# Price Trends over the Product Life Cycle and the Optimal Inflation Target<sup>1</sup>

Klaus Adam University of Oxford

Henning Weber Deutsche Bundesbank

September 2019

<sup>1</sup>The opinions expressed in this presentation are those of the authors and do not necessarily reflect the views of the Deutsche Bundesbank or the Eurosystem.  $\Rightarrow$ 

Adam & Weber

#### • Estimate optimal inflation target

- Estimation approach: estimate optimal target from micro price data
- Micro price data U.K. Office of National Statistics (ONS) : 2.8%

#### • Estimate optimal inflation target

- Estimation approach: estimate optimal target from micro price data
- Micro price data U.K. Office of National Statistics (ONS) : 2.8%
- Optimal inflation: minimizes relative price & mark-up distortions in SS

#### • Estimate optimal inflation target

- Estimation approach: estimate optimal target from micro price data
- Micro price data U.K. Office of National Statistics (ONS) : 2.8%
- Optimal inflation: minimizes relative price & mark-up distortions in SS
- Why positive optimal inflation target?

Product turnover & price trends over product life

• Modern economies: very high rate of product turnover....

...but monetary literature ignored product life cycle

(only other paper appears to be Argente and Yeh (2018))

• Modern economies: very high rate of product turnover....

...but monetary literature ignored product life cycle

(only other paper appears to be Argente and Yeh (2018))

#### Document new 'stylized fact' for UK data

Over the product life cycle:

Relative product prices decline with product age

• Modern economies: very high rate of product turnover....

...but monetary literature ignored product life cycle

(only other paper appears to be Argente and Yeh (2018))

#### Document new 'stylized fact' for UK data

Over the product life cycle:

Relative product prices decline with product age

• This observation has important normative implications:

Positive inflation target optimal!



## Intuition: Sticky Prices



Product price



Optimal increase of average price:

inverse of the decrease in relative price on previous slides

Adam & Weber

• Many different relative price trends in the data:

Need a model to tell us how to optimally trade-off mark-up & relative price distortions across goods

• Many different relative price trends in the data:

Need a model to tell us how to optimally trade-off mark-up & relative price distortions across goods

- Construct sticky price model with a **product life-cycle**:
  - features rich amounts of heterogeneity
  - captures key features of micro price behavior
  - aggregation in closed-form & analytic expression for optimal target

Modell tells us 2 important things:

#### • Relative price trends in the data:

- identify rel. price trends under flex prices: a fundamental!
- rel. price trends invariant to MP & price stickiness (generate only level istortions!)

Modell tells us 2 important things:

#### • Relative price trends in the data:

- identify rel. price trends under flex prices: a fundamental!
- rel. price trends invariant to MP & price stickiness (generate only level istortions!)

#### • Optimal inflation rate:

- complicated nonlinear weighted av. of inverse relative price trends
- to first order:

expenditure-weighted average of inverse relative price trends

=> can be easily estimated from micro price data

- New Stylized Fact
- Key Elements of the Price Setting Model
- Optimal Inflation Target: Theory
- Optimal Inflation Target: Estimation Results

#### **1** New Stylized Fact

- Key Elements of the Price Setting Model
- Optimal Inflation Target: Theory
- Optimal Inflation Target: Estimation Results

• UK CPI micro price data: 1996-2016

æ

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

### Stylized Facts

- UK CPI micro price data: 1996-2016
- Relative price trends over the product life:

$$\ln \frac{\widetilde{P}_{jzt}}{P_{zt}} = f_{jz} + \ln (b_z) \cdot s_{jzt} + u_{jzt}$$

### Stylized Facts

- UK CPI micro price data: 1996-2016
- Relative price trends over the product life:

$$\ln \frac{\widetilde{P}_{jzt}}{P_{zt}} = f_{jz} + \ln (b_z) \cdot s_{jzt} + u_{jzt}$$

Without product entry/exit: b<sub>z</sub> = 0
 With entry/exit: b<sub>z</sub> ≥ 0

## Stylized Facts

- UK CPI micro price data: 1996-2016
- Relative price trends over the product life:

$$\ln \frac{\widetilde{P}_{jzt}}{P_{zt}} = f_{jz} + \ln (b_z) \cdot s_{jzt} + u_{jzt}$$

- Without product entry/exit: b<sub>z</sub> = 0
   With entry/exit: b<sub>z</sub> ≥ 0
- Linear trends only

