (α, p). From this reason, we

investigate the subsampling method as an alternative. Subsampling is known to be robust

to the fat tails (Politis, Romano, and Wolf, 1999) unlike the bootstrap (Athreya (1987),

Knight (1989)). The following assumption and theorem are from Kokoszka and Wolf (2004)

which is an extension of Politis, Romano, and Wolf (1999).

Assumption 2. Suppose that we have observed a sample X1, · · · , Xn and θ̂n is the estimator

of θ and Jn is the sampling distribution of τn(θ̂ − θ)/σ̂n where σ̂n > 0. Set also

Jn(x) = P

[
τn(θ̂n − θ)

σ̂n
≤ x

]

There are nondegenerate distributions J , V , W such that W has no mass at the origin, and

positive sequences {tn} and {un} such that τn = tn/un and

Jn
d−−−−→

T→∞
J, tn(θ̂n − θ)

d−−−−→
T→∞

V, unσ̂n
d−−−−→

T→∞
W

Theorem 1. Suppose that the process {Xt} is strictly stationary and strong mixing, and

Assumption 2 holds. For some integer b < n, define

Ln,b(x) =
1

n− b+ 1

n−b+1∑
t=1

I

{
τb(θ̂n,b,t − θ̂n)

σ̂n,b,t
≤ x

}

where θ̂n,b,t is the statistic θ̂ evaluated at the data set (Xt, Xt+1, · · · , Xt+b−1), and σ̂2n,b,t is

the sample variance of the same data set. Also, assume that

b→∞, b

n
→ 0,

τb
τn
→ 0,

tb
tn
→ 0 hold.

Then, the following conclusions hold:

(i) If x is a continuity point of J(·), then Ln,b(x)
p−→ J(x)

(ii) If J(·) is continuous, then supx |Ln,b(x)− J(x)| p−→ 0

(iii) Denote

cn,b(1− α) = inf{x : Ln,b(x) ≥ 1− α} and c(1− α) = inf{x : J(x) ≥ 1− α}
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If J(·) is continuous at c(1− α), then

P
[
τn(θ̂n − θ)/σ̂n ≤ cn,b(1− α)

]
→ 1− α

i.e., the subsampling confidence intervals yield asymptotically correct coverage probability.

Using Theorem 1, we introduce two corollaries which make clear the procedure to obtain

the critical values with subsampling. In practice, it is a challenge to verify that the loss

difference dt satisfies Assumption 2. The case of independent observations are studied in

paper 11 of Politis, Romano, and Wolf (1999). McElroy and Politis (2002) study this

assumption in the case of serial correlation, and Kokoszka and Wolf (2004) extend it to the

GARCH-type processes.

Corollary 1. Suppose that Assumption 2 and other assumptions in Theorem 1 are satisfied

for the process {dt}. With a data set (d1, · · · , dn), define

θ̂n =
1

n

n∑
t=1

dt, τn =
√
n

and σ̂n is the sample standard deviation of dt. Then the critical value associated with a

block size b for a test with

H0 : E(dt) = 0, H1 : E(dt) > 0

of level q ∈ [0, 1] can be obtained by the 1 − q sample quantile of
{
τb(θ̂n,b,t)
σ̂n,b,t

}
with t =

1, · · · , (n− b+ 1).

Corollary 2. Suppose that Assumption 2 and other assumptions in Theorem 1 are satisfied

for the process {dt} with

θ̂n =
1

n

n∑
t=1

dt, τn =
√
n

and σ̂n is the sample standard deviation of dt. Then the critical value associated with a

block size b for a test with

H0 : E(dt) = 0, H1 : E(dt) 6= 0

of level q ∈ [0, 1] can be obtained by equal-tailed confidence interval and symmetric confidence

interval (paper 3, page 72 of Politis, Romano, and Wolf (1999)). The rejection rule given
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the equal-tailed confidence interval is given by

Reject the null if θ̂n < cn,b

(α
2

)
or θ̂n > cn,b

(
1− α

2

)
and the rejection rule given the symmetric confidence interval is given by

Reject the null if |θ̂n| > cn,b,|·|(1− α)

where

cn,b,|·| = inf{x : Ln,b,|·|(x) ≥ 1− α}

and

Ln,b,|·|(x) =
1

n− b+ 1

n−b+1∑
t=1

1{
τb(̂|θn,b,t − θ̂n|)

σ̂n,b,t
≤ x}

6.2 Finite sample properties of subsampling

Suppose that we have a sample of loss difference d1, d2, · · · , dT . Theorem 1 states that

the subsampling-based critical values are valid asymptotically if the block size b is chosen

such that b → ∞ and b/T → 0 as T → ∞. However, it does not provide the finite

sample performance with a choice of the block size. In this section, we analyze the finite

sample properties of the subsampling by the Monte Carlo simulations. We consider a simple

setting where dt ∼ iid.Sα(σ, β, µ), and find that the choice of a block size is crucial on the

performance in the finite sample, and the appropriate block size depends on the tail index

α and the skewness parameter β.

We then propose two ways of selecting the block size which are combined with the

minimum volatility method of Romano and Wolf (2001). These algorithms work in our

simulations. Regarding the power property, we find that the rejection rate is high under the

alternative hypothesis when α is larger, but it remains low when α is small, which confirms

the slow rate of divergence in Proposition 2.

The simulation procedure is the following. We generate 2000 replications of dt inde-

pendently from the Stable distribution using the formula (3) with the sample size T ∈
{250, 500, 1000, 2500}. We vary the parameter values such that α ∈ {1.1, 1.3, 1.6, 1.9},
β ∈ {−1,−0.5, 0, 0.5, 1}. We fix the value of σ to be 1 and we set µ = 0 when we impose

the null hypothesis. For each replication, we decide whether we reject the null hypothesis
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or not with a level of 5%. Most of the case, we consider the one-sided test with

H0 : E[dt] = 0, H1 : E[dt] > 0

The alternative hypothesis is imposed by setting µ = 100/T and µ = 500/T in order to

study the local power.

6.2.1 Benchmark case: classical Normal asymptotics

Consider a test with the null and the alternative hypothesis given as follows:

H0 : E(dt) = 0, H1 : E(dt) > 0

and the test statistics τvar is given by equation (10). As a benchmark, we compute the

rejection rate when the classical Normal asymptotics is used, i.e., to conduct a 5% level

test, we reject the null hypothesis when τvar > 1.64. Table 6 shows the rejection rate from

the simulation. It confirms our theoretical findings shown in Table 5. When α is small, the

rejection frequency is far from the targeted value of 5%, and the distortion is larger when β

is larger in the absolute term. When β is negative, the null hypothesis is rejected too often,

and when β is positive the rejection frequency is too low.

Table 7 indicates the rejection rate in case of two-sided test, i.e., the alternative hypoth-

esis is given by E(dt) 6= 0. In this case, the rejection rate is symmetric for the value of β.

We find similar values of rejection rate for the same value of |β|, and we tend to over reject

the null hypothesis.

6.2.2 Subsampling with fixed blocksize

We still consider a test with the following null and the alternative hypotheses:

H0 : E(dt) = 0, H1 : E(dt) > 0

We then conduct the subsampling with fixed values of block sizes. When T = 250, the

block sizes are from 20 to 200 with an increment of 5. When T = 500, the block sizes are

from 20 to 380 with an increment of 10. When T = 1000, they are from 20 to 740 with an

increment of 20. When T = 2500, they are from 20 to 2180 with an increment of 60.

For each replication {d(s)t ; t = 1, · · · , T} and for each block size b, we conduct a 5%-



20

level test by following the procedure of Corollary 1. The results are shown in Figure 2. It

shows the rejection frequencies as a function of the block size. In each case, the rejection

frequencies are stable near the region of 5%, and then it increase as the block size increases.

When β is negative, i.e., the distribution of dt is skewed to the left, the rejection rate

increases rapidly as the block size increases, and it grows even faster with smaller values

of α. We also find that, when β ≥ 0, the rejection rate is still increasing in the block size,

but it is less sensitive than the case of β < 0. In either case, the size property of the test is

heavily dependent on the choice of the block size.

6.2.3 Appropriate block sizes

In the previous section, we observed that the size of the test is heavily dependent on the

choice of the block size in the finite sample. It is therefore important to carefully select the

appropriate block size. For this purpose, we assess the bounds of block size which leads a

desirable rejection rate. We run a simulation with 5,000 replication where we conducted a

one-sided test of level 5%:

H0 : E(dt) = 0, H1 : E(dt) > 0

We consider α ∈ {1.1, 1.3, 1.5, 1.7, 1.9} and β ∈ {−1,−0.5,−0.25, 0, 0.25, 0.5, 1}.6

We define the appropriate block sizes as the one with which the rejection rate under

the null hypothesis falls between 0.04 and 0.06. With this definition, we derive the bounds

of the appropriate block sizes from the simulation for each (α, β). Table 8 summarizes the

lower bound and the upper bound.

Figure 3 depicts the relation of the appropriate block size bound and the value of β.

First observation is that, when α is small, the block size is dependent on the value of β.

As α approaches to 2, the block size becomes more independent of the value of β. It is

quite intuitive since the skewness parameter β loses its meaning as α approaches to 2. More

interestingly, we find that the appropriate block size is increasing in β for any value of α.

