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Abstract
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1 Introduction

This paper is about two stylized facts of macroeconomic time series: co-movements and non-
stationarity (Lippi and Reichlin, 1994a). More precisely, this paper is about disentangling
long-run co-movements (common trends) from short-run co-movements (common cycles) in a
large dataset of non-stationary US macroeconomic indicators.

Since the seminal work of Beveridge and Nelson (1981), the issue of decomposing GDP
into a trend and a cycle has been a central question in both time series econometrics and
policy analysis. This is not surprising, as long-run trends are mainly influenced by supply-side
factors, while short-run cycles are mainly associated with demand-side factors, and therefore
different estimates of the trend and of the cycle can lead to different policy recommendations.
Given the relevance of the issue, in the last 30 years, many papers have suggested different
ways to obtain a Trend-Cycle (TC) decomposition of GDP. Roughly speaking, those works
can be grouped under two main approaches: one based on univariate methods (e.g. Watson,
1986; Lippi and Reichlin, 1994b; Morley, Nelson, and Zivot, 2003; Dungey, Jacobs, Tian,
and Van Norden, 2015), and another using multivariate, but low-dimensional, time series
techniques (e.g. Stock and Watson, 1988; Lippi and Reichlin, 1994a; Gonzalo and Granger,
1995; Garratt, Robertson, and Wright, 2006; Creal, Koopman, and Zivot, 2010).

In this paper we use a novel approach to decompose GDP into a trend and cycle based
on large datasets. We first disentangle common and idiosyncratic dynamics by using a Non-
Stationary Approximate Dynamic Factor Model (DFM), and then we disentangle common
trends from common cycles by applying a non-parametric TC decomposition to the latent
common factors. Our methodology builds on four points: first, focusing on a high-dimensional
setting is crucial, as only in a high-dimensional setting it is possible to disentangle common
from idiosyncratic dynamics in a consistent way (Forni, Hallin, Lippi, and Reichlin, 2000; Bai
and Ng, 2002; Stock and Watson, 2002) — i.e., we can separate macroeconomic fluctuations
from sectoral dynamics and measurement error only in a high-dimensional setting. Second,
assuming the existence of a factor structure is a realistic and convenient way to represent
co-movements in large macroeconomic datasets. Third, considering non-stationary data is
necessary to account for the presence of common trends or, equivalently, cointegration (Bai,
2004; Bai and Ng, 2004; Barigozzi, Lippi, and Luciani, 2016a,b). And fourth, by using a
non-parametric TC decomposition we do not have to make assumptions on the law of motion
of either the trend, or the cycle. Our approach is deliberately reduced form, and therefore
our empirical analysis is conducted “without pretending to have too much a priori economic
theory” (Sargent and Sims, 1977), thus letting the data speak as freely as possible.

The first contribution of this paper is methodological. Namely, we propose a Quasi Maxi-
mum Likelihood estimator of the non-stationary DFM based on the Expectation Maximisation
(EM) algorithm combined with the Kalman Filter and the Kalman Smoother estimators of
the factors. The theoretical properties of this approach in the large stationary DFM case have
been studied in Doz, Giannone, and Reichlin (2011, 2012), and here we extend their results to
the non-stationary case by proving consistency and by providing rates of convergence for the
factors and the parameters of the model. Compared to the non-stationary principal compo-
nent estimator (Bai and Ng, 2004), the estimator proposed in this paper is more efficient, and
it is more flexible in that, thanks to the use of the Kalman Filter, it allows us to explicitly
model the idiosyncratic dynamics, and to impose economically meaningful restrictions.

The second contribution of this paper is to show how to isolate common trends and common
cycles in large macroeconomic datasets. In detail, we use a non-parametric approach that
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identifies the common trends as those linear combinations of the factors obtained by the leading
eigenvectors of the long-run covariance matrix (Bai, 2004; Peña and Poncela, 2006), and the
common cycles as deviations from the long-run equilibria, which coincide with the space
orthogonal to that of the common trends — i.e., the cointegration space (Zhang, Robinson,
and Yao, 2016). Because our approach is non-parametric, we are not imposing any particular
form to the trend, which is not constrained to be a random walk, or to the cycle. This is
what differentiates our approach from the standard state-space, which normally is applied on
a handful of variables and where the trend and the cycle dynamics are explicitly specified and
jointly estimated with the parameters of the model (Harvey, 1990).

Our final contributions are empirical. Specifically, we employ our methodology to analyse a
large panel of US quarterly macroeconomic time series with the goal of estimating the cyclical
position of the economy and the observation error. With the expression “estimating the obser-
vation error,” we mean estimating aggregate real output. With the expression “estimating the
cyclical position of the economy,” we mean decomposing aggregate real output into potential
output and output gap. To the best of our knowledge, Fleischman and Roberts (2011) and
Aruoba, Diebold, Nalewaik, Schorfheide, and Song (2016) are the only works that, so far, have
used (small) factor models to estimate aggregate real output. On the other hand, a few pa-
pers have used low-dimensional factor models to estimate the cyclical position of the economy
(e.g. Fleischman and Roberts, 2011; Jarociński and Lenza, 2016), and a few more to estimate
long-run trends (e.g. Antolin-Diaz, Drechsel, and Petrella, 2016). Finally, Aastveit and Trovik
(2014) and Morley and Wong (2017) have used a high-dimensional setting for estimating the
output gap by means of a factor model and a large Bayesian VAR, respectively. However, in
both works the variables are transformed to stationarity prior to model estimation.

The first part of our empirical analysis is about estimating aggregate real output, to which
we refer as Gross Domestic Output (GDO). We first show that our model naturally produces
an estimate of GDO as that part of GDP/GDI that is driven by the macroeconomic (common)
shocks. We then compare our estimate of GDO with “the average of GDP and GDI” released by
the Bureau of Economic Analysis, and with “GDPplus” proposed by Aruoba et al. (2016) and
released by the Philadelphia Fed. Our results show that these three measures are very similar,
which is not surprising, as they are attempting to estimate the same thing. However, we
estimate that since 2010 quarterly annualized GDO growth was on average 1⁄2 of a percentage
point higher than estimated by the BEA or the Philadelphia Fed, thus pointing out that —
based on the commonality in the data — the US economy grew at a faster pace than measured
by national account statistics.

The second part of our empirical analysis is about estimating the output gap. To this
end, we use the above-mentioned TC decomposition in order to separate long-run from short-
run co-movements, and in particular we focus on the decomposition derived for GDO. We
compare our estimate with the one produced by the Congressional Budget Office (CBO),
which estimates potential output as that level of output consistent with current technologies
and normal utilisation of capital and labour, and the output gap as the residual part of output.
Although these two estimates are obtained in completely different ways, in practice they look
very similar. The two estimates are comparable for most of the sample considered, but from
the late nineties to the financial crisis, when our measure suggests that a greater part of the
produced output was driven by transitory factors. In particular, according to our estimate
between 2001:Q1 and 2005:Q4 the output gap was on average 21⁄2 percentage points higher
than estimated by the CBO.

The rest of this paper is structured as follows. In Section 2 we discuss representation of large
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non-stationary panels of time series. In this section we first present the non-stationary dynamic
factor model, and we define the concepts of commonality — i.e., the common factors. Then
we discuss how to disentangle long-run co-movements from short-run co-movements — i.e., we
define what common trends and common cycles are. In Section 3 we discuss estimation. We
first introduce in Section 3.1 the static representation of the DFM, which is just a convenient
way to approach estimation of the dynamic model presented in Section 2. We then present in
Section 3.2 our estimator, we discuss its properties, and we compare it with existing methods.
Finally, in Section 3.3 we present the non-parametric TC decomposition that we use in the
empirical section. Then, Section 4 presents the empirical analysis. This section is split in
two, with the first part presenting our estimate of GDO (Section 4.1), and the second part
presenting our estimate of the output gap (Section 4.2). To conclude, in Section 5 we discuss
our findings and the advantages and limitations of our methodology, and we propose directions
for further research. In the Appendix we report all technical proofs and the description of the
data used and their transformation.

Notation

A vector zt is I(1) if the higher-order of integration among all its components is 1, thus under
this definition some components of zt can be stationary. Eigenvalues are always considered
as ordered from the largest to the smallest, so for a given set of eigenvalues {µj}mj=1, we have
µ1 ≥ µ2 ≥ . . . ≥ µm−1 ≥ µm. Therefore, the spectral norm of A is defined as ‖A‖2 = µA

′A
1 .

The j-th largest eigenvalue of a spectral density matrix at frequency ω is denoted as µj(ω).
The generic (i, j)-th entry of a matrix A is denoted as [A]ij . We denote by L the lag operator,
such that Lkyt = yt−k, for any k ∈ Z and we use the notation ∆yt := (1 − L)yt. Finally, we
letM,M0,M1 . . . denote generic positive and finite constants that do not depend on the panel
dimensions n or T , and whose value may change from line to line.

2 Representation of non-stationary panels of time series

Let us assume to observe a vector of n time series {yt = (y1t · · · ynt)′ : t = 1, . . . , T} such that

yit = Dit + xit, (1)

where Dit is a deterministic component — e.g., a linear trend — and xt = (x1t · · ·xnt)′ is such
that xt ∼ I(1). We also assume that E[xit] = 0, for any i and t, therefore, xt contains all the
stochastic trends but no deterministic component. Throughout, the spectral density matrix
of ∆xt is assumed to exist.

In a high-dimensional setting, it is reasonable to assume that there are common trends
and common cycles, but also idiosyncratic terms. Thus, for each variable xit we write

xit = Tit + Cit + ξit, (2)

where Tit ∼ I(1) is the trend component, Cit ∼ I(0) is the cycle component, and ξit is
the idiosyncratic component, which is allowed to be either I(1) (in presence of idiosyncratic
trends) or I(0) (e.g. measurement errors). The trend and the cycle are capturing the common
dynamics across series, and thus constitute the common component defined as χit = Tit + Cit.
Hence, (2) is also written as

xit = χit + ξit. (3)
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We define the vectors of common and idiosyncratic components as χt = (χ1t · · ·χnt)′ and
ξt = (ξ1t · · · ξnt)′, respectively. Finally, notice that consistently with the data considered in
this paper: (i) some (but not all) components of xt are allowed to be stationary, and (ii)
the deterministic components Dit are not common to all series — i.e., there are no common
deterministic trends.

We assume that the co-movements in χt are driven by q “structural” shocks, with q � n,
which are collected in a weak white noise vector process ut = (u1t · · ·uqt)′. Then, for a given
q, we decompose each element of xt as

xit = b′i(L)ft + ξit, (4)
∆ft = C(L)ut, (5)

where from (3) the common component is given by χit = b′i(L)ft and the following properties
hold:

A1. ut
w.n.∼ (0q, Iq), with q is independent of n;

A2. E[ujtξis] = 0, for any j = 1, . . . q, i = 1, . . . , n, and s, t = 1, . . . , T ;

A3. B(L) = (b′1(L) · · · b′n(L))′ is an n×q one-sided, matrix polynomial matrix of finite order
s, ft ∼ I(1) of dimension q;

A4. C(L) = (c′1(L) · · · c′q(L))′ is a q × q one-sided, infinite matrix polynomial with square-
summable coefficients and such that rk(C(1)) = (q − d) with 0 < d < q;

A5. the q-th largest eigenvalue µ∆χ
q (ω) of the spectral density matrix of ∆χt is such that

M1 ≤ liminf
n→∞

n−1µ∆χ
q (ω) ≤ limsup

n→∞
n−1µ∆χ

q (ω) ≤M2, ω-a.e. ∈ [−π, π],

while the largest eigenvalue µ∆ξ
1 (ω) of the spectral density matrix of ∆ξt is such that

M3 ≤ liminf
n→∞

µ∆ξ
1 (ω) ≤ limsup

n→∞
µ∆ξ

1 (ω) ≤M4, ω-a.e. ∈ [−π, π].

