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Abstract

Should monetary policy have a prudential dimension? That is, should policymakers raise

interest rates to rein in financial excesses during a boom? We theoretically investigate this

question using an aggregate demand model with asset price booms and financial speculation.

In our model, monetary policy affects financial stability through its impact on asset prices.

Our main result shows that, when macroprudential policy is imperfect, small doses of pru-

dential monetary policy (PMP) can provide financial stability benefits that are equivalent

to tightening leverage limits. PMP reduces asset prices during the boom, which softens the

asset price crash when the economy transitions into a recession. This mitigates the recession

because higher asset prices support leveraged, high-valuation investors’balance sheets. An

alternative intuition is that PMP raises the interest rate to create room for monetary policy

to react to negative asset price shocks. The policy is most effective when there is extensive

speculation and leverage limits are neither too tight nor too slack. With shadow banks,

whether PMP “gets in all the cracks” or not depends on the constraints faced by shadow

banks. When shadow banks face no leverage limits, PMP can still replicate the benefits

of macroprudential policy, but PMP is less effective (like macroprudential policy) because

shadow banks respond by increasing their leverage.
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1. Introduction

Should monetary policy have a prudential dimension? That is, should policymakers raise inter-

est rates, or delay a cut, to rein in financial excesses during a boom? This question has occupied

the minds of central bankers and monetary policy researchers for decades. At present, there are

two dominant views. The fully-separable view contends that monetary policy should focus exclu-

sively on its traditional mandate while delegating financial stability concerns to macroprudential

policy (see, e.g., Weidmann (2018); Svensson (2018)). The non-separable view argues that, in

practice, macroprudential policy might be insuffi cient to deal with financial excesses since its

tools are limited and inflexible (see, e.g., Stein (2014); Gourio et al. (2018)). This debate has

spawned a growing literature investigating the costs and benefits of prudential monetary policy

(PMP). In this paper, we provide a new rationale for PMP, and we show that under appropriate

circumstances it can be as effective as macroprudential policy. This equivalence is useful since,

as highlighted by the non-separable view, monetary policy in practice is significantly nimbler

than macroprudential policy when responding to cyclical fluctuations.1

PMP has obvious costs: it slows down the economy and leads to ineffi cient factor utilization

during the boom. The benefits are less well understood. One of the main arguments for PMP is

the asset price channel: monetary policy can mitigate the asset price boom and therefore make

the subsequent crash smaller and less costly (see, e.g., Borio (2014); Adrian and Liang (2018)).

This view is supported by evidence that monetary policy has a sizable, nearly immediate impact

on asset prices. Despite its potential importance, there is little formal analysis on how the asset

price channel of PMP works and whether (or when) it improves social welfare. We fill this gap

by developing an aggregate demand model with asset price booms and speculation.

In our model, the economy transitions from a boom with high asset prices into a recession

with low asset prices. The boom features financial speculation– investors with heterogeneous

valuations trading risky financial assets amongst themselves. We focus on speculation among

investors with heterogeneous beliefs (optimists and pessimists), but similar insights apply if

speculation is driven by other forces such as heterogeneous risk tolerances (e.g., banks and

households). The recession features interest rate frictions– factors that might constrain how the

risk-free rate adjusts after a shock. We focus on the zero lower bound, but our mechanism applies

for other constraints that prevent policymakers from cutting interest rates during recessions.

These ingredients make optimists’wealth share a key state variable for the economy. In

particular, when optimists have more wealth in the recession, they push up asset prices and

aggregate demand, softening the recession. However, individual optimists who take on leverage

during the boom (and pessimists who lend to them) do not internalize the welfare effects of

1Adrian et al. (2017) summarize the results from a tabletop exercise conducted by the Federal Reserve that
“aimed at confronting Federal Reserve Bank presidents with a plausible, albeit hypothetical, macro-financial
scenario that would lend itself to macroprudential considerations...From among the various tools considered,
tabletop participants found many of the prudential tools less attractive due to implementation lags and limited
scope of application...Monetary policy came more quickly to the fore as a financial stability tool than might have
been thought before the exercise.”
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Figure 1: Graphical illustration of the relations that determine optimists’wealth share and the
asset price in recession, (α2, Q2). The left (resp. right) panel illustrates the effect of macropru-
dential policy (resp. PMP).

optimists’wealth losses during the recession, which motivates policy interventions. Macropru-

dential policy is in theory the ideal tool for disciplining optimists’risk taking, but in practice is

imperfect. Our main result shows when PMP can effectively reduce optimists’risk exposure.

To illustrate this result, we introduce some notation and relations (we provide microfoun-

dations in the main text). Specifically, let s = 1 and s = 2 denote the boom and the recession

states, respectively. The economy is set in continuous time and transitions from the boom state

to the recession state according to a Poisson process. Let αs and Qs denote optimists’wealth

share and the price of capital (asset price) in state s, respectively. In the recession state s = 2,

the price of capital is an increasing function of optimists’wealth share:

Q2 = Q2 (α2) . (1)

In the boom state s = 1, optimists choose an above-average leverage ratio, ωo1 > 1. Therefore,

if there is a transition to the recession state, their wealth share declines. Specifically, we have,

α2
α1

= 1− (ωo1 − 1)

(
Q1
Q2
− 1

)
, (2)

where Q1/Q2 > 1 captures the magnitude of the price decline after the transition. Note that this

equation also describes an increasing relation between optimists’wealth share, α2, and the price

of capital in the recession, Q2 (since ωo1 > 1 ). Given a boom wealth share α1, the equilibrium

pair (α2, Q2) corresponds to the intersection of two increasing relations (1) and (2), similar to

Kiyotaki and Moore (1997). Figure 1 provides a graphical representation of these relations.

In this framework, aggregate demand is an increasing function of asset prices, so monetary
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policy can be described in terms of its effect on asset prices. As a benchmark, suppose the

monetary authority sets interest rates in the boom to achieve asset prices and aggregate demand

consistent with potential output, Q1 = Q∗. In the recession, monetary policy is constrained,

so asset prices and aggregate demand fall short of potential output, Q2 < Q∗. A larger wealth

share for optimists, α2, increases asset prices and aggregate demand and softens the recession.

This effect is an aggregate demand externality, which provides a rationale for prudential policies

that improve optimists’wealth share in the recession, α2.

Eq. (2) suggests that there are two prudential channels policymakers can use to increase

α2. First consider macroprudential policy that reduces optimists’leverage ratio, ωo1. This policy

increases α2 by reducing optimists’ exposure to a given asset price decline, Q∗/Q2. Second,

suppose instead that optimists’leverage ratio is fixed, ωo1 = ωo1, due to either financial frictions,

self-imposed limits, or binding macroprudential policy, and consider PMP that reduces asset

prices during the boom, Q1 < Q∗. This policy increases α2 by decreasing the size of the asset

price decline, Q1/Q2, for a given level of optimists’exposure. Figure 1 shows that these two

policies can achieve the same allocations, illustrating the logic behind our main result.

Moreover, as we shall see in the formal derivation, PMP lowers asset prices, Q1 < Q∗,

by setting the interest rate higher than the benchmark with conventional output stabilization

(“rstar”). Thus, an equivalent intuition for our main result is that PMP raises the interest rate

to create room for monetary policy to react to negative asset price shocks. This interpretation

would not apply in the standard New Keynesian model where the severity of the recession

depends only on the level of interest rates. In our model, the path of interest rates also matters

because optimists’balance sheet is a key state variable that is affected by changes in asset prices.

PMP has two drawbacks relative to macroprudential policy. First, optimists’leverage ratio

has to be at least somewhat constrained, ωo1 = ωo1. While this is likely to be the case in

practice – due to financial frictions, self-imposed limits, or binding macroprudential policy–

our model provides a cautionary note for environments in which optimists’constraints are loose.

In particular, in the extreme case in which optimists are fully unconstrained, their leverage ratio

adjusts to completely undo the prudential effects of monetary policy. That is, once ωo1 adjusts,

α2 does not depend on Q1. The intuition is that, since optimists perceive smaller risks after

transition to a recession, they increase their leverage ratio. This result illustrates that PMP is

more effective when optimists face tighter leverage constraints.

Second, even when monetary policy achieves the same prudential objectives as macropru-

dential policy, it is more costly because it lowers asset prices during the boom, Q1 < Q∗, which

reduces factor utilization below the effi cient level. However, in a neighborhood of the price level

that ensures effi cient factor utilization (Q∗), these negative welfare effects are second order. On

the other hand, the beneficial effects of softening the recession are first order. Our main result

formalizes this insight and establishes that (when optimists are subject to some leverage limit)

the first-order welfare effects of PMP are exactly the same as the effects of tightening the leverage

limit directly. Put differently, for small policy changes, PMP is as effective as macroprudential
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policy. PMP increases unemployment in a booming economy, which has negligible costs, and

reduces unemployment during a recession, which has sizeable benefits.

This discussion illustrates how our main result may apply beyond our particular model of

recessions. For example, suppose the recession features no interest rate frictions, but there are

financial frictions and fire-sale prices that increase in experts’ wealth share. Suppose experts

take on leverage during the boom to increase the size of their investments (as in Lorenzoni

(2008)). The analogues of Eqs. (1) and (2) apply in this setting. Hence, as long as experts’

leverage is constrained, PMP would improve experts’balance sheets in the recession and increase

welfare. In this alternative setup, the policy would increase welfare by mitigating fire-sale

externalities, whereas in our model PMP internalizes aggregate demand externalities.

We also characterize the optimal monetary policy in our environment and establish three

comparative statics results. First, the planner utilizes PMP more when the leverage limit (or

macroprudential policy) is at an intermediate level. Intuitively, when the limit is too loose,

PMP is not worthwhile because it requires a large decline in Q1 to push optimists against

their constraints. Naturally, when the limit is already too tight, further tightening via PMP is

not beneficial. These two extreme cases illustrate that macroprudential policy and PMP can

be complements as well as substitutes. Second, as expected, the planner utilizes PMP more

when she perceives a greater probability of transitioning into a recession. Finally, the planner

utilizes PMP more when investors have greater disagreements about the risk of a recession. This

result highlights that the policy is not driven by high asset prices per se (which is addressed

by conventional monetary policy objectives) but by the financial speculation associated with

episodes that concentrate risks on optimists’(or banks’) balance sheets.

Finally, one of the main practical concerns with prudential policies is the presence of “shadow

banks”– lightly regulated high-valuation agents who can circumvent regulatory constraints.

Stein (2013) noted that in these environments PMP might have an advantage over macropru-

dential policy “because it gets in all of the cracks.”We extend our analysis to consider shadow

banks– optimists who are not subject to regulatory leverage limits. We find that whether PMP

is more effective than macroprudential policy depends on the nature of the leverage limits faced

by shadow banks. Even if shadow banks circumvent the regulatory leverage limit, they might

still be constrained due to financial frictions or self-imposed limits. In this case, shadow banks

and regular banks both face binding leverage limits, so our earlier analysis applies and implies

that PMP is indeed more effective than macroprudential policy. We also analyze the other ex-

treme case in which shadow banks are fully unconstrained. In this case, PMP can still replicate

the financial stability benefits of macroprudential policy; however, both policies are weaker than

when there are no shadow banks. The policies are weaker because of general equilibrium feed-

backs: shadow banks (when unconstrained) respond to the stabilizing benefits of either policy

by increasing their leverage and risk taking.

Literature review. Our paper is part of a large literature that investigates the effect of
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monetary policy on financial stability. Adrian and Liang (2018) provide a recent survey (see

also Smets (2014)). As they note, easy monetary policy can generate financial vulnerabilities

by fueling credit growth, exacerbating the maturity mismatch of financial intermediaries, and

inflating asset prices. Our paper focuses on the asset-price channel, which is underexplored.

One strand of the literature emphasizes that loose monetary policy can reduce risk premia

during the boom by exacerbating the “reach for yield”(see, e.g., Rajan (2006); Maddaloni and

Peydró (2011); Borio and Zhu (2012); Morris and Shin (2014); Lian et al. (2018); Acharya and

Naqvi (2018)). In our model, monetary policy does not directly affect the risk premium– it

affects asset prices mainly through the traditional discount rate channel. Nonetheless, we find a

role for PMP because the reduction in asset prices during the boom softens the asset price crash

after transition to recession. Our channel is stronger (and it operates through the same key

equations) if, as suggested by empirical evidence, monetary policy also affects the risk premium

during the boom (e.g., Bernanke and Kuttner (2005); Hanson and Stein (2015); Gertler and

Karadi (2015); Gilchrist et al. (2015)).

Our paper complements the literature emphasizing the credit channel. A number of papers

show that monetary policy can affect financial stability by influencing credit growth or leverage.

Woodford (2012) articulates this channel using a New Keynesian framework (that builds upon

Curdia and Woodford (2010)) in which loose monetary policy increases the leverage of financial

institutions (or borrowers), which in turn increases the probability of a crisis (by assumption).

We show that monetary policy can also affect financial stability by influencing asset prices

during the boom. Moreover, our model does not require a financial crisis: there are benefits if

the economy transitions into a plain-vanilla recession (in which monetary policy is constrained).

Hence, our theoretical findings suggest that quantitative analyses that rely purely on the credit

channel and financial crises likely underestimate the benefits of PMP.2

In our model, PMP causes an output gap during the boom, which generates a second-order

welfare loss (for small changes in policy), and mitigates the output gap during the recession,

which generates a first-order welfare gain. Kocherlakota (2014) and Stein (2014) derive simi-

lar insights by assuming that the Fed uses a quadratic loss function to penalize deviations of

unemployment from its target. They show that targeting financial stability fits naturally into

the Fed’s dual mandate. Our model provides a microfoundation for their key assumption that

accommodative monetary policy exacerbates financial vulnerability.

Our paper is part of a growing theoretical literature that analyzes the interactions between

macroprudential and monetary policies in environments with aggregate demand externalities

(see, e.g., Korinek and Simsek (2016); Farhi and Werning (2016); Rognlie et al. (2018)).3 Most

2A growing empirical literature has documented that rapid credit growth is associated with more frequent
and more severe financial crises (e.g., Borio and Drehmann (2009); Jordà et al. (2013)). Recent work uses the
empirical estimates from this literature to calibrate Woodford-style models and quantify the costs and benefits of
PMP. Svensson (2017); IMF (2015) argue that the costs of this policy exceed the benefits, whereas Gourio et al.
(2018); Adrian and Liang (2018) find mixed effects.

3Several papers analyze the interaction of macroprudential and monetary policies but focus on other frictions
(e.g., Stein (2012); Collard et al. (2017); Martinez-Miera and Repullo (2019)). A vast literature theoretically
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of these papers conclude that financial stability issues are best addressed with macroprudential

policy. We depart from this literature by assuming that macroprudential policy is constrained,

and we find a role for monetary policy that interacts with macroprudential policy. We also

investigate the asset price channel, whereas Korinek and Simsek (2016) and Farhi and Werning

(2016) focus on credit.Rognlie et al. (2018) analyze investment and show that incorporating this

ingredient would strengthen our main result. When alternative policies are imperfect, PMP can

be used to reduce investment during the boom. PMP creates pent-up investment demand that

raises investment, asset prices, and aggregate demand during the recession.

Finally, although our mechanism is more general, our specific model with belief disagree-

ments and speculation is related to a large finance literature (e.g., Lintner (1969); Miller (1977);

Harrison and Kreps (1978); Scheinkman and Xiong (2003); Fostel and Geanakoplos (2008);

Geanakoplos (2010); Simsek (2013a,b); Iachan et al. (2015); Cao (2017); Heimer and Simsek

(2018)). Similar to Caballero and Simsek (2017), we analyze speculation when aggregate de-

mand can influence output due to interest rate rigidities. We depart from our earlier work by

assuming that financial markets are incomplete due to exogenous leverage limits (see Remark

4). This assumption ensures that monetary policy affects the extent of speculation.

In Section 2 we introduce the basic environment and provide a partial characterization of the

equilibrium. In Section 3, we characterize the equilibrium in the recession state and illustrate

the aggregate demand externalities that motivate policy interventions. In Section 4, we char-

acterize the equilibrium in the boom state for a benchmark case without PMP and illustrate

how macroprudential policy can improve welfare. In Section 5, we introduce PMP and establish

our main results regarding its (local) equivalence with macroprudential policy. In Section 6, we

characterize the optimal PMP in our setting and establish its comparative statics. In Section 7,

we add “shadow banks”to our framework and analysis. Section 8 concludes and is followed by

several appendices that contain omitted derivations and proofs.

2. Environment and equilibrium

In this section we introduce our general dynamic environment. We then provide a definition

and a partial characterization of the equilibrium. In subsequent sections we further analyze this

equilibrium under different assumptions about monetary policy.

Potential output and risk premium shocks. The economy is set in infinite continuous

time, t ∈ [0,∞), with a single consumption good and a single factor of production, capital. Let

kt,s denote the capital stock at time t in the aggregate state s ∈ S.
The rate of capital utilization is endogenous and denoted by ηt,s ∈ [0, 1]. When utilized at

investigates macroprudential policy but doesn’t focus on nominal rigidities or monetary policy (see, e.g., Dávila
and Korinek (2017) and the references therein).

7



this rate, kt,s units of capital produce

Aηt,skt,s (3)

units of the consumption good. The capital stock follows the process

dkt,s/dt

kt,s
= gs − δ

(
ηt,s
)
. (4)

The depreciation function δ
(
ηt,s
)
is increasing. Hence, Eqs. (3) and (4) illustrate that utilizing

capital at a higher rate allows the economy to produce more current output at the cost of faster

depreciation and slower output growth. Without nominal rigidities, there is an optimal level

of capital utilization denoted by η∗, which we characterize in the subsequent analysis. With

nominal rigidities, the economy may operate below this level of utilization, ηt,s ≤ η∗, due to

aggregate demand shortages.