In order to understand the reason why the appropriate block size is increasing in β, let

us suppose that β = −1. Then the left tail of the distribution of dt is heavier than the right

tail, and its median is positive. The sample path {dt} of size T is then likely to include a few

6The considered block sizes are from 20 to 240 with an increment of 5, and b = 241, 242, 243 in case of
T = 250. When T = 500, they are from 20 to 480 with an increment of 10, and b = 490. When T = 1000,
they are from 20 to 960 with an increment of 20. When T = 2500, they are from 20 to 2352 with an
increment of 53 and b = 2410, 2420, 2430.
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observations of large negative values and many observations of small values in the absolute

term. When we take a subsample of size b < T , the test statistics from each subsample

can be heavily influenced by whether at least one of the few large negative observations is

included or not. If they are included in one subsample, it is likely that the test statistic of

this subsample is pulled to the negative value. Also note that as the block size increases,

the number of subsamples including the large negative observations increases as well.

Now, the test statistics located at the neighborhood of 95% quantile of its asymptotic

distribution is likely to be driven by many small and positive values of dt.
7 It is because

the test statistics have the sample mean of dt in the numerator, and its denominator is

proportional to the sample standard deviation. Given one sample path {dt} of size T , these

test statsitics cannot be replicated if the subsample includes the large negative observations.

Therefore, we need a small number of block size so that majority of the subsampled test

statistics are computed without the observations of large negative values.

Figure 4 depicts the relation of the appropriate block size bound and the value of α.

We notice that the appropriate block size is increasing in α when β is negative or zero. On

the other hand when β is positive, i.e., the distribution is skewed to the right, the optimal

block size should decreasing in α.

6.2.4 Block size setting rule

We have conducted the subsampling with fixed block sizes to test the null hypothesis:

H0 : E(dt) = 0, H1 : E(dt) > 0

and show that the optimal block size depends on the tail index parameter α and the skewness

parameter β. Regarding the choice of the block size, Romano and Wolf (2001) propose a

so-called “minimum volatility method” (Politis, Romano, and Wolf, 1999). This method is

conducted by the algorithm below.

1. For each b ∈ [bmin, bmax], compute the critical values, cb.

2. For each b, compute the volatility index V Ib as the standard deviation f the critical

values in a neighborhood of b. More specifically, for a small integer k, V Ib = sample

standard deviation of {cb−k, cb−k+1, · · · , cb+k−1, cb+k}.

3. Pick the value b∗ such that b∗ = arg minb V Ib
7Recall that we are conducting an one-sided test.
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In this paper, we adopt this methodology, and the question becomes how to select the values

of bmin and bmax. We consider the following two methods, for which the estimated values,

α̂ and β̂ are used to extract the information of (α, β). In the simulation, we adopt the

Quantile-based method (QM) of McCulloch (1986).

The first method is to find the values of bmin and bmax from Table 8 which indicates the

appropriate block size bounds from the simulation. Once α̂ and β̂ are obtained, we can find

the optimal block size from this table by a linear interpolation. The second approach is to

derive a formula to obtain bmin and bmax as a function of α and β. Again, the estimated

parameter values can be plugged in in reality. Based on the findings in the previous section,

we propose the following formula.

bmin = CminT
0.33, Cmin = (β + 2)α (12)

bmax = CmaxT
0.66, Cmax = 0.5(β(2− α) + 2)α2 (13)

In this way, bmin and bmax increases with β but its effect decreases as α approaches to 2.

Table 9 indicates the rejection frequencies when we follow the first method of block

selection. We find that the rejection frequencies are overall larger than 5% but we have

obtained much improvements compared to the Normal asymptotics as shown in Table 6.

Then we look at the power property. We impose the alternative hypothesis by setting the

mean as 100/T and 500/T . When E(dt) = 100/T as shown in Table 10, the rejection

frequencies are larger as α increases. When α = 1.1 however, the rejection frequency is

almost the same as under the null hypothesis. This indicates that the divergence rate of the

test statistics is slow when the tail is very heavy. Table 11 shows the rejection rate when

the mean of dt is given by 500/T . In this table, the rejection rates are larger than Table

10, and they reach over 90% when α = 1.9. However when α = 1.1, the rates are still low,

indicating a poor power.

Table 12 and Table 13 demonstrates the rejection frequencies when we follow the second

method of block size selection. Table 12 is the one when the true values of (α, β) are used,

whereas Table 13 corresponds to the case where estimated values of (α, β) are used. Overall,

it has a good size property.

Regarding the power, we find a similar pattern as we witnessed with the previous anal-

ysis. As shown in Table 14 where the mean of dt is given by 100/T and in Table 15 where

E(dt) = 500/T , the rejection rates are higher when α is larger. However when α = 1.1, the

rejection rate remains low, indicating the difficulty in correctly rejecting the null hypothesis.
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7 Empirical studies

In the previous sections, we find that the classical testing procedures using the central limit

theorem with the Normal asymptotics may lead to a severe size distortion when the second

moment of the loss difference is unbounded, and that the subsampling method is robust to

the fat tails. By simulations we showed that the subsampling approach is valid in the finite

sample as long as the block size is properly chosen, and we proposed two data-driven ways

to select the block size. In this section, we apply these findings to the data.

We focus our analysis on the variance forecast tests. In the financial econometrics, the

conditional variance is one of the main interest since it “is empirically the dominant time-

varying characteristic of the distribution” (Andersen, Bollerslev, Diebold, and Labys, 2003).

There exist several modeling approach to the conditional variance, such as ARCH (Engle,

1982) or GARCH (Bollerslev, 1986) type models, the stochastic volatiltiy models (Nelson

(1990), Drost and Werker (1996)) and so on. Different models produce different conditional

variance forecasts and thus, the evaluation of the variance forecasts is important. Evaluating

variance forecasts has been much improved by the emergence of the high-frequency data

such as the realized variance (RV) which is defined as the sum of intra-daily squared returns

(Andersen and Bollerslev, 1998). However, the validity of the moment condition in the

variance forecast comparison tests is not discussed in the literature. As is discussed in the

introduction, if the fourth moment of the returns is unbounded, then the second moment of

the daily realized variance is also unbounded, which may make the second moment of the

loss difference unbounded.

First we review several estimators for the tail index. Then, we study the variance

forecast tests by Hansen and Lunde (2005) and Bollerslev, Patton, and Quaedvlieg (2016)

7.1 Review of tail index estimators

Suppose that Xt is a non-negative variable that satisfies P[|Xt| > x] ∼ Cx−α as x→∞, and

the data set {Xt; t = 1, · · · , T} is available. Also denote by {X(i)}Ti=1 the order statistics,

with X(1) ≥ X(2) ≥ · · · ≥ X(T ).
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7.1.1 Hill estimator

The Hill estimator arises in the i.i.d. context as a conditional maximum likelihood estimator

(MLE) and it is defined as

α̂(kn) =

(
1

kn

kn∑
i=1

log
X(i)

X(kn)

)−1
(14)

kn ≤ T is chosen so that kn → ∞ and kn/T → 0 as T → ∞. The results by Hsing

(1991) and Resnick and Stărică (1995) indicate that the Hill estimator is asymptotically

robust with respect to the deviations from independence; Resnick and Stărică (1998) prove

consistency under ARCH-type dependence. See also Hill (2010) for some other processes

including ARFIMA, FIGARCH, explosive GARCH, nonlinear ARCH-GARCH and so on.

Valid standard errors of the Hill estimator are available only for some specific models

with serial correlation. Therefore we do not provide any of them and we follow the literature

by providing Hill’s plots, that is by varying the integer kn. A flat area is viewed as a good

estimator of the tail index.

7.1.2 Log-log estimator

Another estimator of the tail index is introduced by Gabaix and Ibragimov (2011). They

showed the consistency of the log-log rank-size regression with a parameter γ > 0:

log(t− γ) = a− b logX(t), t = 1, · · · , n

and the tail index estimator is given by b̂n. They also show that the minimum bias is

obtained when γ = 1/2. In an i.i.d. setting the asymptotic expansion hold b̂n = α +

α
√

2/n N (0, 1) + Op(log2 n/n). However they do not show it for dependent series. They

also do not discuss on how to select the truncation size n.

7.1.3 Moment estimator

Another estimator of the tail index is introduced by Dekkers, Einmahl, and De Haan (1989),

denoted by α̂M = γ̂−1M where

γ̂M = M
(1)
kn

+ 1− 1

2

(
1−

(M
(1)
kn

)2

M
(2)
kn

)
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where M
(j)
k = 1

k

∑k
j=1(logX(j) − logX(k+1))

j . Under an i.i.d. setting and γ ∈ R, α̂M is a

consistent estimator if kn →∞ and kn/n→ 0 as n→∞.

7.1.4 Bias reduced estimator

Another estimator is introduced by Feuerverger and Hall (1999), and then simplified by

Gomes and Martins (2004) denoted by α̂br = γ̂−1br where

γ̂br =
1

kn

kn∑
j=1

Uj +

 1

kn

kn∑
j=1

jUj

 ∑kn
j=1(2j − kn − 1)Uj∑kn
j=1 j(2j − kn − 1)Uj

7.1.5 Stable assumption

Another approach to estimate the tail index is to assume that the marginal distribution

of Xt is given by the Stable distribution, i.e., Xt ∼ Sα(σ, β, µ). The useful feature of this

approach is that the estimator for the skewness parameter β provides the estimates of the

tail balance parameter p as in (5) by p̂ = 1+β̂
2 . Since the size distortion of the Normal

asymptotics is larger when p is different from 0.5, examining the estimates for the tail

balance parameter is useful. In the empirical study, we apply the quantile-based method

(QM) proposed by McCulloch (1986).

