Managing Expectations without RE: Instruments versus Targets

George-Marios Angeletos 1 and Karthik Sastry 2 ^1MIT and NBER, ^2MIT

ECB Conference on Monetary Policy, October 7-8, 2019

How to Manage Expectations?

- ▶ Instruments: "will maintain 0% interest rates for τ quarters"
- ► Targets: "will bring unemployment down to Y%'

How to Manage Expectations?

- Instruments: "will maintain 0% interest rates for τ quarters"
- ► Targets: "will bring unemployment down to Y%'

Instrument Communication

August 2011: "The Committee [FOMC] currently anticipates ... exceptionally low levels for the federal funds rate at least through mid 2013."

January 2012: horizon extended to " ... at least through late 2014."

September 2012: horizon extended to " ... at least through mid 2015 ."

Target Communication (reserved?)

December 2012: "... as long as the unemployment rate remains above 6 1/2 percent, inflation between one and two years ahead is projected to be no more [than 2.5%], and longer-term inflation expectations continue to be well anchored.

How to Manage Expectations?

- Instruments: "will maintain 0% interest rates for τ quarters"
- ► Targets: "will bring unemployment down to Y%'

Instrument Communication

August 2011: "The Committee [FOMC] currently anticipates ... exceptionally low levels for the federal funds rate at least through mid 2013."

January 2012: horizon extended to " ... at least through late 2014."

September 2012: horizon extended to " ... at least through mid 2015 ."

Target Communication (reserved?)

December 2012: "... as long as the unemployment rate remains above 6 1/2 percent, inflation between one and two years ahead is projected to be no more [than 2.5%], and longer-term inflation expectations continue to be well anchored.

Target Communication (resolute?)

"do whatever it takes" (and perhaps won't bother to tell you how)

Instrument vs Target Communication

- Reason to prefer one over the other?
- NO in benchmark with
 (i) Full credibility

"Ramsey world"

- (ii) No future shocks (or policy contingent on them)
- (iii) Rational Expectations + Common Knowledge

Instrument vs Target Communication

Reason to prefer one over the other?

- NO in benchmark with
 - (i) Full credibility

"Ramsey world"

- (ii) No future shocks (or policy contingent on them)
- (iii) Rational Expectations + Common Knowledge

Our focus

Relax (iii) and explore role of bounded rationality

Main Lesson

Optimal Forward Guidance

- ► Instrument communication when GE feedback is weak
- Target communication when GE feedback is strong

Main Lesson

Optimal Forward Guidance

- ► Instrument communication when GE feedback is weak
- Target communication when GE feedback is strong

Stop talking about R and start talking about u, Y when:

- √ long ZLB
- \checkmark steep Keynesian cross
- \checkmark strong financial accelerator

Main Lesson

Optimal Forward Guidance

- ► Instrument communication when GE feedback is weak
- Target communication when GE feedback is strong

Stop talking about R and start talking about u, Y when:

- √ long ZLB
- ✓ steep Keynesian cross
- \checkmark strong financial accelerator

Rationale: help minimize

- \checkmark agents' need to "reason about the economy"
- \checkmark distortion due to bounded rationality
- \checkmark lack of confidence

Literature

Instruments vs Targets

Poole (1970), Weitzman (1974), Taylor rules

- Micro-foundations of Beauty Contests
 RBC: Angeletos & La'O (2010, 2013), Huo & Takayama (2015)
 NK: Angeletos & Lian (2018), Farhi & Werning (2018)
- Forward Guidance, GE Attenuation and Myopia
 Angeletos & Lian (2016, 2018): HOB
 Farhi & Werning (2018), Garcia-Schmidt & Woodford (2018): Level k
 Gabaix (2018): cognitive discounting
- Communication in Beauty Contests, Information Design Morris & Shin (2002, 2007), Angeletos & Pavan (2007)
 Kamenica & Gentzkow (2011), Bergemann & Morris (2013, 2018)

Model

Notation and Behavior

 $C = \int_i c_i \, \mathrm{d}i$ = average action today

Y = outcome (target) in the future

au~= instrument in the future

$$egin{aligned} c_i &= ig(1-\gamma) \mathbb{E}_i[au] + \gamma \mathbb{E}_i[Y] \ &\gamma \in (0,1) ext{ parameterizes GE} ext{ feedback} \end{aligned}$$

Notation and Behavior

 $C = \int_i c_i \, \mathrm{d}i$ = average action today

Y = outcome (target) in the future

au~= instrument in the future

$$egin{aligned} c_i &= ig(1-\gamma) \mathbb{E}_i[au] + \gamma \mathbb{E}_i[Y] \ &\gamma \in (0,1) ext{ parameterizes GE} ext{ feedback} \end{aligned}$$

Story (microfoundation in paper)