### Stylized Facts: Relative Price Trends



## Stylized Facts: Relative Price Trends

| Division Description               | Relative Price     | Exp. Weight | Number        |
|------------------------------------|--------------------|-------------|---------------|
|                                    | Trend              | in 2016     | of Items      |
|                                    | (in $\%$ per year) | (in %)      | (full sample) |
| Food & Non-Alcoholic Beverages     | -1.00              | 18.07       | 282           |
| Alcoholic Beverages & Tobacco      | -0.41              | 8.03        | 66            |
| Clothing & Footwear                | -9.36              | 11.92       | 149           |
| Housing, Water, Electricity & Gas  | -0.83              | 0.75        | 38            |
| Furniture, Equipment & Maintenance | -1.67              | 9.98        | 146           |
| Health                             | -0.73              | 3.82        | 26            |
| Transport                          | -0.79              | 6.99        | 41            |
| Communications                     | -6.97              | 0.11        | 7             |
| Recreation & Culture               | -3.98              | 9.44        | 157           |
| Restaurants & Hotels               | -0.36              | 18.82       | 79            |
| Miscellaneous Goods & Services     | -1.68              | 12.54       | 90            |

Notes: The number of items does not sum to 1093 because not all items are assigned to a division.

### Other Dimensions of Heterogeneity



September 2019 14 / 50

New Stylized Facts

#### **@** Key Elements of the Price Setting Model

- Optimal Inflation Target: Theory
- Optimal Inflation Target: Estimation Results

• Generalization of sticky price model in Adam & Weber (2019)

- Generalization of sticky price model in Adam & Weber (2019)
- Multiple expenditure items with
  - different relative price trends
  - different product entry/exit rates
  - different degrees of price stickiness
  - different idiosyncratic quality/productivity dispersion

- Generalization of sticky price model in Adam & Weber (2019)
- Multiple expenditure items with
  - different relative price trends
  - different product entry/exit rates
  - different degrees of price stickiness
  - different idiosyncratic quality/productivity dispersion
- Monetary policy faces a trade-off (unlike in earlier work):

impossible to implement efficient relative prices optimal policy trades off price & mark-up distortions across exp. items

- Generalization of sticky price model in Adam & Weber (2019)
- Multiple expenditure items with
  - different relative price trends
  - different product entry/exit rates
  - different degrees of price stickiness
  - different idiosyncratic quality/productivity dispersion
- Monetary policy faces a trade-off (unlike in earlier work):

impossible to implement efficient relative prices optimal policy trades off price & mark-up distortions across exp. items

 Aggregation in closed form & analytic expressions for optimal inflation target

• Representative consumer, growth-consistent preferences

$$E_0 \sum_{t=0}^{\infty} \beta^t \left( \frac{\left[ C_t V(L_t) \right]^{1-\sigma} - 1}{1-\sigma} \right),$$

• Representative consumer, growth-consistent preferences

$$E_0 \sum_{t=0}^{\infty} \beta^t \left( \frac{\left[ C_t V(L_t) \right]^{1-\sigma} - 1}{1-\sigma} \right),$$

•  $Z_t$  expenditure items with expenditure weight  $\psi_{zt}$  :

$$C_t = \prod_{z=1}^{Z_t} (C_{zt})^{\psi_{zt}}$$
 , with  $\sum_{z=1}^{Z_t} \psi_{zt} = 1$ 

• Representative consumer, growth-consistent preferences

$$E_0 \sum_{t=0}^{\infty} \beta^t \left( \frac{\left[ C_t V(L_t) \right]^{1-\sigma} - 1}{1-\sigma} \right),$$

•  $Z_t$  expenditure items with expenditure weight  $\psi_{zt}$  :

$$C_t = \prod_{z=1}^{Z_t} (C_{zt})^{\psi_{zt}}$$
 , with  $\sum_{z=1}^{Z_t} \psi_{zt} = 1$ 

• Expenditure items are a Dixit-Stiglitz aggregate of individual goods

$$\mathcal{C}_{zt} = \left(\int_{0}^{1} \left( \mathbf{Q}_{jzt} \, \widetilde{\mathcal{C}}_{jzt} 
ight)^{rac{ heta-1}{ heta}} \mathsf{dj} 
ight)^{rac{ heta}{ heta-1}}$$
 ,

 $Q_{jzt}$ : quality of product *j* in item *z* at time *t*.  $\widetilde{C}_{jzt}$ : physical or not quality-adjusted units

Adam & Weber

- Two levels at which turnover takes place in the economy
  - Item level: items exit/new items enter/expenditure weights change
     Example: CD-players drop out, get replaced by flash-drive devices
     Slow process: theory takes items as constant
  - Product level: constant entry and exit of products
     Example: particular flash-drive model exits, a new model enters
     Fast process: theory has exogenous product turnover

Model features 2 types of flexible fundamental dynamics:

- Quality growth dynamics: evolution of quality of new products
- Productivity growth dynamics: evolution of productivity over time

Quality & productivity dynamics item-specific : generate item-specific relative price trends!