Estimation of the four parameters of the Stable distribution is a challenge because the

density function is not known except for some special cases, and thus methods such as the

maximum likelihood (ML) are difficult to employ. However there are several estimation

methods, using the sample quantile (Fama and Roll (1971), McCulloch (1986)), numerical

approximation of the likelihood function (DuMouchel (1973), Brorsen and Yang (1990)), or

the characteristic function (Koutrouvelis, 1980). In this paper, we mainly consider Quantile

Method (QM). Weron (1995) finds that the quantile based method by McCulloch (1986)

performs well and can be computed fast as long as the tail index is greater than or equal

to 0.6.

7.1.6 Quantile Method

Fama and Roll (1971) provided estimators of parameters of symmetric Stable distribution

with 1 < α ≤ 2, β = 0 and µ = 0. Denoting by the fth population quantile by qf and its
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sample counterpart by q̂f , the estimate for σ is given by

σ̂ =
q̂0.72 − q̂0.28

1.654

and α̂ is obtained such that
q̂f−q̂1−f

2σ̂ is the fth quantile of Sα̂(1, 0, 0). They find that

f = 0.95, 0.96, 0.97 works.

Since the estimators of Fama and Roll (1971) has asymptotic bias in (α̂, σ̂) and it has

restricted to the case where β = 0, µ = 0, McCulloch (1986) improved their method. He

provided consistent estimators for the four parameters with 0.6 ≤ α ≤ 2. Define

v1 =
q0.95 − q0.05
q0.75 − q0.25

, v2 =
q0.95 + q0.05 − 2q0.50

q0.95 − q0.05

and let v̂1 and v̂2 be the sample analogue. He provides tables of φα and φβ such that

α̂ = φα(v̂1, |v̂2|), β̂ = sign(v2)φβ(v̂1, |v̂2|)

and we use the linear interpolation to apply the table. He also provides a table of φσ(α, β) =

(q0.75 − q0.25)/σ, and the estimates for σ is obtained by

σ̂ =
q0.75 − q0.25
φσ(α̂, |β̂|)

Again, the linear interpolation is used to apply the table. Tables of φα, φβ and φσ are

demonstrated in Table 2, Table 3 and Table 4.

7.1.7 Characteristic function

Garcia, Renault, and Veredas (2011), Carrasco and Florens (2002). Also consider Pickands

estimators. The simpler version of Carrasco and Florens (2002) is Feuerverger and McDun-

nough (1981).

Suppose that we have a iid. data {X1, · · · , Xn}. The empirical characteristic function

is given by

ψn(t) =
1

n

n∑
j=1

eitXj

Carrasco and Florens (2002) considers a continuum of moment conditions

h(t,Xj ; θ) = eitXj − ψθ(t)
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where ψθ is the true characteristic function of Xj , and the moment condition is given by

Eθ[h(t,Xj ; θ)] = 0 for all t.

The simpler version is introduced by Feuerverger and McDunnough (1981). Define a

random variable yjt = exp(itXj), we can characterize their moments b

E(yjt) = ψ(t), E(yjtyjs) = ψ(t+ s)

Applying CLT with t = (t1, · · · , tk),

√
n


1

n

n∑
j=1

yjt︸ ︷︷ ︸
=ψn(t)

−ψ(t)

 d−−−−→
T→∞

N (0,Ω)

where Ω is characterized with

cov(yjs, yjt) = E(yjsyjt)− E(yjs)E(yjt) = c(s− t)− c(s)c(−t)

Defining

zn =



Re ψn(t1)
...

Re ψn(tk)

Im ψn(t1)
...

Im ψn(tk)


=



1
n

∑
cos(t1Xj)

...
1
n

∑
cos(tkXj)

1
n

∑
sin(t1Xj)

...
1
n

∑
sin(tkXj)


and

z(θ) = E



cos(t1Xj)
...

cos(tkXj)

sin(t1Xj)
...

sin(tkXj)


=



Re ψ(t1)
...

Re ψ(tk)

Im ψ(t1)
...

Im ψ(tk)


=



z1(t1; θ)
...

z1(tk; θ)

z2(t1; θ)
...

z2(tk; θ)


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whee z1 and z2 are defined by

z1(t; θ) = exp(−σα|t|α) cos(Φ), z2(t; θ) = exp(−σα|t|α) sin(Φ)

with

Φ =

{
tµ+ σα|t|αβsign(t) tan

(
πα
2

)
α 6= 1

tµ− σα|t|αβsign(t) 2
π log |t| α = 1

Then, we have the CLT
√
n(zn − z(θ))

d−−−−→
T→∞

N (0,Ωz)

where Ωz is the variance covariance matrix of [cos(t1Xj), · · · , cos(tkXj), sin(t1Xj), · · · , sin(tkXj)].

Specifically,

cov(cos(sXj), cos(tXj)) =
z1(s+ t) + z1(s− t)

2
− z1(s)z1(t)

cov(cos(sXj), sin(tXj)) =
z2(s+ t)− z2(s− t)

2
− z1(s)z2(t)

cov(sin(sXj), sin(tXj)) =
z1(s− t)− z1(s+ t)

2
− z2(s)z2(t)

Using this, the estimator for θ can be obtained by

θ̂ = arg max
θ

{
−1

2
log(det Ω)− n

2
(zn − zθ)′Ω−1(zn − zθ)

}
7.2 Variance forecasts

We take the data from two papers, Hansen and Lunde (2005) and Bollerslev, Patton, and

Quaedvlieg (2016). In both papers, they conduct the Superior Predictive Ability (SPA)

test (Hansen, 2005) for the variance forecasts. They obtain the p-value by the stationary

bootstrap (Politis and Romano, 1994) with an assumption that the second moment of the

loss difference is bounded. The loss functions we study in this paper are SE and QLIKE,

SE : L(y, F ) = (y − F )2

QLIKE : L(y, F ) = y/F − log(y/F )

These are commonly used in the variance forecasting literature, since they are “robust”

to the measurement error (Patton, 2011). The evaluation of the variance forecast is done

with a proxy of the conditional variance, such as the squared daily returns or the realized
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variance (RV). The “robust” loss functions ensure that using the proxy leads to the correct

ranking of the variance forecasts as long as the proxy is unbiased.

QLIKE is preferred by many researchers since “the average QLIKE loss will be less

affected (generally) by the most extreme observations in the sample (Patton, 2011).” How-

ever QLIKE loss function involves the ratio of the target variable and the forecast, and thus

the existence of the second moment is not evident. For example the student-t distribution

can be represented as a ratio of two independent random variables, both of which have thin

tails.

Then, we compare the p-values for equal predictive ability (EPA) tests, using (i) the

Normal asymptotics, (ii) the stationary bootstrap and (iii) the subsampling. Since the

superior predictive ability (SPA) test is more complicated, we consider the pair-wise equal

predictive ability test for several pairs of forecasts.

7.3 Hansen and Lunde (2005)

Hansen and Lunde (2005) compare 330 ARCH-type models and test if their benchmark

model, GARCH(1,1) is outperformed by other models. They conclude that GARCH(1,1) is

outperformed by models which take into account the leverage effect, and the best performing

model is A-PARCH(2,2) of Ding, Granger, and Engle (1993).

We take their data on IBM stock returns from June 1, 1999 through May 31, 2000

(T=254). Figure 5 shows the time series of the realized variance (RV) and two forecasts

based on GARCH(1,1) and A-PARCH(2,2). The realized variance fluctuates more than the

forecasts especially in the period of April 2000. When the realived variance is high, the

forecast based on A-PARCH(2,2) tends to be higher than that of GARCH(1,1).

In this paper, we select 8 variance models out of 330 models they consider in the paper,

as summarized in Table 16. We include the GARCH(1,1) model with a zero mean and the

Normal innovation as the benchmark. The “student t”, “Constant mean” and “GARCH-

M” specifications are based on the GARCH(1,1) model but each of them is different from

the benchmark model in that the innovation follows the student t distribution (“student

t”), that the non-zero constant conditional mean is included (“Constant mean”) and that

the conditional mean is proportional to the conditional variance (“GARCH-M”). We also

consider four other variance specifications, ARCH(1), GJR-GARCH(2,2) of Glosten, Ja-

gannathan, and Runkle (1993), NGARCH(2,2) defined as the A-PARCH model without

the leverage effect, and A-PARCH(2,2) model. These four models are specified with a zero
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mean and a Normal innvation.

7.3.1 Tail index estimators

Figure 6 shows the Hill and the log-log estimators for the realized variance (RV), with the

truncation parameter kn ∈ [20, 120]. The log-log estimator is more stable than the Hill

estimator, and its value is around 2.5. The Hill estimator is stable around the value of 2.

Noting that the second moment exists if the tail index being greater than 2, the existence

of the second moment of the realized variance is not obvious.

Figure 7 and Figure 8 depict the Hill and the log-log estimators for the loss sequence

L(RVt, Ft) where the left panels show the estimates with the squared error (SE), and the

right panels with the QLIKE function. When the squares error (SE) function is utilized, the

estimates are not sensitive to the value of the threshold kn, and they are below two. This

pattern is observed for all eight different forecasts. This phenomenon is consistent with our

analysis with the squared error loss function. When a variable to be forecast has unbounded

second moment, then using the squared error (SE) can lead to the violation of the moment

condition. When the QLIKE function is used, the estimates are more sensitive to the value

of the threshold kn, and the estimates are around the value of 2. From these plots, we find

that the tail index estimates tend to be larger with the QLIKE function rather than the

squared error (SE) function. Yet the existence of the second moment is not obvious even if

the QLIKE function is used.