Eq. (4) also illustrates that the expected growth rate of capital (before depreciation) is

given by gs, which is an exogenous parameter. The states, s ∈ S, differ only in terms of gs. For
simplicity, we assume there are three states, s ∈ {1, 2, 3}. The economy starts in state s = 1.

While in states s ∈ {1, 2}, the economy transitions into state s′ ≡ s+ 1 according to a Poisson

process that we describe below. Once the economy reaches s = 3, it stays there forever.

We assume the parameters satisfy g2 < min (g1, g3). We envision a scenario in which the

economy starts in the boom state with a relatively high growth rate, eventually enters a recession

state with a low growth rate, then returns to an absorbing recovery state with a high growth rate.

Accordingly, we refer to states 1, 2, and 3 as “the boom,”“the recession,”and “the recovery,”

respectively. For analytical tractability, we focus on a single business cycle. Figure 2 illustrates

the timeline of events for a particular realization of state transitions.

Remark 1 (Broadening the interpretation of expected growth fluctuations). We view the

changes in the expected growth rate, gs, as a device to capture more broadly “time-varying risk

premia”: that is, fluctuations in risky asset prices that are unrelated to short-run fundamentals

(i.e., the current supply-determined output level). In Caballero and Simsek (2017), we formalize

this intuition by showing that (in a two period model) changes in gs generate the same effect

on asset prices and economic activity as changes in risk or risk aversion. A large literature

documents that time-varying risk premia are a pervasive phenomenon in financial markets (see

Cochrane (2011); Campbell (2014) for recent reviews).

Transition probabilities and belief disagreements. We let λis > 0 denote investor i’s

belief about the Poisson transition probability from state s into state s′ = s + 1. Since state

s = 3 is an absorbing state, we have λi3 = 0 for each i. For the remaining states, we assume there

are two types of investors, i ∈ {o, p}. Type o investors are “optimists,”and type p investors are
“pessimists.”We denote the difference between perceived transition probabilities for optimists
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Figure 2: The timeline of events.

and pessimists by

∆λs = λos − λps.

We assume the belief differences satisfy:

Assumption 1. ∆λ1 < 0 and ∆λ2 > 0.

When the economy is in the boom state s = 1, optimists assign a smaller transition probability

to the recession state s = 2. When the economy is in the recession state, they assign a greater

transition probability to the recovery state s = 3.

Remark 2 (Broadening the interpretation of disagreements). We view disagreements about

transition probabilities as a convenient modeling device to capture heterogeneous asset valuations.

The key aspects of “optimists” is that they value risky assets more than “pessimists,” so that:

(i) during the boom, they take on leverage, and (ii) during the recession, they increase risky

asset prices. These aspects would be the same with other modeling devices such as heterogeneous

risk aversion or Knightian uncertainty. Consequently, we can also think of “optimists”as banks

(or institutional investors) that are more risk tolerant and less Knightian than households or

pension funds (“pessimists”).

Menu of financial assets. There are two types of financial assets. First, there is a market

portfolio that represents a claim on all output (which accrues to production firms as earnings).

We let Qt,skt,s denote the price of the market portfolio, so Qt,s is the price per unit of capital.

We let rt,s denote the instantaneous expected return on the market portfolio conditional on no

transition. Second, there is a risk-free asset in zero net supply. We denote its instantaneous

return by rft,s.
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In Caballero and Simsek (2017), we allow for Arrow-Debreu securities that enable investors

to trade the transition risk. In this paper, we assume financial markets are incomplete and

thus investors speculate by adjusting their position on the market portfolio, i.e., changing their

leverage ratio (see also Remark 4).

Market portfolio price and return. Absent state transitions, the price of capital Qt,s
follows an endogenous, deterministic path. Using Eq. (4), the growth rate of the price of the

market portfolio is given by

d (Qt,skt,s) /dt

Qt,skt,s
= gs − δ

(
ηt,s
)

+
Q̇t,s
Qt,s

,

where we use the notation Ẋ ≡ dX/dt. Consequently, the return of the market portfolio absent
state transitions can be written as

rt,s =
yt,s

Qt,skt,s
+ gs − δ

(
ηt,s
)

+
Q̇t,s
Qt,s

. (5)

Here, yt,s denotes the endogenous level of output at time t. Therefore, the first term captures the

“dividend yield” component of return. The second term captures the capital gain conditional

on no transition, which reflects the expected growth of capital and its price.

Portfolio choice. Investors are identical except for their beliefs about state transitions, λis.

They continuously make consumption and portfolio allocation decisions. Specifically, at any time

t and state s, investor i has some financial wealth denoted by ait,s. She chooses her consumption

rate, cit,s, and the fraction of her wealth to allocate to the market portfolio, ω
i
t,s. The residual

fraction, 1− ωit,s, is invested in the risk-free asset.
Note that ωit,s also captures the investors’leverage ratio. We impose a leverage limit in the

boom state s = 1:

ωit,1 ≤ ωt,1, (6)

where we require ωt,1 ≥ 1 (to ensure market clearing). We allow for ωt,1 =∞, in which case the
leverage limit never binds. Our main result applies when the leverage limit may bind.

Remark 3 (Broadening the interpretation of the leverage limit). We view the leverage limit
as capturing a variety of unmodeled (and relevant) features that would make high-valuation

investors’leverage ratio (to some extent) exogenous to the risks that we explicitly model. First,

the leverage limit can capture a government-imposed leverage constraint. Second, the limit can

capture a market-imposed leverage constraint due to unmodeled financial frictions such as moral

hazard, adverse selection, lenders’ uncertainty or their desire for safety. Third, the limit can

also can be self-imposed: specifically, it can capture high-valuation investors’ leverage choice in

a richer environment that features unmodeled risks, e.g., diffusion risk in addition to the jump
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risk. In such an environment, as long as financial markets are incomplete, investors’ leverage

choice would be determined by a combination of unmodeled and modeled risks– and therefore

would respond relatively less to changes in modeled risks.

For analytical tractability, we assume investors have log utility. The investors’problem (at

time t and state s) can then be written as

V i
t,s

(
ait,s
)

= max[
ct̃,s̃,ω

i
t̃,s̃

]
t̃≥t,s̃

Eit,s

[∫ ∞
t

e−ρt̃ log ci
t̃,s̃
dt̃

]
(7)

s.t.

 dait,s =
(
ait,s

(
rft,s + ωit,s

(
rt,s − rft,s

))
− ct,s

)
dt absent transition,

ait,s′ = ait,s

(
1 + ωit,s

Qt,s′−Qt,s
Qt,s

)
if there is a transition to state s′ 6= s

(8)

and ωit,1 ≤ ωt,1.

Here, Eit,s [·] denotes the expectation operator corresponding to investor i’s beliefs for state
transition probabilities.

Equilibrium in asset markets. Asset markets clear when the total wealth held by investors

is equal to the value of the market portfolio both before and after the portfolio allocation

decisions:

aot,s + apt,s = ωot,sa
o
t,s + ωpt,sa

p
t,s = Qt,skt,s. (9)

When the conditions in (9) are satisfied, the market clearing condition for the risk-free asset

(which is in zero net supply) holds.

Nominal rigidities and equilibrium in goods markets. The supply side of our model

features nominal rigidities similar to the New Keynesian model. There is a continuum of com-

petitive production firms that own the capital stock and produce the final good. For simplicity,

these production firms have pre-set nominal prices that never change. Firms choose their capital

utilization rate, ηt,s, to maximize their market value subject to demand constraints. They take

into account that greater ηt,s increases production according to Eq. (3) and that it leads to

faster capital depreciation according to Eq. (4).

First consider the benchmark case without price rigidities. In this case, firms solve the

problem:

max
ηt,s

ηt,sAkt,s − δ
(
ηt,s
)
Qt,skt,s. (10)

The optimality condition is given by

δ′
(
ηt,s
)
Qt,s = A. (11)

That is, the frictionless level of utilization ensures that the marginal depreciation rate is equal

to the marginal product of capital.
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Next consider the case with price rigidities. In this case, firms solve problem (10) with

the additional constraint that their output is determined by aggregate demand. As in the New

Keynesian model, firms optimally meet this demand as long as their price exceeds their marginal

cost. In a symmetric environment, the real price per unit of consumption good is one for all

firms, and each firm’s marginal cost is given by
δ′(ηt,s)Qt,s

A . Therefore, firms’optimality condition

can be written as4

yt,s = ηt,sAkt,s = cot,s + cpt,s as long as δ′
(
ηt,s
)
Qt,s ≤ A. (12)

Moreover, all output accrues to production firms in the form of earnings. Hence, the market

portfolio can be thought of as a claim on all production firms.

Interest rate rigidity and monetary policy. Our assumption that production firms do

not change their prices implies that the aggregate nominal price level is fixed. The real risk-free

interest rate, then, is equal to the nominal risk-free interest rate, which is determined by the

monetary authority’s interest rate policy. We assume there is a lower bound on the nominal

interest rate, which we set as zero for convenience: rft,s ≥ 0.

We model monetary policy as a sequence of interest rates,
{
rft,s

}
t,s
, and implied levels of

factor utilization and asset price levels,
{
ηt,s, Qt,s

}
t,s
, chosen subject to the zero lower bound

constraint. Absent price rigidities, factor utilization and asset price levels satisfy condition (11).

Therefore, we define the conventional output-stabilization policy as

rft,s = max
(

0, rf∗t,s

)
for each s, (13)

where rf∗t,s (“rstar”) is recursively defined as the instantaneous interest rate that obtains when

condition (11) holds and the planner follows the output-stabilization policy in (13) at all future

times and states.

Our goal is to understand whether the planner might want to use monetary policy for pruden-

tial purposes in the boom state. In particular, we assume the planner follows the conventional

output-stabilization policy in (13) for the recession and the recovery states s ∈ {2, 3}, but she
might deviate from this rule in the boom state s = 1. For now, we allow the planner to choose an

arbitrary path,
{
rft,1, Qt,1, ηt,1

}
t
, that is consistent with the equilibrium conditions. We specify

the monetary policy further in Section 5 and define the equilibrium below.

Definition 1. The equilibrium is a collection of processes for allocations, prices, and returns

such that capital evolves according to Eq. (4), its instantaneous return is given by Eq. (5),

investors maximize their expected utility subject to a leverage limit in the boom state (cf. problem

7), asset markets clear (cf. Eq. (9)), goods markets clear (cf. Eq. (12)), and the monetary

4 If instead the marginal cost exceeded the price, δ
′(0)Qt,s
A

> 1, then these firms would choose ηt,s = 0 and
produce yt,s = 0. This case does not emerge in equilibrium.
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authority follows the conventional output-stabilization policy in states s ∈ {2, 3} [cf. Eq. (13)]

and chooses a feasible path
{
rft,1, Qt,1, ηt,1

}
t
in state s = 1.

We next provide a generally applicable partial characterization of the equilibrium. In sub-

sequent sections, we use this characterization to describe the equilibrium in the different states

and policy regimes.

2.1. Equilibrium in the goods market

We start by establishing the equilibrium conditions in the goods market. In view of log utility,

the investor’s consumption is a constant fraction of her wealth, regardless of her portfolio choice:

cit,s = ρait,s. (14)

This leads to a tight relationship between output and asset prices. Combining Eqs. (14) and

(9) implies that aggregate consumption is a constant fraction of aggregate wealth,

cot,s + cpt,s = ρQt,skt,s.

Combining this result with the goods market clearing condition in Eq. (12), we obtain the

output-asset price relation,

yt,s = Aηt,skt,s = ρQt,skt,s. (15)

Intuitively, greater asset prices increase aggregate demand, output, and factor utilization. Com-

bining Eqs. (11) and (15), we find that the effi cient level of output utilization solves

δ′ (η∗) η∗ = ρ. (16)

Note that optimal capital utilization is the same across all states. We assume the following

regularity conditions on the depreciation function to ensure that there exists a unique solution

to Eq. (16):

Assumption 2. δ (η) is strictly increasing and convex over R+ with δ′ (0) < ρ and

limη→∞ δ
′ (η) ≥ ρ.

Combining Eqs. (15) and (16), we find that there is an effi cient asset price level:

Q∗ =
Aη∗

ρ
. (17)

This is the level of asset prices such that the associated aggregate demand leads to effi cient capital

utilization (and ensures that actual output is exactly at potential output). When Qt,s < Q∗,

we have ηt,s < η∗: capital is utilized below its effi cient level, which we interpret as a demand

recession. Note also that, using the one-to-one relationship between factor utilization and asset
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prices in (15), we have
ηt,s
η∗ =

Qt,s
Q∗ : the degree of underutilization relative to the effi cient level is

proportional to the ratio of the asset price level to the effi cient asset price level.

Next note that note that Eq. (15) implies the equilibrium dividend yield is given by
yt,s

Qt,skt,s
= ρ. Substituting this into Eq. (5), and using the relationship between ηt,s and Qt,s, the

equilibrium return on the market portfolio is given by:

rt,s = ρ+ gs − δ
(
Qt,s
Q∗

η∗
)

+
Q̇t,s
Qt,s

. (18)

2.2. Equilibrium in asset markets

We next establish the equilibrium conditions in asset markets. For these markets, the key state

variable is investors’relative wealth shares, which we define as

αit,s ≡
ait,s

Qt,skt,s
for i ∈ {o, p} . (19)

Note that investors’wealth shares sum to one, αot,s + αpt,s = 1 [cf. Eq. (9)].

In the appendix, we characterize investors’wealth share after a transition in terms of their

leverage ratio
αit,s′

αit,s
− 1 =

(
ωit,s − 1

) Qt,s′ −Qt,s
Qt,s′

. (20)

When the transition increases the asset price, Qt,s′ > Qt,s, an investor’s wealth share increases

after the transition, αit,s′ > αit,s, if and only if she has above-average leverage, ω
i
t,s > 1. The

converse happens if the transition decreases the asset price.

Note also that Eq. (20) establishes a one-to-one relationship between αit,s′ and ω
i
t,s (as long

as Qt,s′ 6= Qt,s, which is the case in our model). Hence, we can think of the investor as choosing

her wealth share after transition, αit,s′ , and adjusting her leverage ratio to obtain this outcome.

Thus, we can state the investor’s portfolio optimality condition as

rt,s − rft,s + λis
αit,s
αit,s′

Qt,s′ −Qt,s
Qt,s′

≥ 0, (21)

with equality when the leverage limit doesn’t bind (see Appendix A.1 for a derivation). As long as

the investor is unconstrained, she invests in the market portfolio until the risk-adjusted expected

excess return is zero. The risk-adjusted return captures aggregate price changes (
Qt,s′−Qt,s

Qt,s′
) as

well as the adjustment of marginal utility relative to other investors if there is a transition (
αit,s
αi
t,s′
).

For the equilibria we analyze, the leverage limit never binds for pessimists. Consequently, the

optimality condition (21) always holds as equality for pessimists but it might apply as inequality

for optimists.

Finally, combining Eqs. (9), (19) and (20), we can see that asset markets clear as long as
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investors’wealth shares after transition,
{
αit,s′

}
i∈{o,p}

, sum to one. Therefore, the equilibrium

in asset markets reduces to finding wealth shares that solve (21) for each type and that satisfy

αot,s′ + αpt,s′ = 1.

Next consider the evolution of investors’wealth shares if there is no state transition. In

Appendix A.1.2, we show that

α̇it,s
αit,s

= λps
αpt,s
αpt,s′

(
1−

αit,s′

αit,s

)
. (22)

Pessimists’beliefs (superscript p) appear in this expression because the optimality condition (21)

always holds as equality for them, so we can use their beliefs to price assets. This expression

illustrates that investors face a trade-off across states. If an investor chooses αit,s′ > αit,s (resp.

αit,s′ < αit,s) so that her wealth share increases (resp. decreases) after a state transition, then

she also has α̇it,s < 0 (resp. α̇it,s > 0) so her wealth share shrinks (resp. grows) if there is no

state transition.

Special case with non-binding leverage limits. When the leverage limit doesn’t bind for

optimists, these equations can be simplified further. In particular, Eq. (21) holds as equality

for both types of investors, which implies λos
αot,s
αo
t,s′

= λps
αpt,s
αp
t,s′
. Combining this equality with the

market clearing condition (9), we obtain a closed-form solution:

αit,s′

αit,s
=

λis
λt,s

where λt,s = αt,sλ
o
t,s + (1− αt,s)λot,s. (23)

Here λt,s denotes the wealth-weighted average of the transition probability. After substituting

this expression into Eq. (22), we solve for investors’wealth dynamics as:

α̇it,s
αit,s

= −
(
λis − λt,s

)
. (24)

These expressions are intuitive. When type i investors assign an above-average probability to

transition, λis > λt,s, their wealth share increases after a transition but drifts downward absent a

transition. Conversely, when investors assign a below-average transition probability, their wealth

share declines after a transition but drifts upward absent a transition.

Remark 4 (Role of market incompleteness due to binding leverage limits). Eqs. (21− 24)

clarify the difference of this model with the one in Caballero and Simsek (2017). Specifically,

Eqs. (23) and (24) are the same as their counterparts in Caballero and Simsek (2017), where we

allow investors to trade transition risks via Arrow-Debreu securities. The intuition is that, as

long as the leverage limit does not bind, the market portfolio and the risk-free asset are suffi cient

to dynamically complete the market. The main difference in this setting is that the leverage limit
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can bind, in which case the wealth-share dynamics are different than in Caballero and Simsek

(2017) and are characterized by Eqs. (21) and (22).

