# Volatility, Valuation Ratios, and Bubbles: An Empirical Measure of Market Sentiment

Can Gao Ian Martin

October, 2019

# Two views of the equity premium

Based on valuation ratios (Campbell and Thompson, RFS, 2008) and on index option prices (Martin, QJE, 2017)



#### Outline

Very roughly, think of *D*/*P* as revealing ℝ*R* − ℝ*G*, and interest rates and option prices as revealing ℝ*R*; then the gap between the two reveals ℝ*G*

Specifically, today:

- Relate dividend yields to expected returns and dividend growth using a twist on the Campbell–Shiller methodology
- ② Introduce a bound on expected returns based on interest rates and option prices
- Output Derive a bound on expected dividend growth by playing off (1) against (2)

# Campbell–Shiller decomposition (1)

Notation: log dividend yield  $dp_t = \log(D_t/P_t)$ ; log return  $r_{t+1}$ ; log dividend growth  $g_{t+1}$ 

• Campbell and Shiller (1988) famously showed that, up to a linearization,

$$dp_t = \frac{k}{1-\rho} + \sum_{i=0}^{\infty} \rho^i \mathbb{E}_t \left[ r_{t+1+i} - g_{t+1+i} \right] \quad \text{where} \quad \rho \approx 0.97$$

- These are expected log returns, not expected returns
- Low expected log returns may be consistent with *high* expected returns if returns are volatile, right-skewed, or fat-tailed
- All three plausibly true in late 1990s, so the distinction between log returns and simple returns matters

# Campbell–Shiller decomposition (2)

$$dp_{t} = \frac{k}{1-\rho} + \sum_{i=0}^{\infty} \rho^{i} \left( r_{t+1+i} - g_{t+1+i} \right) \underbrace{-\frac{\rho(1-\rho)}{2} \sum_{i=0}^{\infty} \rho^{i} \left( dp_{t+1+i} - \overline{dp} \right)^{2}}_{\text{second order term } \approx -0.145 \text{ in late '90s}}$$

- In the late '90s  $dp_t$  was 2.2 sd below its mean (using CRSP data 1947–2017)
- Ignoring the second order term is equivalent to understating  $\mathbb{E}_t r_{t+1+i} g_{t+1+i}$  by 14.5 pp for one year, 3.1 pp for five years, or 1.0 pp for 20 years
  - In long sample, 1871–2015, numbers are even bigger: 25.3 pp for one year, 5.5 pp for five years, 1.8 pp for 20 years, or 1.0 pp for ever
- Thus the CS decomposition may "cry bubble" too soon

# An alternative approach (1)

• Campbell and Shiller loglinearize

$$r_{t+1} - g_{t+1} = dp_t + \log\left(1 + e^{-dp_{t+1}}\right)$$

• We start, instead, from

$$r_{t+1} - g_{t+1} = y_t + \log(1 - e^{-y_t}) - \log(1 - e^{-y_{t+1}})$$

where

$$y_t = \log\left(1 + \frac{D_t}{P_t}\right)$$

•  $y_t$ , unlike  $dp_t$ , is in natural units: if  $D_t/P_t = 2\%$  then  $y_t = 1.98\%$  whereas  $dp_t = -3.91$ 

# An alternative approach (2)

#### Result

We have the loglinearization

$$y_t = (1 - \rho) \sum_{i=0}^{\infty} \rho^i \left( r_{t+1+i} - g_{t+1+i} \right)$$

where  $\rho = e^{-\overline{y}} \approx 0.97$ .

On average, this relationship holds **exactly**—no linearization needed:

$$\overline{y} = \overline{r} - \overline{g}$$

# An alternative approach (3)

• We have already seen that the Campbell–Shiller approximation may lead one to conclude too quickly that the market is bubbly, as

$$dp_t < -\frac{k}{1-\rho} + \sum_{i=0}^{\infty} \rho^i \mathbb{E}_t (r_{t+1+i} - g_{t+1+i})$$

• Our variant is a **conservative** diagnostic for bubbles. If  $y_t$  is far from its mean then

$$y_t \ge (1-\rho) \sum_{i=0}^{\infty} \rho^i \mathbb{E}_t \left( r_{t+1+i} - g_{t+1+i} \right)$$

- Far from its mean: E<sub>t</sub> [(y<sub>t+i</sub> − ȳ)<sup>2</sup>] ≤ (y<sub>t</sub> − ȳ)<sup>2</sup> for all i ≥ 0
  In AR(1) case, "far" means "one standard deviation"

#### Information in valuation ratios (1)

• If  $y_t$  follows an AR(1) with autocorrelation  $\phi_y$ ,

$$\mathbb{E}_t \left( r_{t+1} - g_{t+1} \right) = \text{constant} + \frac{1 - \rho \phi_y}{1 - \rho} y_t$$

- In the unit root case  $\phi_y = 1$ , we have  $y_t = \mathbb{E}_t (r_{t+1} g_{t+1})$
- So we use  $y_t$  to forecast  $r_{t+1} g_{t+1}$
- We estimate the regression freely, but results are almost identical if we estimate  $\rho$  and  $\phi_y$  from time series, then use the formula above
- AR(1) is not critical: key is that we have a forecast of  $\mathbb{E}_t y_{t+1}$ . Will show AR(*k*) later

# Information in valuation ratios (2)

| RHS <sub>t</sub> | LHS <sub>t+1</sub>  | $\widehat{a_0}$ | s.e.    | $\widehat{a_1}$ | s.e.    | $R^2$  |
|------------------|---------------------|-----------------|---------|-----------------|---------|--------|
| y <sub>t</sub>   | $r_{t+1} - g_{t+1}$ | -0.067          | [0.049] | 3.415           | [1.317] | 7.73%  |
|                  | $r_{t+1}$           | -0.018          | [0.050] | 3.713           | [1.215] | 10.51% |
|                  | $-g_{t+1}$          | -0.049          | [0.028] | -0.298          | [0.812] | 0.32%  |
| $dp_t$           | $r_{t+1} - g_{t+1}$ | 0.417           | [0.146] | 0.107           | [0.042] | 7.58%  |
|                  | $r_{t+1}$           | 0.500           | [0.138] | 0.114           | [0.041] | 9.92%  |
|                  | $-g_{t+1}$          | -0.083          | [0.085] | -0.007          | [0.024] | 0.19%  |

Table: S&P 500, annual data, 1947–2017, dividends reinvested monthly at CRSP 30-day T-bill rate. Hansen–Hodrick standard errors.

