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MOTIVATION AND CONTRIBUTION

Motivation:

e urban wage premia vary across occupations

@ consequences of technological change for spatial distribution of
economic activity? (e.g., Giannone, 2019)

Contribution:
o Rich theoretical model of task-based comparative advantage
of cities
= in opposition to traditional view of skill-based comparative
advantage (Moretti, 2004)
o New evidence supporting model predictions based on good
data on task-content of occupations

= realistic occupation production function in the model and good
match between testing predictions and data
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SUMMARY OF THE MODEL

Ingredients:

o many ex-ante different cities; workers consume final good/housing and
choose where to locate (standard)

o tradable final good assembled out of tradable intermediate “inputs”
= occupations supplied by workers (Costinot and Vogel, 2010)

@ occupations assembled out of different tasks according to task-specific
intensities or shares of individual time spent on each task

Sorting mechanisms:

Q cities with higher TFP have a comparative advantage in production
of abstract occupations

@ workers with higher education (viewed as costly skill acquisition)
have comparative advantage in production abstract occupations

@ workers with higher ability have comparative advantage in acquiring
higher education

EQM: high-ability workers invest in higher education = perfectly sort into
abstract occupations and = (imperfectly) sort into high-TFP cities



SUMMARY OF THE EMPIRICAL EVIDENCE

Data on task-content of occupations:

@ Novel dataset (BIBB QCS): info on time spent on each out of a
common set of tasks at the individual level

o Task intensities at occupation level = average share of individual
time spent on each group (A/R/M) of tasks per occupation

FEvidence supporting model predictions:

@ Wage premia
o individual-level regressions

o urban wage premium increases in abstractedness of occupation

@ Sorting across cities

o regressions based on pairwise comparisons across occupations and cities

o the ratio between the share of workers located in a given city
across any given pair of occupations increases in city size the
more the higher is the distance in abstract (manual) task
intensity between two occupations
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COMMENTS 1/2

Model:

© Task aggregation: all tasks need to be completed in given proportions
in order to have any output but this complementarity (“o-ring” style)
is not reflected in the production function

q(a7 c a) _ ea+f-rET Z(7,c)H(7,0)dT
@ Assumption on tradable occupations: realistic? The traditional
assumption is the opposite

= introduce intermediate input producers (task-based production
function as in Haanwinckel, 2019)7



COMMENTS 2/2

Empirical analysis:
@ does not make the most of “unique” feature of the dataset, i.e., that
task intensity varies at individual level
e why not endogenizing the time allocation to (substitutable) tasks?

o strengthen evidence that task intensities are invariant to city size

@ distinction from competing occupation-based explanations of the urban
wage premium (interactiveness: Michaels et al., 2019; managerial
content: Santamaria, 2019; specialization: Daniele, 2018)

@ evidence on sorting across cities

@ are findings compatible with the evolution of relative wages and
employment shares over time?

o How to reconcile with non-monotonic wage growth at the aggregate level
across A/R/M?

o Has sorting increased over time?
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TASK INTENSITIES INVARIANT TO CITY SIZE?

Table 8: Determinants of task intensity

Abstract Routine Manual
[©) @) 3) “) ®) ©)
High School 0.0192 0.0074 -.0048 0.0008 -0144 -.0081
(0.002)*** (0.0015)*** (0.0015)*** (0.0012) (0.0014)*** (0.0012)***
Further training 0.0562 0.0286 -.0188 -.0068 -0374 -.0218
(0.0028)*** (0.0022)*** (0.0021)"** (0.0017)*** (0.002)*** (0.0017)"**
University 0.0979 0.0361 -.0439 -.0087 -0540 -.0274
(0.0021)*** (0.0018)*** (0.0016)*** (0.0014)*** (0.0015y*** (0.0014)***
Age 00 00 -.0002 -.0002 0.0002 0.0001
(0.0001) ©0) 00y (©oyer (00 00y
Male 0.0195 -.0044 -.0308 -.0033 0.0114 0.0077
(0.0011)*** (0.001)*** (0.0008)"** (0.0008)"** (0.0008)7** (0.0008)"**
Local population:
2.000 - 4.999 0.0031 0.0001 -.0007 0.0018 -.0025 -.0020
(0.0027) (0.002) (0.002) (0.0016) (0.002) (0.0016)
5.000 - 19.999 0.0104 0.0033 -.0049 0.0002 -0055 -.0035
(0.0024y*** (0.0018)* (0.0018)*** (0.0014) (0.0017)*** (0.0014)**
20.000 - 49.999 0.0136 0.0036 -.0059 0.0002 -0077 -.0037
(0.0025)*** (0.0019)* (0.0019y*** (0.0015) (0.0018)y**= (0.0015)**
50.000 - 99.999 0.0126 0.004 -.0072 -.0014 -0054 -.0025
(0.0029)** (0.0022) (0.0021)"** (0.0017) (0.0021)"** (0.0017)
100.000 - 499.999 0.0189 0.0037 -.0082 0.0007 -0107 -.0043
(0.0026)*** (0.0019)* (0.0019)*** (0.0015) (0.0018)*** (0.0015)***
> 500.000 0.0237 0.003 -.0127 -.0003 -0110 -.0027
(0.003)**+ (0.0022) (0.0022)**+* (0.0018) (0.0021)*++ (0.0017)

= but is it reasonable to test whether people working as “Managers”
specialize in abstract tasks in big cities in the same way as people employed
in “Room and household cleaner” occupation?



DISTINGUISHING COMPETING EXPLANATIONS: THE EXAMPLE OF

SPECIALIZATION
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Average specialization across US MSA against MSA size by educational group.
Specialization = number of tasks per occupation multiplied by their frequency.
Source: Daniele (2018).

TABLE 1: Relationship between specialization and other occupational attributes
across 325 occupations (Autor and Dorn, 2013)

H Abstract Routine  Manual  Offshorability H
[[ 0.00297%F -0.0001 0.0009 0.0021*" 1]
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SORTING ACROSS CITIES

m(0o, ¢) is fraction of workers in occupation ¢ in city ¢ = supermodular
(o', c") _ w(o',c)
(o, c’) (o, c)

for o/ > o and ¢’ > ¢
(o', c '
ﬁ = Vo + Vs + Z 0-(h,;or — hro) X Indensity: + €,5/c

Table 6: Sorting of workers into locations by task intensity
) @

Dependent variable: In (ZZ:9)) All districts

Abstract task difference (h,or — ha o) X In(dens) — 0.126%%*

(.0002)
Manual task difference (hps o1 — hpg ¢) x In(dens) 0.078%#*
(.0002)
Occupation o indicators Yes Yes
Occupation o indicators Yes Yes
Observations 23,066,456 23,066,456
Adj. R? 0.04 0.04

e potential conflict with Eeckhout et al. (2014)
e not clear mapping between testing equation and empirical specification

o add controls (e.g., relative shares across industries) 00



