Credit Booms, Financial Crises and Macroprudential Policy

Mark Gertler, Nobuhiro Kiyotaki, Andrea Prestipino

December 2018

What We Do

• We develop a model of banking panics in which:

- 1. Banking crises are usually preceded by credit booms
- 2. Credit booms often do not result in crises, i.e. good booms
- We study Macroprudential regulation in this model:
 - How does Macroprudential policy weigh the benefits of preventing a crisis against the costs of stopping a good boom?
 - What are the effects of macroprudential policy and the features of optimal regulation?
 - Unintended consequences of regulation; Countercyclical buffers

Banking Crises in the Data (Schularick and Taylor)

Framework

- Endowment economy version of GKP (2018)
- Focus on how beliefs driven fluctuations can reproduce key empirical properties of banking crises in the data:
 - Boom bust cycles in credit
 - Unpredictability of crises
- Macroprudential regulation

Model Overview

- Capital is fixed $K_t = K = 1$ (normalized to unity)
- (K_t^b) intermediated by banks; (K_t^h) directly held by households :

$$1 = K_t^h + K_t^b$$

Households direct finance entails a quadratic deadweight loss

$$\frac{\alpha}{2}\left(\kappa_{t}^{h}\right)^{2}$$

Resource constraint is:

$$Y_t = Z_t - \frac{\alpha}{2} \left(K_t^h \right)^2 = C_t$$

where Z_t is an exogenous productivity shock

Marginal Rates of Return on Capital

 $Q_t \equiv$ price of capital

Intermediated capital

$$R_{t+1}^b = rac{Z_{t+1} + Q_{t+1}}{Q_t}$$

Directly held

$$R_{t+1}^h = \frac{1}{1 + \alpha \frac{\kappa_t^h}{Q_t}} R_{t+1}^b$$

i.e. increasing marginal cost of direct finance

Household and Bank Intermediation

NO BANK RUN EQUILIBRIUM

Bankers

Objective

$$V_t = E_t \Lambda_{t,t+1} [(1-\sigma)n_{t+1} + \sigma V_{t+1}]$$

Net worth n_t accumulated via retained earnings - no new equity issues

$$n_{t+1} = R_{t+1}^b Q_t k_t^b - \overline{R}_t d_t \quad \text{if no run} \\ = 0 \quad \text{if run}$$

Balance sheet

$$Q_t k_t^b = d_t + n_t$$

Deposit Contract

$$\overline{R}_t \equiv$$
 deposit rate; $R_{t+1} \equiv$ return on deposits
 $p_t \equiv$ run probability; $x_{t+1} < 1 \equiv$ recovery rate

Deposit contract: (One period)

$$R_{t+1} = \begin{cases} \overline{R}_t \text{ with prob. } 1 - p_t \\ x_{t+1}\overline{R}_t \text{ with prob. } p_t \end{cases}$$

Limits to Bank Arbitrage

- Moral Hazard Problem:
 - After banker borrows funds at t, it may divert fraction θ of assets for personal use.
 - If bank does not honor its debt, creditors can
 - recover the residual funds and
 - shut the bank down.

 $\blacktriangleright \Rightarrow \text{Incentive constraint (IC)}$

 $\theta Q_t k_t^b \leq V_t$

Solution

- ▶ Can show $V_t = \psi_t n_t$ with $\psi_t \ge 1$ and independent of n_t
- Combine with $IC \rightarrow$ endogenous capital requirement :

$$\kappa_t \equiv \frac{n_t}{Q_t k_t^b} \ge \frac{\theta}{\psi_t}$$

Note:

- ▶ ψ_t countercyclical → market capital requirements relaxed in bad times
- $n_t \leq 0 \Rightarrow$ bank cannot operate (key for run equilbria)

Bank Runs

- Self-fulfilling "bank run" equilibrium (i.e. rollover crisis) possible if:
 - A depositor believes that if other households do not roll over their deposits, the depositor will lose money by rolling over.
 - Condition met iff banks' net worth n_t goes to zero during a run
 - $n_t = 0 \rightarrow \text{ banks cannot operate}$

Conditions for Bank Run Equilibrium (BRE)