Figure 9 and Figure 10 depict the Hill and the log-log estimators with the loss difference

dt = L(RVt, F1t)−L(RVt, Fjt) where F1t is the forecast from the benchmark model given by

GARCH(1,1). The other forecasts Fjt are the froecasts based on the other models specified

in Tbale 16. We find the similar pattern as we found in Figure 7 and Figure 8. When the

squared error is utilized, the tail index estimates of the loss difference tend to be smaller

than two, indicating that the existence of the second moment is questionable. On the other

hand, with the QLIKE function, the violation of the moment condition is less obvious.

Finally, Table 17 summarizes the tail index and the skewness parameter estimates based

on an assumption that each sequence is i.i.d. and the Stable distribution. Focusing on the

loss difference sequence, the tail index estimators ranges from 1.00 to 1.24 (with squared

error) and from 1.03 to 1.27 (with QLIKE), indicating unbounded second moments. More-

over, the estimates for the skewness parameter β range from -0.52 to 0.29 (with squared

error) and from -0.70 to 0.52 (with QLIKE), indicating unbalanced tails.
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7.3.2 Pair-wise Equal Predictive Ability (EPA) test.

We conduct the equal predictive ability (EPA) test for the selected pairs of forecast and

study the difference of the p-value when (i) Normal asymptotics, (ii) the stationary boot-

strap and (iii) the subsampling are used. When the subsampling is used, the block size is

selected either by the formula (12) and (13) or by referring to Table 8. We compute the

p-values for the following two one-sided tests:

EPA-1: H0 : E[dt] = 0, H1 : E[dt] > 0

EPA-2: H0 : E[dt] = 0, H1 : E[dt] < 0

where dt = L(RVt, F1t)−L(RVt, Fjt), j = 2, 3, · · · , 8. F1t refers to the forecast based on the

benchmark GARCH(1,1) model. Other forecasts Fjt are the forecasts based on the other

models specified in Table 16.

When the Normal asymptotics are used, we compute the test statistic using the long-

run variance with the Bartlett Kernel of Newey and West (1987). Likewise, we conduct

the stationary bootstrap using the test statistic with the long-run variance. The bootstrap

resampling is 5000 with an average block length of 5.

The p-values for the pair-wise equal predictive ability (EPA) tests are demonstrated

in Table 18 in which the squared error (SE) function is used as the loss function. The

p-values are different across the methodology of the test. Especially when we compare the

GARCH(1,1) model and the constant mean model, the Normal asymptotics and the station-

ary bootstrap suggest to reject the null hypothesis at level 10%, whereas the subsampling-

based approach suggests not to reject the null hypothesis. A similar disagreement is observed

in the EPA-2 test with student t specification.

Table 19 shows the p-values when the QLIKE is used as the loss function. In this test,

the p-values are sensitive to the selection of the block size. In the EPA-1 test with the

constant mean model, the p-value based on the block-size selection with the formula leads

to the p-value of 24.3%, whereas it is 2.9% when the block size is selected according to

Table 8. It is because the selected block sizes are different across the block size selection.

7.4 Bollerslev, Patton, and Quaedvlieg (2016)

Bollerslev, Patton, and Quaedvlieg (2016) propose an extension of HAR model (Corsi,

2009), called a HARQ model which incorporates the realized quarticity (RQ). Taking the 5-



32

minute realized variance as the proxy of the conditional variance, they empirically evaluate

its forecast performance. They use the data of S&P500 index from April 9, 2001 through

August 30, 2013, with 4,096 samples using 1000 rolling window for estimation and the

remaining 3096 observations for forecast evaluation. They conduct a test whether their

HARQ model significantly outperforms other 7 models they consider, i.e., AR, HAR, HAR-

with-Jumps (HAR-J),8 Continuous-HAR (CHAR),9 Semivariance-HAR (SHAR),10 ARQ

and HARQ-F.11 Their null and alternative hypothesis are given by

Ho : min
k=1,··· ,7

E(Lt(yt, Fk,t)− Lt(yt, F0,t)) ≤ 0

H1 : min
k=1,··· ,7

E(Lt(yt, Fk,t)− Lt(yt, F0,t)) > 0

where F0,t denotes the forecast with the benchmark HARQ model. Rejection of H0 implies

the loss of the HARQ model is significantly lower than all the other models. The critical

values are obtained by the stationary bootstrap of Politis and Romano (1994) with 999

re-samplings with an average block length of 5. The P-value is 0.063 with SE and 0.871

with QLIKE.

7.4.1 Tail index estimators

Figure 13 shows the Hill and the log-log estimators for the realized variance (RV) used in

Bollerslev, Patton, and Quaedvlieg (2016), with the truncation parameter kn ∈ [20, 3000].

Both the Hill and the log-log estimators are decreasing in the threshold parameter kn, and

it is stable around the value below two. It indicates that the existence of the second moment

is questionable for the realized variance.

Figure 14 and Figure 15 depict the Hill and the log-log estimators for the loss sequence

L(RVt, Ft), where the left panels show the estimates with the squared error (SE) and the

right panels with the QLIKE function. When the squared error (SE) function is utilized, the

estimates are not sensitive to the value of the threshold kn, and they are below two. This

pattern is observed for all eight different forecasts. This phenomenon is again consistent

8See Andersen, Bollerslev, and Diebold (2007). The model is RVt = β0 + β1RVt−1 + β2RVt−1|t−5 +
β3RVt−1|t−22 + βJJt−1 + ut. Jt is computed using the Bi-Power variation (BPV) measure. Jt = max(RVt−
BPVt, 0)

9The model is RVt = β0 + β1BPVt−1 + β2BPVt−1|t−5 + β3BPVt−1|t−22+t.
10See Patton and Sheppard (2015). They decompose the RV due to the negative and positive intraday

returns
11ARQ is an extension of AR(1) model with RQ component. HARQ-F model is the model to put RQ

component to every component in the HAR model.
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with our analysis with the squared error loss function. When a variable to be forecast has

unbounded second moment, then using the squared error (SE) can lead to the violation of

the moment condition. When the QLIKE function is used, the estimates are more sensitive

to the value of the threshold kn, and the estimates are around the value of 2.

Figure 16 and Figure 17 depict the Hill and the log-log estimators with the loss difference

dt = L(RVt, F2t) − L(RVt, Fjt) where F2t is the forecast from the benchmark model given

by HAR. We find again the similar pattern as before. In most of the cases, the estimated

tail index is below the value of two, indicating that the existence of the second moment is

questionable.

Finally, Table 20 summarizes the tail index and the skewness parameter estimates based

on the assumption that each sequence is strictly stationary and its unconditional distribution

is given by the Stable distribution. Looking at the loss difference sequence, the tail index

estimates ranges from 0.63 to 1.00 (with squared error) and from 0.97 to 1.32 (with QLIKE).

When the squared error is used, the tail estimates are below one, indicating that the null

hypothesis is not well defined. When QLIKE is used the tail index estimates are larger but

all of them are still blow two, indicating unbounded second moments. The estimates for

the skewness parameter range from -0.23 to 0.13 (with the squared error) and from -0.52 to

0.10 (with QLIKE), indicating unbalanced tails.

7.4.2 Pair-wise equal predictive ability (EPA) test

In ths exercise, we conduct the same analysis as with the data set of Hansen and Lunde

(2005). We compute the p-values for the following two one-sided tests:

EPA-1: H0 : E[dt] = 0, H1 : E[dt] > 0

EPA-2: H0 : E[dt] = 0, H1 : E[dt] < 0

where dt = L(RVt, F2t) − L(RVt, Fjt), j = 1, 3, · · · , 8. F2t refers to the forecast based on

the benchmark HAR model. Other forecasts Fjt are the forecasts. When the Normal

asymptotics are used, we compute the test statistic using the long-run variance with the

Bartlett Kernel of Newey and West (1987). Likewise, we conduct the stationary bootstrap

using the test statistic with the long-run variance. The bootstrap resampling is 5000 with

an average block length of 5.

Table 21 demonstrates the p-values for the equal predictive ability tests when the squared

error is used as a loss function. Table 22 demonstrates the p-values with the QLIKE. These
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values should be examined with care since the tail index estimates are sometimes below

one, indicating that the null hypothesis is not well defined. For the EPA-2 test with CHAR

model, the p-values based on the Normal asymptotics and the stationary bootstrap are

below 1%, whereas the p-values based on the subsampling is above 25%. This example

shows that the outcome of a test may change according to the assumptions we made on the

loss differences.

8 Conclusion

In this paper, we analyze forecast comparison tests under fat tails. We show that the heavy-

tailed nature of the financial variables can violate the moment condition, which is necessary

to apply the classical central limit theorem or the stationary bootstrap. We characterize

the asymptotic distribution of the test statistic for the equal predictive ability (EPA) test,

when the second moment of the loss difference is unbounded, and its distribution has a

regularly varying tails. It is a ratio of two correlated Stable random variable given by

M(α, p) =

∑∞
j=1(δjZj − (2p− 1)E[ZjIZj∈(0,1]])− (2p− 1)α/(α− 1)

(
∑∞

j=1 Z
2
j )1/2

We show that, when the tails are well balanced (i.e., p = 0.5), the asymptotic distribution

of the test statistics is symmetric with tails similar to the Normal distribution. However,

as p increases or decreases, the asymptotic distribution becomes asymmetric and skewed.

As a result, the size property of a test using the Normal asymptotics is heavily distorted

especially when α is smaller and |p − 0.5| is larger. We also provide an analysis of four

important components which determines the tails of the loss difference, namely the tails of

variable to be forecast and two competing forecasts and the choice of the loss function. We

consider a homogeneous Bregman class and characterize the relation of the four components.