Equations (4) and (5) together with properties A1-A5 define a Non-Stationary Approximate
Dynamic Factor Model (DFM). In the case of stationary time series our model is a special
case of the Generalised Dynamic Factor Model originally proposed by Forni et al. (2000).

Condition A5 is crucial and it allows for identification of the common component by
defining it according to its spectral properties. An explanation for A5 in the time domain is
provided by Hallin and Lippi (2013) who show that this condition is equivalent to defining
the common and idiosyncratic component by asking that for any dynamic aggregation scheme
given by an n-dimensional vector of weights ak such that

∑
k∈Z a′kak = 1, the following holds

0 < lim
n→∞

Var

(
1

n

∞∑
k=−∞

a′k∆χt−k

)
≤M and lim

n→∞
Var

(
1

n

∞∑
k=−∞

a′k∆ξt−k

)
= 0. (6)

The following asymptotic conditions for the eigenvalues µi(ω) of the spectral density of
∆xt are a direct consequence of A4, A5, and Weyl’s inequality:
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B1. for ω-a.e. ∈ [−π, π] the following holds:
M1 ≤ lim infn→∞ n

−1µq(ω) ≤ lim supn→∞ n
−1µq(ω) ≤M2,

M3 ≤ lim infn→∞ µq+1(ω) ≤ lim supn→∞ µq+1(ω) ≤M4;

B2. for ω = 0 the following holds:
M1 ≤ lim infn→∞ n

−1µq−d(0) ≤ lim supn→∞ n
−1µq−d(0) ≤M2,

M3 ≤ lim infn→∞ µq−d+1(0) ≤ lim supn→∞ µq−d+1(0) ≤M4.

By means of B1 the number of shocks q can then be identified (Hallin and Liška, 2007, Onatski,
2009). Similarly, by means of B2 the number of common trends, (q − d), can be identified
(Barigozzi et al., 2016b). In particular, from the intuition given in (6) and because of B1 and
B2, it is clear that the DFM is identifiable only in the limit n→∞.

Condition A4 allows for the presence of (q − d) common trends in the factors ft. In line
with our empirical results in Section 4 we rule out the degenerate cases d = 0 or d = q. This
implies that the vector ft admits a VECM representation with d cointegration relations (Engle
and Granger, 1987), as well as the factor representation (Escribano and Peña, 1994):

ft = Ψτt + γt, (7)

where Ψ is q×(q−d) and τt is the vector of (q−d) common trends with components τjt ∼ I(1)
for j = 1, . . . , (q−d), while γt is a q-dimensional stationary vector.1 Notice that (7) is different
from the common trends representation (or multivariate Beveridge-Nelson decomposition) of
Stock and Watson (1988) in that the trend τt is not constrained to be a vector random walk,
a property advocated for by many authors (e.g. Lippi and Reichlin, 1994a).

For a given choice of Ψ, the (q−d) common trends can then be obtained by linear projection
onto the space spanned by the columns of Ψ:

τt = (Ψ′Ψ)−1Ψ′ft = Ψ′ft.

where the second equality holds because, without loss of generality, we can always assume the
identifying constraint Ψ′Ψ = I(q−d).

Different choices of Ψ lead to different definitions of common trends. Here we opt for
a non-parametric approach and we identify the elements of τt as the first (q − d) principal
components of ft, as proposed by Bai (2004) and Peña and Poncela (2006) (see Section 3.3 for
details on estimation). Given this definition, the columns of Ψ are orthonormal and therefore
there exists a q × d matrix Ψ⊥ such that Ψ′⊥Ψ⊥ = Id and Ψ′⊥Ψ = 0d×(q−d). Now, consider
the d-dimensional process obtained by projecting ft onto the space orthogonal to the common
trends

ct = (Ψ′⊥Ψ⊥)−1Ψ′⊥ft = Ψ′⊥ft = Ψ′⊥γt.

It is straightforward to see that ct ∼ I(0), that its components are d common cycles in the
sense of Vahid and Engle (1993), and that the columns of Ψ⊥ are a basis of the cointegration
space of ft, thus these common cycles represent deviations from long-run equilibria — see also
e.g. Johansen (1991) and Kasa (1992) for similar definitions.2

1Notice that in general all factors are non-stationary, unless some ad hoc zero-constraint is imposed on
the elements of C(1). On the other hand if we were to ask for one of the factors to be stationary then the
corresponding row of Ψ must be set to zero. However, we do not consider this case further since it could easily
be included in our framework by imposing the appropriate identifying assumptions.

2Other TC decompositions based on a different definitions of cycles than the one used here are in Gonzalo
and Granger (1995) and Gonzalo and Ng (2001).
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According to our definition, common trends and common cycles are orthogonal by con-
struction, and we have the TC decomposition of the factors:

ft = ΨΨ′ft + Ψ⊥Ψ′⊥ft = Ψτt + Ψ⊥ct, (8)

and therefore, by combining (1), (4) and (8), we have the TC decomposition of the data:

yit = Dit + b′i(L)Ψτt + b′i(L)Ψ⊥ct + ξit = Dit + Tit + Cit + ξit. (9)

3 Estimation

In order to estimate (9), we need to estimate the factors, ft and their TC decomposition. We
opt for a two-step approach, where we first extract the common factors and then we estimate
their TC decomposition. In particular, we first introduce a convenient re-parametrization of
the DFM based on its static state-space representation (Section 3.1), which is then used for
retrieving the factors space by means of the EM algorithm (Section 3.2). Then, in a second
step we use principal component analysis for extracting common trends and cycles (Section
3.3). Notice that compared to the classical state-space approach (e.g. Fleischman and Roberts,
2011) or from the Bayesian approach (e.g. Jarociński and Lenza, 2016) in which the trend and
the cycle are estimated in one-step together with the parameters of the models, our approach
has the advantage that it does not require us to specify a law of motion for the trend and the
cycles.

For simplicity of exposition we assume in this section that there is no deterministic com-
ponent and we refer to Section 4 and to Appendix D for the treatment of these terms in
practice.

3.1 The static representation of dynamic factor models

Consider the state-space form of the DFM in (4)-(5) (Stock and Watson, 2005; Forni, Gian-
none, Lippi, and Reichlin, 2009):

xit = λ′iFt + ξit, (10)
∆Ft = D(L)ut, (11)

where from (3) the common component is now given by χit = λ′iFt and ut is the same as in
(5). We assume that A1, A2 and A5 still hold and in addition we require:

C1. D(L) = (d′1(L) · · ·d′r(L))′ is an r× q one-sided, infinite matrix polynomial with square-
summable coefficients and such that rk(D(1)) = (q − d) with 0 < d < q;

C2. Λ = (λ1 · · ·λn)′ is an n× r loadings matrix such that limn→∞ ‖n−1Λ′Λ− Ir‖ = 0 and
|[Λ]ij | < M , for any i = 1, . . . , n and j = 1, . . . , r;

C3. Ft ∼ I(1) of dimension r, with E[∆Ft∆F′t] positive definite.

Condition C1 is equivalent to A4 in that it requires the existence of (q − d) common trends
driving the common component. Conditions C2 and C3 are standard in the literature and
imply that the eigenvalues of the covariance of ∆χt diverge as n → ∞ at a rate n (Stock
and Watson, 2002; Bai and Ng, 2002; Fan, Liao, and Mincheva, 2013). Finally, from A5 we
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immediately have that the largest eigenvalue of the covariance of ∆ξt is finite for any n. Given
the way Ft and ft are loaded by the data, hereafter we call Ft static factors and ft dynamic
factors.

Let us stress once more the fact that here the DFM and the related TC decomposition
are our focus, while the static representation is just a convenient way to approach estimation
of the dynamic model. In particular, for (10)-(11) to be equivalent to (4)-(5) we need the
following restrictions to hold:

R1. there exists an invertible r × r matrix K such that Ft = K(f ′t · · ·f ′t−s)′ and λ′i =
(b′i0 · · · b′is)K−1, for any i = 1, . . . , n, where bik, for k = 0, . . . , s, are the coefficients of
bi(L) defined in A3;

R2. the dimension of Ft is r = q(s+ 1);

R3. the cointegration rank of Ft is d.

Let us consider each restriction in detail. Restriction R1 implies that the spectral density of
∆Ft has reduced rank q. In the following, we impose this restriction when estimating the
model but we do not attempt to identify K.

Restriction R2 offers an alternative way to determine r with respect to the typical methods
available in the literature based on the behavior of the eigenvalues of the covariance matrix
of ∆xt and therefore on C2, C3, and A5 (e.g. Bai and Ng, 2002). Specifically, by virtue
of restriction R2, once we set q using B1, we can choose r such that the share of variance
explained by the static factors Ft coincides with the share of variance explained by the q
dynamic factors ft — see also D’Agostino and Giannone (2012).

Finally, restriction R3 tells us that the autoregressive representation for (11) is a VECM
with d cointegration relations (a proof is in Appendix A). Moreover, since the vector Ft is
singular, the autoregressive representation has a finite order (Barigozzi et al., 2016a). However,
in the next section we do not estimate a VECM, rather we estimate an unrestricted VAR in
the levels (Sims, Stock, and Watson, 1990). We use the knowledge of the cointegration rank
to determine the dimension of the common cycles space (see Section 3.3).

Summing up, by not fully imposing R1 and R3 when estimating the factors, we opt for
simplicity of estimation versus complexity of a more realistic representation, which implies
that the model considered is deliberately mis-specified. The effects of such mis-specification
will appear clear in Section 3.3, when we consider TC decompositions of Ft as opposed to
those of ft.

3.2 Estimating the space of factors and loadings

We consider the following state-space form of (10)-(11) in which we assume a VAR(2) for the
static factors as in the empirical analysis of Section 4:

xit = λ′iFt + ξit, (12)
Ft = A1Ft−1 + A2Ft−2 + Hut, (13)
ξit = ρiξit−1 + eit. (14)

We estimate (12)-(14) via the EM algorithm (Dempster, Laird, and Rubin, 1977), combined
with the Kalman Filter (KF) and the Kalman Smoother (KS) estimators of the factors (An-
derson and Moore, 1979; Harvey, 1990). In the stationary, low-dimensional — i.e., finite n —
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setting, estimation of a factor model by means of the EM algorithm can be found in Shumway
and Stoffer (1982) and Watson and Engle (1983), while the asymptotic properties of this fac-
tors’ estimator are studied by Doz et al. (2011, 2012) under the joint limit n, T → ∞.3 In
the non-stationary case, applications of the EM algorithm can be found in Quah and Sargent
(1993) and Seong, Ahn, and Zadrozny (2013) in a low-dimensional setting. Here, we study
the theoretical properties in the non-stationary case when n, T →∞.