3. The recession and aggregate demand externalities

We next characterize the equilibrium in the recession state (as well as in the recovery state).

We also illustrate the aggregate demand externalities that motivate policy intervention. Since

our focus is on the boom state, we relegate the details to Appendix A.2 and state the key

equations and the results relevant for our analysis. For the rest of the paper, with a slight abuse

of notation, we often drop the superscript o from optimists’wealth share:

αt,s ≡ αot,s.

Pessimists’wealth share is the complement of this expression, αpt,s = 1− αt,s. We will describe
the remaining equilibrium variables as functions of optimists’wealth share, so this convention

will considerably simplify the notation.

Under appropriate parametric restrictions (Assumption A1) we show that the recovery state

s = 3 features positive interest rates, effi cient asset prices, and effi cient factor utilization, rft,3 >

0, Qt,3 = Q∗, ηt,3 = η∗, whereas the recession state s = 2 features zero interest rates, ineffi ciently

low asset prices, and ineffi cient factor utilization, rft,2 = 0, Qt,2 < Q∗, ηt,2 < η∗. The equilibrium

in the recovery state is straightforward since there is no further transition and no speculation.

We then proceed backwards, starting with a description of the equilibrium in the recession state.

Equilibrium in the recession. Since there is no leverage limit in this state, Eq. (21) holds

as equality for both types of investors. We aggregate this expression across investors (using Eq.

(23)), and substitute for rt,2 from Eq. (18) and Qt,3 = Q∗, to obtain:

ρ+ g2 − δ
(
Qt,2
Q∗

η∗
)

+
Q̇t,2
Qt,2

+ λt,2

(
1− Qt,2

Q∗

)
= rft,2. (25)

We refer to this expression as the risk balance condition: it says that the equilibrium risk-

adjusted return on the market portfolio (evaluated with the wealth-weighted average belief) is

equal to the risk-free interest rate.

As a preliminary step, consider the outcomes that would obtain if the interest rate were

unconstrained. In this case, substituting Qt,2 = Q∗ into the risk balance condition (25), we

obtain an expression for the output-stabilizing interest rate: rf,∗t,2 = ρ+g2−δ (η∗). For intuition,

consider the effect of lowering g2. This exerts downward pressure on asset prices due to low

expected growth in output and earnings. Monetary policy responds by lowering the risk-free

interest rate, rf,∗t,2 , and keeps asset prices at the effi cient level, Qt,2 = Q∗. By lowering the

risk-free rate, monetary policy ensures that investors continue to hold the market portfolio at
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the effi cient asset price level, even though they expect low output growth.

We assume g2 is suffi ciently low so that the implied output-stabilizing interest rate violates

the lower bound, rf,∗t,2 < 0. Consider the outcomes with a binding interest rate lower bound.

Substituting rft,2 = 0 into the risk balance condition (25), we obtain an expression that charac-

terizes the asset price, Qt,2. Intuitively, the only way condition (25) can be satisfied when rft,2
cannot decline below zero is for Qt,2 to fall below below Q∗. This asset price decline increases

the return of the market portfolio, which in turn ensures that investors continue to hold the

market portfolio despite lower expected output growth. However, the decline in Qt,2 also lowers

aggregate spending and triggers a demand recession.

Importantly, Eq. (25) suggests that, when the wealth-weighted belief is more optimistic

(greater λt,2), a smaller decline in Qt,2 is suffi cient to reestablish the risk balance condition. We

verify this intuition in the appendix. Formally, we characterize the asset price and optimists’

wealth share, (Qt,2, αt,2), as the solution to a differential equation in the time domain (see Eq.

(A.9)). We write the solution as Qt,2 = Q2 (αt,2) for each αt,2 ∈ [0, 1]. We show that the

function, Q2 (·), satisfies

Q2 (α) < Q∗ and
dQ2 (α)

dα
> 0 for each α ∈ (0, 1) . (26)

In particular, a greater wealth-share for optimists increases the asset price and brings it closer

to the frictionless level.

Recall from Eq. (15) that there is a one-to-one relationship between asset prices and factor

utilization. Hence, Eq. (26) implies ηt,2 < η∗: the recession features an ineffi ciently low level of

capital utilization. We capture the welfare costs of underutilization with the concept of a gap

value function, which we first introduced in Caballero and Simsek (2017).

Gap value function. To define the gap value function, let b denote a superscript representing

beliefs about transition probabilities. The planner can have different beliefs from optimists and

pessimists, so b takes one of three values {o, p, pl}. For a fixed b, we use V i,b
t,s

(
ait,s
)
to denote

type i investors’equilibrium value calculated according to type b beliefs. In view of log utility,

the value function takes the form

V i,b
t,s

(
ait,s
)

=
log
(
ait,s/Qt,s

)
ρ

+ vi,bt,s.

The normalized value function vi,bt,s captures the value when the investor holds one unit of the

capital stock (or wealth, ait,s = Qt,s). We further decompose this term as follows:

vi,bt,s = vi∗,bt,s + wbt,s. (27)
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The frictionless value function vi∗,bt,s is the value that obtains in a counterfactual economy where

the evolution of wealth shares are left unchanged but asset prices are equal to the frictionless

level, Qt,s = Q∗ for each t, s. This captures all determinants of welfare (including the bene-

fits/costs from speculation) except for suboptimal factor utilization. The residual term, wbt,s,

corresponds to the gap value function. This term captures the welfare losses due to suboptimal

factor utilization evaluated according to investors’preferences (and type b beliefs).

In the appendix, we formalize this intuition by establishing that the gap value function solves

the following differential equation:

ρwbt,s −
∂wbt,s
∂t

= W (Qt,s) + λbs

(
wbt,s′ − wbt,s

)
, (28)

where W (Qt,s) ≡ log
Qt,s
Q∗
− 1

ρ

(
δ

(
Qt,s
Q∗

η∗
)
− δ (η∗)

)
.

The function W (Qt,s) is strictly concave with a maximum at Qt,s = Q∗ and maximum value

equal to zero, W (Q∗) = 0 (cf. Eq. (16)). W (Qt,s) ≤ 0 captures the instantaneous losses in

welfare when the asset price (and therefore factor utilization) deviates from its effi cient level,

Qt,s 6= Q∗. Therefore, the gap value wbt,s corresponds to the present discounted value of expected

welfare losses due to price rigidities and ineffi cient factor utilization.

In our welfare analysis, we mostly focus on the gap value function calculated according to

the planner’s belief, b = pl. This sidesteps questions about whether speculation increases or

reduces welfare (see Brunnermeier et al. (2014) for further discussion). Our analysis aligns with

the mandates of monetary policy in practice: the planner in our model exclusively focuses on

minimizing output gaps relative to a frictionless benchmark (similar to Kocherlakota (2014) and

Stein (2014)).5 Following Brunnermeier et al. (2014), we assume the planner’s beliefs are in the

convex hull of optimists’and pessimists’beliefs: λpl1 ∈ [λo1, λ
p
1] and λ

pl
2 ∈ [λp2, λ

o
2]. Our results

are qualitatively robust to the choice of planner’s beliefs in these sets.

Gap value in the recession: Aggregate demand externalities. In the appendix, we

show that the planner’s gap value function in the recession can be written as wplt,2 = wpl2 (αt,2),

where wpl2 (·) is a function that satisfies:

wpl2 (α) < 0 and
dwpl2 (α)

dα
> 0 for each α ∈ (0, 1) . (29)

As expected, the gap value is strictly negative. Moreover, a greater wealth-share for optimists

shrinks the gap value. The welfare gap is smaller when optimists have more wealth, since

optimists’wealth increases asset prices and aggregate demand and mitigates the underutilization

5 In Caballero and Simsek (2017), we illustrate that (under appropriate parametric restrictions) macroprudential
policy that restricts investors’ risk taking can generate a Pareto improvement in welfare. That is, the planner
can make everyone better off even if she focuses on the total value (not just the gap value) and evaluates each
investor’s expected value according to her own belief.
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of capital [cf. Eqs. (26) and (28)].

Note that optimists’wealth share is an endogenous and aggregate state variable that depends

on the amount of financial speculation that takes place in the boom state. In particular, the

positive relationship between optimists’wealth and the gap value in (29) illustrates aggregate

demand externalities that motivate policy interventions during the boom. Individual optimists

that take on leverage during the boom (and pessimists that lend to them) do not internalize the

effects of their financial decisions on asset prices in the recession. In subsequent sections, we

investigate whether prudential policies can help correct these externalities.

4. The boom: benchmark without prudential monetary policy

We now turn to our main focus: the equilibrium in the boom state. In this section, we analyze the

benchmark case without PMP, that is, when monetary policy follows the conventional output-

stabilization policy in (13) in state s = 1. We use this setup to illustrate that macroprudential

policy that tightens the leverage limit can internalize the aggregate demand externalities. In

the next section we introduce PMP and show that it can accomplish similar financial stability

objectives to macroprudential policy.

Recall that investors face a (possibly time-varying) leverage limit, ωit,1 ≤ ωt,1. We assume

the leverage limit can be written as a function of optimists’wealth share, ωt,1 = ω1 (αt,1). This

assumption ensures that αt,1 is the only state variable. We denote the equilibrium variables as

functions of optimists’wealth share and the leverage limit function: αt,2 = α2 (α, ω1 (·)) denotes
optimists’wealth share after transition when their current wealth share is αt,1 = α and the

leverage limit is described by ωt,1 = ω1 (αt,1) for each t. We use the notation α2 (α,∞) to

denote the equilibrium when there is no leverage limit: ω1 (α) =∞ for each α.

Under appropriate parametric restrictions (Assumptions A2-A3 in the appendix) we show

that the boom without PMP features positive interest rates, effi cient asset prices, and effi cient

factor utilization, rft,1 > 0, Qt,1 = Q∗, ηt,1 = η∗. To characterize this equilibrium, consider

the intermediate cases, αt,1 ∈ (0, 1) (the corner cases are straightforward and relegated to the

appendix). The leverage limit doesn’t bind for pessimists but it might bind for optimists. Using

Eq. (21) for pessimists, and substituting rt,1 from Eq. (18) and Qt,1 = Q∗, Qt,2 = Q2 (αt,2), we

obtain

rf1 (α, ω1) = ρ+ g1 − δ (η∗)− λp1
1− α

1− α2 (α, ω1)

(
Q∗

Q2 (α2 (α, ω1))
− 1

)
. (30)

This is the risk balance condition according to pessimists (cf. Eq. (25)). The condition charac-

terizes the output-stabilizing interest rate given investors’wealth shares. Assumption A2 ensures

that rf1 (α, ω1) > 0 when α = 0, that is, the interest rate is above the lower bound if pessimists

dominate.

Hence, it remains to characterize the function α2 (α, ω1). First consider the special case

without a leverage limit, ω1 = ∞ for each α. In this case, Eq. (23) provides a closed-form
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solution:

α2 (α,∞) = α
λo1

λ1 (α)
< α. (31)

Recall that we use the notation α2 (α,∞) to denote optimists’equilibrium wealth share without

a leverage limit. The expression λ1 (α) ≡ αλo1 + (1− α)λp1 denotes the wealth-weighted average

probability as a function of optimists’ wealth share. Using Eq. (20), we can solve for the

corresponding leverage ratio in closed form:

ωo1 (α,∞) = 1 +
1− λo1

λ1(α)

Q∗

Q2

(
αλo1
λ1(α)

) − 1
> 1. (32)

Optimists have above-average leverage during the boom, which induces a decline in their wealth

share after transition to the recession.

Next consider the case with a leverage limit. Suppose ω1 (α) ≤ ωo1 (α,∞) so that the limit

binds (the other case is the same as before). Then, optimists’leverage ratio is determined by

the limit:

ωo1 (α, ω1) = ω1 (α) . (33)

To find optimists’wealth share after transition, we consider Eq. (20) for the boom state

s = 1:

α2 (α, ω1)

α
= 1− (ω1 (α)− 1)

[
Q1
Q2
− 1

]
, (34)

where Q1 = Q∗ and Q2 = Q2 (α2 (α, ω1)) .

The first line of this expression is the microfounded version of Eq. (2) from the introduction.

The second line substitutes the equilibrium prices for the boom and the recession states. The

last equation is the microfounded version of Eq. (1). As illustrated by Figure 1, the equilibrium

can be visualized as the intersection of two increasing relations. In Appendix A.3, we show that

under appropriate regularity conditions (Assumption A3), Eq. (34) has a unique solution that

satisfies α2 (α, ω1) ∈ [α2 (α,∞) , α].

Finally, applying Eq. (22), we obtain the dynamics of optimists’ wealth share absent a

transition as

α̇t,1
αt,1

= λp1
1− αt,1

1− α2 (αt,1, ω1)

(
1− α2 (αt,1, ω1)

αt,1

)
≤ (1− αt,1) (λp1 − λo1) . (35)

The weak inequality is satisfied as equality when the leverage limit doesn’t bind (i.e., when α2 is

given by Eq. (31)). It is also easy to see that α̇t,1/αt,1 is a decreasing function of α2: if optimists

obtain a greater wealth share after transition to recession, then their wealth share grows more

slowly if there is no transition.
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To summarize the equilibrium without PMP, the asset price during the boom is at its effi cient

level, Q1 (α, ω1) = Q∗, and the equilibrium interest rate is given by (30). If optimists’leverage

is unconstrained, their wealth share after transition and their leverage ratio are given by Eqs.

(31) and (32). If their leverage ratio is constrained, these values are given by Eqs. (33) and

(34). Optimists’wealth share evolves according to (35).

Our next result describes how macroprudential policy that tightens the leverage limit af-

fects this equilibrium. This provides a useful benchmark for the next section where we assume

macroprudential policy is imperfect and investigate whether PMP can provide similar financial

stability benefits.

Proposition 1. Suppose Assumptions 1-2 and A1-A3 hold. Consider the benchmark equilibrium
without PMP, Q1 (·) = Q∗. Fix a level α ∈ (0, 1) that is associated with some binding leverage

limit, ω1 (α) ≤ ωo1 (α,∞). Decreasing the leverage limit increases optimists’wealth share after

a transition to recession: dα2(α,ω1)
dω1(α)

< 0. It also slows down the growth rate of optimists’wealth

share if the boom persists, d(α̇t,1/αt,1)dω1(α)
< 0.

For a sketch proof (completed in Appendix A.3), note that optimists’wealth decline after

transition is increasing in their leverage ratio, ω1−1 [cf. Eq. (34)]. Tightening the leverage limit

reduces optimists’leverage ratio, ω̃1 − 1 < ω1 − 1, which in turn mitigates their wealth decline.

This increases the price level in the recession, Q2, which further boost optimists’wealth. In

equilibrium, optimists’wealth share and the asset price in the recession settle at a higher level,

α2 (α, ω̃1) > α2 (α, ω1) and Q2 (α2 (α, ω̃1)) > Q2 (α2 (α, ω1)). The left panel of Figure 1 (in the

introduction) illustrates the virtuous cycle that results from tightening the leverage limit.

Recall that increasing optimists’wealth share in the recession internalizes aggregate demand

externalities [cf. Eq. (29)]. Therefore, Proposition 1 illustrates how macroprudential policy that

tightens the leverage limit can improve welfare. At the same time, the welfare effects do not

follow immediately because tightening the leverage limit also slows down the growth of optimists’

wealth share if the recession is not realized, as illustrated by the last part of Proposition 1.

In a dynamic setting, optimists’wealth share can also be useful in future recessions and thus

macroprudential policy involves a trade-off. We investigate this trade-off in Caballero and Simsek

(2017), where we show that the benefits from an immediate transition to recession often dominate

the costs from worsening future recessions (in view of discounting). In particular, we show

that (under regularity conditions and starting from a no-policy benchmark) adopting some

macroprudential policy improves welfare.

5. Prudential monetary policy

We now assume that macroprudential policy is inflexible: the planner cannot change the existing

leverage constraints. Instead, we introduce our main ingredient and allow monetary policy in

the boom state to be used for prudential purposes. We start by establishing a negative result:
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when there is no leverage limit, PMP is useless because optimists endogenously change their

risk taking to undo the prudential benefits. We then consider the case with a leverage limit and

establish that, when there is some leverage limit, monetary policy can replicate the prudential

effects of tightening this limit. Specifically, our main result establishes that, up to a first order,

the welfare effects of PMP are the same as the effects of directly tightening the leverage limit.

Formally, suppose that in the boom state the planner does not follow the rule in (13) but

instead sets the interest rate to target an asset price level, Qt,1, which might be lower than the

effi cient level, Qt,1 ≤ Q∗. We assume the planner’s price target can be written as a function of

optimists’wealth share:

Qt,1 = Q1 (αt,1) ≤ Q∗.

We denote the equilibrium variables as functions of the PMP function (in addition to the earlier

variables): α2 (α, ω1 (·) , Q1 (·)) denotes optimists’wealth share after transition, when monetary
policy is described by Qt,1 = Q1 (αt,1) for each t. We use the same notation as in the previous

section to denote the equilibrium in the benchmark in which the planner follows the conventional

output-stabilization policy: e.g., α2 (α, ω1) denotes the equilibrium when monetary policy is

described by Qt,1 = Q∗ for each t.

5.1. No leverage limit

First consider the case without a leverage limit, ω1 = ∞. In this case, we establish a negative
result: PMP can only worsen the gap value (i.e., reduce welfare).