ZLB today, but not tomorrow

C = spending today; Y = income today plus tomorrow

 $\tau =$ minus interest rate tomorrow (or for how long thereafter)

 $\gamma = {\rm Keynesian} \ {\rm multiplier}$

Outcome

Final outcome depends on realized behavior and policy

 $Y = (1 - \alpha)\tau + \alpha C$ $\alpha \in (0, 1)$ parameterizes direct policy effect

Story (microfoundation in paper)

Loose policy tomorrow \rightarrow higher output tomorrow

The Model (just 2 equations!)

$$c_{i} = (1 - \gamma)\mathbb{E}_{i}[\tau] + \gamma\mathbb{E}_{i}[Y]$$
(1)
$$Y = (1 - \alpha)\tau + \alpha C$$
(2)

The Model (just 2 equations!) and the Key Issue

$$c_{i} = (1 - \gamma)\mathbb{E}_{i}[\tau] + \gamma\mathbb{E}_{i}[Y]$$
(1)
$$Y = (1 - \alpha)\tau + \alpha C$$
(2)

• No guidance: Agents have to forecast both τ and Y

The Model (just 2 equations!) and the Key Issue

$$c_{i} = (1 - \gamma)\mathbb{E}_{i}[\tau] + \gamma\mathbb{E}_{i}[Y]$$
(1)
$$Y = (1 - \alpha)\tau + \alpha C$$
(2)

- No guidance: Agents have to forecast both τ and Y
- Instrument communication: know τ , have to think about Y

The Model (just 2 equations!) and the Key Issue

$$c_{i} = (1 - \gamma)\mathbb{E}_{i}[\tau] + \gamma\mathbb{E}_{i}[Y]$$
(1)
$$Y = (1 - \alpha)\tau + \alpha C$$
(2)

- No guidance: Agents have to forecast both τ and Y
- Instrument communication: know τ , have to think about Y
- Target communication: know Y, have to think about τ

Timing

t = 0 (FOMC meeting): PM sees θ (ideal point) and announces either $\tau = \hat{\tau}$ (IC) or $Y = \hat{Y}$ (TC)

t = 1 (liquidity trap): Agents form beliefs and choose c_i

t = 2 (exit): C, au and Y are realized

Timing

t = 0 (FOMC meeting): PM sees θ (ideal point) and announces either $\tau = \hat{\tau}$ (IC) or $Y = \hat{Y}$ (TC)

t = 1 (liquidity trap): Agents form beliefs and choose c_i

$$t = 2$$
 (exit): C, au and Y are realized

The Policy Problem

$$\begin{split} \min_{\theta \mapsto \{\text{message}, (\tau, Y)\}} \mathbb{E}[(1 - \chi) (\tau - \theta)^2 + \chi (Y - \theta)^2] \\ \text{s.t.} \ (\tau, Y) \text{ is implementable in equil given} \\ \text{eq. (1)-(2) and message } \tau = \hat{\tau} \text{ or } Y = \hat{Y} \end{split}$$

Frictionless, REE Benchmark

 \Longrightarrow no error in predicting behavior of others:

 $\mathbb{E}_i[C] = C$

 \implies any equilibrium satisfies

 $c_i = C = Y = \tau$

 \implies irrelevant whether PM announces au or Y(equivalence of primal and dual problems)

Friction: Lack of CK / Anchored Beliefs

Assumption: Lack of CK of announcement

Let $X \in \{\tau, Y\}$ be the announcement. Agents are rational and attentive but think only fraction $\lambda \in [0, 1]$ of others is attentive:

$$\mathbb{E}_i[X] = X$$
 $\mathbb{E}_i[\bar{\mathbb{E}}[X]] = \lambda \mathbb{E}_i[X]$

Friction: Lack of CK / Anchored Beliefs

Assumption: Lack of CK of announcement

Let $X \in \{\tau, Y\}$ be the announcement. Agents are rational and attentive but think only fraction $\lambda \in [0, 1]$ of others is attentive:

$$\mathbb{E}_i[X] = X$$
 $\mathbb{E}_i[\overline{\mathbb{E}}[X]] = \lambda \mathbb{E}_i[X]$

- Convenient proxy for
 - HOB in incomplete-info settings
 - Level-C Thinking: same essence, but a "bug"
 - Cognitive discounting: same for GE, but adds PE distortion

Friction: Lack of CK / Anchored Beliefs

Assumption: Lack of CK of announcement

Let $X \in \{\tau, Y\}$ be the announcement. Agents are rational and attentive but think only fraction $\lambda \in [0, 1]$ of others is attentive:

$$\mathbb{E}_i[X] = X$$
 $\mathbb{E}_i[\overline{\mathbb{E}}[X]] = \lambda \mathbb{E}_i[X]$