### Price Setting Model: Quality Dynamics

#### **Product quality dynamics (in item** *z***):**

• For product *j* entering in time *t*:



### Price Setting Model: Quality Dynamics

#### Product quality dynamics (in item z):

• For product *j* entering in time *t*:



• Following entry: product quality constant over product lifetime

### Price Setting Model: Quality Dynamics

#### Product quality dynamics (in item z):

• For product *j* entering in time *t*:



- Following entry: product quality constant over product lifetime
- The common time-trend evolves according to

$$Q_{zt} = \mathbf{q}_{z} Q_{zt-1}$$

where

 $q_z$ : mean quality growth for products in item z  $\Rightarrow$  causes opt. rel. price to rise over prod. life
# Price Setting Model: Productivity Dynamics

• Output of product *j* in item *z* (in physical units):

$$\widetilde{Y}_{jzt} = \underbrace{A_{zt}}_{General \ TFP} \cdot \underbrace{G_{jzt}}_{Product-specific \ TFP} \cdot \left(K_{zjt}\right)^{1-\frac{1}{\phi}} \left(L_{zjt}\right)^{\frac{1}{\phi}}$$

# Price Setting Model: Productivity Dynamics

• Output of product *j* in item *z* (in physical units):



General TFP:

 $A_{zt} = a_z A_{zt-1}$ 

# Price Setting Model: Productivity Dynamics

• Output of product *j* in item *z* (in physical units):



General TFP:

$$A_{zt} = a_z A_{zt-1}$$

- Product specific TFP:
  - at time of product entry: random draw  $G_{izt} \sim iiG_z$
  - experience accumulation over the product life:

$$G_{jzt} = \mathbf{g}_{z} G_{jzt-1}$$

### $g_z$ : mean experience prod. growth for products in item z $\Rightarrow$ causes rel. prices to fall over prod. life

Adam & Weber

- Model with Calvo-type price setting frictions at the product level
  - At time of product entry: firms can freely choose product price
  - Subsequently: *item-specific* stickiness  $\alpha_z \in [0, 1)$
- Abstract from temporary/sales prices in presentation

# Price Setting Model: Quality-Adjusted Prices

• Quality-adjusted product price

$$P_{jzt} = rac{\widetilde{P}_{jzt}}{Q_{izt}}$$

 $\widetilde{P}_{jzt}$ : price per physical unit

• In line with ONS, quality-adjusted price indices

Item Price Index : 
$$P_{zt} = \left(\int_{0}^{1} \left(\frac{\widetilde{P}_{jzt}}{Q_{jzt}}\right)^{1-\theta} dj\right)^{\frac{1}{1-\theta}}$$
  
General Price Index :  $P_t = \prod_{z=1}^{Z_t} (P_{zt})^{\psi_{zt}}$ 

• Optimal inflation target is for the quality-adjusted price index!

| Adam & ' | V | Ve | еb | er |
|----------|---|----|----|----|
|----------|---|----|----|----|

- Key Elements of the Price Setting Model
- **2** Optimal Inflation Target: Theory
- The U.K. Micro Price Data
- Optimal Inflation Target: Estimation Results

Aggregation 'almost' like in the plain-vanilla NK model:

$$y = \left(\frac{\rho(\Pi)}{\Delta^{e}}\right) \left(k^{1-\frac{1}{\phi}}L^{\frac{1}{\phi}}\right)$$

$$c\left(-\frac{\partial V(L)/\partial L}{V(L)}\right) = \frac{1}{\mu(\Pi)}\frac{1}{\Delta^{e}}\left(\frac{k}{L}\right)^{1-\frac{1}{\phi}}\left(\frac{1}{\phi}\right)$$

$$\frac{1}{\beta(\gamma^{e})^{-\sigma}} - 1 + d = \frac{1}{\mu(\Pi)}\frac{1}{\Delta^{e}}\left(\frac{k}{L}\right)^{-\frac{1}{\phi}}\left(1 - \frac{1}{\phi}\right)$$

$$y = c + (\gamma^{e} - 1 + d)k.$$

 $ho(\Pi) \leq 1$ : aggregate relative price distortion  $\mu(\Pi)$ : aggregate mark-up distortion