As a method which is robust to the fat-tailedness, we consider subsampling method

(Politis, Romano, and Wolf, 1999), since it is well known that subsampling is robust to

the fat-tails. We show in the simulation that infinite sample, the choice of the block size

has an impact on whether the subsampling method lieads to the correct size under the null

hypothesis. In the finite sample, the appropriate block sizes depends on the tail index α

and the skewness. We propose two methods of block size selection which are combined with

the minimum volatility methods, which is known as Romano-Wolf method (Romano and

Wolf, 2001).
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Finally we conduct an empirical study to inspect the estimated α and p of the loss

difference process. There are several estimators of α, such as Hill estimator (Hill, 1975)

and log-log estimator (Gabaix and Ibragimov, 2011). We also obtain the estimator under

an assumption of Stable distribution (Fama and Roll (1971) and McCulloch (1986)). Over

all, the moment condition is more likely to be violated with the squared error (SE) function

rather than the QLIKE function. Also the outcome of the test may change when we

implement subsampling instead of classical methods such as stationary bootstrasp.

Appendix

Appendix A: proof of proposition 1

The result in case of α > 2 is standard and thus its proof is omitted. When 0 < α < 1, and

when 1 < α < 2 under the null hypothesis, results from Davis (1983) is directly applied.

when 1 < α < 2 under the alternative hypothesis,

τ =
T

aT
×

1/T
∑T

t=1 dt(
1/a2T

∑T
t=1 d

2
t − 1/T (1/aT

∑T
t=1 dt)

2
)1/2

Since aT = T 1/α`(T ), using the fact that 1/`(T ) is slowly varying at infinity and that

T ε`(T ) → ∞ if ε > 0, T/aT → ∞. The second term converges to a positive random

variable. Therefore τ
p−→∞.
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9 Figures

Figure 1: Distribution of Mα,p. This is a histogram for processes generated according to
equation (11) where the infinite sum in the numerator is truncated at 10000. The number
of replications is 50,000.



Figure 2: Relation of the rejection rate under the null hypothesis and the block
size. We replicate 2000 series of dt ∼ iid.Sα(1, β, 0) of size T ∈ {250, 500, 1000, 2500}. For
each replication, we conduct a one-sided test of level 5%. We compute τvar and reject the
null hypothesis according to the procedure of Corollary 2 when the block size is fixed.
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Figure 3: Appropriate block sizes and β. We define the appropriate block sizes as
the one with which the rejection rate under the null hypothesis falls between 0.04 and 0.06.
With this definition, we derive the bounds of the appropriate block sizes from the simulation
for each (α, β). This figure shows the relation with β.
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Figure 4: Appropriate block sizes and α. We define the appropriate block sizes as
the one with which the rejection rate under the null hypothesis falls between 0.04 and 0.06.
With this definition, we derive the bounds of the appropriate block sizes from the simulation
for each (α, β). This figure shows the relation with α.
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Figure 5: Time series of the realized variance (RV) and two forecasts based on GARCH(1,1)
and A-PARCH(2,2)

Figure 6: Tail index estimates for RV (Hansen and Lunde, 2005)
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Figure 7: Tail index estimates, SE and QLIKE losses (Hansen and Lunde, 2005)
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Figure 8: Tail index estimates, SE and QLIKE losses (Hansen and Lunde, 2005)-2
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Figure 9: Tail index estimates, loss difference (Hansen and Lunde, 2005). The
panels show the tail index estimators for the loss difference, L(RVt, Fjt)−L(RVt, F1t) where
F1t is the forecast based on the GARCH(1,1) model with zero mean and Normal innovation.
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Figure 10: Tail index estimates, loss difference (Hansen and Lunde, 2005) con-
tinued. The panels show the tail index estimators for the loss difference, L(RVt, Fjt) −
L(RVt, F1t) where F1t is the forecast based on the GARCH(1,1) model with zero mean and
Normal innovation.
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Figure 11: Tail index estimates, loss difference (Hansen and Lunde, 2005). The
panels show the tail index estimators for the loss difference, L(RVt, Fjt)−L(RVt, F1t) where
F1t is the forecast based on the GARCH(1,1) model with zero mean and Normal innovation.
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Figure 12: Tail index estimates, loss difference (Hansen and Lunde, 2005) con-
tinued. The panels show the tail index estimators for the loss difference, L(RVt, Fjt) −
L(RVt, F1t) where F1t is the forecast based on the GARCH(1,1) model with zero mean and
Normal innovation.
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Figure 13: Tail index estimates for RV (BPQ, 2016)
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Figure 14: Tail index estimates, SE and QLIKE loss (BPQ, 2016)
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Figure 15: Tail index estimates, SE and QLIKE loss (BPQ, 2016)-2
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Figure 16: Tail index estimates, loss difference (BPQ, 2016). The panels show the
tail index estimators for the loss difference that is computed with the benchmark forecast
based on the HAR model
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Figure 17: Tail index estimates, loss difference (BPQ, 2016) continued. The panels
show the tail index estimators for the loss difference that is computed with the benchmark
forecast based on the HAR model
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10 Tables

Table 1: Quantiles of simulated Stable distribution Sα(1, β, 0)

Quantiles in percentage

β α 0.01 0.1 1 5 50 95 99 99.9 99.99

0 1.1 -1118.83 -167.99 -21.19 -5.12 0.01 5.11 21.65 174.04 1809.97

1.3 -394.00 -67.29 -11.95 -3.79 0.01 3.84 12.37 60.10 463.16

1.6 -110.90 -25.00 -6.13 -2.83 0.01 2.88 6.32 22.71 121.47

1.9 -29.25 -8.34 -3.63 -2.40 0.01 2.44 3.77 8.07 30.37

0.3 1.1 -810.15 -122.77 -16.96 -5.50 -1.77 4.83 26.00 219.64 2296.50

1.3 -299.65 -51.40 -9.53 -3.49 -0.48 4.18 14.76 73.31 566.61

1.6 -88.79 -20.12 -5.18 -2.70 -0.14 3.05 7.23 26.71 143.08

1.9 -24.30 -7.07 -3.49 -2.37 -0.02 2.47 3.93 9.14 34.84

0.5 1.1 -597.79 -91.69 -14.11 -5.81 -2.94 4.65 28.89 249.50 2615.06

1.3 -231.51 -39.94 -7.78 -3.34 -0.80 4.41 16.30 81.72 632.48

1.6 -72.01 -16.49 -4.52 -2.62 -0.24 3.16 7.78 29.19 156.45

1.9 -20.41 -6.15 -3.41 -2.36 -0.03 2.49 4.03 9.79 37.55

0.7 1.1 -377.39 -59.50 -11.02 -6.29 -4.09 4.49 31.73 279.01 2929.76

1.3 -156.58 -27.39 -5.92 -3.30 -1.11 4.63 17.82 89.89 696.35

1.6 -52.43 -12.28 -3.89 -2.56 -0.34 3.29 8.32 31.55 169.16

1.9 -15.70 -5.10 -3.35 -2.35 -0.05 2.50 4.14 10.40 40.10

1 1.1 -8.77 -8.50 -8.09 -7.64 -5.80 4.26 35.94 322.71 3395.67

1.3 -4.94 -4.59 -4.03 -3.48 -1.56 4.97 20.03 101.74 789.02

1.6 -4.54 -4.05 -3.27 -2.54 -0.48 3.46 9.13 34.91 187.23

1.9 -4.95 -4.28 -3.25 -2.34 -0.08 2.53 4.29 11.28 43.66

Note. The quantiles are based on 50,000 simulations.
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Table 2: φα(v1, |v2|) from McCulloch (1986)

|v2|
0.0 0.1 0.2 0.3 0.5 0.7 1.0

v1 = 2.44 2.000 2.000 2.000 2.000 2.000 2.000 2.000

2.50 1.916 1.924 1.924 1.924 1.924 1.924 1.924

2.60 1.808 1.813 1.829 1.829 1.829 1.829 1.829

2.70 1.729 1.730 1.737 1.745 1.745 1.745 1.745

2.80 1.664 1.663 1.663 1.668 1.676 1.676 1.676

3.00 1.563 1.560 1.553 1.548 1.547 1.547 1.547

3.20 1.484 1.480 1.471 1.460 1.448 1.438 1.438

3.50 1.391 1.386 1.378 1.364 1.337 1.318 1.318

4.00 1.279 1.273 1.266 1.250 1.210 1.184 1.150

5.00 1.128 1.121 1.114 1.101 1.067 1.027 0.973

6.00 1.029 1.021 1.014 1.004 0.974 0.935 0.874

8.00 0.896 0.892 0.887 0.883 0.855 0.823 0.769

10.00 0.818 0.812 0.806 0.801 0.780 0.756 0.691

15.00 0.698 0.695 0.692 0.689 0.676 0.656 0.595

25.00 0.593 0.590 0.588 0.586 0.579 0.563 0.513
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Table 3: φβ(v1, |v2|) from McCulloch (1986)

|v2|
0.0 0.1 0.2 0.3 0.5 0.7 1.0

v1 = 2.44 0.000 2.160 1.000 1.000 1.000 1.000 1.000

2.50 0.000 1.592 3.390 1.000 1.000 1.000 1.000

2.60 0.000 0.759 1.800 1.000 1.000 1.000 1.000

2.70 0.000 0.482 1.048 1.694 1.000 1.000 1.000

2.80 0.000 0.360 0.760 1.232 2.229 1.000 1.000

3.00 0.000 0.253 0.518 0.823 1.575 1.000 1.000

3.20 0.000 0.203 0.410 0.632 1.244 1.906 1.000

3.50 0.000 0.165 0.332 0.499 0.943 1.560 1.000

4.00 0.000 0.136 0.271 0.404 0.689 1.230 2.195

5.00 0.000 0.109 0.216 0.323 0.539 0.827 1.917

6.00 0.000 0.096 0.190 0.284 0.472 0.693 1.759

8.00 0.000 0.082 0.163 0.243 0.412 0.601 1.596

10.00 0.000 0.074 0.147 0.220 0.377 0.546 1.482

15.00 0.000 0.064 0.128 0.191 0.330 0.478 1.362

25.00 0.000 0.056 0.112 0.167 0.285 0.428 1.274
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Table 4: φσ(α, |β|) from McCulloch (1986)

