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Introduction: Tail Risks to Economic Activity

I Policy makers and practitioners have a strong interest in modeling the tails of
predictive densities

I Academic interest in modeling the tails of predictive densities:
I Vulnerable growth: Adrian, Boyarchenko and Giannone (2019, AER)
I Nowcasting tail risks to economic activity with many indicators: Carriero, Clark

and Marcellino (2020)
I Capturing macroeconomic tail risks with Bayesian Vector Autoregressions:

Carriero, Clark and Marcellino (2020)
I And many more

I Statistically interesting:
I Regressions/VARs heavily in use but want models which allow for predictive

densities which may be very non-Gaussian (fat-tails, skewness, multi-modality)
I By definition, few observations in the tails which calls for regularization



Introduction: Non-parametric Modelling of Tail Risk

I Nowcasting in a pandemic using non-parametric mixed frequency VARs:
Huber, Koop, Onorante, Pfarrhofer and Schreiner (JoE, in press)
I Non-parametric methods nowcast well in extreme times
I Quickly adjust to strong outliers far out of the range of the data
I Predictive densities very non-Gaussian (fat tails, skewness, multi-modality)

I Non-parametric methods we use:
I Bayesian Additive Regression Trees (BART, see Chipman, George and

McCulloch, 2010, AoAS),
I Inference in Bayesian Additive Vector Autoregressive Tree models: Huber and

Rossini (AoAS, in press)
I Could such methods be useful for forecasting tail risk?



What We Do

Methodological
I Develop various BART-based semi- and non-parametric VARs for tail risk

forecasting
I BART treatments of both conditional means (VAR coeffs) and conditional

variances (VAR error variances, labeled HeteroBART)
I Develop necessary MCMC methods for Bayesian inference

Empirical
I Real-time tail risk forecasting exercise with 23-dimensional VARs
I Compare various BART-based approaches to benchmark Bayesian VAR with

SV
I We find BART methods tend to forecast tail risk better than BVAR-SV



Econometric framework

A general non-parametric multivariate regression

yt = F (xt) + ηt , ηt = G(zt) + εt , εt ∼ N (0M ,Σt).

I {yt}Tt=1 is M-dimensional with i th element yit

I xt = (y ′t−1, . . . ,y
′
t−p)

′ is K (= Mp)-dimensional
I F (xt) = (f1(xt), . . . , fM(xt))

′ and G(zt) = (g1(zt), . . . ,gM(zt))
′

I fj and gj are equation-specific (possibly) non-linear functions
I zt to be defined later
I Σt is a M ×M dimensional variance-covariance matrix



Approximating F and G with BART

BART approximation of fj(xt) and gj(zt)

fj(xt) ≈
S∑

s=1

hf
js(xt |T f

js,µ
f
js), gj(zt) ≈

S∑
s=1

hg
js(zt |T g

js ,µ
g
js)

I hi
js is a tree function which depends on
I tree structures T i

js
I tree-specific terminal nodes µi

js
I Dimension of µi

js is denoted by bi
js which depends on the complexity of the tree

I S denotes the total number of trees used.
I j denotes equations in the VAR

I Illustrate using a single tree for a VAR with 6 variables (do not worry about
details of empirical application)



Example of a Regression Tree

GDPt−1 < −1.392

PMIt−5 ≥ 0.013

−9.588 (2)

IPt−2 < 3.424

−5.114 (3)

GDPt−1 ≥ −4.687

−1.825 (5) 2.447 (1)

IPt−1 < 1.774

ESIt−1 < 0.899

IPt−1 < −1.610

−1.018 (9) 0.246 (99) 0.833 (39) 1.594 (19)



Intuition of BART

I The tree on the previous slide was quite complex→ what about overfitting
issues?

I BART prunes the trees to make them simpler
I But instead of using a single tree, BART uses S (which is a big number) of

trees
Intuition

+ + … +
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Models for the Conditional Mean

A general non-parametric multivariate regression

yt = F (xt) + ηt , ηt = G(zt) + εt , εt ∼ N (0M ,Σt).

Different choices for zt , F and G give wide range of flexible models:



Models for the Conditional Mean

A general non-parametric multivariate regression

yt = F (xt) + ηt , ηt = G(zt) + εt , εt ∼ N (0M ,Σt).

Different choices for zt , F and G give wide range of flexible models:

BVAR

F is linear and G omitted



Models for the Conditional Mean

A general non-parametric multivariate regression

yt = F (xt) + ηt , ηt = G(zt) + εt , εt ∼ N (0M ,Σt).

Different choices for zt , F and G give wide range of flexible models:

BART

F estimated using BART, G omitted (standard case in Huber and Rossini)



Models for the Conditional Mean

A general non-parametric multivariate regression

yt = F (xt) + ηt , ηt = G(zt) + εt , εt ∼ N (0M ,Σt).