- Convenient proxy for
 - HOB in incomplete-info settings
 - Level-C Thinking: same essence, but a "bug"
 - Cognitive discounting: same for GE, but adds PE distortion
- ► Key shared implication: Anchored Beliefs

$$\overline{\mathbb{E}}[[C] = \frac{\lambda C}{\lambda C}$$

Main Results

1. Friction attenuates power of FG under IC

Angeletos & Lian (AER2018), Farhi & Werning (2018), Gabaix (2018)

1. Friction attenuates power of FG under IC

Angeletos & Lian (AER2018), Farhi & Werning (2018), Gabaix (2018)

2. Friction amplifies power of FG under TC

1. Friction attenuates power of FG under IC

Angeletos & Lian (AER2018), Farhi & Werning (2018), Gabaix (2018)

2. Friction amplifies power of FG under TC

3. Role of GE: As $\gamma \uparrow$, first distortion \uparrow and second \downarrow

1. Friction attenuates power of FG under IC

Angeletos & Lian (AER2018), Farhi & Werning (2018), Gabaix (2018)

- 2. Friction amplifies power of FG under TC
- 3. Role of GE: As γ $\uparrow,$ first distortion \uparrow and second \downarrow
- 4. Optimality: TC \succ IC if and only if γ large enough

$$C = (1 - \gamma)\overline{\mathbb{E}}[\tau] + \gamma\overline{\mathbb{E}}[Y]$$

(reasoned by agents) $C = (1 - \gamma)\overline{\mathbb{E}}[\tau] + \gamma \overline{\mathbb{E}}[Y]$ $C = (1 - \gamma)\overline{\mathbb{E}}[\tau] + \gamma \overline{\mathbb{E}}[Y]$ $C = (1 - \gamma)\overline{\mathbb{E}}[\tau] + \gamma \overline{\mathbb{E}}[Y]$

(reasoned by agents) $= (1 - \alpha)\bar{\mathbb{E}}[\tau] + \alpha\bar{\mathbb{E}}[C]$ $C = (1 - \gamma)\overline{\mathbb{E}}[\tau] + \gamma \overline{\mathbb{E}}[Y]$ $\checkmark = \tau \text{ (fixed by FG)}$ $C = (1 - \delta_{\tau})\tau + \delta_{\tau}\bar{\mathbb{E}}[C]$

 $\alpha \gamma \in (0,1)$

(reasoned by agents) $C = (1 - \gamma)\overline{\mathbb{E}}[\tau] + \gamma \overline{\mathbb{E}}[Y]$ $C = (1 - \gamma)\overline{\mathbb{E}}[\tau] + \gamma \overline{\mathbb{E}}[Y]$ $C = (1 - \delta_{\tau})\tau + \delta_{\tau}\overline{\mathbb{E}}[C]$ $C = (1 - \delta_{\tau})\tau + \delta_{\tau}\overline{\mathbb{E}}[C]$

• Game of **complements**

"I expect less spending and income, so I spend less"

Friction reduces effectiveness of FG
 Stylizes Angeletos & Lian (2018), Farhi & Werning (2018), Gabaix (2018), Garcia-Schmidt & Woodford (2018)

TC: Game after Announcing *Y*

$$C = (1 - \gamma)\overline{\mathbb{E}}[\tau] + \gamma\overline{\mathbb{E}}[Y]$$

TC: Game after Announcing *Y*

(reasoned by agents)

$$C = (1 - \gamma)\overline{\mathbb{E}}[\tau] + \gamma \overline{\mathbb{E}}[Y]$$

$$Y = Y \text{ (fixed by FG)}$$

TC: Game after Announcing *Y*

(reasoned by agents)

$$= \frac{1}{1-\alpha} \overline{\mathbb{E}}[Y] - \frac{\alpha}{1-\alpha} \overline{\mathbb{E}}[C]$$

$$C = (1-\gamma) \overline{\mathbb{E}}[\tau] + \gamma \overline{\mathbb{E}}[Y]$$

$$\hookrightarrow = Y \text{ (fixed by FG)}$$

Game of substitutes

"I expect less spending, so I expect looser policy and spend more"

 Friction increases effectiveness of FG Turns FG literature upside down
Implementability

- ► Friction ≠ "everything is dampened"
- ► TC keeps powder dry

The Role of the GE Feedback

The Role of the GE Feedback

Proposition

 $\partial \mu_{ au}/\partial \gamma > 0 \ \partial \mu_{ extsf{Y}}/\partial \gamma > 0$

Quick intuition

Distortion from reasoning about what is not announced

High $\gamma \rightarrow$ very important to figure out *Y*, not so much τ

as
$$\gamma$$
 (GE) increases \Rightarrow

distortion under IC increases distortion under TC decreases

Main Result

Theorem: optimal communication

There exists a $\hat{\gamma} \in (0,1)$ ("critical GE feedback") such that

- $\gamma < \hat{\gamma}$: optimal to communicate instrument
- $\gamma \geq \hat{\gamma}$: optimal to communicate target

