Monetary Policy for a Bubbly World

Vladimir Asriyan CREI

CRFL

Luca Fornaro Alberto Martin Jaume Ventura ECB and CREI

CREI

・ロト ・回ト ・ヨト ・

December 18, 2018

AFMV ()

Introduction

- We live in a *bubbly world*, which we define to be an environment with:
 - Iow interest rates
 - frequent boom-busts in asset prices (Japan, US, Eurozone)
- What is the role of monetary policy?
- This paper: focus on salient feature of recent crises
 - Liquidity traps and expansion of central bank balance sheets
 - Markets turned to central banks for stores of value
 - ► Fivefold expansion of monetary base in US and Eurozone
- Emphasize role of money as a store of value (as opposed to unit of account)
 - Can central banks provide stores of value?
 - Should they do so?
 - How should they react to bubbles?

(日)

The view: ingredients

- Productive and unproductive agents:
 - Entrepreneurs issue assets to invest
 - Savers demand assets as stores of value
- Financial frictions limit supply of "backed" assets
 - i.e., backed by future output (non-bubbly)
- And they open the door for unbacked assets
 - ▶ i.e., supported only by the expectation of their future value (bubbly)
- Effects of unbacked assets:
 - Wealth effect: cheap to produce, provide rents to originator
 - Overhang effect: displace capital accumulation

Image: A math a math

The view: implications

- Two types of unbacked assets:
 - Private: "bubbles"
 - \star Wealth effect accrues to private sector \Longrightarrow fuel investment
 - Value driven by market psychology (unstable)
 - Public: "money"
 - ★ Rent of creation accrues to central bank \implies how is seigniorage used?
 - ★ Value under control of central bank (stable)
 - Both have overhang effects
- Crucial role of monetary policy: stand ready to supply assets
 - Markets generically fail to supply the right amount of unbacked assets
 - Monetary policy can intervene: manage and stabilize total supply
 - Monetary policy should intervene: characterize constrained optimal policy
- Crucial role *despite* restrictive assumptions on central bank
 - No fiscal backing, limited use of seigniorage, unable to affect market psychology

Related literature

- Traditional view on rational bubbles and money as store of value
 - ► Samuelson (1958), Tirole (1985), Wallace (1981)
- New view on rational bubbles and financial frictions
 - Caballero and Krishnamurthy (2006), Farhi and Tirole (2010), Martin and Ventura (2011, 2015, 2016), Galí (2014, 2016), Dong, Miao and Wang (2016)
- Financial accelerator
 - Bernanke and Gertler (1989), Kiyotaki and Moore (1997)
- Liquidity traps
 - Krugman (1998), Eggertson and Woodford (2003), Werning (2011), Eggertson and Mehrotra (2014), Buera and Nicolini (2014), Benigno and Fornaro (2015)

Preferences and Technology

- Two-period OLG structure
- Preferences: continuum of agents that maximize $U_t^i = E_t^i C_{t+1}^i$,
- Technology: $F(K_t, L_t) = K_t^{\alpha} \cdot (\gamma^t \cdot L_t)^{1-\alpha}, \ (\gamma \ge 1)$
 - Young endowed with one unit of labor; competitive factor markets
 - Capital produced with consumption goods and depreciates fully
- Agent types:
 - Entrepreneurs (ε): invest in capital, sell assets in markets
 - Savers $(1 \varepsilon v)$: do not invest in capital, purchase assets in markets
 - ▶ Money holders (v): do not invest in capital, do not participate in asset markets

Private assets

- Issued by entrepreneurs, purchased by savers
- Backed assets: debts collateralized by capital, subject to intermediation costs
 - Each unit of credit is backed by $(1+\phi)^{-1}$ units of capital
 - R_{t+1}^{K} : marginal product of capital
 - Return: $\frac{R_{t+1}^{K}}{1+\phi}$ (determined by technology, marginal product)
- Unbacked assets: non-collateralized debts, not subject to intermediation costs
 - B_t: value of old or pre-existing bubbly assets
 - N_t : value of newly created bubbly assets
 - Return: $\frac{B_{t+1}}{B_t + N_t}$ (determined by expectations, capital gain)