|β|
0.0 0.25 0.5 0.75 1.0

α = 2.0 1.908 1.908 1.908 1.908 1.908

1.9 1.914 1.915 1.916 1.918 1.921

1.8 1.921 1.922 1.927 1.936 1.947

1.7 1.927 1.930 1.943 1.961 1.987

1.6 1.933 1.940 1.962 1.997 2.043

1.5 1.939 1.952 1.988 2.045 2.116

1.4 1.946 1.967 2.022 2.106 2.211

1.3 1.955 1.984 2.067 2.188 2.333

1.2 1.965 2.007 2.125 2.294 2.491

1.1 1.980 2.040 2.205 2.435 2.696

1.0 2.000 2.085 2.311 2.624 2.973

0.9 2.040 2.149 2.461 2.886 3.356

0.8 2.098 2.244 2.676 3.265 3.912

0.7 2.189 2.392 3.004 3.844 4.775

0.6 2.337 2.635 3.542 4.808 6.247

0.5 2.588 3.073 4.534 6.636 9.144
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Table 5: Quantiles and p-values on Mα,p, truncation 15000

Quantile P-Value (%)

p α Q1% Q5% Q95% Q99% -2.32 -1.64 1.64 2.32

0.0 1.1 -0.91 -0.45 15.81 20.99 0.00 0.00 76.67 70.82

1.5 -1.36 -1.00 3.27 4.47 0.00 0.18 24.91 13.61

1.9 -1.64 -1.20 1.90 2.64 0.02 0.97 7.89 2.07

0.5 1.1 -2.02 -1.52 1.52 2.02 0.29 3.43 3.48 0.30

1.5 -2.17 -1.58 1.58 2.16 0.62 4.27 4.30 0.56

1.9 -2.27 -1.61 1.63 2.25 0.85 4.70 4.88 0.76

1.0 1.1 -20.99 -15.81 0.45 0.91 70.82 76.67 0.00 0.00

1.5 -4.47 -3.27 1.00 1.36 13.61 24.91 0.18 0.00

1.9 -2.64 -1.90 1.20 1.64 2.07 7.89 0.97 0.02

Classical -2.32 -1.64 1.64 2.32 1.00 5.00 5.00 1.00

Note. The left columns show the quantiles of 1,5,95 and 99% of simulated Mα,p. The right
columns are the p-value of classical critical values from the standard Normal distribution.
These values are obtained based on the representation (11) with 50000 replications and
infinite sum truncated at 15,000.
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Table 6: Size property: Normal asymptotics (One-sided 5% level test)

T β =-1.0 -0.5 0 0.5 1.0

p = 0 0.25 0.5 0.75 1

α = 1.1 250 76.30 62.95 2.85 0.00 0.00

500 76.55 63.00 3.05 0.00 0.00

1000 77.15 64.10 3.00 0.00 0.00

2500 77.55 63.35 3.20 0.00 0.00

α = 1.3 250 43.75 25.70 3.40 0.20 0.10

500 43.10 25.20 3.90 0.10 0.00

1000 46.40 25.70 3.40 0.20 0.05

2500 44.30 25.35 4.05 0.20 0.00

α = 1.6 250 18.50 9.60 3.85 1.45 0.60

500 17.90 11.05 4.95 1.60 0.40

1000 17.85 10.35 4.20 1.65 0.75

2500 17.90 10.15 4.75 1.90 0.70

α = 1.9 250 7.10 5.85 4.80 4.30 3.60

500 8.50 7.25 6.00 5.10 4.20

1000 6.45 5.55 4.70 3.80 3.25

2500 6.65 5.70 4.80 3.85 3.25

Unit: Percent

Note. We replicate 2000 time series of size T ∈ {250, 500, 1000, 2500}. For each replication,
we compute τvar and reject the null hypothesis when τvar > 1.64.
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Table 7: Size property: Normal asymptotics (Two-sided 5% level test)

T β =-1.0 -0.5 0 0.5 1.0

p = 0 0.25 0.5 0.75 1

α = 1.1 250 73.60 57.75 1.85 58.85 73.70

500 74.00 57.45 2.45 57.85 72.65

1000 74.40 58.85 2.35 58.25 72.20

2500 74.40 57.85 2.55 57.70 73.15

α = 1.3 250 37.90 19.65 2.35 20.15 38.95

500 37.60 18.30 2.75 19.90 39.70

1000 39.60 19.45 3.25 19.45 38.80

2500 37.95 19.50 3.25 18.90 36.80

α = 1.6 250 13.30 6.55 3.55 6.30 13.30

500 12.65 6.75 4.10 6.75 12.65

1000 12.60 6.35 4.00 5.90 13.35

2500 12.40 6.10 3.95 6.30 12.20

α = 1.9 250 5.35 5.05 4.90 4.45 5.05

500 6.60 6.20 5.75 5.60 5.95

1000 5.35 4.75 4.50 4.65 5.50

2500 5.15 4.60 4.35 4.60 5.25

Note. We replicate 2000 time series of size T ∈ {250, 500, 1000, 2500}. For each replication,
we compute τvar and reject the null hypothesis when |τvar| > 1.96.
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Table 8: Appropriate block sizes

β = −1 β = −0.5 β = −0.25 β = 0 β = 0.25 β = 0.5 β = 1

α T bmin bmax bmin bmax bmin bmax bmin bmax bmin bmax bmin bmax bmin bmax

1.1 250 20 25 20 35 20 35 20 60 170 225

500 20 50 30 60 30 60 20 160 340 480

1000 20 80 40 100 40 100 20 260 660 920

2500 20 126 20 126 20 126 20 709 20 2410 20 20 20 20

1.3 250 20 50 20 50 20 50 30 100 90 125 120 243 160 235

500 40 90 30 110 20 130 30 210 210 280 270 490 300 480

1000 40 180 40 220 40 260 40 440 20 520 520 660 560 960

2500 20 391 73 497 73 603 20 1080 20 1345 20 1663 1557 2430

1.5 250 50 90 45 95 50 100 60 115 90 120 110 130 125 241

500 100 160 50 190 100 210 150 230 190 240 220 270 250 490

1000 180 360 200 440 220 460 260 480 420 500 480 540 500 600

2500 285 815 285 921 232 1027 73 1186 20 1239 20 1292 1239 1504

1.7 250 80 115 85 115 90 115 90 120 100 125 105 125 120 135

500 160 220 180 230 180 230 190 240 200 240 220 250 240 280

1000 300 480 340 480 340 500 380 500 420 500 460 520 480 540

2500 762 1133 868 1186 868 1186 815 1186 921 1186 974 1239 1133 1292

1.9 250 110 125 110 125 110 125 110 125 115 125 115 125 120 130

500 210 250 210 250 210 250 220 250 230 250 240 260 240 260

1000 440 500 460 500 460 500 460 500 460 500 460 500 460 500

2500 1080 1239 1080 1239 1133 1239 1133 1239 1133 1239 1080 1239 1080 1239

We define the appropriate block sizes as the one with which the rejection rate under the null hypothesis
falls between 0.04 and 0.06. With this definition, we derive the bounds of the appropriate block sizes
from the simulation for each (α, β). bmin refers to the lower bound and bmax the upper bound.
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Table 9: Size property w/block size with table, QM-estimated (α, β)

β

α T -1 -0.5 0 0.5 1

1.1 250 7.05 7.25 6.05 1.80 1.90

500 5.30 5.85 7.00 1.85 1.50

1000 5.50 5.15 7.65 2.95 2.50

2500 5.60 5.40 5.30 2.65 2.80

1.3 250 6.65 6.60 5.70 5.60 3.90

500 5.90 6.65 6.95 6.10 3.95

1000 6.55 7.00 7.55 6.50 4.30

2500 5.85 6.15 6.30 4.25 4.20

1.6 250 7.40 6.65 5.85 6.80 6.05

500 7.00 6.20 5.95 6.55 6.40

1000 7.25 6.70 6.15 6.85 6.10

2500 5.80 5.15 4.80 4.05 4.65

1.9 250 8.15 7.25 7.25 7.45 6.85

500 8.30 8.55 8.30 8.15 6.95

1000 7.85 7.80 7.80 6.70 7.40

2500 8.30 8.35 7.30 6.35 6.15

Unit:Percent

Note. We replicate 2000 time series of size T ∈ {250, 500, 1000, 2500}. For each replication,
we estimate (α, β) by QM methods, choose bmin and bmax according to Table 8, then apply
the Romano-Wolf method (Romano and Wolf, 2001).
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Table 10: Power property w/block size with table, QM-estimated (α, β), E(dt) = 100/T