Only place where heterogeneity & inflation enter:  $\rho(\Pi)$  &  $\mu(\Pi)$ 

# Steady-State Aggregation

Aggregate mark-up distortion:

$$\mu(\Pi) = \prod_{z=1}^Z \mu_z(\Pi)^{\psi_z}$$
 ,

where

$$\begin{split} \mu_z(\Pi) &\equiv \left(\frac{1}{1+\tau}\frac{\theta}{\theta-1}\right) M_z \\ &\cdot \left(\frac{1-\alpha_z(1-\delta_z)\beta(\gamma^e)^{1-\sigma}[(\gamma^e/\gamma^e_z)\,\Pi]^{\theta-1}}{1-\alpha_z(1-\delta_z)\beta(\gamma^e)^{1-\sigma}[(\gamma^e/\gamma^e_z)\,\Pi]^{\theta}(g_z/q_z)^{-1}}\right), \end{split}$$

for all  $z = 1, \ldots Z$ , with

$$M_z \equiv \left(\frac{1-\alpha_z(1-\delta_z)[(\gamma^e/\gamma_z^e)\Pi]^{\theta-1}}{1-\alpha_z(1-\delta_z)(g_z/q_z)^{\theta-1}}\right)^{\frac{1}{\theta-1}}$$

3

•

Image: Image:

Aggregate relative price distortion:

$$(\rho(\Pi)\mu(\Pi))^{-1} = \sum_{z=1}^{Z} \psi_{z}(\mu_{z}(\Pi)\rho_{z}(\Pi))^{-1},$$

where for all  $z=1,\ldots Z$  the item-level relative price distortions  $\rho_z(\Pi)$  are given by

$$\rho_{z}(\Pi)^{-1} = M_{z}^{\theta} \left( \frac{1 - \alpha_{z}(1 - \delta_{z})(g_{z}/q_{z})^{\theta - 1}}{1 - \alpha_{z}(1 - \delta_{z})[(\gamma^{e}/\gamma^{e}_{z})\Pi]^{\theta}(g_{z}/q_{z})^{-1}} \right)$$

#### Theorem

Consider the limit  $\beta(\gamma)^{1-\sigma} \to 1$ . The welfare maximizing steady state inflation rate is

$$\Pi^{\star} = \sum_{z=1}^{Z} \omega_{z} \left( \frac{g_{z}}{q_{z}} \frac{\gamma_{z}}{\gamma} \right), \qquad (1)$$

where  $\gamma_z/\gamma = a_z q_z/\prod_{z=1}^Z (a_z q_z)^{\psi_z}$  and the weights  $\omega_z \ge 0$  are given by

$$\begin{split} \omega_{z} &= \frac{\omega_{z}}{\sum_{z=1}^{Z} \tilde{\omega}_{z}}, \text{ where} \\ \tilde{\omega}_{z} &= \frac{\psi_{z} \theta \alpha_{z} (1 - \delta_{z}) (\gamma / \gamma_{z} \Pi^{\star})^{\theta} (q_{z} / g_{z})}{\left[1 - \alpha_{z} (1 - \delta_{z}) (\frac{\gamma}{\gamma_{z}} \Pi^{\star})^{\theta} (\frac{q_{z}}{g_{z}})\right] \left[1 - \alpha_{z} (1 - \delta_{z}) (\frac{\gamma}{\gamma_{z}} \Pi^{\star})^{\theta - 1}\right]}. \end{split}$$

|▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○ ○

$$\Pi^{\star} = \sum_{z=1}^{Z} \omega_{z} \left( \frac{g_{z}}{q_{z}} \frac{\gamma_{z}}{\gamma} \right)$$

 g<sub>z</sub> / q<sub>z</sub>: rate at which rel. prices fall over product life with flexible prices!

$$\Pi^{\star} = \sum_{z=1}^{Z} \omega_{z} \left( \frac{g_{z}}{q_{z}} \frac{\gamma_{z}}{\gamma} \right)$$

- g<sub>z</sub> / q<sub>z</sub>: rate at which rel. prices fall over product life with flexible prices!
- How to identify  $g_z/q_z$ ? How to get at weights  $\omega_z$ ?