・ロト ・屈 ト ・ 三 ト ・ 三 ・ つくの

Money

- Issued by central bank and distributed to old, purchased by money holders and savers
- Let M_t and $\mu_t \ge 1$ denote the real value and (gross) growth rate of money

$$\begin{array}{l} & \displaystyle \frac{M_t}{\mu_t}: \text{ value of old or pre-existing money} \\ & \displaystyle \frac{\mu_t - 1}{\mu_t} \cdot M_t: \text{ value of newly created money (seigniorage), distributed to old} \end{array}$$

• Return:
$$\pi_{t+1}^{-1} = \mu_{t+1}^{-1} \cdot \frac{M_{t+1}}{M_t}$$

- Why hold money?
 - (Small) demand by money holders
 - Savers demand it as store of value if return sufficiently high: liquidity trap!

イロト 不得下 イヨト イヨト

Equilibrium

• Law of motion of unbacked assets (as share of wages):

$$m_t = \max\left\{v, \frac{1-\alpha}{\alpha} \cdot [1+\phi \cdot (\varepsilon+n_t) - m_t - b_t] \cdot E_t\left\{\frac{m_{t+1}}{\mu_{t+1}}\right\}\right\}$$
$$b_t + n_t = \frac{1-\alpha}{\alpha} \cdot [1+\phi \cdot (\varepsilon+n_t) - m_t - b_t] \cdot E_t\left\{b_{t+1}\right\}$$

- Value of unbacked assets today is tomorrow's value discounted (capital gain)
- Value of money is bounded below by demand from money holders
- Sources of uncertainty: asset price and monetary policy shocks

A D N A P N A B N A

Equilibrium

• Law of motion of capital stock and consumption (detrended):

$$\begin{split} \gamma \cdot k_{t+1} &= \frac{1 + \phi \cdot (\varepsilon + n_t) - m_t - b_t}{1 + \phi} \cdot (1 - \alpha) \cdot k_t^{\alpha} \\ c_t &= [\alpha + (1 - \alpha) \cdot (m_t + b_t)] \cdot k_t^{\alpha} \end{split}$$

- Recursive structure:
 - First, for the evolution of unbacked assets m_t , b_t , n_t
 - Second, solve for the capital stock k_t
 - Third, solve for consumption c_t
- From now on: focus on $v \approx 0$

Image: A math a math

Equilibrium: non-bubbly world

• If
$$\frac{\alpha}{1-\alpha} \ge \max\left\{1+\phi\cdot\varepsilon, \frac{1}{4}\cdot\frac{1+\phi}{1-\varepsilon}\right\}$$
, world is non-bubbly

- In all comppetitive equilibria: $\{b_t, n_t, m_t\} = \{0, 0, 0\}$ for all t and h^t .
- Monetary policy irrelevant
- Supply of backed assets/interest rate is high: no demand for unbacked assets!

Image: A math a math

Equilibrium: bubbly world

• If
$$\frac{\alpha}{1-\alpha} < \max\left\{1 + \phi \cdot \varepsilon, \frac{1}{4} \cdot \frac{1+\phi}{1-\varepsilon}\right\}$$
, world is bubbly

- Multiple equilibria with different paths of b_t , n_t and m_t .
- Monetary policy potentially important
- Supply of backed assets / interest rate is low: demand for unbacked assets!
- We focus throughout on bubbly world

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

- Equilibrium depends on market psychology and monetary policy
- Focus on family of market psychologies:
 - Initial value b_0 and sequence of shocks $s_t = \{u_t, n_t\}$ for all t and h^t :
 - * Bubble-return shocks: $u_{t+1} \equiv \frac{b_{t+1}}{E_t b_{t+1}} 1$
 - ★ Bubble-creation shocks: $n_t \ge 0$
 - Shocks follow a Markov chain on a finite state space S, with constant transition probabilities.
- Procedure:
 - First: select feasible market psychology, i.e., $k_t \ge 0$, $b_t \ge 0$ for all t and h^t .
 - Second: select feasible monetary policy, given market psychology.