In order to run the KF-KS it is necessary to make some additional assumptions on the
idiosyncratic component. Let R be the covariance matrix of the vector et = (e1t · · · ent)′ of
the idiosyncratic innovations in (14), then we assume:

D1. ρi = 1 if ξit ∼ I(1) or ρi = 0 if ξit ∼ I(0);

D2. et
w.n.∼ N (0n,R), with [R]ii > 0 and [R]ij = 0 for any i 6= j and i, j = 1, . . . , n;

D3. ut
w.n.∼ N (0q, Iq).

It is clear from D1, D2 and (14) that if some idiosyncratic components are I(1), we can
still consider a factor model for xt with stationary errors in (12) by adding additional latent
states with unit loadings and evolving as random walks. Notice that the dimension of the
parameter space does not increase by increasing the number of I(1) idiosyncratic components.
On the other hand modeling the dynamics of I(0) idiosyncratic components would increase
the complexity of the estimation problem. For this reason, in D1 we choose to leave the
dynamics of the stationary idiosyncratic components unspecified — see Section 4 for practical
implementation of this assumption. Assumptions D1-D3 define a mis-specified approximating
model of the true DFM and in this sense our EM approach delivers Quasi Maximum Likelihood
(QML) estimators. The effect of these mis-specifications are discussed at the end of this
section, but before discussing them we present the asymptotic properties of the estimated
factors and loadings.

We collect all unknown parameters of the model into the vector

Θ := (vec(Λ)′ vec(A1)′ vec(A2)′ vec(H)′ diag(R)′)′.

We denote by Q the dimension of Θ, then we assume that the true values of the parameters
satisfy:

D4. Θ ∈ int(Ω), with Ω ⊆ RQ and compact.

This condition is standard in QML theory and ensures existence of the true values of the
parameters.

The EM algorithm is based on the iteration of two steps. In the E-step, for a given esti-
mator of the parameters Θ̂k, we compute the expected likelihood conditional on all observed
data {x1, . . . ,xT }. This is in turn a function of the first and second conditional moments of
the static factors, which are computed by means of the KS when using Θ̂k.

Note that, under the assumption of normality, as in D2 and D3, and for a given value of
the parameters Θ, the KF-KS give the conditional expectations:

Ft|t−1 := EΘ[Ft|x1, . . . ,xt−1], Ft|t := EΘ[Ft|x1, . . . ,xt], Ft|T := EΘ[Ft|x1, . . . ,xT ],

3For recent applications of this approach see e.g. Reis and Watson (2010); Bańbura and Modugno (2014);
Juvenal and Petrella (2015); Luciani (2015); Coroneo, Giannone, and Modugno (2016).
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with the associated covariance matrices denoted as Pt|t−1, Pt|t, and Pt|T , respectively. These
are therefore optimal estimators of the static factors since they minimize the associated Mean-
Square-Error (MSE) for a given value of the parameters.

In the M-step a new estimator of the parameters Θ̂k+1 is computed by maximizing the
expected likelihood. At convergence of the EM algorithm, say at iteration k∗, we obtain the es-
timator of the parameters, which we denote by Θ̂ := Θ̂k∗ . The estimator of the factors is then
obtained by running the KS a last times using Θ̂ and it is denoted by F̂t := E

Θ̂
[Ft|x1, . . . ,xT ].

The estimated common and idiosyncratic components are then given by χ̂it = λ̂′iF̂t and
ξ̂it = xit − χ̂it. Details of the EM algorithm, as well as closed form expressions for all the
estimators, are in Appendix B.

To initialise the EM algorithm we use as initial estimator of the loadings the r leading
eigenvectors of the covariance of ∆xt, from which we have an estimator of the static factors
as the integrated principal components of ∆xt (Bai and Ng, 2004). This factors’ estimator
is in turn used to: (i) initialize the KF, together with a diffuse prior for the factors’ covari-
ance (Koopman, 1997; Koopman and Durbin, 2000) and (ii) estimate the VAR parameters
(Barigozzi et al., 2016b). Define as V the n × r matrix having as columns the r leading
normalised eigenvectors of the covariance of ∆χt, then the following identifying assumptions
are convenient for proving consistency:

E1. Λ =
√
nV with [Λ]1j > 0 for all j = 1, . . . , r;

E2. Ft = n−1/2 V′χt with F0 = 0r.

Since the static factors have no economic meaning, these identifying assumptions are perfectly
valid and — together with assumption C2 on the loadings scale — they rule out any inde-
terminacy in the estimators used to initialize the EM algorithm — see Doz et al. (2011) for
similar assumptions.

We have the following consistency result.

Proposition 1. Let A1, A2, A5, C1, C2, C3, D1, D2, D3, D4, E1, and E2 hold and let
t̄(T ) > 0 be such that

limsup
T→∞

Te−t̄(T ) ≤M. (15)

Define F†t := (f ′t · · ·f ′t−s)′ and λ
†
i := (b′i0 · · · b′is)′. Then, there exists an invertible r×r matrix

K such that, as n, T →∞, for all t̄(T ) ≤ t ≤ T and any given i = 1, . . . n,
√
T ‖λ̂i −K−1′λ†i‖ = Op(1), (16)

min(
√
n,
√
T ) ‖F̂t −KF†t‖ = Op(1), (17)

min(
√
n,
√
T ) |χ̂it − χit| = Op(1). (18)

Proposition 1 states that under the assumptions presented before, we can consistently estimate
the common component, as well as the spaces spanned by the dynamic factors ft and the
corresponding dynamic loadings which are the coefficients of bi(L) defined A3.

Our proof, which is presented in detail in Appendix C, is based on the same approach
followed by Poncela and Ruiz (2015) in the one-factor case, and it is made of two main parts
which we summarize here.

Population results. We first show that, when the parameters are known the one-step-ahead
factors’ MSE, Pt|t−1, converges to a steady state, while both the MSEs of the KF, Pt|t, and
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Figure 1: Conditional Mean Squared Errors
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This figure reports tr(Pt|s) when using Θ̂, computed for the data ana-
lyzed in Section 4, where: s = t − 1 is the one-step-ahead conditional
MSE (solid line); s = t is KF conditional MSE (dashed line); s = T is
the KS conditional MSE (dashed-dotted line).

of the KS, Pt|T , tend to zero as n→∞ (Lemmas 4 and 5). Notice that this is true also when
initializing with a diffuse prior since this has an effect only for a finite number of initial periods,
say t0 (Koopman, 1997). In particular, convergence to the steady state is exponentially fast
(Anderson and Moore, 1979), hence our result holds for any t ≥ t̄(T ) > t0, where t̄(T ) satisfies
condition (15), which asymptotically requires t̄(T ) = O(log T ). In practice, though, the steady
state is reached very quickly as shown in Figure 1, where we report the trace of Pt|t−1 (solid
line), Pt|t (dashed line) and Pt|T (dashed-dotted line), computed for the data analysed in
Section 4.

Estimation results. In the second step of the proof, consistency of the KF and KS estimators
of the static factors when using estimated parameters is proved (Lemma 7). This is done by
taking into account an additional parameter estimation error which has two components: (i)
the error of the QML estimator of the parameters for the case of known factors, say Θ̂∗ (Lemma
6) and (ii) the error due to the numerical approximation of Θ̂ to Θ̂∗ which is related to the
stopping rule of the EM algorithm (Meng and Rubin, 1994, and Lemma 9). In particular, the
latter error is shown to be negligible with respect to the former one. Therefore the rate of
convergence of the loadings estimated via the EM algorithm is the same that one would obtain
by QML estimation, were the true factors observable, and moreover, because of assumption D2
the loadings are estimated equation by equation, thus such error depends only on T . Results
similar to (16) hold also for all other estimated parameters in Θ̂. On the other hand the rate
of convergence for the estimated static factors is standard in the literature.

The results in Proposition 1 extend those by Doz et al. (2011, 2012) to the non-stationary
case. A major difference between the EM algorithm in levels proposed in this paper, and
the EM algorithm in first differences proposed by Doz et al. (2012), is relative to the way
idiosyncratic components are modelled. Indeed, while by considering first differences it is
implicitly assumed that all idiosyncratic components have a unit root, in our case we can
distinguish between stationary and non-stationary idiosyncratic components — i.e., we can
allow for idiosyncratic trends only in some variables. This is not a minor difference, as it has
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substantial implications for the properties of the estimators.
First of all we model non-stationary idiosyncratic components as additional latent states

rather than differencing them, thus improving efficiency (see also Remark 2 below). Second,
when ξit ∼ I(0), under D1 and D2 the QML estimator of the loadings of the i-th variable
is obtained by minimizing the sample variance of ξit. In this case this is not the same as
differencing before estimation, since in that case the loadings would be estimated by mini-
mizing the sample variance of ∆ξit. The resulting common component of the i-th variable
has therefore different empirical properties: compared to our non-stationary approach, the
common component estimated in first differences is likely to provide a better fit of the first
differenced data, but not necessarily of the levels. Conversely, the common component ob-
tained with our approach is likely to provide a better fit of the levels thus capturing better
the lower frequencies — and so the long-run trends — and resulting in a smoother estimator,
which however might have a worse fit of the differenced data.

We conclude this section by briefly discussing the possible mis-specifications introduced by
assumptions D1, D2 and D3. In particular, we assume the vector of idiosyncratic shocks et to
be i.i.d. Gaussian, thus imposing four restrictions on: (1) the cross-sectional dependence; (2)
the variances; (3) the serial dependence; (4) the distribution. Let us consider the implications
for the properties of the estimators of each of these restrictions — see also Doz et al. (2011)
for a similar discussion.

Remark 1. If the idiosyncratic components have some cross-sectional dependence, as allowed
by A5, then the state-space form of the model is mis-specified, however by inspecting the proofs
we see that, as long as we use an invertible estimator of R, consistency is not affected as long
as n→∞. As a consequence of this asymptotic argument, we do not attempt here to model
the off-diagonal terms of R.

This is better illustrated by a simple example showing the properties of the KF (an analo-
gous argument holds for the KS). Denote as P the steady state of Pt|t−1 then it can be shown
that P = HH′ (Lemma 4). Consider the case in which the parameters are given, ξt ∼ I(0),
and r = q, so that P is invertible, then for t ≥ t̄(T ) the KF estimator is such that

Ft|t = Ft|t−1 + PΛ′(ΛPΛ′ + R)−1(xt −ΛFt|t−1)

= Ft|t−1 + (Λ′R−1Λ + P−1)−1Λ′R−1(xt −ΛFt|t−1)

= (Λ′R−1Λ)−1Λ′R−1xt +O(n−1)

= Ft + (Λ′R−1Λ)−1Λ′R−1ξt +O(n−1)

= Ft +Op(n
−1/2),

where we used (in order) the Woodbury formula, assumption C2, the definition of xt in (12),
and assumption A5. Clearly consistency of the KF does not depend on the specific assumption
for R, as long as it is invertible. However for finite n the KF depends on R and modeling also
its out of diagonal terms could in principle improve its efficiency (e.g. Bai and Liao, 2016).

Remark 2. From the example in Remark 1 it is clear that for finite n the KF estimator is
a weighted average of the data where the heteroskedasticity of the idiosyncratic components
is accounted for. Again the same argument holds also for the KS. In this respect the KF-KS
approach is analogous to the generalized principal component estimator, which is however
derived in a stationary setting and without explicitly addressing the dynamics of the data
(Choi, 2012).
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Remark 3. If the idiosyncratic components are autocorrelated, then, unless we model them
explicitly as additional latent states, optimality is lost, in particular the loadings’ estimators
are still consistent but not efficient. By means of D1 we partially solve the problem at least
for the series with I(1) idiosyncratic components.