### Corollary

To a first-order approximation, we have

$$\Pi^* = \sum_{z=1}^{Z} \psi_z \left( \frac{g_z \gamma_z}{q_z \gamma} \right).$$
(2)

• To first order:

Can use ONS expenditure weights  $\psi_z$ !

### Corollary

To a first-order approximation, we have

$$\Pi^* = \sum_{z=1}^{Z} \psi_z \left( \frac{g_z \gamma_z}{q_z \gamma} \right).$$
(2)

• To first order:

Can use ONS expenditure weights  $\psi_z$ !

• Remains to identify  $g_z/q_z$ 

#### Proposition

Consider a stochastic equilibrium with a (possibly suboptimal but) stationary inflation rate. In price adjustment periods, the optimal reset price  $P_{jzt}^*$  satisfies

$$\ln \frac{P_{jzt}^{\star}}{P_{zt}} = c_{jz} - \ln \left(\frac{g_z}{q_z}\right) \cdot s_{jzt} + e_{jzt}$$

 $s_{jzt}$  : age of product j in item z

*c<sub>jz</sub>* : *product-item-specific intercept* 

#### **Economic insight:**

- trend in relative reset prices  $(g_z/q_z)$  is the trend under flexible prices!
- sticky prices lead only to *temporary deviations* from the relative price trend under flexible prices
- Not special to the Calvo setup & equally true for menu-cost models: sS-bands limit price deviation from flex-price trend

# **Optimal Inflation Rate**

• Can estimate the relative price trend using

$$\ln \frac{P_{jzt}}{P_{zt}} = c_{jz} - \ln \frac{g_z}{q_z} \cdot s_{jzt} + \varepsilon_{jzt}$$

 $\varepsilon_{jzt}$ : idiosyncratic effects of price stickiness & aggr. shocks

• Can estimate the relative price trend using

$$\ln \frac{P_{jzt}}{P_{zt}} = c_{jz} - \ln \frac{g_z}{q_z} \cdot s_{jzt} + \varepsilon_{jzt}$$

 $\varepsilon_{jzt}$  : idiosyncratic effects of price stickiness & aggr. shocks

• Estimate one trend  $\frac{g_z}{q_z}$  for each item z, then aggregate according to

$$\Pi^* = \sum_{z=1}^{Z} \psi_z \left( \frac{g_z \gamma_z}{q_z \gamma} \right)$$

• Can estimate the relative price trend using

$$\ln \frac{P_{jzt}}{P_{zt}} = c_{jz} - \ln \frac{g_z}{q_z} \cdot s_{jzt} + \varepsilon_{jzt}$$

 $\varepsilon_{jzt}$  : idiosyncratic effects of price stickiness & aggr. shocks

• Estimate one trend  $\frac{g_z}{q_z}$  for each item z, then aggregate according to

$$\Pi^* = \sum_{z=1}^{Z} \psi_z \left( \frac{g_z \gamma_z}{q_z \gamma} \right)$$

• Use ONS item composition & weights at any time t

• Can estimate the relative price trend using

$$\ln \frac{P_{jzt}}{P_{zt}} = c_{jz} - \ln \frac{g_z}{q_z} \cdot s_{jzt} + \varepsilon_{jzt}$$

 $\varepsilon_{jzt}$  : idiosyncratic effects of price stickiness & aggr. shocks

• Estimate one trend  $\frac{g_z}{q_z}$  for each item z, then aggregate according to

$$\Pi^* = \sum_{z=1}^{Z} \psi_z \left( \frac{g_z \gamma_z}{q_z \gamma} \right)$$

• Use ONS item composition & weights at any time t

• Get (slowly) time-varying inflation target  $\Pi^*$ as items (slowly) change

Adam & Weber

- Key Elements of the Price Setting Model
- Optimal Inflation Target: Theory
- The U.K. Micro Price Data
- **Optimal Inflation Target: Estimation Results**

### Benchmark Results - All Prices in Estimation



## All Prices vs. Only Reset Prices in Estimation



Beginning versus end of sample distributions:



## Source of the Upward Trend



Dynamic Olley-Pakes Decomp. according to Melitz and Polanec (RAND, 2015)

Adam & Weber

| Optimal Target Septemb | er 2019 | 38 |
|------------------------|---------|----|
|------------------------|---------|----|

æ

# Optimal Inflation: AlternativeTreatment of Sales Prices



PG: Baseline - no filter; SFD: Prices with ONS sales flag deleted; NSA/NSB: Nakamura-Steinsson (2008) sales filter version A/B; REG: Kehoe and Midrigan (2015) regular prices ; RGF: regular prices with only sales prices filtered, following Kryvstov and Vincent (2017).