・ロト ・日下・ ・ ヨト・

・ロト ・回ト ・ヨト

・ロト ・回ト ・ ヨト

What can the central bank do? Laissez-faire

• If central bank does not supply unbacked assets:

 $m_t \approx 0$

• This requires $E_t \mu_{t+1}^{-1}$ to be low, so that credit dominates money

Thus, the economy is outside the liquidity trap!

- Two effects of bubbles:
 - Overhang effect: old bubbles divert resources away from investment
 - Wealth effect: new bubbles lower costs of intermediation

Running example 1: bubble return shocks

Running example 2: bubble creation shocks

イロン イロン イヨン イヨ

What can the central bank do? Intervention

• Are there feasible policies that manage the supply of stores of value?

- $n_t = intragenerational transfers$
- $x_t \equiv b_t + m_t = \text{intergenerational transfers}$
- $\{k_t, c_t\}$ depend on $\{n_t, x_t\}$:

$$egin{aligned} \gamma \cdot k_{t+1} &= rac{1 + \phi \cdot (arepsilon + n_t) - \mathsf{x}_t}{1 + \phi} \cdot (1 - lpha) \cdot k_t^lpha \ c_t &= [lpha + (1 - lpha) \cdot \mathsf{x}_t] \cdot k_t^lpha \end{aligned}$$

Answer: yes! Central bank can fully stabilize x!

A D > A B > A B >

Running example 1: bubble return shocks

Running example 2: bubble creation shocks

(ロ) (回) (三) (三)

What should the central bank do?

• Objective:

- We construct a boundary function $\Omega: (x_t, n_t) \mapsto \mathbb{R}$ such that:
 - * Allocations are Pareto efficient if $x_t \ge \Omega(x_t, n_t)$ for all h^t and $t \ge t_0$
 - * Allocations are Pareto inefficient if $x_t < \Omega(x_t, n_t)$ for all h^t and $t \ge t_0$
- Intuition:
 - As usual: stores of value eliminate inefficient investment
 - Novelty: inefficient investment depends on financial friction (ϕ) and market psychology (n)

(日)

Pareto Frontier

< □ > < □ > < 三

Constrained optimal policy

• Define
$$x^* = \Omega\left(x^*, ar{n}
ight)$$
, where $ar{n} = \max_s n_s$

• Consider constrained optimal policy: central bank sets

$$x_{t} = \begin{cases} v + b_{L} & \text{if } x^{*} < v + b_{L} \\ x^{*} & \text{if } x^{*} \in [v + b_{L}, v + b_{H}] \\ v + b_{H} & \text{if } x^{*} > v + b_{H} \end{cases}$$

- This policy stabilizes asset supply at Pareto optimal level, *unless it is not feasible.*
 - Stabilizes the economy
 - Raises consumption
 - Reduces capital by crowding out inefficient investment

Image: A math a math

Extensions

- Fiscal backing:
 - ▶ Not needed to stabilize x, but stabilization may require volatile inflation
 - * If inflation volatility costly, fiscal backing may be important
- Distribution of seigniorage:
 - What if CB could distribute seigniorage to entrepreneurs?
 - Monetary policy, like bubbles, has an expansionary wealth effect: even more powerful!
 - Paradoxically, may lead to multiple equilibria on money: loss of control by monetary policy
- Effect on market psychology:
 - What if central bank moves before market sets its psychology?
 - Possible for monetary policy to rule out certain equilibria

イロト 不得下 イヨト イヨト

Key takeaways

- Bubbly world: scarcity of backed assets fosters demand for unbacked assets
- Key role for monetary policy: stand ready to supply assets!
 - Emphasis on money as a store of value
- Crucial: net provision of assets by central bank
 - ▶ Gross provision (i.e., balance sheet expansion) irrelevant per se
 - No need for fiscal backing
- Open questions: interaction between money as store of value and unit of account

()