Remark 4. If the idiosyncratic components are non-Gaussian then the estimator is not op-
timal being only the best linear estimator. Nevertheless, it has to be noticed that typical
macroeconomic data show little deviations from normality, so we are minimally concerned by
the restrictions imposed by this assumption.

Summing up, regardless of these mis-specifications even though we might not have the
most efficient estimator, we are likely to have gains in efficiency with respect to those estima-
tors obtained by integrating the principal components of first differences of the data (Bai and
Ng, 2004). Indeed, principal components are optimal only in the case of serially and cross-
sectionally i.i.d. Gaussian idiosyncratic components (Lawley and Maxwell, 1971; Tipping and
Bishop, 1999), and such conditions clearly do not hold in a time series context, especially
when non-stationarities are present and the cross-sectional dimension is large. On the con-
trary, our approach explicitly takes into account the autocorrelation in the factors and in
the idiosyncratic components as well as their heteroscedasticity, and, as discussed above, it
delivers consistent estimates even when some degree of cross-sectional dependence is present
but not modelled.

3.3 Trend and cycles

We now turn to estimation of common trends and common cycles. Notice that since we do
not fully impose R1, the dynamic factors ft are not identified and instead we have to deal
with a TC decomposition of the static factors Ft, which can be carried out analogously to
the one described in Section 2 for ft. Because of assumption C1 and restriction R3, for given
values of q and d, the vector Ft admits the factor representation:

Ft = Φ1Tt + Γt,

where Γt ∼ I(0), Φ1 is r × (q − d) and Tt is the vector of (q − d) common trends with
components Tjt ∼ I(1) for j = 1, . . . , (q− d). Hence, in general the common trends admit the
MA representation:

∆Tt = B(L)ηt,

where ηt
w.n.∼ (0q−d,Ση) with Ση positive definite and B(L) is a (q − d) × (q − d) one-sided,

infinite matrix polynomial with square-summable coefficients and rk(B(1)) = (q − d).
As a consequence of the results by Peña and Poncela (1997) and Proposition 1 above,

given the estimated factors F̂t, it is clear that, as n, T →∞,

Ŝ :=
1

T 2

T∑
t=1

F̂tF̂
′
t ⇒ Φ1 B(1) Σ1/2

η

(∫ 1

0
W(u)W(u)′du

)
Σ1/2
η B(1)′Φ′1, (19)

where convergence is in the sense of weak convergence of the associated probability measures
and {W(u), 0 ≤ u ≤ 1} is a (q − d)-dimensional standard Wiener process. Hence, by virtue
of (19), we can estimate the common trends Tt as the first (q − d) principal components of
the estimated static factors F̂t (Bai, 2004; Peña and Poncela, 2006). Specifically, we denote
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by (Φ̂1 Φ̂0) the r× r matrix with columns given by the normalized eigenvectors of Ŝ, ordered
according to the decreasing value of the corresponding eigenvalues, and such that Φ̂1 is r×(q−
d) and Φ̂0 is r× (r− q+ d). This leads to the estimator of common trends as the projection:

T̂t = Φ̂′1F̂t.

As for the common cycles, notice first that, by projecting F̂t onto the columns of Φ̂0, we
obtain the (r − q + d)-dimensional process

Ĝt = Φ̂′0F̂t,

which, by construction, is orthogonal to T̂t. Moreover, Ĝt is stationary since it belongs to the
cointegration space of F̂t (Zhang et al., 2016). However, by R3 we know that the cointegration
space must have dimension d, but we do not impose R3 when estimating the static factors.
Thus, we face the problem of identifying d cycles from the higher-dimensional stationary
process Ĝt.

In order to identify the common cycles we then look for the d-dimensional projection of
Ĝt with maximum spectral density. In the empirical analysis of Section 4, we consider the
VAR(2):

Ĝt = A1Ĝt−1 + A2Ĝt−2 + vt, (20)

where vt
w.n.∼ (0r−q+d,Σv) and det(Ir−q+d −A1z −A2z

2) 6= 0 for |z| ≤ 1. Once we estimate
(20) we have its residuals v̂t and their covariance matrix Σ̂v. Denote as Ĥ the (r− q+ d)× d
matrix having as columns the leading d normalized eigenvectors of Σ̂v. We then define the
estimated cycle component as the d-dimensional projection:

Ĉt = Ĥ
′
Ĝt.

The estimated TC decomposition is then given by

F̂t = Φ̂1Φ̂
′
1F̂t + Φ̂0Φ̂

′
0F̂t

= Φ̂1T̂t + Φ̂0Ĝt

= Φ̂1T̂t + Φ̂0ĤĤ
′
Ĝt + Φ̂0Ĥ⊥Ĥ

′
⊥Ĝt

= Φ̂1T̂t + Φ̂0ĤĈt + Φ̂0(Ĝt − ĤĈt), (21)

where Ĥ⊥ is (r − q + d) × (r − q) and such that Ĥ
′
⊥Ĥ = 0(r−q)×d. The last term on the

right-hand-side of (21) appears due to the mis-specification caused by not fully imposing R1
and R3 and in particular it has covariance of rank (r − q) and since r > q it is in general not
zero.

To appreciate the meaning and the appropriateness of decomposition (21), in Figure 2 we
show the spectral densities of the first differences of the three components of F̂t for the data
analyzed in Section 4, where r = 6, q = 3, and d = 2. As expected the estimated common
trend T̂t (black line) contributes most at the lowest frequencies — i.e., lower than π

10 — which
correspond to periods higher than five years. Once we remove the common trend, of the
remaining five processes Ĝt, the two estimated common cycles Ĉt (red lines) capture most of
the variation for almost all frequencies: one cycle dominates at periods longer than two years
— i.e., frequencies lower than π

4 — and the other cycle dominates at periods shorter than two

14



Figure 2: Spectral Densities of Common Trends and Common Cycles
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This figure reports for the data analyzed in Section 4 the spectral densi-
ties of the common trend ∆T̂t (black line), the common cycles ∆Ĉt (red
lines), and the residual cycles (∆Ĝt − Ĥ∆Ĉt) (blue lines). On the hor-
izontal axis we report periods τj measured in years and corresponding
to frequencies ωj = 2π

4τj
(the data considered is quarterly).

years — i.e., frequencies higher than π
4 . With respect to those two cycles, the residual three

cycles (Ĝt − ĤĈt) (blue lines) give a negligible contributions to the total variation. Given
this empirical result, the extra term in (21) can be neglected and treated as a mis-specification
error.

Finally, from (21), the estimated TC decomposition of the data immediately follows:

xit = λ̂′iΦ̂1T̂t + λ̂′iΦ̂0ĤĈt + λ̂′iΦ̂0(Ĝt − ĤĈt) + ξ̂it,

which is the estimated counterpart of the representation given in (9).

4 Estimating the cyclical position of the economy
and the observation error

We now use our model to estimate the cyclical position of the US economy and the observation
error. In particular, in Section 4.1 we will estimate “the observation error” by estimating the
non-stationary approximate DFM as explained in Section 3.2. And, in Section 4.2 we will
estimate “the cyclical position of the economy” by decomposing the common factors into
common trends and common cycles using the TC decomposition discussed in Sections 2 and
3.3.

The following analysis is carried out on a large macroeconomic dataset comprising n = 103
quarterly series from 1960:Q1 to 2017:Q1 describing the US economy. The complete list of
variables and transformations is reported in Appendix D.

Compared to the papers that use small DFMs to estimate the cyclical position of the econ-
omy, which typically estimate the output gap using only high level variables such as GDP,
the unemployment rate, and PCE price inflation, we include several other indicators, thus
being able to capture information coming from a wider spectrum of the economy. Specifi-
cally, our datasets includes national account statistics, industrial production indexes, various
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Table 1: Percentage of explained variance

1 2 3 4 5 6 7 8 9 10
q 33.4 45.8 53.3 58.9 63.6 67.4 70.6 73.4 75.8 77.9
r 23.4 33.9 42.1 47.9 51.8 55.3 58.2 60.6 62.7 64.9

This table reports the percentage of total variance explained by the q largest eigenvalues of the spectral density
matrix of ∆xt and by the r largest eigenvalues of the covariance matrix of ∆xt.

price indexes including CPIs, PPIs, and PCE price indexes, various labor market indicators
including indicators from both the household survey and the establishment survey as well as
labor cost and compensation indexes, monetary aggregates, credit and loans indicators, hous-
ing market indicators, interest rates, the oil price, and the S&P500 index. Broadly speaking,
all the variables that are I(1) are not transformed, while all the variables that are I(2) are
differenced once. Notice that some variables should from a theoretical economic point of view
always be considered as I(0) (e.g. inflation rates, unemployment rate, and interest rates)
but since they exhibit a great deal of persistence are here treated as I(1). Finally, a linear
trend is estimated where necessary before applying our methodology, thus accounting for the
deterministic component in (1).

A thorough empirical analysis requires tackling two main preliminary problems. First,
we need to determine the number of common trends (q − d), of common shocks q, and of
static factors r. To determine the number of common trends (q − d) we use the criterion by
Barigozzi et al. (2016b), which exploits the behaviour of the eigenvalues described in condition
B2. This criterion indicates the presence of (q − d) = 1 common trend, which is in line with
many theoretical models assuming a common productivity trend as the sole driver of long-
run dynamics (e.g. Del Negro, Schorfheide, Smets, and Wouters, 2007). To determine the
number of common shocks q we use the test by Onatski (2009) and the criterion by Hallin
and Liška (2007), which exploit the behaviour of the eigenvalues described in condition B1.
Both methods indicate the presence of q = 3 common shocks. Having determined q, as we
explained in Section 3.1 by virtue of R2 we can set the number of static factors r according to
their explained variance. By looking at Table 1 we can clearly see that r ' 2q, and therefore
in our benchmark specification we set q = 3 and r = 6.4

Second, we need to choose which idiosyncratic components to model as random walk, and
which as white noises. Following the methodology proposed by Bai and Ng (2004), we can
explicitly test the null-hypothesis H0: ρi = 1, and if we do not reject H0, we set ρi = 1, while
if we reject H0, we set ρi = 0. This approach is applied to all variables in the dataset except
GDP, GDI, unemployment rate, Federal funds rate, and CPI, core CPI, PCE, and core PCE
inflation, for which we impose a priori ρi = 0. That is, while for most of the variables in the
dataset we let the data determine what is driving their long run dynamics, we impose that
the long-run dynamics of GDP, GDI, unemployment rate, Federal funds rate, and CPI, core
CPI, PCE, and core PCE inflation are driven exclusively by macroeconomic shocks, with the
idiosyncratic shocks accounting only for short-run movement.

4An alternative way to select the number of static factors r is to resort to one of the many available methods,
such as, for example, the criterion of Bai and Ng (2002), which for our dataset gives results in line with our
choice of r.
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4.1 Measuring Gross Domestic Output

A fundamental issue in economics is the measurement of aggregate real output, henceforth
Gross Domestic Output (GDO). Historically, GDO has been measured mainly by the Gross
Domestic Product (GDP), but GDP, which tracks all expenditures on final goods and services
produced, is just an estimate of GDO. An equally acceptable estimate of the concept of GDO
is represented by the Gross Domestic Income (GDI), which tracks all income received by those
who produced the output. GDP is almost always preferred to GDI, the main reason being
that it is released before GDI.5 However it has been shown that GDI reflects the business
cycle fluctuations in true output growth better than GDP and moreover GDI is better than
GDP in recognising the start of a recession (Nalewaik, 2010, 2012).