Proposition 2. Suppose Assumptions 1-2 and A1-A3 hold. Consider the case without a leverage
limit, ω1 =∞, and some PMP, Q1 (·). Optimists’wealth share after transition and the evolution
of their wealth share are the same as in the benchmark without prudential policy (in particular,

Eq. (31) holds). The policy lowers the planner’s gap value relative to the benchmark with

conventional output-stabilization policy:

wpl1 (α,∞, Q1) ≤ wpl1 (α,∞) .

The first part of Proposition 2 says that PMP, by itself, does not affect the evolution of

investors’wealth shares. The second part follows as a corollary. Since the policy does not affect

wealth shares, it only affects the gap value through its impact on the asset price during the boom,

Qt,1 [cf. Eq. (28)]. Lowering Qt,1 below Q∗ makes factor utilization less effi cient and decreases

welfare: W (Qt,1) < W (Q∗) when Qt,1 < Q∗. Put differently, the policy has no benefits, but it

has some costs due to low asset prices and ineffi cient factor utilization in the boom state.

The key step to our argument is that the policy does not affect optimists’wealth share

after transition, α2 (α,∞, Q1) = α2 (α,∞) = α
λo1

λ1(α)
[cf. Eq. (31)]. To understand this feature,

consider the equilibrium for an intermediate case, α ∈ (0, 1), and note that the policy affects
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optimists’equilibrium leverage ratio. In particular, we have the following version of Eq. (34):

α2 (α,∞)

α
= 1− (ωo1 (α,∞, Q1)− 1)

[
Q1 (α)

Q2 (α2 (α,∞))
− 1

]
.

Note that a decline in Q1 (α) does result in a smaller price drop after transition (the term inside

the brackets). Therefore, the policy leaves optimists’ wealth share after transition (α2) un-

changed because it induces optimists to increase their leverage ratio, ωo1 (α,∞, Q1) > ωo1 (α,∞).

Put differently, the prudential effects of the policy are neutralized by an increase in optimists’

risk taking. Optimists increase their leverage because they perceive the transition to recession

as less risky due to a smaller asset price drop after the transition.

5.2. With leverage limit

The previous discussion suggests that PMP can affect investors’equilibrium exposures if opti-

mists are constrained by some leverage limit. Consider a situation in which there is a limit that

binds for optimists so that ωo1 (α, ω1, Q1) = ω1 (α). Then, we have the following version of Eq.

(34):
α2 (α, ω1, Q1)

α
= 1− (ω1 (α)− 1)

[
Q1 (α)

Q2 (α2 (α, ω1, Q1))
− 1

]
. (36)

In this case, since ω1 (α) is fixed, a decline in Q1 (α) translates into an increase in optimists’

wealth share after transition. By reducing asset prices during the boom, the planner reduces the

price drop after a transition to recession, which supports optimists’balance sheets. The following

result formalizes this intuition and shows that monetary policy can replicate the prudential

effects of tightening the leverage limit.

Proposition 3. Suppose Assumptions 1-2 and A1-A3 hold. Consider the benchmark equilibrium
without PMP, Q1 (·) = Q∗. Fix a level α ∈ (0, 1) that is associated with some leverage limit,

ω1 (α) < ∞ (that might or might not bind). Consider an alternative leverage limit ω̃1 (·) that
agrees with ω1 (·) everywhere except for α and that satisfies ω̃1 (α) < min (ω1 (α) , ωo1 (α,∞)),

and a PMP Q̃1 (·) that agrees with Q1 (·) everywhere except for α. Then:
(i) There exists Q̃1 (α) < Q∗ such that the PMP (with the original leverage limit) gener-

ates the same effect on optimists’wealth share after transition as the alternative leverage limit

(without PMP):

α2

(
α, ω1, Q̃1

)
= α2 (α, ω̃1) .

Targeting a lower effective limit requires targeting a lower asset price, ∂Q̃1(α)∂ω̃1(α)
> 0.

(ii) PMP requires setting a higher interest rate than the benchmark without policy:

rf1

(
α, ω1, Q̃1

)
> rf1 (α, ω1) .

Targeting a lower effective limit requires setting a higher interest rate,
∂rf1 (α,ω1,Q̃1)

∂ω̃1(α)
< 0.
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The first part of Proposition 3 shows that monetary policy can replicate the prudential

effects of tightening the leverage limit that we established in Proposition 1. For a sketch proof

(completed in Appendix A.4), note that optimists’wealth decline after a transition depends on

the product of their (above-average) leverage and the price decline, (ω1 − 1)
[
Q1
Q2
− 1
]
[cf. Eq.

(36)]. Recall that tightening the leverage limit mitigates optimists’wealth decline by reducing

their leverage ratio, ω̃1 − 1 < ω1 − 1. For a given asset price Q2, monetary policy can achieve

the same wealth decline for optimists at the leverage limit, ω1 = ω1, by reducing the asset

price decline, Q̃1Q2 − 1 < Q∗

Q2
− 1. This policy increases the price level in the recession, Q2, which

generates a similar virtuous cycle as a policy that directly tightens the leverage limit. The right

panel of Figure 1 illustrates how PMP generates effects that are very similar to tightening the

leverage limit.

In fact, the monetary authority can choose Q̃1 so that optimists’ wealth share and the

equilibrium price in the recession settle exactly at the same level as if the regulator had tight-

ened the leverage limit, α2
(
α, ω1, Q̃1

)
= α2 (α, ω̃1) and Q2

(
α2

(
α, ω1, Q̃1

))
= Q2 (α2 (α, ω̃1)).

Specifically, after substituting these expressions into Eq. (36), we characterize Q̃1 as the unique

solution to

(ω1 (α)− 1)

[
Q̃1

Q2 (α2 (α, ω̃1))
− 1

]
= (ω̃1 (α)− 1)

[
Q∗

Q2 (α2 (α, ω̃1))
− 1

]
. (37)

Hence, Q̃1 is the asset price that replicates optimists’wealth decline after accounting for the

endogenous price adjustment in the recession.

The second part of Proposition 3 shows that PMP requires raising the interest rate above the

conventional policy benchmark with output stabilization. As expected, targeting a lower asset

price requires a higher interest rate. This result offers an alternative interpretation for how PMP

works. Recall that, if there is an instantaneous transition to the recession, then the interest rate

will decline to zero with or without PMP, rf2
(
α, ω1, Q̃1

)
= rf2 (α, ω1) = 0. Hence, by increasing

the interest rate during the boom, PMP increases the size of the interest rate cut in case there

is a transition to recession, rf1 − r
f
2 . For a given level of Q2, this reduces the asset price decline

after transition to recession, Q1/Q2. A smaller asset price decline supports optimists’wealth

share after transition, α2, and increases the asset price level Q2 (which triggers the virtuous

cycle described earlier). Thus, the policy can be thought of as increasing the interest rate to

create room for an interest rate cut and mitigate the impact of negative asset price shocks in

the future.

Proposition 3 is essentially static: it considers a policy change at a particular instant while

leaving the policy at other times unchanged. This is useful for illustrating how PMP works, but

it does not have an impact on the dynamic equilibrium. In addition, since PMP has costs as

well as benefits, there is the remaining question of how it affects welfare. We next present our

main result, which generalizes Proposition 3 to a dynamic setting and shows that the welfare
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effects of prudential policy are also (locally) equivalent to tightening the leverage limit.

To state the result, we parameterize the leverage limit function, ω (α, l) where l ∈ L ⊂ R+,
and lower levels of l correspond to a tighter leverage limit, ∂ω(α,l)∂l > 0 for α ∈ (0, 1). An example

is the simple leverage limit function

ω1 (α, l) = l with l ∈ L = (1,∞) . (38)

Here, the leverage limit doesn’t depend on α and a lower l corresponds to a tighter limit for all

α. Whenever we parameterize the leverage limit function, we simplify the notation by denoting

the corresponding equilibrium variables with α2 (α, l,Q1) (as opposed to α2 (α, ω1 (·, l) , Q1)).

Proposition 4. Suppose Assumptions 1-2 and A1-A3 hold. Consider the case with some lever-
age limit function, ω1 (α, l), parameterized so that lower levels of l correspond to a tighter limit.

(i) For each l̃ < l in a suffi ciently small neighborhood of l, there exists a PMP, denoted by

Q1

(
·, l̃
)
, such that optimists’equilibrium wealth share after transition is the same as when the

leverage limit is given by ω1
(
α, l̃
)
without PMP:

α2

(
α, l,Q1

(
·, l̃
))

= α2

(
α, l̃
)
for each α ∈ (0, 1) .

(ii) For small policy changes, the welfare effects of PMP are the same as the welfare effects

of tightening the leverage limit directly:

dwpl1

(
α, l,Q1

(
·, l̃
))

dl̃
|l̃=l =

dwpl1

(
α, l̃
)

dl̃
|l̃=l. (39)

The first part of Proposition 4 follows from a similar analysis as in Proposition 3. In particu-

lar, for each α ∈ (0, 1), the price levelQ1
(
α, l̃
)

= Q̃1 corresponds to the policy that replicates the

prudential effects of the tighter leverage limit, ω1
(
α, l̃
)

= ω̃1, given the current limit ω1 (α, l).6

The second part characterizes the welfare effects of PMP for small amounts of effective

tightening. For a sketch proof, note that the policies l̃ and Q1
(
·, l̃
)
lead to identical equilibrium

allocations except for the asset price in the boom state. Using this observation and the definition

of the gap value in (28), the welfare difference between the two policies can be written as

wpl1

(
α, l,Q1

(
·, l̃
))
− wpl1

(
α, l̃
)

=

∫ ∞
0

e
−
(
ρ+λpl1

)
t
(
W
(
Q1

(
αt,1, l̃

))
−W (Q∗)

)
dt. (40)

Here, αt,1 denotes optimists’ wealth share when the economy starts with α0,1 = α, follows

6One difference from Proposition 3 is that the policy’s effect on the interest rate is more complicated because
the price drift Q̇t,1 is not necessarily zero. This non-zero drift affects the equilibrium return to capital [cf. Eq.
(18)] and thus the equilibrium interest rate. As long as l̃ is in a neighborhood of l, this effect is small and the
interest rate in the boom state remains strictly positive (in particular, the policy doesn’t violate the zero lower
bound). In fact, in the numerical simulations (described below), PMP increases the interest rate.
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Figure 3: Equilibrium functions in the boom state s = 1 for different specifications of the
leverage limit and PMP.

policy l̃, and reaches time t without transitioning into recession. Since W (Qt,1) < W (Q∗) for

Qt,1 < Q∗, this expression implies that PMP always yields lower welfare than the equivalent

tightening of the leverage limit. However, since W (Qt,1) is maximized at Qt,1 = Q∗, these

welfare differences are second order when the prudential policy is used in small doses (so that

Qt,1 remains close to Q∗). Therefore, as formalized by Eq. (39), the two policies have identical

first-order effects on welfare.

5.3. Numerical illustration

We next illustrate the effects of PMP with a numerical example. Suppose optimists’and pes-

simists’beliefs about the probability of a transition to recession are given by λo1 = 0.09 < λp1 = 0.9

and the remaining parameters are as described in Appendix A.6. We work with the simple lever-

age limit function in (38). We assume the current limit barely binds when optimists have half

of the wealth share. This amounts to setting: l = ωo1 (0.5,∞) = 9.03. The planner would like to

tighten this constraint by a quarter, l̃ = 0.75l = 6.77, but she cannot control the leverage limit

directly. Instead, the planner implements the replicating prudential policy, Q1
(
α, l̃
)
.

Figure 3 plots the equilibrium functions for three different policy specifications over the

range α ∈ [0.4, 0.9]. The red dashed lines correspond to the case with the current leverage limit
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l but no prudential policy of any kind. The black dash-dotted lines correspond to tightening the

leverage limit directly, l̃ = 0.75l. Finally, the blue solid lines correspond to implementing this

tightening via PMP, Q1
(
α, l̃
)
.

The top left panel illustrates optimists’ leverage ratio as a function of their wealth share

for each specification. Optimists have an above-average leverage ratio. The current leverage

limit restricts optimists’ leverage ratio only slightly (not visible in the figure). The proposed

tightening would restrict their leverage ratio considerably more. PMP raises optimists’leverage

ratio (over the range α > 0.5) as it pushes them against the leverage limit.

The top middle panel illustrates optimists’wealth share after transition normalized by their

current wealth share, α2 (α) /α. Optimists’wealth share declines after transition, α2 (α) /α < 1.

PMP replicates the effect of tightening the leverage limit and therefore increases optimists’

wealth share after transition. The top right panel illustrates that this effective tightening slows

down the growth of optimists’wealth share if there is no transition.

The bottom left panel illustrates the equilibrium asset price in the boom state normalized by

the effi cient level. The leverage limit (its current level or hypothetical tightening) leaves the asset

price equal to its effi cient level. In contrast, PMP reduces the asset price by around 2%. This

relatively small decline is able to replicate the effects of a large reduction in optimists’leverage

ratio because optimists’initial leverage ratio is high. With high and constrained leverage, small

changes in asset prices have large effects on optimists’balance sheets [cf. (36)].

The bottom middle panel illustrates the price after a transition to recession normalized by

the effi cient level. PMP increases the asset price during the recession. We can gain intuition

for this result by comparing this panel with the bottom left panel. By lowering the asset price

during the boom, PMP reduces the asset price decline after a transition to recession. This

smaller decline supports optimists’balance sheets and thus improves the asset price level during

the recession by around 2%.

The bottom right panel illustrates the equilibrium interest rate. The leverage limit reduces

the policy interest rate because it reduces optimists’effective asset demand. In contrast, PMP

increases the policy interest rate (by less than 2 percentage points). This reduces the asset price,

as illustrated by the bottom left panel, which results in a smaller asset price decline when there

is a transition to recession. Equivalently, by raising the interest rate, monetary policy creates

room to mitigate the asset price decline that results from negative shocks.

Figure 4 simulates the equilibrium variables over time (for each policy specification) for a

particular initial wealth share for optimists, α0, and a particular realization of uncertainty. We

take α0 = 0.85, and we consider a path in which the economy transitions into the recession at

t = 0.2 and recovers from the recession at t = 0.6 (other choices lead to qualitatively similar

effects). The plots illustrate that PMP raises the asset price in the recession at the cost of

reducing it in the boom. In this example, the increase in the asset price level during the

recession is greater than the required decline during the boom, but this is not always the case.

Regardless of the relative magnitudes, the policy improves welfare (as we will show) because the
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Figure 4: Simulation of the equilibrium path starting with a0 = 0.85 and s = 1 for different
specifications of the leverage limit and PMP.

asset-price increase in the recession generates first-order benefits, whereas the asset-price decline

in the boom generates second-order welfare losses.

Figure 5 illustrates the welfare effects of the policy by plotting the planner’s gap value

function, wpl1 (α0) [cf. Eq. (28)]. We take the planner’s beliefs to be the average of optimists’

and pessimists’beliefs, λpls = (λos + λps) /2. The black dash-dotted line in Figure 5 illustrates

that, if feasible, a direct tightening of the leverage limit would improve the gap value. The solid

blue line illustrates that an indirect tightening via PMP also increases the gap value. In fact,

for small policy changes, PMP has the same welfare impact as a direct tightening, illustrating

the second part of Proposition 4. This can be seen graphically in Figure 5 by comparing the gap

values at the point corresponding to the leverage tightening studied above (which we highlight

with the vertical dotted line). For small policy changes, welfare losses from the asset price

decline during the boom are second order. As the (desired) limit is tightened further, these

welfare losses grow larger and PMP becomes less desirable compared to a direct tightening.

6. Optimal prudential monetary policy

So far, we have established that monetary policy can have prudential benefits by effectively

tightening an existing leverage limit. In this section, we analyze the determinants of optimal

PMP in our setting. We first characterize the optimal prudential policy as the solution to a
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Figure 5: The planner’s gap value as a function of the effective leverage ratio starting with
a0 = 0.85 and s = 1 for a direct tightening (dashed line) and an equivalent tightening via PMP
(solid line).

recursive optimization problem. We then solve the problem numerically and investigate the

comparative statics of optimal policy.

For each α, suppose the planner sets an arbitrary price level Q1 ≤ Q∗ subject to the re-

striction that the price level weakly declines after the transition. Given Q1, optimists’wealth

share after transition is determined by the function α2 (α, ω1, Q1) ∈ [0, 1]. This is a continuous

and piecewise differentiable function that is equal to α2 (α,∞) if optimists’leverage limit does

not bind (that is, if ωo1 (α,∞, Q1) < ω1 (α)) and is equal to the solution to (36) if the limit

binds. Using this notation, we can recursively formulate the planner’s optimization problem in

the boom state s = 1 as:

(
ρ+ λpl1

)
wpl1 (α) = max

Q1
W (Q1)−W (Q∗) +

dwpl1 (α)

dα
α̇+ λpl1 w

pl
2 (α2) (41)

where α̇ =
α (1− α)λp1

1− α2

(
1− α2

α

)
α2 = α2 (α, ω1, Q1)

and Q1 ∈ [Q2 (α2 (α, ω1, Q1)) , Q
∗] .