Different choices for zt , F and G give wide range of flexible models:

mixBART

F is linear, zt = xt , G estimated using BART
I Shocks ηt , have non-linear regression specification
I Aims to control for any non-linear effects that persist after controlling for

linear relations



Models for the Conditional Mean

A general non-parametric multivariate regression

yt = F (xt) + ηt , ηt = G(zt) + εt , εt ∼ N (0M ,Σt).

Different choices for zt , F and G give wide range of flexible models:

errorBART

F is linear, zt = (η′t−1, . . . ,η
′
t−p)

′, G estimated using BART
I Flexible adjustments of the conditional mean in the presence of large

past shocks.
I During recessions (e.g.Covid-19) could help to quickly adjust forecasts

after large forecast errors



Models for the Conditional Mean

A general non-parametric multivariate regression

yt = F (xt) + ηt , ηt = G(zt) + εt , εt ∼ N (0M ,Σt).

Different choices for zt , F and G give wide range of flexible models:

fullBART

Σt is diagonal matrix, thus system of independent regression models.
I i th equation is given by:

yit = fi(xt) + gi(zit) + εit ,

with zit = (ε1t , . . . , εi−1,t)
′



Models for the Conditional Variance

I For every model for conditional mean we try three different treatments of error
variances

1. Homoscedastic variances
2. Stochastic volatility (SV)
3. Heteroscedastic BART (heteroBART)

Decomposition of the VC matrix

Σt = QHtQ′

I Q lower triangular matrix and Ht = diag(ev1(wt ), . . . ,evM (wt ))

I vj is a function approx. by BART which depends on covariates:
wt = (t ,x ′

t )
′

I Similar to Heteroscedastic BART via multiplicative regression trees: Pratola,
Chipman, George and McCulloch (2020, JCGS)



Bayesian Inference

I Need prior plus MCMC algorithm
I See paper for details of both
I Prior features (in a nutshell):

I Automatic choice of prior hyperparameters from BART literature
I Horseshoe prior used for any linear conditional mean coefficients

I MCMC features (in a nutshell):
I MCMC methods mostly standard, combining methods from Bayesian VAR

literature with BART literature
I Novel updating step for heteroBART
I MCMC computationally fast, capable of scaling to large VARs



Data

I Real time quarterly data set of 23 major US macroeconomic and financial
variables 1973Q2-2020Q4

I Variables transformed to stationarity
I We ran everything twice: using data through 2019 (excluding pandemic) and

full sample through 2020
I All models feature five lags
I I will present results through 2020:

I Forecast horizons h ∈ {1,4,8,12}
I Forecast evaluation period begins in 1997
I Forecast inflation, unemployment and GDP growth
I Metrics: CRPS, quantile-weighted CRPS (Gneiting and Ranjan, 2011, JBES)

and quantile scores
I Results benchmarked to BVAR-SV



Summary of Findings

I The empirical results of the paper can be summarized as follows:
I Overall BART-based models improve upon the benchmark BVAR-SV (especially

for longer forecast horizons)
I Putting BART in conditional mean improves tail forecasts
I Volatility: heteroBART is typically better than SV
I Homoskedastic BART often forecasts very well (after putting nonlinearities in

conditional mean, less important to allow for heteroskedasticity)
I More complex BART specifications add only small improvements relative to the

basic BART model
I Little evidence of asymmetry (contrary to ”vulnerable growth” findings, but more

consistent with ”capturing macroeconomic tail risks” work of Carriero, Clark and
Marcellino)

I To illustrate these findings we present forecasting results for inflation and
conditional forecasts of the unemployment rate



Quantile weighted CRPS: GDPCTPI

CRPS qwCRPS-tails qwCRPS-left
Model h=1 h=4 h=8 h=12 h=1 h=4 h=8 h=12 h=1 h=4 h=8 h=12

BVAR cons 1.02 1.09** 1.08 1.08 1.05 1.14** 1.15** 1.15 1.00 1.01 0.97 0.96
BART cons 1.05 0.87** 0.75*** 0.71*** 1.04 0.86*** 0.74*** 0.70*** 1.04 0.88** 0.77*** 0.74***
mixBART cons 1.01 0.95 0.82** 0.79*** 1.00 0.92 0.83** 0.85* 1.00 0.98 0.84* 0.82*
errorBART cons 0.99 1.03 0.93 0.84** 0.97 0.99 0.91 0.83*** 0.98 1.02 0.94 0.90**
fullBART cons 1.02 0.87*** 0.76*** 0.71*** 1.02 0.86*** 0.75*** 0.71*** 1.02 0.88** 0.77*** 0.75***
BVAR SV 0.57 0.69 0.89 1.03 0.06 0.07 0.09 0.10 0.09 0.11 0.13 0.14
BART SV 1.01 0.86*** 0.78*** 0.74*** 1.00 0.85*** 0.77*** 0.73*** 1.00 0.86** 0.78*** 0.76***
mixBART SV 1.01 0.92 0.82** 0.78*** 1.01 0.90** 0.82*** 0.83** 1.01 0.95 0.83* 0.81*
errorBART SV 0.99 0.96 0.85* 0.77** 0.97 0.93 0.84** 0.78*** 0.99 0.97 0.88 0.83*
fullBART SV 1.14** 0.87** 0.74*** 0.71*** 1.17** 0.87** 0.74*** 0.70*** 1.15* 0.88* 0.76*** 0.74***
BVAR heteroBART 0.98 0.98 0.97* 0.96** 0.97 0.98 0.97 0.98 0.97 1.00 1.02 1.01
BART heteroBART 1.12* 0.88** 0.77*** 0.73*** 1.14** 0.87*** 0.76*** 0.72*** 1.11 0.90* 0.79*** 0.77***
mixBART heteroBART 0.98 0.91* 0.81*** 0.78*** 0.98 0.89** 0.81*** 0.81*** 0.97 0.94 0.83** 0.82**
errorBART heteroBART 0.99 1.03 0.93 0.85** 0.97 0.99 0.91 0.84*** 0.98 1.02 0.95 0.92
fullBART heteroBART 1.09 0.87*** 0.75*** 0.71*** 1.08 0.87*** 0.75*** 0.71*** 1.08 0.88** 0.78*** 0.75***