In recent years, there has been interest in combining GDP and GDI to come up with a
better estimate of GDO, where the rationale for doing so is that the difference between GDP
and GDI is exclusively the result of measurement error — using the NIPA table definition
“statistical discrepancy” — as these two statistics are in fact measuring the same thing. For
example, starting from November 4, 2013, the Philadelphia Fed releases an estimate of GDO,
called “GDPplus” proposed by Aruoba et al. (2016), which is defined as the common component
of a bivariate one-factor model built with GDP and GDI growth rates. Similarly, and starting
from July 30, 2015, the Bureau of Economic Analysis (BEA) releases “the average of GDP
and GDI”, which the Council of Economic Advisers refers to as GDO (Council of Economic
Advisers, 2015).

Our approach differs from those mentioned above in that our estimate of GDO is not
obtained by combining GDP and GDI, rather it is obtained by using all the 103 variables
included in our dataset. In detail, we define GDO as that part of GDP/GDI that is driven by
the macroeconomic (common) shocks, i.e., GDOt = χGDP

t = χGDI
t . To estimate GDO in this

way, we estimate a constrained version of model (12)-(13), where we impose the restriction
of equal common components: χGDP

t = χGDI
t . This restriction is indeed corroborated by the

data, as even if we do not impose it, the estimated χGDP
t and χGDI

t are nearly identical. In
numbers, the standard deviation of (∆yGDP

t − ∆yGDI
t ) is 1.93, while the standard deviation

of (∆χGDP
t −∆χGDI

t ) is reduced to 0.28.
Figure 3 shows our proposed estimate of GDO (red line) together with “GDPplus” (blue

line) and the “the average of GDP and GDI” released by the BEA (black line). Overall, the
three measures are very similar, which is not surprising, as they are attempting to estimate
the same quantity. However, three important differences emerges.

First, our estimate of GDO is smoother than the other two. This is not surprising. Com-
pared to “GDPplus” and “the average of GDP and GDI”, our estimate of GDO is constructed
to contain a larger low frequency component, because it is estimated on data in levels rather
than on growth rates. Moreover, because it is derived under the assumption that the idiosyn-
cratic components of GDP and GDI are stationary, by construction our estimate of GDO
captures all the low frequency movements of GDP and GDI.

Second, our estimate of GDO does not show any kind of residual seasonality in the last
fifteen years, where the term “residual seasonality” refers to the presence of “lingering seasonal
effects even after seasonal adjustment processes have been applied to the data” (Moulton and
Cowan, 2016). Mainly motivated by the fact that since 2010 GDP growth in Q1 has been on
average more than 1 percentage point lower than in the other quarters (NW plot of Figure 4), in

5The first estimate of GDP is released one month after the reference quarter, while GDI is generally released
two months after the reference quarter, together with the second release of GDP.
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Figure 3: Gross Domestic Output
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This figure reports different estimates of GDO. Black line: “the average of GDP and GDI” released by the BEA;
blue line: “GDPplus” released by the Philadelphia Fed; red line: our estimate.

recent years there has been lots of discussion on whether US GDP exhibit residual seasonality
or not. The profession is not in agreement on this issue, as some authors (e.g. Gilbert et al.,
2015; Lengermann et al., 2017) conclude that US GDP does not exhibit residual seasonality,
while others (e.g. Rudebusch, Wilson, and Mahedy, 2015; Lunsford, 2017) find evidence of
residual seasonality — see Moulton and Cowan (2016) for a technical discussion on causes
and remedies for residual seasonality in US GDP. Figure 4 shows average real GDO growth
by quarter for our estimate of GDO (SE plot), “GDPplus” (SW plot), and “the average of
GDP and GDI” (NE plot). As can be clearly seen, our estimate of GDO exhibits no residual
seasonality whatsoever in the last 15 years.

Third, our estimate of GDO in the recent years gives a different signal about the economy
than the one given by ‘GDPplus” and “the average of GDP and GDI”. According to our
estimate, since 2010 quarterly annualized GDO growth was on average 1⁄2 of a percentage
point higher than estimated by the BEA or the Philadelphia Fed, where this difference comes
mainly from our estimate of GDO growth in the first quarter (see Figure 4), and therefore
from the fact that our measure do not suffer of residual seasonality. In other words, based
on the commonality in the data, the US economy grew at a faster pace than measured by
national account statistics.

4.2 Measuring the output gap

Decomposing aggregate real output into potential output and output gap is a critical task for
both monetary and fiscal policy, as the former is a key input for long-term projections, and
the latter can be an important gauge of inflationary pressure. There exist many definitions of
potential output and of output gap — see Kiley, 2013, for a survey of different methods and
definitions. Here we use the definition implied by the TC decomposition discussed in Sections
2 and 3.3. Among the many existing approaches the most similar to ours are Fleischman
and Roberts (2011) and Jarociński and Lenza (2016), who use small dynamic factor models,
Aastveit and Trovik (2014), who use a large stationary dynamic factor model combined with
the Hodrick Prescott filter, and Morley and Wong (2017), who use a large stationary BVAR
combined with the Beveridge and Nelson decomposition.

We compare our output gap estimate with the one produced by the Congressional Budget
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Figure 4: Residual Seasonality
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This figure reports average growth at an annual rate by quarter for GDP, “the average of GDP and
GDI” released by the BEA, the Philadelphia Fed estimate of GDO (GDPplus), and our estimate
of GDO (BL).

Office (CBO). The CBO estimates potential output and the output gap by using the so-called
“production function approach” according to which potential output is that level of output
consistent with current technologies and normal utilisation of capital and labour, and the out-
put gap is the residual part of output. Specifically, the CBO model is based upon a textbook
Solow growth model, with a neoclassical production function. Labour and productivity trends
are estimated by using a variant of the Okun’s law, so that actual output is above its potential
(the output gap is positive), when the unemployment rate is below the natural rate of un-
employment, which is in turn defined as the non-accelerating inflation rate of unemployment
(NAIRU), i.e., that level of unemployment consistent with a stable inflation — for further
details see Congressional Budget Office (2001).

In Figure 5, we compare our measure of the output gap (red line) with the one produced
by the CBO (blue line), where the left plot shows the level of the output gap, while the right
plot shows the 4-quarter percentage change of the output gap. The main result emerging
from Figure 5 is that our estimate of the output gap is remarkably similar to that of the
CBO. However, there are a few periods in which the two estimates diverge, among which the
main one is from the late nineties to the financial crisis. In particular, while according to the
CBO the level of the output gap was negative between 2001:Q1 and 2005:Q4, according to
our estimate in that same period the output gap was positive — on average 21⁄2 percentage
points higher than estimated by the CBO. Therefore, according to our estimate the level of
the output gap right before the great financial crisis in 2007:Q4 was 1.3%, while according
to the CBO was -0.7%, and hence we estimate that the level of slack in the economy at the
trough of the crisis in 2009:Q2 was -4.5%, approximately 13⁄4 percentage points higher than
estimated by the CBO.
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Figure 5: Output gap
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The left plot shows the level of the output gap estimated by the CBO (blue line) together with our estimate (red
line). The right plot shows the 4-quarter percentage change of the output gap.

To conclude, let us emphasize that the fact that our estimate of the output gap is close
to that of the CBO is a remarkable result, particularly so because our estimate of the output
gap is very different from that of the CBO from both a technical and an interpretational
point of view. Indeed, while the CBO constructs the output gap so that its level has a specific
economic meaning, our measure of the output gap is simply the transitory/stationary part of
the common component of output — i.e., that part of aggregate real output that will disappear
in the long-run.6 Therefore, our output gap estimate provides different and complementary
information on the cyclical position of the economy than that contained in the CBO estimate.
In particular, our estimate of the output gap seems more suitable to answer the question
“which part of current growth is due to temporary factors?”, while the measure of the CBO
is certainly more suitable as a gauge of inflation pressure. This can explain in part the
divergence of the two estimates in the 2000s. This period is characterized by stable and low
inflation — on average core CPI inflation between 2001:Q1 and 2007:Q4 was approximately
2.1%. Accordingly, the CBO estimates that slack is positive (i.e., the output gap negative).
By contrast, our measure, which is not specifically affected by inflation, but it is more broadly
influenced by the co-movement in the data, estimates that a part of the aggregate real output
was transitory. This makes sense given that the years before the crisis were characterized
by several factors that proved indeed transitory, such as the housing boom, a historically
high share of sub-prime loan origination (Haughwout and Okah, 2009), and a large amount
of equity withdrawal from housing (Fuster, Geddes, and Haughwout, 2017). And, since our
model includes a large number of variables, including housing indicators as well as loan and
credit indicators, these transitory factors are captured by our model.

5 Discussion and conclusions

In this paper we disentangle long-run co-movements (common trends) from short-run co-
movements (common cycles) in large datasets. To this end, we first estimate a non-stationary
dynamic factor model by means of a Quasi Maximum Likelihood estimator based on the Expec-
tation Maximisation algorithm, combined with the Kalman Filter and the Kalman Smoother

6Notice that also for the CBO the output gap is assumed to revert to zero in the long-run as it imposes in
its forecast that in 10 years the output gap will be zero — see e.g. Congressional Budget Office (2004).
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estimators of the factors. We then disentangle common trends from common cycles by ap-
plying a non-parametric Trend-Cycle decomposition to the latent common factors and based
on eigenanalysis of their long-run covariance. The asymptotic properties of this estimator are
derived and discussed in the paper.

We estimate our model on a large panel of US quarterly macroeconomic time series with
the goal of estimating the cyclical position of the economy and the observation error. After
backing out the observation error, we show that our model naturally produces an estimate of
aggregate real output, which we refer to as Gross Domestic Output (GDO). According to our
estimate of GDO, since 2010 the US economy grew at a faster pace than measured by national
account statistics.

We then use a Trend-Cycle decomposition to estimate the output gap. We compare our
estimate of the output gap, which is entirely data-driven, with that produced by the Congres-
sional Budget Office (CBO), which is instead based on theoretical economic models. It turns
out that our estimate of the output gap is remarkably similar to that of the CBO except from
the late nineties to the financial crisis, when our measure suggests that a greater part of the
produced output was driven by transitory factors.

There are a number of aspects of our model that we have not fully developed in our
empirical analysis and that are left for future research. First, due to the use of the Kalman
Filter, our factor estimator is in principle able to handle both mixed frequency and missing data
(e.g. Mariano and Murasawa, 2003; Jungbacker, Koopman, and Van der Wel, 2011; Bańbura
and Modugno, 2014) and, therefore, it can be used for real-time analysis (Giannone, Reichlin,
and Small, 2008). This aspect is well-known to be particularly relevant when estimating the
output gap, since as shown by Orphanides and van Norden (2002), end-of-sample revisions of
GDP are of the same order of magnitude as the gap itself. Second, the use of the Kalman
Filter makes our model suitable for scenario and counterfactual analysis based on conditional
forecasts (Bańbura, Giannone, and Lenza, 2015). Third, as shown in equation (21), our model
naturally produces a Trend-Cycle decomposition for each variable in the dataset, and therefore
it is possible to estimate other policy-relevant indicators, such as the unemployment gap (in
our framework, the cycle component of the unemployment rate) or trend inflation (in our
framework, the trend component of core CPI or the core PCE price indexes).