β

α T -1 -0.5 0 0.5 1

1.1 250 7.40 7.55 10.30 2.15 1.90

500 5.55 6.55 9.05 1.85 1.60

1000 5.60 5.35 8.05 2.75 2.55

2500 5.60 5.60 5.45 2.70 2.80

1.3 250 10.20 13.15 19.05 16.80 8.05

500 8.15 10.30 14.55 10.45 5.55

1000 8.40 9.40 11.45 8.60 5.15

2500 6.60 7.90 7.50 4.60 4.45

1.6 250 27.65 32.30 37.40 43.55 42.80

500 21.40 23.40 25.95 28.40 26.05

1000 15.30 16.60 19.25 18.65 15.30

2500 9.65 10.30 10.35 8.45 9.40

1.9 250 60.35 63.05 64.80 68.10 71.55

500 47.30 49.05 51.35 51.95 53.80

1000 32.35 32.90 33.75 34.30 33.65

2500 22.50 22.15 21.25 21.15 19.85

Unit:Percent

Note. We replicate 2000 time series of size T ∈ {250, 500, 1000, 2500}. The mean of dt is
given by 100/T . For each replication, we estimate (α, β) by QM methods, choose bmin and
bmax according to Table 8, then apply the Romano-Wolf method (Romano and Wolf, 2001).
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Table 11: Power property w/block size with table, QM-estimated (α, β), E(dt) = 500/T

β

α T -1 -0.5 0 0.5 1

1.1 250 8.45 9.00 15.85 13.35 3.05

500 6.30 8.20 15.30 3.70 1.90

1000 6.10 6.60 12.85 3.55 2.60

2500 5.95 6.05 7.80 2.75 2.90

1.3 250 21.00 25.20 34.10 58.55 74.45

500 16.70 23.00 33.85 59.15 50.80

1000 14.60 18.95 28.40 34.10 17.70

2500 9.05 12.35 16.55 12.35 7.80

1.6 250 56.90 61.50 65.55 68.55 75.00

500 53.20 59.95 65.05 71.40 81.05

1000 46.10 52.95 59.35 68.30 80.65

2500 32.05 37.95 45.75 53.30 58.10

1.9 250 90.85 92.10 92.55 93.55 93.95

500 90.20 91.95 92.70 93.95 95.55

1000 86.30 88.15 90.50 91.75 94.55

2500 77.25 80.00 83.00 85.55 88.60

Unit:Percent

Note. We replicate 2000 time series of size T ∈ {250, 500, 1000, 2500}. The mean of dt is
given by 500/T . For each replication, we estimate (α, β) by QM methods, choose bmin and
bmax according to Table 8, then apply the Romano-Wolf method (Romano and Wolf, 2001).
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Table 12: Size property w/block size with formula, true (α, β)

β

α T -1 -0.5 0 0.5 1

1.1 250 4.55 5.75 5.40 1.40 1.15

500 3.90 4.20 4.45 1.00 1.10

1000 4.20 4.35 4.70 1.35 0.65

2500 4.20 4.60 4.70 3.95 3.40

1.3 250 4.80 5.85 4.75 2.35 1.60

500 4.35 4.35 4.05 2.65 1.95

1000 4.55 4.45 4.50 3.20 2.75

2500 4.30 4.55 4.10 3.45 3.25

1.6 250 4.25 5.00 4.35 3.90 3.35

500 3.90 3.80 3.95 3.20 2.70

1000 3.65 3.45 3.60 3.35 2.80

2500 3.65 4.25 4.20 3.50 3.50

1.9 250 4.30 4.40 4.35 4.35 4.20

500 2.90 3.00 3.10 3.40 2.95

1000 2.75 2.80 2.75 2.45 2.60

2500 3.10 2.70 2.65 2.75 2.45

Unit: Percent

Note. We replicate 2000 time series of size T ∈ {250, 500, 1000, 2500}. For each replication,
we choose bmin and bmax according to equations (12) and (13) and then apply the Romano-
Wolf method (Romano and Wolf, 2001). In choosing bmin and bmax, we apply the true vaue
of α and β
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Table 13: Size property w/block size with formula, QM-estimated(α, β)

β

α T -1 -0.5 0 0.5 1

1.1 250 5.45 5.30 5.55 1.45 1.60

500 5.85 5.60 6.25 1.30 1.00

1000 5.85 5.25 6.00 1.15 1.20

2500 5.65 6.60 5.50 0.70 0.50

1.3 250 5.30 5.40 5.50 3.75 2.50

500 5.30 6.40 6.05 3.40 2.25

1000 5.50 4.95 5.05 2.75 1.95

2500 5.05 5.35 4.45 2.95 1.60

1.6 250 5.20 4.85 4.90 4.50 4.00

500 5.10 5.40 4.95 3.55 3.15

1000 4.10 3.60 3.25 3.00 2.55

2500 3.90 3.75 3.40 2.95 2.90

1.9 250 5.45 4.85 6.05 5.45 5.55

500 3.95 3.40 3.35 3.55 2.95

1000 2.65 2.90 2.50 2.70 2.55

2500 2.75 2.40 2.35 2.20 2.25

Unit: Percent

Note. We replicate 2000 time series of size T ∈ {250, 500, 1000, 2500}. For each replication,
we choose bmin and bmax according to equations (12) and (13) and then apply the Romano-
Wolf method. In choosing bmin and bmax, we apply the estimated values of α and β
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Table 14: Power property w/block size with formula, QM-estimated(α, β), E(dt) = 100/T

β

α T -1 -0.5 0 0.5 1

1.1 250 5.70 6.45 8.20 1.85 1.75

500 6.00 6.10 7.60 1.45 1.05

1000 5.90 5.15 6.70 1.25 1.25

2500 5.80 6.65 5.90 0.70 0.55

1.3 250 9.10 11.75 16.55 14.10 7.75

500 8.55 9.65 11.85 7.35 4.30

1000 6.85 7.95 8.15 5.00 2.95

2500 6.15 6.35 5.95 3.65 2.15

1.6 250 27.65 32.95 40.55 46.90 50.40

500 19.25 23.35 26.45 28.05 25.90

1000 13.05 15.55 15.80 16.40 13.35

2500 8.50 8.85 8.70 7.65 6.30

1.9 250 64.10 67.55 70.70 75.65 78.30

500 48.55 51.45 54.10 57.75 59.15

1000 32.10 34.10 35.65 36.40 38.00

2500 16.45 16.55 17.05 17.00 16.30

Unit: Percent

Note. We replicate 2000 time series of size T ∈ {250, 500, 1000, 2500}. For each replication,
we choose bmin and bmax according to equations (12) and (13) and then apply the Romano-
Wolf method. In choosing bmin and bmax, we apply the estimated values of α and β
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Table 15: Power property w/block size with formula, QM-estimated(α, β), E(dt) = 500/T

β

α T -1 -0.5 0 0.5 1

1.1 250 6.45 8.00 14.10 13.25 2.65

500 6.65 7.55 11.55 3.55 1.25

1000 6.15 6.25 9.85 1.70 1.25

2500 6.00 7.35 6.95 0.85 0.60

1.3 250 20.40 26.25 35.45 49.10 70.45

500 17.65 24.10 34.55 53.10 67.70

1000 13.80 18.70 27.95 35.15 19.20

2500 9.85 12.50 16.20 10.65 5.65

1.6 250 62.20 66.30 69.85 74.20 79.55

500 58.60 67.55 72.80 78.80 85.10

1000 52.40 61.00 69.35 79.70 89.45

2500 38.05 45.45 53.75 63.80 72.95

1.9 250 92.95 93.65 94.35 94.50 95.65

500 94.20 95.10 96.00 96.50 97.35

1000 94.05 95.20 96.00 97.30 97.90

2500 88.85 90.75 93.60 96.20 98.40

Unit: Percent

Note. We replicate 2000 time series of size T ∈ {250, 500, 1000, 2500}. For each replication,
we choose bmin and bmax according to equations (12) and (13) and then apply the Romano-
Wolf method. In choosing bmin and bmax, we apply the estimated values of α and β
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Table 16: Specification of the 8 selected models (Hansen and Lunde, 2005)

GARCH(1,1) yt =
√
vt−1ut, ut ∼ iid.N (0, 1)

vt = ω + αy2t + βvt−1

Student t yt =
√
vt−1

√
(ν − 2)/ν ut, ut ∼ iid.t(ν)

vt = ω + αy2t + βvt−1

Constant mean yt = c+
√
vt−1ut, ut ∼ iid.N (0, 1)

vt = ω + αε2t + βvt−1, εt =
√
vt−1ut

GARCH-M yt = c+ λvt−1 +
√
vt−1ut, ut ∼ iid.N (0, 1)

vt = ω + αε2t + βvt−1, εt =
√
vt−1ut

ARCH(1) yt =
√
vt−1ut, ut ∼ iid.N (0, 1)

vt = ω + αy2t

GJR-GARCH(2,2) yt =
√
vt−1ut, ut ∼ iid.N (0, 1)

vt = ω +
1∑
j=0

(αj + γj1yt−j>0)y
2
t−j +

2∑
j=1

βjvt−j

NGARCH(2,2)

yt =
√
vt−1ut, ut ∼ iid.N (0, 1)

vδt = ω +

1∑
j=0

αjy
2δ
t−j +

2∑
j=1

βjv
δ
t−j

A-PARCH(2,2) yt =
√
vt−1ut, ut ∼ iid.N (0, 1)

vδt = ω +

1∑
j=0

αj(|yt−j | − γjyt−j)2δ +
2∑
j=1

βjv
δ
t−j
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Table 17: Estimation results for the Stable distribution, Hansen and Lunde (2005)