Here, the second line uses Eq. (35) to describe the evolution of optimists’wealth share absent a

transition, α̇ =
dαt,1
dt , as a function of their induced wealth share after transition, α2 = αt,2 (as
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well as their current wealth share, α = αt,1).7

The analytical solution to problem (41) is complicated in part because there might be a

discontinuity in the optimal policy function.8 However, it is straightforward to solve problem

(41) numerically. Moreover, we can glean some intuition by considering the local optimality

conditions. Specifically, for an interior solution Q1 ∈ (Q2, Q
∗), the optimality condition (for

decreasing Q1 further) can be written as:

dW (Q1)

dQ1
=

dα2
d (−Q1)

[
λpl1

dwpl2 (α2)

dα2
+

dα̇

dα2

dwpl1 (α)

dα

]
(42)

where
dα̇

dα2
= −λp1

(1− α)2

(1− α2)2
.

The left-hand side of Eq. (42) captures the costs of the policy via its impact on the output

gap in period 1. This term is positive since W ′ (Q1) > 0: decreasing the asset price in the boom

exacerbates the output gap. The right-hand side captures the welfare effects of the policy via

its impact on optimists’wealth share. We have dα2
d(−Q1) > 0: lowering the asset price increases

optimists’wealth share after transition. We also have dwpl2 (α2)
dα2

> 0: increasing optimists’wealth

share after transition internalizes aggregate demand externalities and mitigates output gaps.

Hence, the first term inside the brackets is positive and captures the static benefits of PMP.

On the other hand, we also have dα̇
dα2

< 0: if there is no transition, the policy slows down

the accumulation of optimists’wealth share. Moreover, we have dwpl1 (α)
dα > 0: the reduction in

optimists’wealth share in the boom state widens output gaps in a future recession. Therefore,

the second term inside the brackets is negative and captures the dynamic costs of PMP.

6.1. Numerical illustration

Figure 6 illustrates the optimal monetary policy corresponding to the numerical example in

Section 5.2. As a benchmark, the red dashed lines illustrate the equilibrium without PMP but

with the simple leverage limit ω1 (α, l) = l = 9.03. Recall that this leverage limit is chosen so

that (absent PMP) it binds for optimists when α < 0.5 but not when α ≥ 0.5. The green dotted

line in the left panel illustrates the minimum price decline necessary to make the leverage limit

bind for optimists– price reductions smaller than this level have no prudential benefits as they

are undone by endogenous risk adjustments by optimists.

The blue solid line in the left panel of Figure 6 illustrates the optimal price that solves problem

(41). With this parameterization, the planner does not use monetary policy for prudential

7 In problem (41), we ignore the zero lower bound constraint on the interest rate. In numerical solutions
(described subsequently), we check and verify that this constraint doesn’t bind at the optimal solution.

8This discontinuity emerges from the fact that, if the leverage limit doesn’t bind absent policy (ωo1 (α,∞, Q∗1) <
ω1 (α)), then prudential monetary policy requires a discontinuous decline in asset prices and output. In particular,
there might be a threshold level of optimists’wealth share, α, where the planner is indifferent between setting
Q1 (α) < Q1 (and using the policy) and setting Q1 (α) = Q∗1 (and not using the policy).
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Figure 6: Equilibrium with optimal PMP (blue solid line) and without PMP (red dashed line)
given the leverage limit l. The green dotted line in the left panel illustrates the minimum price
decline necessary to make optimists’leverage limit bind.

purposes when α < 0.33. In this range, the leverage limit is already tight, and tightening it

further via PMP does not create large enough benefits to compensate for the costs imposed by

slowing down the accumulation of optimists’wealth share [cf. Eq. (42)]. In contrast, the planner

uses PMP over the range α ∈ [0.33, 0.99]. Moreover, the degree of tightening relative to the

conventional policy benchmark is non-monotonic in the optimists’wealth share. In particular,

the planner tightens the policy more as optimists’wealth share increases toward α = 0.85 and

tightens it less beyond this level. Hence the policy is most useful when optimists’wealth share

lies in an intermediate range. Two forces make the policy relatively less attractive for large α.

First, since optimal private leverage drops as α rises, the policy becomes costlier as the planner

needs to reduce the price even further to make optimists’ leverage limit bind and gain some

traction (as illustrated by the green dotted line). Second, the policy is less useful because there

is less speculation. In fact, for α ' 0.99, these countervailing forces are strong enough that the

planner stops using the policy altogether (as illustrated by the jump in the blue solid line).

Figure 7 illustrates the comparative statics of the optimal policy. To facilitate exposition, we

describe the effects for a particular level of optimists’wealth share, α = 0.85 (the same wealth

share we considered in the previous section). The top panels display the change in the optimal

price level as we vary a single parameter. The bottom panels display the change in the optimal

interest rate relative to the conventional policy benchmark with output stabilization.
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Figure 7: Comparative statics of the optimal PMP price level (top panels) and the interest rate
(bottom panels) for α = 0.85 with respect to changing the parameter on the x-axis. The vertical
dotted lines illustrate the benchmark parameters (used in earlier figures).

The left panels show the effect of changing the leverage limit, l. When the leverage limit is

very loose, the planner does not use prudential policy because it is easily undone by optimists,

illustrating Proposition 2. There is a threshold leverage limit below which the planner uses

monetary policy. Once the leverage limit is below this threshold, tightening it further makes the

planner use PMP less. Hence, the leverage limit and PMP are complements in the high-l range

but they become substitutes in the low-l range.

The middle panels illustrate the effect of changing the planner’s belief about the probability

of transition into recession, λpl1 . As expected, when the planner believes the recession is more

likely, she utilizes PMP more and reduces the asset price by a greater amount.

The right panels show the effect of changing belief disagreements, λp1 − λo1 (keeping the

mean belief constant at λp1+λ
o
1

2 ). With greater belief disagreements, the planner is more likely

to utilize PMP. Intuitively, disagreements increase speculation (and optimists’risk-exposure),

which makes PMP more useful. Conditional on using the policy, the planner does not change

the intensity of the policy very much.9 This insensitivity arises because, once the policy is used,

it sets optimists against the leverage limit, which largely decouples equilibrium outcomes from

the magnitude of belief disagreements.

9 In particular, the main effect of greater disagreements is to reduce the threshold level of optimists’wealth
share above which the planner uses prudential monetary policy (see Figure 6).
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7. Prudential policies with “shadow banks”

In practice, a major concern with macroprudential policy is that there are lightly regulated

institutions– typically referred to as shadow banks– that can circumvent regulatory constraints.

Stein (2013) noted that in these environments PMP might have an advantage over macropru-

dential policy “because it gets in all of the cracks.”We next evaluate the performance of macro-

prudential policy and PMP in our model when some of the high-valuation agents can avoid

regulatory leverage limits. We find that whether PMP is more effective than macroprudential

policy depends on the nature of the leverage limits faced by shadow banks.

First consider the case in which shadow banks face a binding leverage limit, e.g., due to

financial frictions or self-imposed limits, even though they not constrained by the regulatory

limit (see Remark 3). In this case, shadow banks and regular banks are both constrained

(although perhaps for different reasons), so our earlier analysis for PMP applies. In particular,

PMP can replicate the prudential effects of tightening the leverage limit for all banks, whereas

macroprudential policy is weaker because a direct regulatory tightening of the leverage limit

applies only to regular banks. This broader impact illustrates that PMP can indeed be more

effective than macroprudential policy.

Next consider the other extreme case in which shadow banks do not face a binding leverage

limit (whereas regular banks face a binding limit). Recall from our earlier analysis that when

banks are unconstrained they respond to PMP by increasing their leverage ratio. This suggests

that the presence of shadow banks could reduce the effectiveness of PMP as well as macropru-

dential policy. In particular, it is no longer clear if PMP provides prudential benefits. In the

rest of this section, we formally analyze this case and find that PMP remains useful, but it is

weakened by the same general equilibrium forces that mitigate macroprudential policy.

Formally, suppose a subset of optimists are not subject to the leverage constraint, ω1,t ≤ ω1,t.
We refer to these agents as unconstrained optimists, and refer to the remaining fraction of

optimists as constrained optimists. Recall that we view (constrained) optimists as the model

counterpart to “banks” (see Remark 2). Therefore, unconstrained optimists are the model

counterpart to “shadow banks”that circumvent the regulatory limit and also do not face non-

regulatory limits. We let β ∈ (0, 1) denote the relative fraction of optimists’wealth that is

held by unconstrained optimists. Hence, the wealth share of unconstrained and constrained

optimists is given by, respectively, αβ and α (1− β). As before, the total wealth share of

optimists (including both types) and pessimists is given by, respectively, α and 1− α. The rest
of the model is unchanged.

To characterize the equilibrium, consider first the recession state s = 2. Conditional on

the total mass of optimists, α2, the equilibrium is the same as before. This is because we

assume optimists face no constraints from state 2 onwards, which implies that constrained and

unconstrained optimists are effectively the same from this point forward. In particular, the

equilibrium price in the recession can be written as Qt,2 = Q2 (αt,2) , where Q2 (·) is the price
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function characterized earlier [cf. Eq. (26)].

Next consider the equilibrium in the boom state, s = 1. In this case, there are two state

variables: the total mass of optimists, α ∈ (0, 1), and the fraction of unconstrained optimists,

β ∈ (0, 1). Therefore, we denote the equilibrium variables as functions of two state variables,

in addition to the leverage limit and PMP functions. In particular, α2 (α, β, ω1 (·) , Q1 (·)) and
β2 (α, β, ω1 (·) , Q1 (·)) denote, respectively, the total mass of optimists and the fraction of un-
constrained optimists that obtain if there is an instantaneous transition to recession. To simplify

the notation, we suppress the dependence of these functions on some or all of their arguments

as long as the appropriate arguments are clear from the context.

Much of our earlier analysis applies in this setting. In particular, Eq. (22), which character-

izes the growth rate of agents’wealth shares absent a state transition, applies for all agents. In

the appendix, we solve the corresponding equations for constrained and unconstrained optimists

to obtain the dynamics of α and β as follows:

α̇

α
= λp1

1− α
1− α2

(
1− α2

α

)
, (43)

β̇

β
= λp1

1− α
1− α2

α2
α

(
1− β2

β

)
.

Given α2, optimists’total wealth share follows the same equation as before (cf. Eq. (35)). Given

β2 and α2, the relative wealth share of unconstrained optimists follows a similar equation. Below,

we will verify that the equilibrium features α2 < α and β2 < β. Combining this observation with

(43) implies α̇ > 0 and β̇ > 0. Optimists’total wealth share (resp. unconstrained optimists’

relative wealth share) grows absent transition to recession, because these agents take on greater

risk and earn higher returns compared to pessimists (resp. constrained optimists).

It remains to characterize the functions α2 and β2. To this end, note that the portfolio

optimality condition (21) holds as equality for unconstrained optimists and as a weak inequality

for constrained optimists. Combining these observations, we obtain:

λo1
α (1− β)

α2 (1− β2)
≥ λo1

αβ

α2β2
= λp1

1− α
1− α2

. (44)

Note also that Eq. (20) , which relates agents’wealth shares after transition to their leverage

ratio, applies for all agents. Using this condition for constrained and unconstrained optimists,

we obtain:

α2 (1− β2)
α (1− β)

= 1− (1− ωo,reg1 )

(
Q1

Q2 (α2)
− 1

)
(45)

α2β2
αβ

= 1− (1− ωo,unreg1 )

(
Q1

Q2 (α2)
− 1

)
. (46)

Given current α, the current price level Q1 and the price function after transition Q2 (·), the
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equilibrium levels of α2, β2 (as well as those for ω
o,reg
1 , ωo,unreg1 ) can be characterized by solving

Eqs. (44− 46).

Consider the case in which constrained optimists’leverage constraint binds (the other case

is the same as in previous sections). In this case, we have ωo,reg1 = ω1. Substituting this into

Eq. (45), we obtain:
α2 (1− β2)
α (1− β)

= 1− (ω1 − 1)

[
Q1

Q2 (α2)
− 1

]
. (47)

As before, this expression describes constrained optimists’relative wealth share as a function

of the leverage limit and the price drop after transition. Solving for β2 from Eq. (44), and

substituting into Eq. (47), we further obtain:

1

1− β

(
α2
α
− λo1
λp1
β

1− α2
1− α

)
= 1− (ω1 − 1)

[
Q1

Q2 (α2)
− 1

]
. (48)

This equation generalizes Eq. (34) (which we analyzed extensively in previous sections) to cases

with β > 0. In particular, the equation characterizes α2 given Q1, Q2 (α2) and ω1.

Note also that the left-hand side of Eq. (48) is an increasing function of α2. Hence, as

before, the equation can be visualized as the intersection of two increasing relations between

α2 and Q2. Under appropriate regularity conditions (relegated to the appendix), there is a

unique intersection. The following result considers the benchmark case without PMP, Q1 =

Q∗, and establishes the comparative statics of the equilibrium with respect to the fraction of

unconstrained optimists, β. The result also establishes the comparative statics with respect to

the leverage limit ω1 and generalizes our earlier result about macroprudential policy (Proposition

1) to this setting.

Proposition 5. Suppose Assumptions 1-2 and A1-A3 hold and that a fraction, β ∈ (0, 1), of

optimists’wealth is held by unconstrained optimists that face no leverage limits. Consider the

benchmark equilibrium without PMP, Q1 (α) = Q∗. Fix levels α, β ∈ (0, 1) that are associated

with some binding leverage limit, ω1 (α, β) < ωo,reg1 (α, β,∞). Absent transition to recession,

α and β follow the dynamics in (43). After transition, α2 is characterized as the solution to

Eq. (48) and β2 is characterized as the solution to (44). In equilibrium, α2 < α, β2 < β

and α̇ > 0, β̇ > 0: optimists’ total wealth share and unconstrained optimists’ relative wealth

share shrink after transition to recession and grow absent transition. Moreover, α2 satisfies the

following comparative statics:

(i) Increasing the relative wealth share of unconstrained optimists, β, decreases optimists’

wealth share after transition, dα2(α,β,ω1(·))
dβ < 0. In the limit as β → 1, optimists’wealth share

approaches its level in the equilibrium without leverage limits, α2 (α,∞).

(ii) Macroprudential policy that decreases the leverage limit increases optimists’wealth share

after a transition to recession, dα2(α,β,ω1(·))dω1(α,β)
< 0. Increasing the relative wealth share of uncon-

strained optimists, β, reduces the effectiveness of macroprudential policy, ∂
∂β

dα2(α,β,ω1(·))
dω1(α,β)

> 0.
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This result verifies the conventional wisdom that the presence of less constrained agents

reduces the strength of macroprudential policy. The first part shows that, as the relative wealth

share of unconstrained optimists grows, optimists take on greater risk and their wealth share

declines by a greater magnitude after transition to recession. The second part shows that (as

long as some optimists are constrained, β < 1) macroprudential policy that tightens leverage

limits mitigates the decline in optimists’wealth share but less so than in the earlier setting

without unconstrained optimists.

Next consider PMP that lowers the current asset price level, Q1 (α, β) ≤ Q∗. As illustrated

by Eq. (47), PMP reduces constrained optimists’exposure to recession. As illustrated by Eq.

(48), this in turn increases the wealth share of optimists after transition to recession, α2. Eq.

(48) further suggests that, as before, PMP affects the equilibrium in much the same way as a

decrease in ω1. The following result verifies this intuition and generalizes our main result showing

that monetary policy can replicate the prudential effects of directly tightening a leverage limit

(cf. Proposition 3).

Proposition 6. Suppose Assumptions 1-2 and A1-A3 hold and that a fraction, β ∈ (0, 1), of

optimists’wealth is held by unconstrained optimists that face no leverage limits. Fix some α, β ∈
(0, 1) and consider the setup of Proposition 3. In particular, consider an alternative leverage

limit ω̃1 (·) that agrees with ω1 (·) everywhere except for (α, β) and that satisfies ω̃1 (α, β) <

min (ω1 (α, β) , ωo,reg1 (α, β∞)). Then:

(i) There exists Q̃1 (α, β) < Q∗ such that the PMP (with the original leverage limit) generates

the same effect on constrained and unconstrained optimists’wealth shares after transition as the

alternative leverage limit (without PMP):

α2

(
α, β, ω1, Q̃1

)
= α2 (α, β, ω̃1) and β2

(
α, β, ω1, Q̃1

)
= β2 (α, β, ω̃1) .

Targeting a lower effective limit requires targeting a lower asset price, ∂Q̃1(α,β)∂ω̃1(α,β)
> 0.

(ii) PMP requires setting a higher interest rate than the benchmark without policy:

rf1

(
α, β, ω1, Q̃1

)
> rf1 (α, β, ω1) .

Targeting a lower effective limit requires setting a higher interest rate,
∂rf1 (α,β,ω1,Q̃1)

∂ω̃1(α,β)
< 0.

The sketch-proof of this result is the same as in Proposition 3. In particular, the monetary

authority can choose Q̃1 so that optimists’total wealth share and the equilibrium price in the

recession settle at the same level as if the regulator had directly tightened the leverage limit. In

fact, conditional on optimists’wealth share α2, the replicating Q̃1 that the planner needs to set

is characterized as the solution to the same equation (37) as in our earlier analysis.
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Figure 8: Equilibrium functions in the boom state s = 1 with unconstrained optimists for
different specifications of the leverage limit and PMP. β is the fraction of optimists’wealth held
by unconstrained optimists.

7.1. Numerical illustration

We next illustrate the effects of macroprudential policy and PMP in the presence of uncon-

strained optimists. Consider the same example we analyzed in Section 5.3. In particular, the

current leverage limit barely binds when optimists have half of the wealth share. The planner

would like to tighten the existing limit by a quarter, l̃ = 0.75l. However, she cannot control

the leverage limit directly. Instead, the planner implements the replicating prudential policy,

Q1

(
α, β, l̃

)
.