Adam & Weber

September 2019 39 / 50

- Construct sticky price model with product life-cycle & lots of heterogeneity
- Analytically solve for the optimal inflation target
- Estimate optimal inflation target directly from micro price trends
- Key insight: relative price trends at the product level determine optimal inflation
- U.K.: optimal target 1996: 1.4%  $\implies$  2016: 2.6%

• Further details on the micro price data & price setting frictions

- 20 years of ONS micro price data: Feb. 1996 Dec. 2016
- Monthly data with approx. 29m price observations
- Not all products uniquely identified: ONS does *not* disclose complete location information
- Eliminate not uniquely identified price quotes: leaves 24.5m prices
- Some price quotes considered "invalid" by ONS for other reasons: leaves 22.8 million observations
- Split product price series at ONS substitutions flags or at observation gaps to insure we follow the same product over time

Table: Basic Data Statistics

| # price quotes in raw data                | 28.995.064 |
|-------------------------------------------|------------|
| # items                                   | 1233       |
| # regions                                 | 13         |
| # shop codes                              | 2770       |
| <pre># product identifiers</pre>          | 736078     |
| # price quotes excluding duplicate quotes | 24.525.632 |
| <pre># product identifiers</pre>          | 687212     |
| # price quotes excluding invalid quotes   | 22.825.052 |
| <pre># product identifiers</pre>          | 682747     |
| # price quotes in replicated items        | 21.215.430 |
| <pre># product identifiers</pre>          | 613031     |

3

### Replication check:

- aggregate individual prices to item indices using ONS methodology
- compare our item indices to ONS indices
- Correlations with ONS index generally high: >0.95 for vast majority of items
- Omission of "duplicate prices" sometimes drives a wedge
- Use only items for which RMSE between our index and ONS index is below 0.02:  $\approx$  93% of valid price quotes
- Work with 21.2m price observations as our base sample

## U.K. Micro Price Data



| Adam & W | ve | b | eı |
|----------|----|---|----|
|----------|----|---|----|

Table: Descriptive Statistics For Replicated Items

| Number of items        | 1093    |  |
|------------------------|---------|--|
| Number of Price Quotes |         |  |
| Minimum across items   | 253     |  |
| Median across items    | 15458   |  |
| Mean across item       | 19410.3 |  |
| Maximum across items   | 81840   |  |
| Number of Products     |         |  |
| Minimum across items   | 32      |  |
| Median across items    | 470     |  |
| Mean across item       | 560.9   |  |
| Maximum across items   | 2080    |  |

## U.K. Micro Price Data





• Calvo price stickiness: ajdustment fequency  $\alpha_z \in (0, 1)$  for item z

• Optimal (quality-adjusted) reset price  $P_{izt}^{\star}$ :

$$\frac{P_{jzt}^{\star}}{P_{zt}}\left(\frac{Q_{jzt-s_{jt}}G_{jzt}}{Q_{zt}}\right) = \left(\frac{\theta}{\theta-1}\frac{1}{1+\tau}\right)\frac{N_{zt}}{D_{zt}}\frac{P_t}{P_{zt}},$$
(3)

 $N_{zt}$ ,  $D_{zt}$  are discounted expected marginal revenues and costs.

# Price Setting Model: Optimal Reset Price

### • We have

$$N_{zt} = \frac{MC_t}{P_t A_{zt} Q_{zt}} + E_t \frac{\alpha_z (1 - \delta_z) \Omega_{t,t+1} Y_{zt+1}}{Y_{zt}} \left(\frac{P_{zt+1}}{P_{zt}}\right)^{\theta} \frac{q_{zt+1}}{g_{zt+1}} N_{zt+1}$$
$$D_{zt} = 1 + \alpha_z (1 - \delta_z) E_t \frac{\Omega_{t,t+1} Y_{zt+1}}{Y_{zt}} \frac{P_t}{P_{t+1}} \left(\frac{P_{zt+1}}{P_{zt}}\right)^{\theta} D_{zt+1}.$$

 $MC_t$ : nominal marginal costs of production  $\Omega_{t,t+1}$ : stochastic discount factor  $Y_{zt}$ : item-level output (in constant quality units), defined as:

$$Y_{zt} = \left(\int_0^1 \left(Q_{jzt}\,\widetilde{Y}_{jzt}\right)^{\frac{\theta-1}{\theta}}\,\mathrm{d}j\right)^{\frac{\theta}{\theta-1}}$$