Table: Cumulative ranked probability score (CRPS) and quantile weighted CRPSs for
GDPCTPI.



Quantile scores: GDPCTPI

QS5 QS10 QS25
Model h=1 h=4 h=8 h=12 h=1 h=4 h=8 h=12 h=1 h=4 h=8 h=12

BVAR cons 1.03 1.07 1.26** 1.06 0.95 1.00 1.09 0.97 1.03 0.96 0.84 0.84*
BART cons 1.15 0.98 0.87 0.87 1.03 0.90* 0.80** 0.77** 1.03 0.88* 0.76*** 0.75***
mixBART cons 0.95 0.95 1.00 0.89 0.94 0.97 0.95 0.93 1.02 0.99 0.82 0.87
errorBART cons 0.91** 0.93 1.01 0.98 0.91* 0.96 0.98 0.98 0.98 1.01 0.93 0.91**
fullBART cons 1.13 0.97 0.89 0.87 1.02 0.91* 0.81** 0.79** 1.00 0.88* 0.76*** 0.76***
BVAR SV 0.13 0.14 0.15 0.20 0.21 0.24 0.25 0.32 0.34 0.42 0.50 0.53
BART SV 1.08 0.94 0.87 0.85 0.97 0.87** 0.81** 0.76** 0.99 0.86** 0.76*** 0.76***
mixBART SV 0.95 0.95 0.98 0.86 0.95 0.96 0.95 0.90 1.02 0.95 0.81* 0.85
errorBART SV 0.95 0.98 1.00 0.93*** 0.93 0.96 0.95 0.93** 0.99 0.96 0.88 0.85*
fullBART SV 1.48** 1.00 0.88 0.84 1.24* 0.92 0.81** 0.76** 1.14 0.87* 0.75*** 0.74***
BVAR heteroBART 1.00 1.09 1.12 1.16 0.94* 1.04 1.11 1.09* 0.96* 1.00 1.02 1.06
BART heteroBART 1.31* 1.05 0.91 0.91 1.13 0.95 0.82* 0.80** 1.09 0.89* 0.80*** 0.79***
mixBART heteroBART 0.96 0.95 0.98 0.89 0.93* 0.95 0.93 0.89 0.98 0.95 0.81** 0.86
errorBART heteroBART 0.93** 0.93 1.05* 1.05 0.91** 0.97 0.99 1.01 0.99 1.01 0.95 0.94
fullBART heteroBART 1.22 1.03 0.93 0.87 1.07 0.93 0.85 0.79** 1.08 0.88** 0.77*** 0.77***

Table: Quantile scores (QS) for GDPCTPI.



The Role of Financial Conditions for Tail Forecasting

I Much interest in role of financial conditions (NFCI) in driving negative tail risks
to economic activity

I Compare BART versus BVAR with same treatment of heteroskedasticity:
BVAR-heteroBART and BART-heteroBART

I Conditional forecast of (negative of) unemployment rate
I Conditioning: NFCI paths over the forecast horizon different quantiles of the

NFCI
I Step size 0.05 leads to 21 paths of the NFCI for which we produce conditional

forecasts



A Closer Look at the Financial Crisis and the Pandemic

I Next figures plot one step ahead predictive densities conditional on different
NFCI paths

I Blue = low values (loose financial conditions), red = high values (tight financial
conditions)

I Conditioning on different financial settings has much larger effects on
predictive distributions in the BART-heteroBART specification especially in
financial crisis

I BART: Non-Gaussian distributions, with fat tails, asymmetries, or even
multi-modality.



Conditional forecasts: Great Recession

BVAR heteroBART
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Conditional forecasts: Pandemic

BVAR heteroBART
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Conclusions

I We have developed several non-parametric VARs using regression trees and
associated scalable MCMC methods

I Can BART improve forecasts of tail risk and in extreme times such as
pandemic?
I Yes! But also improves entire predictive density and forecasting throughout

sample
I Once conditional mean is modeled using BART, less evidence for

heteroskedasticity