Process Tail index α̂ Skewness β̂ Tail balance p̂

SE QLIKE SE QLIKE SE QLIKE

RV 1.67 1.00 1.00

Loss sequence, L(RVt, Fjt)

j = 1 GARCH 0.83 1.52 1.00 1.00 1.00 1.00

2 student 0.85 1.57 1.00 1.00 1.00 1.00

3 cons.mean 0.83 1.46 1.00 1.00 1.00 1.00

4 GARCH-M 0.82 1.44 1.00 1.00 1.00 1.00

5 ARCH 0.80 0.98 1.00 1.00 1.00 1.00

6 GJR-GARCH 0.88 1.70 1.00 1.00 1.00 1.00

7 NGARCH 1.49 1.63 1.00 1.00 1.00 1.00

8 A-PARCH 1.26 1.38 1.00 1.00 1.00 1.00

Loss difference sequence, L(RVt, Fjt)− L(RVt, F1t)

j = 2 student 1.03 1.19 -0.12 -0.32 0.44 0.34

3 cons.mean 1.20 1.16 -0.03 0.16 0.48 0.58

4 GARCH-M 1.12 1.17 -0.13 0.17 0.44 0.59

5 ARCH 1.03 1.07 -0.52 -0.70 0.24 0.15

6 GJR-GARCH 1.00 1.03 0.03 0.11 0.51 0.56

7 NGARCH 1.24 1.24 0.29 0.52 0.64 0.76

8 A-PARCH 1.15 1.27 0.10 0.31 0.55 0.65

Note. Fjt corresponds to the forecasts based on 8 models defined in Table 16. Parameters
are estimated using the quantile-based method (QM) by McCulloch (1986) applicable to
a sequence with mean ero. For RV and L, the parameters are estimated for a demeaned
sequence. For the loss differences, we do not demean it. The tail balance parameter is
computed by p̂ = (1 + β̂)/2 based on equation (6).
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Table 18: P-Values for pair-wise EPA tests with SE, Hansen and Lunde (2005)

Normal Stationary Subsampling

asymptotics bootstrap Formula Table

EPA-1

Student t 91.65 92.92 75.56 75.56

Cons.mean 8.35 8.54 17.65 28.11

GARCH-M 11.87 10.82 27.03 27.03

ARCH 99.64 99.82 97.42 100.00

GJR-GARCH 43.00 42.42 38.67 38.67

NGARCH 17.72 15.50 21.92 22.67

A-PARCH 27.61 27.60 36.84 25.16

EPA-2

Student t 8.35 7.08 24.44 24.44

Cons.mean 91.65 91.46 82.35 71.89

GARCH-M 88.13 89.18 72.97 72.97

ARCH 0.36 0.18 2.58 0.00

GJR-GARCH 57.00 57.58 61.33 61.33

NGARCH 82.28 84.50 78.08 77.33

A-PARCH 72.39 72.40 63.16 74.84

Unit: Percent

Note. We conduct the equal predictive ability (EPA) test with H0 : E[dt] = 0 and H1 :
E[dt] > 0 (EPA-1) and H1 : E[dt] < 0 (EPA-2). Each row represents the p-value of the
test statistics when dt = L(RVt, F1t) − L(yt, Fjt) where F1t is the forecast based on the
benchmark GARCH(1,1) model, and Fjt is the forecast based on the model indicated in the
first column in the table. The loss function is the squared error, i.e., L(y, F ) = (y − F )2.
When the subsampling is used, the block size is selected either by the formula (12) and (13)
or by referring to Table 8.



78

Table 19: P-Values for pair-wise EPA tests with QLIKE, Hansen and Lunde (2005)

Normal Stationary Subsampling

asymptotics bootstrap Formula Table

EPA-1

Student t 93.66 94.36 83.54 74.09

Cons.mean 7.83 9.04 24.32 2.86

GARCH-M 9.80 10.66 24.34 0.00

ARCH 99.96 99.94 100.00 100.00

GJR-GARCH 35.89 37.30 42.08 38.20

NGARCH 17.59 17.84 22.87 24.54

A-PARCH 27.90 29.76 20.73 0.00

EPA-2

Student t 6.34 5.64 16.46 25.91

Cons.mean 92.17 90.96 75.68 97.14

GARCH-M 90.20 89.34 75.66 100.00

ARCH 0.04 0.06 0.00 0.00

GJR-GARCH 64.11 62.70 57.92 61.80

NGARCH 82.41 82.16 77.13 75.46

A-PARCH 72.10 70.24 79.27 100.00

Unit: Percent

Note. We conduct the equal predictive ability (EPA) test with H0 : E[dt] = 0 and H1 :
E[dt] > 0 (EPA-1) and H1 : E[dt] < 0 (EPA-2). Each row represents the p-value of the
test statistics when dt = L(RVt, F1t) − L(yt, Fjt) where F1t is the forecast based on the
benchmark GARCH(1,1) model, and Fjt is the forecast based on the model indicated in
the first column in the table. The loss function is QLIKE, i.e., L(y, F ) = y/F − log(y/F ).
When the subsampling is used, the block size is selected either by the formula (12) and (13)
or by referring to Table 8.
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Table 20: Estimation results for the Stable distribution, BPQ (2016)

Process Tail index α̂ Skewness β̂ Tail balance p̂

SE QLIKE SE QLIKE SE QLIKE

RVt 1.07 1.00 1.00

Loss sequences, L(RVt, Fjt)

j =1 AR 0.81 1.75 1.00 1.00 1.00 1.00

2 HAR 0.59 1.46 1.00 1.00 1.00 1.00

3 HAR-J 0.58 1.46 1.00 1.00 1.00 1.00

4 CHAR 0.58 1.47 1.00 1.00 1.00 1.00

5 SHAR 0.58 1.40 1.00 1.00 1.00 1.00

6 ARQ 0.59 1.39 1.00 1.00 1.00 1.00

7 HARQ 0.56 1.33 1.00 1.00 1.00 1.00

8 HARQ-F 0.55 1.17 1.00 1.00 1.00 1.00

Loss difference sequences, L(RVt, F2t)− L(RVt, Fjt)

j = 1 AR 1.00 1.32 -0.14 -0.52 0.43 0.24

3 HAR-J 0.63 1.17 0.13 0.03 0.57 0.51

4 CHAR 0.69 1.25 0.12 -0.11 0.56 0.45

5 SHAR 0.64 1.21 0.13 0.10 0.57 0.55

6 ARQ 0.66 1.09 -0.10 -0.05 0.45 0.47

7 HARQ 0.67 0.99 -0.08 0.05 0.46 0.53

8 HARQ-F 0.70 0.97 -0.23 -0.24 0.39 0.38

Note. The loss difference is computed with the benchmark forecast F2t, based on the HAR
model. The parameters are estimated for a demeaned sequence such that µ = 0 and then
applied the quantile-based method (QM) by McCulloch (1986). The tail balance parameter
is computed by p̂ = (1 + β̂)/2 based on equation (6).
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Table 21: P-Values for pair-wise EPA tests with SE, BPQ(2016)

Normal Stationary Subsampling

asymptotics bootstrap Formula Table

EPA-1

AR 26.02 18.94 18.16 7.52

HAR-J 26.20 17.24 22.60 24.83

CHAR 11.11 5.28 8.73 10.04

SHAR 17.01 9.56 37.60 35.93

ARQ 9.95 3.46 5.13 5.91

HARQ 9.76 2.68 22.83 24.65

HARQ-F 14.21 7.54 18.08 15.84

EPA-2

AR 73.98 81.06 81.84 92.48

HAR-J 73.80 82.76 77.40 75.17

CHAR 88.89 94.72 91.27 89.96

SHAR 82.99 90.44 62.40 64.07

ARQ 90.05 96.54 94.87 94.09

HARQ 90.24 97.32 77.17 75.35

HARQ-F 85.79 92.46 81.92 84.16

Unit: Percent

Note. We conduct the equal predictive ability (EPA) test with H0 : E[dt] = 0 and H1 :
E[dt] > 0 (EPA-1) and H1 : E[dt] < 0 (EPA-2). Each row represents the p-value of the
test statistics when dt = L(RVt, F2t) − L(yt, Fjt) where F2t is the forecast based on the
benchmark HAR model, and Fjt is the forecast based on the model indicated in the first
column in the table. The loss function is the squared error, i.e., L(y, F ) = (y− F )2. When
the subsampling is used, the block size is selected either by the formula (12) and (13) or by
referring to Table 8.
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Table 22: P-Values for pair-wise EPA tests with QLIKE, BPQ(2016)

Normal Stationary Subsampling

asymptotics bootstrap Formula Table

EPA-1

AR 100.00 100.00 98.94 78.40

HAR-J 83.06 87.50 59.53 61.26

CHAR 99.73 99.40 71.64 65.48

SHAR 0.01 0.00 1.06 17.64

ARQ 99.83 100.00 70.66 93.20

HARQ 68.14 69.60 72.83 69.68

HARQ-F 99.88 100.00 100.00 100.00

EPA-2

AR 0.00 0.00 1.06 21.60

HAR-J 16.94 12.50 40.47 38.74

CHAR 0.27 0.60 28.36 34.52

SHAR 99.99 100.00 98.94 82.36

ARQ 0.17 0.00 29.34 6.80

HARQ 31.86 30.40 27.17 30.32

HARQ-F 0.12 0.00 0.00 0.00

Unit: Percent

Note. We conduct the equal predictive ability (EPA) test with H0 : E[dt] = 0 and H1 :
E[dt] > 0 (EPA-1) and H1 : E[dt] < 0 (EPA-2). Each row represents the p-value of the
test statistics when dt = L(RVt, F2t) − L(yt, Fjt) where F2t is the forecast based on the
benchmark HAR model, and Fjt is the forecast based on the model indicated in the first
column in the table. The loss function is QLIKE, i.e., L(y, F ) = y/F − log(y/F ). When
the subsampling is used, the block size is selected either by the formula (12) and (13) or by
referring to Table 8.