Figure 8 plots the equilibrium functions for three different policy specifications over the

range α ∈ [0.4, 0.9] and β ∈ [0, 1]. The lines corresponding to β = 0 match the earlier equilibria

without unconstrained optimists (also plotted in Figure 3). The rest of the surfaces illustrate

the effect of unconstrained optimists.

First consider the effect of macroprudential policy that tightens leverage limits: specifically,

compare the benchmark with the current limit (illustrated with red lines) with a direct tight-

ening of the limit (illustrated with black lines). The top two left panels show constrained and

unconstrained optimists’ leverage ratios, respectively. In the benchmark, constrained and un-

constrained optimists have similar leverage ratios (since the leverage limit barely binds). The

proposed tightening of the leverage limit reduces constrained optimists’ leverage ratio while
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raising unconstrained optimists’leverage ratio. Intuitively, tightening the leverage limit reduces

financial stability risk, since it increases asset prices after transition to recession. Unconstrained

optimists respond by taking greater risks.

The top right panel illustrates optimists’wealth share after transition to recession. Macro-

prudential policy improves optimists’wealth share in the recession but less so than in the case

without unconstrained optimists (β = 0), illustrating Proposition 5. Intuitively, since uncon-

strained optimists respond to the policy by increasing their risks, they reduce (but do not fully

eliminate) the effectiveness of macroprudential policy. Consequently, macroprudential policy

improves asset prices in the recession but less so than in the case without unconstrained opti-

mists.

Next consider the PMP (illustrated with blue lines) that replicates the prudential effects of

a direct tightening of the leverage limit. The two panels in the bottom left show that PMP

replicates the direct tightening by increasing the interest rate and lowering asset prices during

the boom, illustrating Proposition 6. The two panels in the top left show that PMP increases

the leverage ratio of constrained optimists (as it pushes them against the leverage limit) and

the leverage ratio of unconstrained optimists. In fact, unconstrained optimists respond by

increasing their leverage ratio even more than when the planner directly tightens the leverage

limit. These agents obtain the same wealth share after transition, α2β2, as in direct tightening

(see Proposition 6). However, they now achieve this outcome by taking on greater leverage since

the price drop after transition is smaller (see Eq. (46)).

These results illustrate that, when some high-valuation agents are not subject to any (regu-

latory or non-regulatory) leverage limit, PMP can still replicate the financial stability benefits

of macroprudential policy. However, in this setting PMP is subject to similar limitations as

macroprudential policy: unconstrained agents respond to the policy by increasing their leverage

and risk taking. This finding is consistent with recent empirical evidence showing that a con-

tractionary monetary policy shock increases lending by shadow banks (see Elliott et al. (2019);

Drechsler et al. (2019)).

8. Final Remarks

We propose a model of asset price booms with speculation that may justify using PMP to

reduce the severity of future recessions. PMP aims to reduce the social cost of concentrating

risk in leveraged, high-valuation agents (“optimists”or “banks”). The policy achieves this goal

by lowering the asset price level during the boom, which reduces the asset price decline after

a transition to recession. This reduction supports highly-levered agents’balance sheets in the

recession, which in turn raises asset prices (and hence further reduces the price drop) and softens

the recession.

An equivalent interpretation is that PMP raises the interest rate to increase the available

“ammunition” for the next recession. This concept has little meaning in most macro models
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where all that matters during a recession is the level of interest rates. By contrast, our framework

emphasizes the importance of the size of interest rate cuts as the economy transitions from boom

to recession. A larger interest rate cut is useful because it mitigates the asset price decline as the

economy transitions to recession. A smaller asset price decline is preferable because it improves

highly-levered agents’wealth share, which is a key state variable that determines the severity of

the recession.

Our main insight can be applied beyond the specific binary-state context of our model. For

example, in practice, large recessions are often preceded by minor slowdowns, at which time

central banks need to decide how quickly to cut interest rates. Our analysis suggests that, if

the slowdown is associated with significant financial speculation, then it may be worth delaying

interest rate cuts. By doing so, the central bank effectively keeps its ammunition for a larger

recession in which monetary policy becomes constrained.
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A. Appendix: Omitted derivations

This appendix presents the derivations and proofs omitted from the main text.

A.1. Omitted derivations in Section 2

A.1.1. Recursive formulation of the portfolio problem

We start by deriving the investors’optimality conditions. Recall that the investor’s portfolio problem is

given by (7). The HJB equation corresponding to this problem is

ρV it,s
(
ait,s
)

= max
c,ω

log c+
∂V it,s
∂a

(
ait,s

(
rft,s + ω

(
rt,s − rft,s

))
− c
)

(A.1)

+
∂V it,s

(
ait,s
)

∂t
+ λis

(
V it,s′

(
ait,s

(
1 + ω

Qt,s′ −Qt,s
Qt,s

))
− V it,s

(
ait,s
))

s.t. ω ≤ ωt,1 if s = 1.

In view of log utility, the solution has the functional form

V it,s
(
ait,s
)

=
log
(
ait,s/Qt,s

)
ρ

+ vit,s. (A.2)

The first term in the value function captures the effect of holding a greater capital stock (or greater

wealth), which scales the investor’s consumption proportionally at all times and in all states. The second

term, vit,s, is the normalized value function when the investor holds one unit of the capital stock (or

wealth, ait,s = Qt,s). This functional form also implies

∂V it,s
∂a

=
1

ρait,s
.

The first order condition for c then implies Eq. (14) in the main text. The first order condition for

ω implies

∂V it,s
∂a

ait,s

(
rt,s − rft,s

)
+ λis

∂V it,s′
(
ait,s′

)
∂a

ait,s
Qt,s′ −Qt,s

Qt,s
≥ 0,

with inequality only if s = 1 and ω = ωt,1. After substituting for
∂V i

t,s

∂a and
∂V i

t,s′

∂a and rearranging terms,

this relation implies

rt,s − rft,s + λis
ait,s
ait,s′

Qt,s′ −Qt,s
Qt,s

≥ 0,

with inequality only if s = 1 and ω = ωt,1. After substituting ait,s = αit,sQt,skt,s [cf. Eq. (19)], this gives

Eq. (21) in the main text.
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A.1.2. Evolution of investors’wealth share

We next derive the evolution of investors’wealth shares. After substituting optimal consumption from

(14) into the budget constraint in problem (7), type i investors’wealth evolves according to

dait,s/dt

ait,s
= rft,s + ωit,s

(
rt,s − rft,s

)
− ρ.

Combining this with Eq. (9), aggregate wealth evolves according to

d (Qt,skt,s) /dt

Qt,skt,s
= rft,s +

(
rt,s − rft,s

)
− ρ.

Combining these expressions with αit,s =
ait,s

Qt,skt,s
[cf. Eq. (19)], we obtain:

α̇it,s
αit,s

=
(
ωit,s − 1

) (
rt,s − rft,s

)
. (A.3)

Next recall that the portfolio optimality condition (21) holds with equality for pessimists. Applying

this equation, we obtain:

rt,s − rft,s = −λps
αpt,s
αpt,s′

Qt,s′ −Qt,s
Qt,s′

. (A.4)

Likewise, applying Eq. (20) for type i investors, we obtain:

ωit,s − 1 =

(
αit,s′

αit,s
− 1

)
Qt,s′

Qt,s′ −Qt,s
. (A.5)

Substituting Eqs. (A.4) and (A.5) into Eq. (A.3), we obtain Eq. (22) in the main text.

A.2. Omitted derivations in Section 3

A.2.1. Equilibrium in the recession and the recovery states

As we describe in the main text, for the rest of the analysis we often simplify the notation by dropping

the subscript o from optimists’wealth share:

αt,s ≡ αot,s.

Pessimists’wealth share is the complement of this expression, αpt,s = 1− αt,s.
We next present the details of our characterization of equilibrium for the recession and recovery states,

s ∈ {2, 3}. We assume the following:

Assumption A1. δ (0)−
(
ρ+ λi2

)
< g2 < δ (η∗)− ρ < g3.

With this assumption, we conjecture an equilibrium in which the recovery state s = 3 features positive

interest rates, effi cient asset prices, and effi cient factor utilization, rft,3 > 0, Qt,3 = Q∗ and ηt,3 = η∗. The

recession state s = 2 features an interest rate of zero, lower asset prices, and ineffi cient factor utilization,

rft,2 = 0, Qt,2 < Q∗ and ηt,2 < η∗. We will show that the equilibrium price in the recession state can be
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represented as a strictly increasing function of optimists’wealth share: Qt,2 = Q2 (αt,2) where Q2 (·) is a
strictly increasing function.

Note that for s ∈ {2, 3} the leverage limit doesn’t bind. Therefore, Eq. (23) applies. Combining Eqs.

(21) and (23), we obtain:

rt,s − rft,s + λt,s
Qt,s′ −Qt,s

Qt,s′
= 0. (A.6)

In particular, the risk premium is determined by the weighted-average belief, λt,s.

Equilibrium in the recovery state s = 3. In the recovery state, there is no speculation since

λi3 = 0 for each i. Substituting this transition probability into Eq. (A.6), we find that the risk premium

is zero, rt,3 − rft,3 = 0. After substituting for the market return from Eq. (18), and using Q̇t,3 = 0 (since

Qt,3 = Q∗ is constant), we obtain:

rft,3 = ρ+ g3 − δ (η∗) > 0. (A.7)

The inequality follows from Assumption A1. Hence, in the recovery state, the interest rate is constant

and strictly positive and the equilibrium asset price and factor utilization levels are effi cient.

Equilibrium in the recession state s = 2. In this state, there is some speculation since investors

have heterogeneous beliefs, λo2 > λp2 [cf. Assumption 1]. Substituting Eq. (18) into Eq. (A.6) and using

the conjecture Qt,3 = Q∗, we obtain Eq. (25) in the main text. Substituting the conjecture rft,2 = 0, we

further obtain:

ρ+ g2 − δ
(
Qt,2
Q∗

η∗
)

+
Q̇t,2
Qt,2

+ λt,2

(
1− Qt,2

Q∗

)
= 0. (A.8)

Next consider the extreme cases αt,2 ∈ {0, 1}. These cases are the same as if there is a single belief
type i ∈ {o, p}. In particular, since there is no speculation, the price is constant within the state, that is:
Qt,2 ≡ Qi2 and thus Q̇t,2 = 0. Therefore, Eq. (A.8) can be written as

ρ+ g2 − δ
(
Qi2
Q∗

η∗
)

+ λi2

(
1− Qi2

Q∗

)
= 0.

Under Assumption A1, there exists a solution that satisfies Qi2 ∈ (0, Q∗). This describes the equilibrium

price in the recession state if all investors share type i investors’beliefs. Using λo2 > λp2 (Assumption 1),

it is easy to check that Qo2 > Qp2. In particular, the price is greater under optimists’beliefs than under

pessimists’beliefs.

Next consider the intermediate cases, αt,2 ∈ (0, 1). In this case we combine Eq. (A.8) with Eq. (24)

for state s = 2 to obtain a system of differential equations for (αt,2, Qt,2):

ρ+ g2 − δ
(
Qt,2
Q∗

η∗
)

+
Q̇t,2
Qt,2

+ λt,2

(
1− Qt,2

Q∗

)
= 0, (A.9)

α̇t,2 = −αt,2 (1− αt,2) ∆λo2.

This is similar to the differential equation system for the recession state in Caballero and Simsek

(2017). Following similar steps, we show that the system is saddle path stable: for any αt,2, there exists

a unique equilibrium price level Qt,2 ∈ [Qp2, Q
o
2) such that the solution satisfies limt→∞ αt,2 = 0 and

limt→∞Qt,2 = Qp2. Since the system is stationary, the solution can be written as a function of optimists’
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Figure 9: Equilibrium price of capital in the recession state s = 2. The dotted line illustrates
the frictionless price level, Q∗.

wealth share, Qt,2 = Q2 (α). In Caballero and Simsek (2017), we show that Q2 (α) is strictly increasing

in α. Since Qp2 < Qo2 < Q∗, this establishes Eq. (26) in the main text.

For a numerical solution, we convert the differential equation in (A.9) into a differential equation in

α-domain. In particular, differentiating Qt,2 = Q2 (αt,2) with respect to time, we obtain:

Q̇t,2 = Q′2 (αt,2) α̇t,2.

Combining this with Eq. (A.9), we obtain:

Q′2 (α)

Q2 (α)
=

1

α (1− α) ∆λo2

(
ρ+ g2 − δ

(
Q2 (α)

Q∗
η∗
)

+ λ2 (α)

(
1− Q2 (α)

Q∗

))
.

The equilibrium price function is the solution to this system subject to the boundary conditions Q2 (0) =

Qp2 and Q2 (1) = Qo2. Figure 9 illustrates the solution for a particular parameterization.

A.2.2. Value functions in equilibrium

We next characterize investors’equilibrium expected values and derive the gap value that we use in the

main text. Let the superscript b ∈ {o, p, pl} denote the belief corresponding to optimists, pessimists, or
the planner. Let i ∈ {o, p} denote type i investors. We let V i,bt,s

(
ait,s
)
denote type i investors’expected

value when she has wealth ait,s, evaluated according to type b belief. In view of log utility, we conjecture

the following version of Eq. (A.2):

V i,bt,s
(
ait,s
)

=
log
(
ait,s/Qt,s

)
ρ

+ vi,bt,s. (A.10)
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Note that this function implies
∂V i,b

t,s

∂a = 1
ρait,s

. Using this expression as well as cit,s = ρait,s, we obtain the

following version of the HJB equation (A.1):

ρV i,bt,s
(
ait,s
)
−
∂V it,s

(
ai,bt,s

)
∂t

= log ρait,s +
1

ρ

(
rft,s + ωit,s

(
rt,s − rft,s

)
− ρ
)

(A.11)

+ λbs

(
V it,s′

(
ait,s

(
1 + ω

Qt,s′ −Qt,s
Qt,s

))
− V it,s

(
ait,s
))

.

Note that we evaluate the value function along the equilibrium path and according to transition proba-

bility λbs.

Substituting Eq. (A.10) into Eq. (A.11), we obtain a differential equation for the normalized value:

ρvi,bt,s −
∂vi,bt,s
∂t

= log ρ+ logQt,s +
1

ρ

(
rt,s − ρ−

Q̇t,s
Qt,s

+
(
ωit,s − 1

) (
rt,s − rft,s

)
+ λbs log

(
1 + ω

Qt,s′ −Qt,s
Qt,s′

))
+ λbs

(
vi,bt,s′ − v

i,b
t,s

)
.

To simplify this expression, we substitute rt,s = ρ +
Q̇t,s

Qt,s
+ gs − δ

(
Qt,s

Q∗ η
∗
)
using Eq. (18). We also

substitute for
(
ωit,s − 1

) (
rt,s − rft,s

)
=

α̇it,s
αit,s

from Eq. (A.3). Finally, we substitute for 1 + ω
Qt,s′−Qt,s

Qt,s′
=

αi
t,s′

αit,s
using Eq. (20). After these substitutions, we obtain:

ρvi,bt,s −
∂vi,bt,s
∂t

= log ρ+ logQt,s +
1

ρ

(
gs − δ

(
Qt,s
Q∗

η∗
)

+
α̇it,s
αit,s

+ λbs log

(
αit,s′

αit,s

))
(A.12)

+ λbs

(
vi,bt,s′ − v

i,b
t,s

)
.

We have thus characterized the normalized value function, vi,bt,s, as a solution to the differential

equation in (A.12). This equation applies for any beliefs b ∈ {o, p, pl}, including investors’own beliefs
b = i, and it applies regardless of whether the leverage limit binds. The terms that feature Qt,s capture

potential welfare losses due to ineffi cient factor utilization. The term gs captures the welfare effect of

expected growth. The term
α̇it,s
αit,s

+λbs log

(
αi
t,s′

αit,s

)
captures the welfare effect of speculation that reshuffl es

investors’wealth shares across states.

As we describe in the main text, we decompose the normalized value into two components [cf. (27)]:

vi,bt,s = vi∗,bt,s + wi,bt,s,

Here, vi∗,bt,s is the frictionless value function, which is found by solving Eq. (A.12) with Qt,s = Q∗ for

each t, s. This captures all determinants of welfare except for suboptimal factor utilization (including the

benefits/costs from speculation). The residual, wbt,s, corresponds to the gap value function. This captures

the welfare losses due to suboptimal factor utilization evaluated according to investors’preferences (and

type b beliefs).

To further characterize the gap value, note that vi,bt,s and v
i∗,b
t,s both solve Eq. (A.12) with Qt,s and

Qt,s = Q∗, respectively. Taking the difference of these equations, and using wi,bt,s = vi,bt,s − v
i∗,b
t,s , we obtain
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Eq. (28) in the main text, which we replicate for ease of exposition:

ρwbt,s −
∂wbt,s
∂t

= W (Qt,s) + λbs
(
wbt,s′ − wbt,s

)
,

where W (Qt,s) = log
Qt,s
Q∗
− 1

ρ

(
δ

(
Qt,s
Q∗

η∗
)
− δ (η∗)

)
.

This implies that the gap value depends on an investor’s beliefs but not her identity, wbt,s ≡ w
i,b
t,s.

Integrating Eq. (28) forward, we obtain:

wbt,s =

∫ ∞
t

e−(ρ+λbs)(t̃−t)
(
W
(
Qt̃,s

)
+ λbsw

b
t̃,s′

)
dt̃. (A.13)

Hence, the gap value captures an appropriately discounted present value of instantaneous welfare gaps.