Main Result

Theorem: optimal communication

There exists a $\hat{\gamma} \in (0,1)$ ("critical GE feedback") such that

• $\gamma < \hat{\gamma}$: optimal to communicate instrument

• $\gamma \geq \hat{\gamma}$: optimal to communicate target

Additional results in paper:

precise values of optimal message and attained (τ, Y) variant with Level-k Thinking

Level-k

Application: Forward Guidance at the Zero Lower Bound

Forward Guidance at ZLB

Angeletos & Lian (AER 2018)

- lack of CK attenuates GE effects of FG

– longer horizon \Rightarrow longer GE chains \Rightarrow more distortion

Forward Guidance at ZLB

Angeletos & Lian (AER 2018)

- lack of CK attenuates GE effects of FG

- longer horizon \Rightarrow longer GE chains \Rightarrow more distortion
- ► Farhi & Werning (2018)
 - similar attenuation with Level-k Thinking
 - inco markets \Rightarrow steeper Keynesian cross \Rightarrow more distortion
- See also Garcia & Woodford (2018), Gabaix (2018), Iovino & Sergeyev (2018), Andrade, Gaballo, Mengus & Mojon (2018)

Forward Guidance at ZLB

- Our paper: bypass friction with target communication
 - "stop talking about R, start talking about Y or U"
 - preferable when longer ZLB or steeper Keynesian cross
- Reminiscent of Mario Draghi's "do whatever it takes"
 - relies on strong GE feedback but not multiple equilibria
 - common logic: alleviate concerns about behavior of others

Broader Scope

Generalized Departure from RE

Misspecified beliefs:

 $\bar{\mathbb{E}}[C] = \lambda C + \sigma \epsilon$

where $\lambda,\sigma>$ 0 and ϵ is orthogonal to θ

► Nests:

- under-reaction ($\lambda < 1$): FG literature
- over-reaction $(\lambda > 1)$: Shleifer et al
- noise or animal spirits $(\sigma > 0)$

Generalized Departure from RE

Misspecified beliefs:

 $\bar{\mathbb{E}}[C] = \lambda C + \sigma \epsilon$

where $\lambda,\sigma>$ 0 and ϵ is orthogonal to θ

► Nests:

- under-reaction ($\lambda < 1$): FG literature
- over-reaction $(\lambda > 1)$: Shleifer et al
- noise or animal spirits $(\sigma > 0)$
- Optimal policy result goes through
 - intuition: all about limiting the role of $\overline{\mathbb{E}}[C]$
 - i.e., "more thinking = more distortion" result extends

Policy Rules

Announce a linear rule:

 $\tau = \phi_0 - \phi_y Y$

(e.g., state-contingent "intercept" and "slope" of Taylor rule)

▶ RE $(\lambda = 1) \Rightarrow$ optimal (ϕ_0, ϕ_y) is indeterminate

Policy Rules

Announce a linear rule:

 $\tau = \phi_0 - \phi_y Y$

(e.g., state-contingent "intercept" and "slope" of Taylor rule)

▶ RE $(\lambda = 1) \Rightarrow$ optimal (ϕ_0, ϕ_y) is indeterminate

Optimal rule with bounded rationality ($\lambda < 1$)

- Determinacy: unique optimal $(\phi_0^{\star}, \phi_y^{\star})$
- GE: optimal ϕ_{V}^{*} increases with GE multiplier (γ)
- I.e., smoothed version of earlier result: higher $\gamma \rightarrow$ tilt toward target communication

Conclusion

Take-Home Lessons

How to communicate / manage expectations?

► Tilt focus from R path to u, Y targets when feedback loops are strong

New perspective on Taylor rules

- Traditional: demand vs supply shocks
- ► Here: arrest bounded rationality or nearly self-fulfilling traps

Extend logic from multiple equil (Mario Draghi) to unique equil

▶ large multipliers → HOB critical → "nearly" self-fulfilling →

Supplementary Material

Level-k: Similar but Less Sharp

- ► Instrument comm (games of complements): the same
 - $\bullet\,$ others are less rational $\approx\,$ others are less attentive
- Target comm (games of substitutes): a bug
 - $\bullet\,$ distortion changes sign between even and odd k

Our preferred formulation avoids the bug

- ◀ go back
- Cognitive discounting avoids it too (but confounds PE-GE)

FG: Three GE Feedbacks

- 1. Within Dynamic IS: Keynesian cross
- 2. Within NKPC: dynamic pricing complementarity
- 3. Across: inflation-spending feedback

► All three: intensify with length of ZLB / horizon of FG

FG: Numerical Illustration

• Textbook NK model, with modest friction ($\lambda = .75$)

- Attenuation by 90% when ZLB last 5 years
- Plus, discontinuity at infinite horizons