• Run equilibrium exists at t + 1 if

$$\left(Q_{t+1}^* + Z_{t+1}\right) K_t^b < D_t \bar{R}_t \tag{1}$$

where $Q_{t+1}^* \equiv$ is the liquidation price:

$$Q_t^* = E_t \{ \Lambda_{t,t+1} (Z_{t+1} + Q_{t+1}) - \alpha K_t^h \}$$

evaluated at
$$K^h_t=1$$

▶ $\iota_{t+1} \equiv$ sunpot variable; if $\iota_{t+1} = 1$ depositors panic when run possible

• Run occurs if (i) equation (1) is satisfied and (ii) $\iota_{t+1} = 1$

Run Probability p_t

- Assume sunspot occurs with probability \varkappa .
- ightarrow The time t probability of a run at t+1 is

$$p_t = \Pr_t \{ Z_{t+1} < Z_{t+1}^R \} \cdot \varkappa$$

• Z_{t+1}^R is the threshold value below which a run is possible

$$Q_{t+1}^*\left(Z_{t+1}^R\right) + Z_{t+1}^R = \frac{D_t \bar{R}_t}{K_t^b}$$

 \rightarrow Higher leverage ratios $\frac{D_t \bar{R}_t}{K_t^b}$ increase run probability

Run Equilibrium

Run Equilibrium

Run After a Negative 2 std Shock

Boom leading to the bust: news driven optimism

Productivity:

$$Z_{t+1} = \rho Z_t + \epsilon_{t+1}$$

- Normally, $E{\epsilon_{t+1}} = 0$
- Occasionally, bankers receive news about future productivity
- If news at t, bankers learn that unusually large realization ϵ_{t^B} of size B > 0 will happen at $t^B \in \{t + 1, ..., t + T\}$ with prob. $\overline{P}_0^B < 1$
- $\Pr_t \{ t^B = t + i \}$ is a truncated Normal (discrete approx.)
- Agents update \Pr_{t+i} and \overline{P}_{t+i}^B by observing ϵ_{t+i}

▶ Prob. at t + i of shock at t + i + 1 is $\Pr_t \{ t^B = t + i + 1 \} \cdot \overline{P}^B_{t+i}$

Beliefs Driven Credit Boom

Boom Leading to a bust

False Alarms

Unpredictability of Crises: Data and Model

- Macroprudential regulator sets time varying capital requirement $\bar{\kappa}_t$
- Equilibrium capital ratios are

$$\kappa_t = \max\left\{\bar{\kappa}_t, \kappa_t^m\right\}$$

where $\kappa_t^m = \frac{\theta}{\psi_t}$ are the market imposed capital ratios

We restrict policy to be deteremined by simple rule

$$\bar{\kappa}_t = \begin{cases} \bar{\kappa} & \text{if } N_t \ge \bar{N} \\ 0 & \text{if } N_t < \bar{N} \end{cases}$$

• We look for $(\bar{\kappa}, \bar{N})$ that maximize welfare

Avoiding a Run with Regulation

- Regulated - - Unregulated

Responding to False Alarms: No Sunspot Observed

Regulated - - Unregulated

Effect of Regulation

	Unregulated Economy $(\bar{\kappa} = 0; \ \bar{N} = 0)$	Optimal Regulation $(\bar{\kappa} = .13; \ \bar{N} = .85 * N_{SS}^{DE})$	Fixed Capital Requirements $(\bar{\kappa} = .13; \ \bar{N} = 0)$
Run Frequency	.8 pct	.45 pct	.3 pct
AVG Output Cond. No Run (Δ from Decentralized Economy)	0	4 pct	-1.7 pct
$\begin{array}{c} \textbf{AVG Output} \\ (\boldsymbol{\Delta} \ from \ Decentralized \ Economy) \end{array}$	0	.1 pct	9 pct
Welfare Gain (Δ Permanent Consumption)	0	.16 pct	-1.16 pct

Recovery From a Run

Conclusion

- Develop model of banking panics that captures boom-bust cycles and unpredictability of runs
- Study macroprudential policy
- Future work
 - Ex-post intervention
 - Regulated and Unregulated Banks
 - Multiple assets