Note that W (Qt,s) is a strictly concave function maximized at Qt,s = Q∗. Therefore, Eq. (A.13) also

implies wbt,s ≤ 0 for each t, s.

A.2.3. Gap value in recession

Next consider the gap value in the recession state s = 2. Since the model is stationary, we conjecture

that the gap value can be written as a function of optimists’wealth share,

wbt,2 = wb2 (αt,s) ,

for some function wb2 (·). Differentiating this expression, we have:

∂wbt,s
∂t

=
dwb2 (αt,s)

dα
α̇t,s

= −dw
b
2 (αt,s)

dα
αt,2 (1− αt,2) ∆λo2.

Note that wbt,3 = 0 since Qt,3 = Q∗. Finally, recall that we have Qt,2 = Q2 (α) < Q∗, where Q2 (α) is a

strictly increasing function. Substituting these expressions into Eq. (28) for state s = 2, we characterize

the gap value as the solution to a differential equation in α-domain:

(
ρ+ λb2

)
wb2 (α) +

dwb2 (α)

dα
α (1− α) ∆λo2 = W (Q2 (α)) .

We analyze the solution to this differential equation in Caballero and Simsek (2017). In particular, since

W (Q2 (α)) is strictly increasing in α (since Q2 (α) < Q∗), wb2 (α) is also strictly increasing in α. Using

the integral expression in (A.13), we also have wb2 (α) < 0 for each α. This establishes Eq. (29) in the

main text.

A.3. Omitted derivations in Section 4

We first characterize the equilibrium for a given leverage limit function, ω1 (·). We then prove Proposition
1, which establishes the comparative statics of tightening the leverage limit (for given α).

To characterize the equilibrium, we assume the parameters satisfy:

Assumption A2. rf,p1 ≡ ρ+ g1 − δ (η∗)− λp1
(
Q∗

Qp
2
− 1
)
> 0.
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Here, Qp2 = Q2 (0) < Q∗ denotes the asset price in the recession state when pessimists dominate the econ-

omy. Assumption A2 ensures that the boom features a positive interest rate even if pessimists dominate.

Under this assumption, we conjecture an equilibrium in which the interest rate is positive, rft,1 > 0, and

the asset price is at its effi cient level, Qt,1 = Q∗. We also conjecture that the equilibrium outcomes can be

described as a function of optimists’wealth share, αt,1 (as well as the leverage limit function, ω1 (·)). In
particular, optimists’wealth share after transition can be written as αt,2 = α2 (αt,1, ω1) (and pessimists’

wealth share is the residual, αpt,2 = 1− αt,2).
First consider the corner cases αt,1 = 0 and αt,1 = 1. Equivalently, αit,1 = 1 for some belief type i.

Using Eq. (21), which holds as equality for type i investors, we obtain:

rf,i1 = ρ+ g1 − δ (η∗)− λi1
(
Q∗

Qi2
− 1

)
. (A.14)

Under Assumption A2, there exists a solution that satisfies rf,i1 > 0 for each i ∈ {o, p}. Since λo1 < λp1,

we also have rf,o1 > rf,p1 : the equilibrium interest rate is greater when optimists dominate the economy.

Next consider the intermediate cases, αt,1 ∈ (0, 1). Most of the analysis is in the main text. The

remaining step is to show that, when ω1 (α) ≤ ωo1 (α,∞) (when the leverage limit binds) Eq. (34) has a

unique solution that satisfies α2 (α, ω1) ≥ α2 (α,∞). This result follows from Lemma 1 below, which we

use in subsequent sections. The lemma applies under the following regularity conditions:

Assumption A3. Q′2 (α2) <
Q∗−Q2(α2)

1−α2 for α2 ∈ (0, 1); and Q2
(
αλo1
λ1(α)

)
> Q∗α

(
1− λo1

λp1

)
for α ∈ (0, 1).

These conditions concern the price function in the recession. They are mild, and we can verify that

numerical solutions do not violate these conditions. They are also suffi cient conditions, i.e., they can

be relaxed further. The first part says that the slope of the price function is not too large. Since

Q2 (1) = Qo2 < Q∗, this condition will always hold if Q2 (α2) is a linear function. Therefore, it holds as

long as Q2 (α2) does not deviate from linearity too much. The second part requires that either the price

decline after transition to the recession is not too large, or the extent of speculation during the boom is

not too large. For instance, when α = 1, the requirement is Qo2 > Q∗
(

1− λo1
λp1

)
. This holds if Qo2 is close

to Q∗ or if λo1 is not substantially smaller than λ
p
1.

Lemma 1. Consider the following function:

f (α2;α, ω1) = 1− α2
α
− (ω1 − 1)

[
Q∗

Q2 (α2)
− 1

]
,

where α, ω1 are parameters such that α ∈ (0, 1) , ω1 ≤ ωo1 (α,∞). Under Assumption A3, f (α2) = 0 has

a unique solution that satisfies α2 ∈ [α2 (α,∞) , α).

Proof. We first show that there exists a solution that lies in the desired interval. We have

f (α2 (α,∞)) = 1− α2 (α,∞)

α
− (ω1 − 1)

[
Q∗

Q2 (α2 (α,∞))
− 1

]
≥ 1− α2 (α,∞)

α
− (ωo1 (α,∞)− 1)

[
Q∗

Q2 (α2 (α,∞))
− 1

]
= 0.

Here, the inequality in the second line follows since ω1 ≤ ωo1 (α,∞) and Q2 (α2 (α,∞)) < Q∗, and the
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equality follows from the definition of ωo1 (α,∞). We also have

f (α) = − (ω1 − 1)

[
Q∗

Q2 (α2)
− 1

]
< 0.

It follows that there exists a solution in [α2 (α,∞) , α).

We next show that the derivative of f is strictly negative at each zero of f :

f ′ (α2) < 0 for each α2 ∈ [α2 (α,∞) , α) and f (α2) = 0. (A.15)

This establishes that f has a unique zero in the desired interval. To establish this claim, we first evaluate

the derivative

f ′ (α2) = − 1

α
+ (ω1 − 1)

Q∗

(Q2 (α2))
2Q
′
2 (α2) .

Hence, f ′ (α2) < 0 as long as

α (ω1 − 1)
Q∗

Q2 (α2)

Q′2 (α2)

Q2 (α2)
< 1.

Note that we require this to hold when f (α2) = 0. This implies

α (ω1 − 1)
Q∗

Q2 (α2)
= (α− α2)

Q∗

Q∗ −Q2 (α2)
.

Combining the last two displayed equations, we need to show

Q′2 (α2) <
Q∗ −Q2 (α2)

1− α2
1− α2
α− α2

Q2 (α2)

Q∗
. (A.16)

Using the first part of Assumption A3, we have

Q′2 (α2) <
Q∗ −Q2 (α2)

1− α2
. (A.17)

Using the second part of Assumption A3, we also have

1 ≤ 1− α2 (α,∞)

α− α2 (α,∞)

Q2 (α2 (α,∞))

Q∗
≤ 1− α2
α− α2

Q2 (α2)

Q∗
. (A.18)

Here, the first inequality follows from Assumption A3 since 1−α2(α,∞)
α−α2(α,∞) =

λp1
α(λp1−λo1)

after substituting

α2 (α, 0) =
αλo1
λ1(α)

[cf. Eq. (31)]. The second inequality follows since α2 (α,∞) ≤ α2 implies 1−α2(α,∞)
α−α2(α,∞) ≤

1−α2
α−α2 and Q2 (α2 (α,∞)) ≤ Q2 (α2). Combining Eqs. (A.17) and (A.18) establishes Eq. (A.16). This in

turn establishes Eq. (A.15) and shows that there is a unique solution.

Proof of Proposition 1. Recall that optimists’wealth share after transition corresponds to the zero
of the function defined in Lemma 1. Next consider how the solution (characterized in the proof of the

lemma) changes with ω1. Implicitly differentiating the equation f (α2;α, ω1) = 0 with respect to ω1, we

obtain:
dα2
dω1

=

Q∗

Q2(α2)
− 1

f ′ (α2)
< 0.

Here, the inequality follows since Q∗

Q2(α2)
− 1 > 0 and f ′ (α2) < 0 [cf. Eq. (A.15)]. It follows that the
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solution is strictly decreasing in ω1, that is,
dα2(α,ω1)
dω1(α)

< 0. In particular, decreasing the leverage limit

increases optimists’wealth share after transition.

To establish the last part, note that Eq. (35) describes optimists’growth absent transition, α̇t,1/αt,1,

as a decreasing function of αt,2 (given the parameters and αt,1). Combining this observation with
dα2(α,ω1)
dω1(α)

< 0, we also find d(α̇t,1/αt,1)
dω1(α)

< 0. Hence, decreasing the leverage limit slows down the growth

of optimists’wealth share absent transition, completing the proof.

A.4. Omitted derivations in Section 5

Proof of Proposition 2. Recall that Eq. (23) applies for an arbitrary specification of monetary policy

as long as leverage constraints do not bind for either type. When ω1 = ∞, constraints do not bind in
state 1. Applying Eq. (23), the evolution of optimists’wealth share is given by (31). In particular,

monetary policy does not influence the evolution of optimists’wealth share.

Next note that, using Eq. (A.13), we can write the planner’s gap value as

wpl1 (α0,1) =

∫ ∞
0

e−(ρ+λpl1 )t
(
W (Qt,1) + λpl1 w

b
t,2 (αt,2)

)
dt.

Here, αt,2 denotes optimists’wealth share in the recession state if the economy switches to recession at

time t. Monetary policy does not affect the path {αt,2}. Therefore, the previous expression is maximized
whenW (Qt,1) is maximized. This happens when the planner follows the conventional output-stabilization

policy and sets Qt,1 = Q∗. It follows that prudential policy can only lower the gap value function,

wpl1 (α,∞, Q1) ≤ wpl1 (α,∞), completing the proof.

Proof of Proposition 3. First consider the effect of the leverage limit, ω̃1. Since ω̃1 (α) < ω1 (α,∞),

optimists’wealth share, α2 (α, ω̃1), is characterized as the unique solution to the following equation (see

Appendix A.3):
α2 (α, ω̃1)

α
= 1− (ω̃1 (α)− 1)

[
Q∗

Q2 (α2 (α, ω̃1))
− 1

]
. (A.19)

We will show (constructively) that there exists a PMP that replicates the wealth share. Let α̃2 =

α2

(
α, ω1, Q̃1

)
denote optimists’wealth share after transition with PMP. In the conjectured equilibrium,

optimists’leverage limit binds (since α̃2 = α2 (α, ω̃1) > α2 (α,∞)). Therefore, optimists’wealth share is

the solution to
α̃2
α

= 1− (ω1 (α)− 1)

[
Q̃1 (α)

Q2 (α̃2)
− 1

]
. (A.20)

We next claim that, for appropriately chosen Q̃1 (α), this equation holds for α̃2 = α2 (α, ω̃1).

To this end, let Q̃1 (α) be such that Eq. (37) holds. After rearranging this expression, we can solve

for Q̃1 (α) in closed form:

Q̃1 (α) = Q2 (α2 (α, ω̃1))

(
1 +

ω̃1 (α)− 1

ω1 (α)− 1

[
Q∗

Q2 (α2 (α, ω̃1))
− 1

])
. (A.21)

Since ω̃1 (α) < ω1 (α), it is easy to check that Q̃1 (α) < Q∗. Since ω̃1 (α) > 1, we also have Q̃1 (α) >

Q2 (α2 (α, ω̃1)). In particular, there exists a unique Q̃1 (α) ∈ (Q2 (α2 (α, ω̃1)) , Q
∗) that satisfies Eq. (37).

We next substitute Eq. (37) into Eq. (A.19), which proves our claim that Eq. (A.20) holds with

α̃2 = α2 (α, ω̃1). We can also check that (under Assumption A3) this equation has a unique solution.
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This proves α2
(
α, ω1, Q̃1

)
= α2 (α, ω̃1). Note that Eq. (A.21) implies ∂Q̃1(α)

∂ω̃1(α)
> 0, which completes the

proof of the first part of the proposition .

Next consider the interest rate corresponding to PMP. Since the policy applies only at an infinitesimal

instant, it does not affect the price drift, Q̇t,1 = 0. In particular, the instantaneous return to capital is

given by r̃1 = ρ+ g1− δ
(
Q̃1(α)
Q∗ η∗

)
[cf. Eq. (18)]. Combining this with Eq. (21) for pessimists, we obtain

the following analogue of Eq. (30):

r̃f1 = ρ+ g1 − δ
(
Q̃1 (α)

Q∗
η∗

)
− λp1

1− α
1− α2 (α, ω̃1)

(
Q̃1 (α)

Q2 (α2 (α, ω̃1))
− 1

)
.

Using Eq. (A.20) to substitute for the price decline, we can rewrite this as

r̃f1 = ρ+ g1 − δ
(
Q̃1 (α)

Q∗
η∗

)
− λp1

1− α
α

α− α2 (α, ω̃1)

1− α2 (α, ω̃1)

1

ω1 (α)− 1
. (A.22)

Absent prudential policy, the interest rate is characterized by Eq. (30). After substituting for the

price decline from (20), we can rewrite this expression as

rf1 (α, ω1) = ρ+ g1 − δ (η∗)− λp1
1− α
α

α2 (α, ω1)− α
1− α2 (α, ω1)

1

ω1 (α, ω1)− 1
. (A.23)

Here, ω1 (α, ω1) denotes the equilibrium leverage ratio.

Next note that δ
(
Q̃1(α)
Q∗ η∗

)
< δ (η∗) since Q̃1 (α) < Q∗. Note also that α−α2(α,ω̃1)1−α2(α,ω̃1) <

α−α2(α,ω1)
1−α2(α,ω1) since

α2 (α, ω̃1) > α2 (α, ω1). Finally, note that 1
ω1(α)−1 ≤

1
ω1(α,ω1)−1 since ω1 (α, ω1) ≤ ω1 (α). Combining

these observations with Eqs. (A.22) and (A.23) proves that r̃f1 = rf1

(
α, ω1, Q̃1

)
> rf1 (α, ω1): PMP raises

the interest rate.

Finally, consider how raising the leverage limit ω̃1 (α) affects the interest rate with PMP. Since raising

the leverage limit increases Q̃1 (α), it also increases the effective depreciation rate, δ
(
Q̃1(α)
Q∗ η∗

)
. Since

raising the leverage limit reduces α2 (α, ω̃1), it also increases the term
α−α2(α,ω̃1)
1−α2(α,ω̃1) . Combining these

observations with (A.22) proves that raising the leverage limit decreases r̃1, that is:
∂rf1 (α,ω1,Q̃1)

∂ω̃1(α)
< 0. In

particular, targeting a lower effective leverage limit ω̃1 (α) requires a higher interest rate, completing the

proof.

Proof of Proposition 4. We have the following closed-form solution for the price function:

Q1

(
α, l̃
)

=


Q∗ if ω1

(
α, l̃
)
< ω1

(
α, l̃
)

Q2

(
α2

(
α, l̃
))(

1 +
ω1(α,l̃)−1
ω1(α,l)−1

[
Q∗

Q2(α2(α,l̃))
− 1

])
< Q if ω1

(
α, l̃
)

= ω1

(
α, l̃
) .

(A.24)

Here, the first line corresponds to the case in which the leverage limit does not bind under l̃. In this

case, the monetary authority does not use PMP. The second line corresponds to the case in which the

leverage limit binds. In this case, the monetary authority uses PMP. Moreover, using Eq. (A.21) we have

a closed-form solution for the asset price level.

One difference from Proposition 3 concerns the characterization of the interest rate. Since the policy

is applied dynamically, the price drift, Q̇t,1, is not necessarily zero, which affects the level of the interest
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rate. To characterize this effect, note that:

Q̇t,1 =
∂Q1

(
α, l̃
)

∂+α
α̇t,1

=
∂Q1

(
α, l̃
)

∂+α
λp1αt,1

1− αt,1
1− αt,2

(αt,1 − αt,2)

=
∂Q1

(
α, l̃
)

∂+α
λp1α (1− α)

α− α2
(
α, l̃
)

1− α2
(
α, l̃
) . (A.25)

Here, the second line substitutes the evolution of optimists’wealth share from Eq. (22) and the third line

substitutes αt,1 = α and αt,2 = α2

(
α, l̃
)
. The expression

∂Q1(α,l̃)
∂+α

corresponds to the right-derivative of

the function characterized in (A.24).10 We can check that the right-derivative,
∂Q1(α,l̃)
∂+α

, is continuous in

l̃ and equal to 0 when l̃ = l (because Q1 (α, l) = Q∗ for each α). Consequently, when viewed as a function

of l̃, the price drift, Q̇t,1, is also continuous in l̃ and equal to 0 when l̃ = l.

Next note that, following similar steps as in the proof of Proposition 4, the interest rate in this case

can be written as

r̃f1 = ρ+ g1 + Q̇t,1 − δ

Q1
(
α, l̃
)

Q∗
η∗

− λp1 1− α
1− α2

(
α, l̃
)
 Q1

(
α, l̃
)

Q2

(
α2

(
α, l̃
)) − 1

 ,
where Q̇t,1 is given by Eq. (A.25). When viewed as a function of l̃, the interest rate r̃f1 is continuous in

l̃, and it is equal to the benchmark interest rate rf1 (α, l) when l̃ = l. Recall that the benchmark rate is

strictly positive for each α ∈ (0, 1) [cf. Section 4]. Therefore, r̃f1 > 0 for each α ∈ (0, 1) as long as l̃ is in a

suffi ciently small neighborhood of l. In particular, PMP doesn’t violate the zero lower bound constraint

on the interest rate.