Our approach has been so far deliberately entirely data driven, and we have been careful in
imposing the least possible amount of restrictions to let the data speak freely. This approach
has undeniably some important merits, as estimation of GDO seems to fit naturally in our
framework, and the Trend-Cycle decomposition that we obtain for GDO is economically sen-
sible. However, we believe that imposing the statistical restrictions described in Section 3.1,
thus eliminating the miss-specification error when computing the Trend-Cycle decomposition,
as well as imposing economically meaningful constraints, seems to be an essential step for-
ward. Our view is that one way to proceed is to consider Bayesian estimation of the model, so
that our economic and statistical knowledge of the data can be included by means of suitable
priors. All this is the subject of our current research.
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Appendix A Representation results

Hereafter, and throughout all appendices, we consider restriction R2 when s = 1 as found
empirically in Section 4. Therefore, r = 2q.

A.1 Proof of restriction R3

For the dynamic factors consider the VECM(2)

∆ft = −ab′ft−3 + Γ1∆ft−1 + Γ2∆ft−2 + ut, (A1)

where a and b are q× d and for simplicity we consider just the case of two lags since this will
imply a VECM(1) and therefore a VAR(2) for the static factors as implemented in (13).

First assume that in R1 we have K = Ir. Our aim is then to find the correct VECM rep-
resentation for Ft = (f ′t f

′
t−1)′ when the VECM in (A1), and restrictions R1 and R2 hold.

Since we model Ft as a VAR(2) we know that we must have a VECM(1) with reduced rank
innovations by R1, hence

∆Ft = −αβ′Ft + M∆Ft−1 + Hut, (A2)

where α and β are r × c with c < r and H is r × q. Moreover, from Barigozzi et al. (2016a)
we have d ≤ c ≤ (r− q+d). We are then interested in finding c, and the expressions of M, α,
β, and H as functions of the parameters a, b, Γ1, and Γ2 in (A1). Let us write α = (α′1 α

′
2)′

and β = (β′1 β
′
2)′ where α1, α2, β1, β2 are all q × c. We also denote as Mij for i, j = 1, 2

the four q × q blocks of M and as H1 and H2 the two q × q blocks of H. Following Proietti
(1997), we define the (2r + c)-dimensional vector

Gt =

 ∆Ft

∆Ft−1

β′Ft−2

 =


∆ft
∆ft−1

∆ft−1

∆ft−2

β′1ft−2 + β′2ft−3

 .

Then, the state-space form of (A2) is given by

∆Ft = ZGt,

Gt = TGt−1 + Z′Hut, (A3)

with the r × (2r + c) matrix Z = (Ir 0r 0r×c). Then,

Z′H =

 Ir
0r
0c×r

( H1

H2

)
=


H1

H2

0q
0q
0c×q

 .
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and the (2r + c)× (2r + c) matrix T is given by

T =

 M −αβ′ −α
Ir 0r 0r×c
0c×r β′ Ic

 =


M11 M12 −α1β

′
1 −α1β

′
2 −α1

M21 M22 −α2β
′
1 −α2β

′
2 −α2

Iq 0q 0q 0q 0q×c
0q Iq 0q 0q 0q×c
0c×q 0c×q β′1 β′2 Ic

 .

Now using these definitions into (A3) we have five q-dimensional equations. The first one is

∆ft = M11∆ft−1 + M12∆ft−2 −α1β
′
1ft−2 −α1β

′
2ft−3 + H1ut,

which is equivalent to (A1) when

M11 = Γ1, M12 = Γ2, α1 = a, β1 = 0q×c, β2 = b, H1 = Iq, c = d. (A4)

The second equation is

∆ft−1 = M21∆ft−1 + M22∆ft−2 −α2β
′
1∆ft−2 −α2β

′
2∆ft−3 −α2β

′
1ft−3 −α2β

′
2ft−4 + H2ut,

from which we see that we must also have

M21 = Iq, M22 = 0q, α2 = 0q×c, H2 = 0q. (A5)

Under (A4) and (A5) the third, fourth and fifth equation in (A3) are just identities.

By imposing these restrictions we have the mapping between the VECM(1) for Ft in (A2)
and the VECM(2) for ft in (A1)

M =

(
Γ1 Γ2

Iq 0q

)
, α =

(
a
0q×d

)
, β =

(
0q×d
b

)
, H =

(
Iq
0q

)
. (A6)

If we now consider a generic K in R1, then (A2) holds for Ft = K(f ′t f
′
t−1)′ and (A6) becomes

M = K

(
Γ1 Γ2

Iq 0q

)
K−1, α = K

(
a
0q×d

)
, β = K−1′

(
0q×d
b

)
, H = K

(
Iq
0q

)
.

The cointegration rank c of Ft is given by rk(αβ′) = d.

A.2 Reduced and structural form of the state-space representation

Consider (12)-(13) written in matrix notation and using the companion form of the VAR

xt = ΛFt + ξt, (A7)(
Ft

Ft−1

)
=

(
A1 A2

Ir 0r

)(
Ft−1

Ft−2

)
+

(
H

0r×q

)
ut, (A8)

with Λ = (λ1 · · ·λn)′ the n × r loadings matrix. We call (A7)-(A8) the reduced form of the
model. Similarly consider the structural form, where, for convenience, in the VAR we write

28



twice the same equation:

xt = B0ft + B1ft−1 + ξt, (A9)
ft
ft−1

ft−1

ft−2

 =


Π1 Π2 0q Π3

Iq 0q 0q 0q
Iq 0q 0q 0q
0q Iq 0q 0q



ft−1

ft−2

ft−2

ft−3

+


Iq
0q
0q
0q

ut, (A10)

where B0 = (b01 · · · b0n)′, B1 = (b11 · · · b1n) are both n × q. Because of R1 there exists an
invertible r × r matrix K such that

Ft = K(f ′t f
′
t−1)′, (f ′t f

′
t−1)′ = K−1Ft, (A11)

Λ = (B0 B1)K−1, (B0 B1) = ΛK. (A12)

By comparing (A7)-(A8) with (A9)-(A10) and using (A11)-(A12), we have the parameters of
the reduced form

A1 = K

(
Π1 Π2

Iq 0q

)
K−1, A2 = K

(
0q Π3

0q 0q

)
K−1, H = K

(
Iq
0q

)
. (A13)

The relations (A11), (A12) and (A13) are used throughout the following. Moreover, since a
VAR(2) of dimension r can always be written as a VAR(1) of dimension 2r, to avoid intro-
ducing further notation hereafter we consider the case of a VAR(1) for Ft, where A ≡ A1.

A.3 Properties of the structural and reduced form of the linear system

Lemma 1. The structural model (A9)-(A10) is stabilizable and detectable.

Proof. Equations (A9)-(A10) define a linear system with r = 2q latent states (f ′t f
′
t−1)′. We

say that a linear system is stabilizable if its unstable (non-stationary) states are controllable
and all uncontrollable states are stable (see Anderson and Moore, 1979, page 342), where
stability is dictated by the eigenvalues of the matrix of VAR coefficients, which we denote as

Ã =

(
Π1 Π2

Iq 0q

)
(A14)

Because of cointegration, Ã has (q − d) unit eigenvalues corresponding to (q − d) unstable
states. Moreover, (Iq−Π1−Π2) = ab′, where a and b have full column-rank q×d matrices, so
that rk(ab′) = d. Define the q× (q−d) matrices a⊥ and b⊥ such that a′⊥a = b′⊥b = 0(q−d)×d.
Then, since rk(a′⊥Iq) = (q − d), the unstable states are controllable because they satisfy the
Popov-Belevitch-Hautus rank test (see Franchi, 2017, Theorem 2.1, and Antsaklis and Michel,
2007, Corollary 6.11, page 249).

Now, by looking at (A10), we see that Ã has also (r − q + d) = (q + d) eigenvalues which are
smaller than one in absolute value. Of these q correspond to states which are uncontrollable
because they are not driven by any shock, but are also stable since have no dynamics (see the
second equation in (A10)). The remaining d states follow a stable VAR, hence are controllable.

Similarly, we say that a linear system is detectable if its unstable states are observable and
all unobservable states are stable (see Anderson and Moore, 1979, page 342). First, notice
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that rk(B0) = q and rk(B1) = q because of C2 and (A12), therefore rk(B0b⊥) = (q − d)
and rk(B1b⊥) = (q − d), which implies that the unstable states are observable because they
satisfy the Popov-Belevitch-Hautus rank test (see Franchi, 2017, Theorem 2.1, and Antsaklis
and Michel, 2007, Corollary 6.11, page 249). Since B0 and B1 have full column-rank there
are no unstable unobservable states. This completes the proof. �

Appendix B Details of estimation

This appendix provides details on estimation of factors and parameters which are necessary
to introduce the notation required in the proofs in Appendix C. The model considered is (12)-
(14), where for simplicity of exposition we consider a VAR(1) for the factors. As explained in
the text without loss of generality we can assume ξt ∼ I(0), thus considering as latent states
only the r static factors.

Adding I(1) idiosyncratic components as latent states does not increase the dimension of the
parameter space but it increases the dimension of the latent states vector. However, since
the idiosyncratic components are assumed to be orthogonal (see D2), and moreover they are
orthogonal to the static factors (see A2), the results in Appendix C can be generalized to this
case by treating each new state separately.

B.1 Expectation Maximization algorithm

In what follows we denote the whole sample of observed data as X T := (x1 · · ·xT )′ and
the whole history of the unknown factors as FT := (F1 · · ·FT )′. Recall that the vector of
parameters is given by Θ := (vec(Λ)′ vec(A)′ vec(H)′ diag(R))′. To avoid heavier notation
we use Θ to indicate both a generic value of the parameters and the true value, whether we
refer to one or the other is either clearly implied by the context or explicitly stated.

The joint pdf of data and factors is denoted as f(X T ,FT ; Θ) and the corresponding joint
log-likelihood is denoted as `(X T ,FT ; Θ) := log f(X T ,FT ; Θ) and it is such that

`(X T ,FT ; Θ) = `(X T |FT ; Θ) + `(FT ; Θ), (B1)

where `(X T |FT ; Θ) is the log-likelihood of the data conditional on the factors and `(FT ; Θ)
is the marginal log-likelihood of the factors. Because of D2 and D3 all log-likelihoods are
Gaussian and in particular

`(X T |FT ; Θ) = −nT
2

log(2π)− T

2
log det(R)− 1

2
tr
[
(X T −FTΛ′)R−1(X T −FTΛ′)′

]
.

(B2)

We first briefly review the steps of the EM algorithm, while in Section B.1.4 we prove that the
values of the parameters obtained at convergence of the EM algorithm converge to the QML
estimator.

B.1.1 Initialization

The EM algorithm is initialised with estimated parameters

Θ̂0 := (vec(Λ̂0)′ vec(Â0)′ vec(Ĥ0)′ diag(R̂0))′. (B3)
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These are obtained as follows. From the integration of the first r principal components of ∆xt
we have an estimator of the factors, F̃t, and then of the loadings, Λ̂0. The VAR parameters,
Â0 are obtained by fitting a VAR on the estimated factors F̃t and the columns of Ĥ0 are
given by the q leading eigenvectors of the covariance matrix of VAR residuals. Finally, the
diagonal entries of R̂0, are obtained as sample variances of ξ̂it,0 = xit − Λ̂0F̃t. Consistency of
these estimators is discussed in Section C.3.