● Relative importance of *r* and *g* is sample specific: *g* more important in long sample.
 But coefficient estimates for *r* − *g* are stable

# Information in options (1)

• We start from an identity

$$\mathbb{E}_{t} r_{t+1} = \frac{1}{R_{f,t+1}} \mathbb{E}_{t}^{*} \left( R_{t+1} r_{t+1} \right) - \frac{\operatorname{cov}_{t} \left( M_{t+1} R_{t+1}, r_{t+1} \right)}{R_{t+1} R_{t+1} R_{t+1}$$

- $M_{t+1}$  is an SDF. Risk-neutral  $\mathbb{E}_t^*$  satisfies  $\frac{1}{R_{t+1}} \mathbb{E}_t^* (X_{t+1}) = \mathbb{E}_t (M_{t+1}X_{t+1})$
- We assume that  $\operatorname{cov}_t(M_{t+1}R_{t+1}, r_{t+1}) \leq 0$ 
  - Similar to the negative correlation condition of Martin (2017)
  - Loosely, requires that investors are sufficiently risk-averse wrt  $R_{t+1}$
  - Holds in Campbell–Cochrane (1999), Bansal–Yaron (2004), Barro (2006), Wachter (2013), Bansal et al. (2014), Campbell et al. (2016), ...
- We then have

$$\mathbb{E}_t r_{t+1} \ge \frac{1}{R_{f,t+1}} \mathbb{E}_t^* (R_{t+1} r_{t+1})$$

## Information in options (2)

$$\mathbb{E}_t r_{t+1} \geq \frac{1}{R_{f,t+1}} \mathbb{E}_t^* (R_{t+1}r_{t+1})$$

- Doesn't require that the market is complete
- Doesn't require any distributional assumptions (eg lognormality)
- Allows for the presence of constrained and/or irrational investors
- Holds with equality for a log investor who chooses to hold the market
- This investor's perspective works well empirically for forecasting
  - ▶ the market as a whole (Martin, *QJE*, 2017)
  - individual stocks (Martin and Wagner, JF, 2019)
  - currencies (Kremens and Martin, AER, 2019)

# Information in options (3)



• Using the result of Breeden and Litzenberger (1978), we show

$$\frac{1}{R_{f,t+1}} \mathbb{E}_t^* \left( R_{t+1} r_{t+1} \right) = r_{f,t+1} + \underbrace{\frac{1}{P_t} \left\{ \int_0^{F_t} \frac{\operatorname{put}_t(K)}{K} \, dK + \int_{F_t}^\infty \frac{\operatorname{call}_t(K)}{K} \, dK \right\}}_{\operatorname{IVIX}_t}$$

- This gives the lower bound  $\mathbb{E}_t r_{t+1} r_{f,t+1} \ge \text{LVIX}_t$
- Bootstrapped *p*-value for the mean of  $r_{t+1} r_{f,t+1} \text{LVIX}_t$  being *negative* is 0.097

#### A sentiment index

• Putting the pieces together,

$$\mathbb{E}_{t} g_{t+1} = \mathbb{E}_{t} \left( r_{t+1} - r_{f,t+1} \right) + r_{f,t+1} - \mathbb{E}_{t} \left( r_{t+1} - g_{t+1} \right) \\ \geq \underbrace{\text{LVIX}_{t} + r_{f,t+1} - \mathbb{E}_{t} \left( r_{t+1} - g_{t+1} \right)}_{B_{t}}$$

• We replace  $\mathbb{E}_t (r_{t+1} - g_{t+1})$  by the forecast based on  $y_t$ :

$$B_t = IVIX_t + r_{f,t+1} - (\widehat{a}_0 + \widehat{a}_1 y_t)$$

with  $\hat{a}_0$  and  $\hat{a}_1$  calculated on a rolling basis so  $B_t$  is observed at t

- The bound  $\mathbb{E}_t g_{t+1} \ge B_t$  relies on two key assumptions:
  - ► the modified NCC
  - $\blacktriangleright$  a stable statistical relationship between valuation ratios and r g

#### The sentiment index



The three components of the sentiment index,  $B_t$ 



# Allowing $y_t$ to follow an AR(k)



#### Sentiment index vs. detrended volume (1)



#### Sentiment index vs. detrended volume (2)



Figure: Correlation between  $B_{t+k}$  and detrended volume at time *t*.

#### Sentiment index vs. crash probability index (1)



Figure:  $B_t$  and crash probability (Martin, 2017)

Gao & Martin (Imperial College & LSE)

Volatility, Valuation Ratios, and Bubbles

#### Sentiment index vs. crash probability index (2)



Figure: Correlation between  $B_{t+k}$  and crash probability at time *t*.

#### Conclusion

- Volatility and valuation ratios have long been linked to bubbles
- We use some theory to make the link quantitative
- We have tried to make choices in a conservative way to avoid "crying bubble" prematurely, and/or overfitting
- Signature of a bubble: valuation ratios, volatility, and interest rates are simultaneously high