Next consider the second part. Using Eq. (A.13), we can write the planner’s gap value with policy l̃

as

wpl1

(
α0,1, l̃

)
=

∫ ∞
0

e−(ρ+λpl1 )t
(
W (Q∗) + λpl1 w

b
t,2 (αt,2)

)
dt. (A.26)

Here, αt,2 denotes optimists’wealth share if the economy transitions to recession at time t. Likewise, we

write the planner’s gap value with policy Q1
(
α, l̃
)
as

wpl1

(
α0,1, Q1

(
α, l̃
))

=

∫ ∞
0

e−(ρ+λpl1 )t
(
W
(
Q1

(
α, l̃
))

+ λpl1 w
b
t,2 (αt,2)

)
dt. (A.27)

Next note that, using the first part of this proposition, optimists’wealth share after transition, αt,2
(conditional on αt,1), is the same under policies l̃ and Q1

(
·, l̃
)
. Combining this observation with Eq.

(22), we also find that the evolution of optimists’wealth share absent transition, α̇t,1/αt,1, is the same

under both policies. Consequently, optimists’wealth share follows an identical path under both policies.

In view of this observation, after taking the difference of Eqs. (A.27) and (A.26), we obtain Eq. (40) in

the main text.
10Note that the function is piecewise differentiable so the right-derivative always exists. The equation depends

on the right-derivative (as opposed to left) because α̇t,1 > 0, so αt,1 grows over time.
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Next note that Eq. (A.24) implies (for a given α ∈ (0, 1)) that the prudential asset price level is

differentiable in l̃ with a finite derivative. Note also that Q1 (α, l) = Q∗. Therefore, taking the derivative

of Eq. (40) with respect to l̃ and evaluating at l̃ = l∗, we obtain:

dwpl1

(
α, l,Q1

(
α, l̃
))

dl̃
|l̃=l −

dwpl1

(
α, l̃
)

dl̃
|l̃=l =

∫ ∞
0

e−(ρ+λpl1 )t dW (Q∗)

dQt,1

dQ1

(
αt,1, l̃

)
dl̃

|l̃=ldt

= 0.

Here, the first line applies the chain rule and the second line uses the observation that dW (Q∗)
dQt,1

= 0 [cf.

Eq. (28)]. Rearranging this expression establishes Eq. (39) and completes the proof.

A.5. Omitted derivations in Section 7

We first state and prove a generalization of Lemma 1, which implies that Eq. (48) has a unique solution

(when Q1 = Q∗). We then prove Propositions 5 and 6.

Lemma 2. Consider the following function:

f (α2;α, β, ω1) = 1− (ω1 − 1)

[
Q∗

Q2 (α2)
− 1

]
− 1

1− β

(
α2
α
− λo1
λp1
β

1− α2
1− α

)
,

where α, β, ω1 are parameters such that α, β ∈ (0, 1) , ω1 ≤ ωo1 (α, β,∞). Under Assumption A3, f (α2) =

0 has a unique solution that satisfies α2 ∈ (α2 (α,∞) , α).

Proof. Following similar steps as in Lemma 1, it is easy to check that f (α2 (α,∞)) > 0 and f (α) < 0.

This establishes that there exists a solution that lies in the desired interval, α2 ∈ (α2 (α,∞) , α).

We next show that the derivative of f is strictly negative at each zero of f , that is:

f ′ (α2) < 0 for each α2 ∈ (α2 (α,∞) , α) and f (α2) = 0.

This establishes that f has a unique zero in the desired interval. To prove the claim, we first evaluate

the derivative

f ′ (α2) = (ω1 − 1)
Q∗

(Q2 (α2))
2Q
′
2 (α2)−

1

1− β

(
1

α
+
λo1
λp1
β

1

1− α

)
.

Hence, f ′ (α2) < 0 as long as

ω1 − 1

Q2 (α2)

Q∗

Q2 (α2)
Q′2 (α2) <

1

1− β

(
1

α
+
λo1
λp1
β

1

1− α

)
.

Note that we require this to hold when f (α2) = 0. This implies:

ω1 − 1

Q2 (α2)
=

1

Q∗ −Q2 (α2)

(
1− 1

1− β

(
α2
α
− λo1
λp1
β

1− α2
1− α

))
.
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Combining the last two displayed equations, we need to show

Q′2 (α2) <
Q∗ −Q2 (α2)

1− α2
Q2 (α2)

Q∗
g (α2, α, β)

where g (α2, α, β) =
(1− α2) 1

1−β

(
1
α +

λo1
λp1
β 1
1−α

)
1− 1

1−β

(
α2
α −

λo1
λp1
β 1−α21−α

) .

Note that, in the proof of Lemma 1, we already established this inequality for β = 0 (under Assumption

A3). Hence, it suffi ces to show that g (α2, α, β) ≥ g (α2, α, 0). This inequality holds because,

g (α2, α, β) >
1− α2

1− 1
1−β

(
α2
α −

λo1
λp1
β 1−α21−α

) > 1− α2
1− α2

α

= g (α2, α, 0) .

Here, the first inequality follows because 1
1−β

(
1
α +

λo1
λp1
β 1
1−α

)
< 1

α . The second inequality follows because

α2 > α2 (α,∞) =
αλo1

αλo1+(1−α)λ
p
1
implies α2

1−α2 >
λo1
λp1

α
1−α , which in turn implies

1
1−β

(
α2
α −

λo1
λp1
β 1−α21−α

)
> α2

α .

This establishes the claim and completes the proof of the lemma.

Proof of Proposition 5. First consider the evolution of α and β absent transition to recession. Applying
(22) for regulated and unconstrained optimists (in state s = 1), we obtain:

d (α (1− β)) /dt

α (1− β)
= λp1

1− α
1− α2

(
1− α2 (1− β2)

α (1− β)

)
(A.28)

d (αβ) /dt

αβ
= λp1

1− α
1− α2

(
1− α2β2

αβ

)
Solving these equations for α̇ and β̇, we obtain Eq. (43) in the main text.

Next consider the characterization of α2. In the main text, we established that Eq. (48) characterizes

α2. Lemma 2 implies that there exists a unique solution that satisfies α2 ∈ (α2 (α,∞) , α). Combining

this with Eq. (43) also implies α̇ > 0.

Next note that Eq. (44) characterizes β2 conditional on α2. Note also that α2 > α2 (α,∞) =
αλo1

αλo1+(1−α)λ
p
1
implies α2

1−α2 >
λo1
λp1

α
1−α . Combining this with Eq. (44), we obtain β2

β =
λo1
λp1

α/(1−α)
α2/(1−α2) < 1.

This proves β2 < β. Combining this with Eq. (43) also implies β̇ > 0.

Next consider the comparative statics of α2 with respect to β. Recall that α2 is characterized as

the unique solution to the equation, f (α2;α, β, ω1) = 0, where f (·) is defined in Lemma 2. Implicitly
differentiating the equation with respect to β, we obtain:

dα2
dβ

=
∂f (α2;α, β, ω1) /∂β

−∂f (α2;α, β, ω1) /∂α2
,

where the derivatives are evaluated at the solution. From the proof of Lemma 2, we also know that

f ′ (α2;α, β, ω1) < 0 when f (α2) = 0. Hence, dα2dβ < 0 as long as ∂f (α2;α, β, ω1) /∂β < 0. The latter
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inequality holds because:

∂f (α2;α, β, ω1)

∂β
= − ∂

∂β

(
1

1− β

(
α2
α
− λo1
λp1
β

1− α2
1− α

))
= − ∂

∂β

(
1

1− β

(
α2
α
− λo1
λp1

1− α2
1− α

)
+
λo1
λp1

1− α2
1− α

)
= −

(
α2
α
− λo1
λp1

1− α2
1− α

)(
∂

∂β

1

1− β

)
< 0.

Here, the last inequality follows since α2
α >

λo1
λp1

1−α2
1−α (since α2 > α2 (α,∞)) and ∂

∂β
1

1−β > 0. This proves
dα2
dβ < 0.

Next consider the limit as β → 1. For any α2 > α2 (α,∞), we have

lim
β→1

f (α2;α, β, ω1) = lim
β→1

 1− (ω1 − 1)
[

Q∗

Q2(α2)
− 1
]

+
λo1
λp1

1−α2
1−α

− 1
1−β

(
α2
α −

λo1
λp1

1−α2
1−α

) 
= −∞

Here, the last line follows because α2
α >

λo1
λp1

1−α2
1−α and limβ→1

−1
1−β = −∞. This also implies limβ→1 α2 =

α2 (α,∞) because α2 is characterized as the unique solution to the equation, f (α2;α, β, ω1) = 0, over

the range α2 ∈ (α2 (α,∞) , α).

Next consider the comparative statics with respect to the leverage limit, ω1 = ω1 (α, β). Following

similar steps, we obtain:

dα2
dω1

=
−∂f (α2;α, β, ω1) /∂ω1
∂f (α2;α, β, ω1) /∂α2

=

Q∗

Q2(α2)
− 1

(ω1 − 1) Q∗

(Q2(α2))
2Q′2 (α2)− 1

1−β

(
1
α +

λo1
λp1
β 1
1−α

) < 0.

Here, the first equality evaluates the partial derivatives and the second inequality uses

∂f (α2;α, β, ω1) /∂α2 < 0.

Finally, consider the sign of the cross-partial derivative ∂
∂β

dα2
dω1
. We have

sign

(
∂

∂β

dα2
dω1

)
= sign

(
∂

∂β

1

1− β

(
1

α
+
λo1
λp1
β

1

1− α

))
= sign

(
∂

∂β

1

1− β

(
1

α
+
λo1
λp1

1

1− α

)
− λo1
λp1

1

1− α

)
= sign

(
∂

∂β

1

1− β

(
1

α
+
λo1
λp1

1

1− α

))
> 0.

This proves ∂
∂β

dα2
dω1

> 0 and completes the proof.

Proof of Proposition 6. The proof follows similar steps to Proposition 3. Using Eq. 48, α2 corre-

sponding to the alternative leverage limit is characterized as the unique solution to:

1

1− β

(
α2
α
− λo1
λp1
β

1− α2
1− α

)
= 1− (ω̃1 − 1)

[
Q∗

Q2 (α2)
− 1

]
. (A.29)
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Likewise, α2 corresponding to the PMP (with the current leverage limit) is characterized as the solution

to:
1

1− β

(
α2
α
− λo1
λp1
β

1− α2
1− α

)
= 1− (ω1 − 1)

[
Q̃1

Q2 (α2)
− 1

]
. (A.30)

Next note that the proof of Proposition 3 establishes that there is a unique level of Q̃1 that ensures

Eq. (37) holds. Let Q̃1 denote this level, that is:

(ω1 − 1)

[
Q̃1

Q2 (α2)
− 1

]
= (ω̃1 − 1)

[
Q∗

Q2 (α2)
− 1

]
. (A.31)

Substituting Q̃1 into Eq. (A.30) ensures that this equation is the same as Eq. (A.29). Therefore, the

solutions are the same. Hence, there exists a PMP that replicates α2 that results from the alternative

leverage limit. Recall also that β2 is characterized by Eq. (44) conditional on α2. Thus, the same PMP

also replicates β2 that results from the alternative leverage limit. Note also that Eq. (A.31) implies
∂Q̃1

∂ω̃1
> 0. This completes the proof of the first part.

Next consider the interest rate corresponding to PMP. Note that Eq. (21) continues to hold as

equality for pessimists. This implies that the interest rate is given by:

r̃f1 = ρ+ g1 − δ
(
Q̃1
Q∗

η∗

)
− λp1

1− α
1− α2

(
Q̃1

Q2 (α2)
− 1

)
.

Using Eq. (45) (that describes the wealth share after transition for regulated optimists) to substitute for

the price decline, we obtain:

r̃f1 = ρ+ g1 − δ
(
Q̃1
Q∗

η∗

)
− λp1

1− α
1− α2

(
1− α2 (1− β2)

α (1− β)

)
1

ω1 − 1
. (A.32)

For the benchmark without any prudential policy, following similar steps we obtain:

rf,b1 = ρ+ g1 − δ (η∗)− λp1
1− α
1− αb2

1−
αb2

(
1− βb2

)
α (1− β)

 1

ωb1 − 1
. (A.33)

Here, αb2, β
b
2, ω

b
1 denote the equilibrium variables in the benchmark, which are potentially different than

the equilibrium with PMP. In particular, recall from Proposition 5 that α2 > αb2. Combining this with Eq.

(44), we further obtain β2 < βb2. PMP decreases the fraction of optimists’wealth held by unconstrained

optimists, because they react to the policy by increasing their risks more than regulated optimists.

Next note that the wealth shares satisfy the following identity:

1− α
1− α2

(
1− α2 (1− β2)

α (1− β)

)
= (1− α)

1− α2(1−β2)
α(1−β)

1− α2

= (1− α)

(
1− α2

1− α2

[
1− β2
α (1− β)

− 1

])
. (A.34)

Here, the term in the brackets is positive because β2 < β. This identity holds for the pair, (α2, β2), as

well as the pair,
(
αb2, β

b
2

)
. Combining the identity with the inequalities, α2 > αb2 and β2 < βb2 (which
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implies 1− β2 > 1− βb2), we further obtain:

1− α
1− α2

(
1− α2 (1− β2)

α (1− β)

)
<

1− α
1− αb2

1−
αb2

(
1− βb2

)
α (1− β)

 .
Note also that 1

ω1−1 ≤
1

ωb1−1
since ωb1 ≤ ω1. Finally, we also have δ

(
Q̃1

Q∗ η
∗
)
< δ (η∗) since Q̃1 < Q∗.

Combining these inequalities with Eqs. (A.32) and (A.33) proves that r̃f1 > rf,b1 : that is, PMP sets a

higher interest rate than in the benchmark without prudential policies.

Finally, consider how raising the target leverage limit ω̃1 affects the interest rate corresponding

to PMP. Since raising the leverage limit increases Q̃1, it also increases the effective depreciation rate,

δ
(
Q̃1

Q∗ η
∗
)
. Since raising the leverage limit reduces α2, it also increases β2 (and reduces 1−β2). Combining

this with the identity in (A.34) implies that raising the leverage limit raises the term, 1−α
1−α2

(
1− α2(1−β2)

α(1−β)

)
.

Combining these observations with (A.32) proves that raising the target leverage limit decreases the

interest rate, that is: ∂r̃f1
∂ω̃1

< 0. In particular, targeting a lower effective leverage limit ω̃1 requires setting

a higher interest rate, completing the proof.

A.6. Details of the numerical exercise in Sections 5 and 6

For depreciation, we use the functional form

δ (η) = δ +
(
δ − δ

) (η − η)1+1/ε
1 + 1/ε

for η ≥ η (A.35)

(and δ (η) = δ for η < η) given some constants δ, (δ − δ), η, ε > 0. This functional form implies that

decreasing factor utilization below the effi cient level, η∗, reduces the depreciation rate until η < η∗, but it

has no effect on depreciation beyond this level. Raising factor utilization above the effi cient level increases

capital depreciation.

In our numerical examples, we set

η = 0.97, δ = 0.04, δ = 0.087, ε = 20.

These choices ensure that the effi cient factor utilization and the corresponding depreciation rate are given

by [cf. Eq. (16)] with

η∗ = 1 and δ (η∗) = 0.041.

In particular, we normalize the effi cient factor utilization to one. The choice of η = 0.97 (together with a

relatively high elasticity, ε = 20) implies that underutilizing capital by up to 3 percent is not too costly,

since it is compensated by a relatively large decline in depreciation. Underutilizing capital beyond this

level is much costlier as there is no compensation in terms of reduced depreciation. In our examples, this

means that underutilizing capital in the recession is much costlier than underutilizing capital during the

boom.

For the discount rate, we set

ρ = 0.04.

This choice (together with the specification for the depreciation function) ensures that Assumption 2
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holds. For the productivity level, we set A = 1. This does not play a role as it scales all variables. These

choices imply that the effi cient asset price level is given by [cf. Eq. (17)]:

Q∗ =
Aη∗

ρ
= 25.

For the productivity growth rates, we set

g3 = g1 = 0.1− (ρ− δ (η∗)) = 0.101

g2 = −0.05− (ρ− δ (η∗)) = −0.049.

These choices satisfy g2 < min (g1, g3). They also imply that, with no state changes or belief disagreements

and if capital were perfectly utilized, then the (risk-adjusted) return to capital would be equal to 10% in

the boom and the recovery states and -5% in the recession state [cf. (18)]. In particular, the transition

from the boom to the recession represents a 15% shock to asset valuations.

For beliefs, we set

λo1 = 0.09 and λp1 = 0.9

λo2 = 4.97 and λp2 = 0.49

(and λo3 = λp3 = 0). These beliefs satisfy Assumption 1: compared to pessimists, optimists assign a

smaller probability to a transition from boom to recession but a greater probability to a transition from

recession to recovery. When combined with the remaining parameters, these values satisfy Assumptions

A1-A2, the regularity conditions we need in order to obtain an equilibrium with a positive interest rate

in the boom state and a zero interest rate (and suboptimal asset price level) in the recession state.

Recall that we also need Assumption A3 (which is a regularity condition) to ensure that there is a

unique equilibrium when optimists’leverage limit binds (cf. Appendix A.3). This condition depends on

the equilibrium price function in the recession, Q2 (α). Figure 9 plots the price function corresponding

to the parameters described above. We verify that, when combined with the remaining parameters, this

function satisfies Assumption A3.
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