B.1.2 E-step

At iteration k ≥ 0, given X T and an estimate of the parameters Θ̂k, we compute the expected
log-likelihood as function of a generic value of the parameters Θ, where the expectation is
computed with respect to the conditional distribution of FT given X T and when using Θ̂k:

Q(Θ; Θ̂k) :=

∫
Rr×T

`(X T ,FT ; Θ)f(FT |X T ; Θ̂k)dFT = E
Θ̂k

[`(X T ,FT ; Θ)|X T ]. (B4)

In the Gaussian case (B4) depends on the conditional mean of the factors and their conditional
second moments, which are obtained with the KS when using the parameters Θ̂k and are given
by (see Section B.2 for details)

Ft|T,k := E
Θ̂k

[Ft|X T ], Pt|T,k := E
Θ̂k

[(Ft − Ft|T,k)(Ft − Ft|T,k)
′|X T ]. (B5)

B.1.3 M-step

A new estimator of the parameters is obtained by maximising the expected log-likelihood over
all possible values of the parameters:

Θ̂k+1 = arg max
Θ∈Ω⊆RQ

Q(Θ; Θ̂k). (B6)

Thus, maximizing the conditional expectation of (B2) and using (B5), we have the loadings
estimator

Λ̂k+1 =

(
T∑
t=1

E
Θ̂k

[xtF
′
t|X T ]

)(
T∑
t=1

E
Θ̂k

[FtF
′
t|X T ]

)−1

=

(
T∑
t=1

xtF
′
t|T,k

)(
T∑
t=1

(
Ft|T,kF

′
t|T,k + Pt|T,k

))−1

.

Similarly we can obtain estimates of the other parameters Âk+1 and R̂k+1 (see e.g. Bańbura
and Modugno, 2014, for their expressions). The columns of Ĥk+1 are obtained as the q leading
eigenvectors of the matrix

Σ̂k+1 =
1

T

(
T∑
t=1

E
Θ̂k

[FtF
′
t|X T ]− Âk+1

T∑
t=1

E
Θ̂k

[FtF
′
t−1|X T ]

)
,

which is an estimator of the covariance of the VAR residuals, and where the second expectation
can also be computed from the output of the KS.
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B.1.4 Convergence

Denote the QML estimator of the parameters as

Θ̂∗ := (vec(Λ̂∗)′ vec(Â∗)′ vec(Ĥ∗)′ diag(R̂∗))′, (B7)

then by definition we have
Θ̂∗ = arg max

Θ∈Ω⊆RQ
`(X T ; Θ). (B8)

where `(X T ; Θ) is the log-likelihood of the data such that

`(X T ; Θ) = `(X T ,FT ; Θ)− `(FT |X T ; Θ), (B9)

where the first term on the rhs is given by (B1) and the second can be computed using the
output of the KS for a given value of Θ. Define the expectation

H(Θ; Θ̂k) :=

∫
Rr×T

`(FT |X T ; Θ)f(FT |X T ; Θ̂k)dFT = E
Θ̂k

[`(FT |X T ; Θ)|X T ], (B10)

and recall the definition of Q(Θ; Θ̂k) in the E-step in (B4). Since the lhs of (B9) does not
depend on FT , by taking its expectation with respect to the conditional distribution of FT

given X T and when using Θ̂k, for any Θ ∈ Ω, we have

`(X T ; Θ) = Q(Θ; Θ̂k)−H(Θ; Θ̂k). (B11)

Now, by definition of Kullback-Leibler divergence, we have (see also Lemma 1 in Dempster
et al., 1977)

H(Θ̂k+1; Θ̂k) ≤ H(Θ̂k; Θ̂k). (B12)

Hence, from (B11) and (B12), for any k,

`(X T ; Θ̂k+1)− `(X T ; Θ̂k) ≥ Q(Θ̂k+1; Θ̂k)−Q(Θ̂k; Θ̂k) ≥ 0

where the last inequality is a consequence of the M-step in (B6). This shows that the log-
likelihood increases monotonically as k increases. Moreover, since due to GaussianityQ(Θ; Θ′)
is continuous in Θ and Θ′ and its gradient ∇ΘQ(Θ; Θ′) is continuous in Θ, then conditions
for Theorems 1 and 2 and Corollary 1 in Wu (1983) are satisfied and we have convergence of
the log-likelihood to its unique maximum and of the parameters to the corresponding QML
estimators

lim
k→∞

`(X T ; Θ̂k) = `(X T ; Θ̂∗), lim
k→∞

Θ̂k = Θ̂∗. (B13)

The previous result holds in the limit k → ∞, but in practice we can run the EM algorithm
only for a finite number of iterations kmax. Define, for any k,

∆`k =
|`(X T ,FT,k+1; Θ̂k+1)− `(X T ,FT,k; Θ̂k)|
|`(X T ,FT,k+1; Θ̂k+1)|+ |`(X T ,FT,k; Θ̂k)|

,
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where FT,k := (F1|T,k · · ·FT |T,k)
′. We say that the algorithm has converged at iteration

k∗ < kmax according to the following rule, which is defined for a given threshold η,

∆`k∗ < η, but ∆`k∗−1 ≥ η.

Once we find k∗, our estimator of the parameters is defined as Θ̂ := Θ̂k∗ . The corresponding
estimator of the factors is then defined as F̂t := Ft|T,k∗ , thus running the KS once last time
using Θ̂k∗ . The rate of convergence of Θ̂ to Θ̂∗ in (B13) is studied in Lemma 9 below.

B.2 Kalman filter and Kalman smoother

For ease of notation assume to know the true parameter collected in the vector Θ. When using
the KF-KS in the EM algorithm at a given iteration k, the factors’ estimators given below
are obtained by replacing Θ with Θ̂k throughout this section. We denote the conditional
expectation and covariance of the factors as

Ft|s := EΘ[Ft|X s], Pt|s := EΘ[(Ft − Ft|s)(Ft − Ft|s)
′|X s], (B14)

where X s := (x1 · · ·xs)′. Under Gaussianity (D2 and D3) these can be computed with the
KF-KS. Specifically, when s = t − 1 we have the optimal one-step-ahead prediction, when
s = t we have the optimal in-sample estimator, when s = T we have the optimal smoother.
The KF gives the first two cases while the KS gives the latter. In particular, we denote the
KF-KS estimators respectively as: Ft|t and Ft|T when using the true value Θ and as Ft|t,k

and Ft|T,k when using Θ̂k (see also (B5)).

B.2.1 Forward iterations - Filtering

For given initial conditions F0|0 and P0|0, the KF is based on the forward iterations for
t = 1, . . . , T :

Ft|t−1 = AFt−1|t−1, (B15)

Pt|t−1 = APt−1|t−1A
′ + HH′, (B16)

Ft|t = Ft|t−1 + Pt|t−1Λ
′(ΛPt|t−1Λ

′ + R)−1(xt −ΛFt|t−1), (B17)

Pt|t = Pt|t−1 −Pt|t−1Λ
′(ΛPt|t−1Λ

′ + R)−1ΛPt|t−1. (B18)

Moreover, by combining (B16) and (B18), we obtain the Riccati difference equation

Pt+1|t −APt|t−1A
′ + APt|t−1Λ

′(ΛPt|t−1Λ
′ + R)−1ΛPt|t−1A

′ = HH′. (B19)

The KF is started with given values of F0|0 and P0|0. The latter can be obtained with a diffuse
prior run for t < 0 (see Koopman, 1997, and Koopman and Durbin, 2000, for details).
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B.2.2 Backward iterations - Smoothing

The KS is then based on the backward iterations for t = T, . . . , 1:

Ft|T = Ft|t + Pt|tA
′P−1

t+1|t(Ft+1|T − Ft+1|t), (B20)

Pt|T = Pt|t + Pt|tA
′P−1

t+1|t(Pt+1|T −Pt+1|t)P
−1
t+1|tAPt|t. (B21)

The KS iterations in (B20) require T inversions of Pt|t−1 and in the singular case r > q these
matrices are likely to be singular (see also Lemma 5). There are two possible solutions to
this problem. Kohn and Ansley (1983) suggest to use a generalized inverse of Pt|t−1, like the
Moore-Penrose one. Alternatively, it can be proved that (B20) can be written in an equivalent
way, which does not require matrix inversion, and which is defined by the backward iterations
for t = T, . . . , 1:

Ft|T = Ft|t−1 + Pt|t−1rt−1, (B22)

rt−1 = Λ′(ΛPt|t−1Λ
′ + R)−1(xt −ΛFt|t−1) + L′trt, (B23)

Pt|T = Pt|t−1 −Pt|t−1Nt−1Pt|t−1, (B24)

Nt−1 = Λ′(ΛPt|t−1Λ
′ + R)−1Λ + L′tNtLt, (B25)

Lt = A−APt|t−1Λ
′(ΛPt|t−1Λ

′ + R)−1Λ, (B26)

where rT = 0r×1, NT = 0r and by consturction APt|t = LtPt|t−1 (see also Durbin and
Koopman, 2001, pp.70-73). Although numerically no appreciable differences emerge with
respect to the chosen method, (B22)-(B26) are particularly useful for our proofs.

Appendix C Consistency of the EM algorithm

C.1 Preliminary results

Lemma 2. For m < n, and given symmetric positive definite matrices A of dimension m×m,
B of dimension n × n, and for C of dimension n × m with full column-rank, the following
holds

AC ′(CAC ′ +B)−1 = (A−1 +C ′B−1C)−1C ′B−1. (C27)

Proof. Recall the Woodbury forumla

(CAC ′ +B)−1 = B−1 −B−1C(A−1 +C ′B−1C)−1C ′B−1. (C28)

Denote D = (A−1 +C ′B−1C)−1 then from (C28) the lhs of (C27) is equivalent to

AC ′
[
B−1 −B−1CDC ′B−1

]
= A

[
C ′B−1 −C ′B−1CDC ′B−1

]
= A

[
I −C ′B−1CD

]
C ′B−1.

Then, (C27) becomes
A
[
I −C ′B−1CD

]
C ′B−1 = DC ′B−1,

or equivalently multiplying both sides on the right by BC(C ′C)−1

A
[
I −C ′B−1CD

]
= D. (C29)
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Now notice that

D = (A−1 +C ′B−1C)−1 = A(I +AC ′B−1C)−1. (C30)

Substituting (C30) in (C29) and multiplying both sides on the left by A−1[
I −C ′B−1CA(I +AC ′B−1C)−1

]
= (I +AC ′B−1C)−1.

Multiplying both sides on the right by (I +AC ′B−1C) we have that (C27) is equivalent to

I +AC ′B−1C −C ′B−1CA = I (C31)

Therefore (C27) is correct provided that AC ′B−1C = C ′B−1CA which is always true since
both A and C ′B−1C are symmetric. �

Lemma 3. For m < n with m independent of n and given

(a) an m×m matrix A symmetric and positive definite with µAj ≤M for j = 1, . . . ,m;

(b) an n× n matrix B symmetric and positive definite with µBj ≤M for j = 1, . . . , n;

(c) an n×m matrix C such that C ′C is positive definite with µC′Cj = Mjn for j = 1, . . . ,m;

then the following holds

(A−1 +C ′B−1C)−1C ′B−1C = Im +O(n−1).

Proof. First notice that for two matrices K and H we have

(H +K)−1 = (H +K)−1 −K−1 +K−1 = (H +K)−1(K − (H +K))K−1 +K−1

= (H +K)−1(−H)K−1 +K−1 = K−1 − (H +K)−1HK−1. (C32)

Then setting K = C ′B−1C and H = A−1 from (C32) we have

(A−1 +C ′B−1C)−1 = (C ′B−1C)−1 − (A−1 +C ′B−1C)−1A−1(C ′B−1C)−1.

which implies

(A−1 +C ′B−1C)−1C ′B−1C = Im − (A−1 +C ′B−1C)−1A−1. (C33)

Now consider the second term on the rhs of (C33)

‖(A−1 +C ′B−1C)−1A−1‖2 ≤ ‖(A−1 +C ′B−1C)−1‖2 ‖A−1‖2

≤ ‖(C ′B−1C)−1‖2 (µAn )−1 ≤ ‖(C ′B−1C)−1‖2M−1
1 , (C34)

where we use norm sub-additivity and the fact that by condition (a) A and A−1 are positive
definite and therefore µAn ≥M1 > 0 and moreover µA−1

n ≥M2 > 0 thus by Weyl’s inequality

µA
−1+C′B−1C

n ≥ µA−1

n + µC
′B−1C

n ≥ µC′B−1C
n ,
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therefore,

‖(A−1 +C ′B−1C)−1‖ = (µA
−1+C′B−1C

n )−1 ≤ (µC
′B−1C

n )−1 = ‖(C ′B−1C)−1‖.

Then, the first term on the rhs of (C34) is

‖(C ′B−1C)−1‖2 ≤ tr
[
(C ′B−1C)−2

]
=

m∑
j=1

1

(µC
′B−1C

j )
2 = O(n−2). (C35)

Indeed, them eigenvalues ofC ′B−1C are also them non-zero eigenvalues ofB−1/2CC ′B−1/2,
which are all O(n) by conditions (b) and (c). By using (C34) and (C35) in (C33) we prove
the Lemma. �

C.2 Consistency of KF and KS using the true value of the parameters

Lemma 4. For the conditional covariance Pt|t−1 of the static factors given X t−1, there exists
a steady state for the reduced form denoted as P solving the algebraic Riccati equation (ARE)
and such that

Pt|t−1 = P +O(e−t).

Moreover, as n→∞,

P = K

(
Iq 0q
0q 0q

)
K′ +O(n−1) = HH′ +O(n−1).

Proof. Define P̃t|t−1 as the conditional covariance matrix for the vector (f ′t f
′
t−1)′ given X t−1.

Then, due to stabilizability and detectability proved in Lemma 1, there exists a steady state
for the structural model denoted as P̃ solving the algebraic Riccati equation (ARE) and such
that (see Anderson and Moore, 1979, pp.76-77, and Harvey, 1990, pp.118-119)

P̃t|t−1 = P̃ +O(e−t).

In presence of a diffuse prior its effect is limited to the first few periods, say t0 (see Koopman,
1997), then the result above holds for t > t0. The ARE for the structural model is then (see
also (B19))

P̃− ÃP̃Ã′ + ÃP̃B̃′(B̃P̃B̃′ + R)−1B̃P̃Ã′ =

(
Iq 0q
0q 0q

)
, (C36)

where

Ã =

(
Π1 Π2

Iq 0q

)
, B̃ = (B0 B1). (C37)

Now since the structural model has only q controllable and observable states (see Lemma 1)
and P̃ is the steady state covariance of those states, rk(P̃) = q. Define as V the r× r matrix
of eigenvectors of P̃ and as D the q × q diagonal matrix of its non zero eigenvalues, then

P̃ = V

(
D 0q
0q 0q

)
V′ = V

(
D1/2 0q
0q 0q

)(
D1/2 0q
0q 0q

)
V′ = W

(
Iq 0q
0q 0q

)
W′, (C38)
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with

W = V

(
D1/2 0q
0q Iq

)
.

Define B∗0 and B∗1 as the n× q matrices such that B̃W = (B∗0 B∗1). Then, from (C38)

B̃P̃B̃′ = B̃W

(
Iq 0q
0q 0q

)
W′B̃′ = (B∗0 B∗1)

(
Iq 0q
0q 0q

)(
B∗0
′

B∗1
′

)
= B∗0B

∗
0
′, (C39)

and (
Iq 0q
0q 0q

)
W′B̃′ =

(
Iq 0q
0q 0q

)(
B∗0
′

B∗1
′

)
=

(
B∗0
′

0q×n

)
. (C40)

From (C38), (C39), (C40), Lemmas 2 and 3, we have(
Iq 0q
0q 0q

)
W′B̃′(B̃P̃B̃′ + R)−1B̃W

(
Iq 0q
0q 0q

)
=

(
B∗0
′(B∗0B

∗
0
′ + R)−1

0q×n

)
(B∗0 B∗1)

(
Iq 0q
0q 0q

)
=

(
(B∗0

′R−1B∗0 + Iq)
−1B∗0

′R−1B∗0 0q
0q 0q

)
=

(
Iq +O(n−1) 0q

0q 0q

)
. (C41)

Notice that we can apply Lemma 3 to the top left q × q block of (C41) since: Iq trivially
satisfies condition (a), R−1 satisfies condition (b) because of D2 and B∗0

′B∗0 satisfies condition
(c). Indeed, from definition (A12) we have

1

n

(
B∗0
′

B∗1
′

)
(B∗0 B∗1) = W′K′

Λ′Λ

n
KW,

and because of assumption C2 the top left q × q block of this matrix which is n−1B∗0
′B∗0 has

full column-rank for any n. By substituting (C38) and (C41) into (C36) we have

P̃ =

(
Iq 0q
0q 0q

)
+O(n−1). (C42)

Now, notice that by construction Pt|t−1 = KP̃t|t−1K
′ and since K is full-rank then also the

reduced form system is stabilizable and detectable, thus it has a steady state P such that

Pt|t−1 = P +O(e−t). (C43)

Moreover, since K does not depend on t nor n, we have P = KP̃K′ and the result follows
directly from (C42). Last, from the definition of H in (A13) we have also P = HH′. �

Lemma 5. For the static factors estimated via KF and KS when using the true value of the
parameters Θ, under condition (15) in the text, the following hold, for all t̄ ≤ t ≤ T and as
n→∞,

√
n ‖Ft|t − Ft‖ = Op(1),
√
n ‖Ft|T − Ft‖ = Op(1).
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Proof. By Lemma 4, the conditional covariance Pt|t of the static factors given X t has a
steady state S such that (see (B18))

S = P−PΛ′(ΛPΛ′ + R)−1ΛP. (C44)

Then, notice that by Lemma 4 and (A12)

PΛ′ = K

(
Iq 0q
0q 0q

)
K′(K′)−1

(
B′0
B′1

)
+O(n−1) = K

(
B′0
0q

)
+O(n−1), (C45)

ΛPΛ′ = (B0 B1)K−1K

(
Iq 0q
0q 0q

)
K′(K′)−1

(
B′0
B′1

)
+O(n−1) = B0B

′
0 +O(n−1). (C46)

Using (C45) and (C46) and by applying Lemmas 2 and 3 we have

PΛ′(ΛPΛ′ + R)−1ΛP = K

(
B′0(B0B

′
0 + R)−1B0 0q
0q 0q

)
K′ +O(n−1)

= K

(
(B′0R

−1B0 + Iq)
−1B′0R

−1B0 0q
0q 0q

)
K′ +O(n−1)

= K

(
Iq +O(n−1) 0q

0q 0q

)
K′ +O(n−1). (C47)

Notice that we can apply Lemma 3 to the top q × q block of (C47) since: Iq trivially satisfies
condition (a), R−1 satisfies condition (b) because of D2 and B0

′B0 satisfies condition (c)
because of assumption C2 and definition (A12) (see also (C41) in the proof of Lemma 4). By
substituting (C47) into (C44) and because of Lemma 4, we have

S = K

(
Iq 0q
0q 0q

)
K′ +O(n−1)−K

(
Iq 0q
0q 0q

)
K′ +O(n−1) = O(n−1). (C48)

By substituting (C43) in (B18), from (C44) we have

Pt|t = S +O(e−t). (C49)

Therefore, by substituting (C48) into (C49) and letting n = T γ for γ > 0 and t̄ ≡ t̄(T ),
because of (15) for t̄ ≤ t ≤ T we have

Pt|t = O(n−1) +O(e−t) = O(n−1). (C50)

Now, let us consider Pt|T defined in (B24). From (B18)

Pt|t−1 = Pt|t + Pt|t−1Λ
′(ΛPt|t−1Λ

′ + R)−1ΛPt|t−1. (C51)

By substituting (C51) and (B25) in (B24) we have

Pt|T = Pt|t + Pt|t−1L
′
tNtLtPt|t−1. (C52)

Since Nt is function of Pt|t−1, because of Lemma 4, it has a steady state N such that ‖N‖ =
O(1) and

Nt = N +O(e−t). (C53)
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Now, since APt|t = LtPt|t−1, using (C50) and (C53), because of (15) for t̄ ≤ t ≤ T we have

Pt|t−1L
′
tNtLtPt|t−1 = Pt|tA

′NtAPt|t = O(n−2). (C54)

By using (C50) and (C54) into (C52), for t̄ ≤ t ≤ T we have

Pt|T = O(n−1). (C55)

By the law of iterated expectations, for t̄ ≤ t ≤ T we have (see also the definitions in (B14))

EΘ[(Ft − Ft|t)(Ft − Ft|t)
′] = EΘ[EΘ[(Ft − Ft|t)(Ft − Ft|t)

′|X t]] = EΘ[Pt|t] = O(n−1),

EΘ[(Ft − Ft|T )(Ft − Ft|T )′] = EΘ[EΘ[(Ft − Ft|T )(Ft − Ft|T )′|X T ]] = EΘ[Pt|T ] = O(n−1),

which imply mean-square convergence of the KF and KS when the parameters are known and
for all t̄ ≤ t ≤ T :

EΘ[‖Ft − Ft|t‖2] =

r∑
j=1

EΘ[(Fj,t − Fj,t|t)2] = tr
{
EΘ[Pt|t]

}
= O(n−1),

EΘ[‖Ft − Ft|T ‖2] =

r∑
j=1

EΘ[(Fj,t − Fj,t|T )2] = tr
{
EΘ[Pt|T ]

}
= O(n−1).

The result follows from Chebychev’s inequality. �

C.3 Consistency of KF and KS using estimated parameters

Lemma 6. Consider the QML estimator of the parameters Θ̂∗ defined in (B7) and obtained
using the true values of the static factors Ft, then, as T →∞:

√
T ‖λ̂∗i − λi‖ = Op(1), i = 1, . . . , n,
√
T ‖Â∗ −A‖ = Op(1),
√
T ‖Ĥ∗ −H‖ = Op(1),
√
T |[R̂]∗ii − [R]ii| = Op(1), i = 1, . . . , n.

Proof. The QML estimator of the loadings, for any i = 1, . . . , n, is given by

λ̂∗
′
i =

(
T∑
t=1

xitF
′
t

)(
T∑
t=1

FtF
′
t

)−1

. (C56)

We know that Ft is driven by (q − d) common trends (see C2), therefore we can find an
orthonormal linear basis of dimension (q − d) such that the projection of Ft onto this basis
span the same space as the common trends. Collect the elements of this basis in the r×(q−d)
matrix γ, and denote as γ⊥ the r× (r− q+ d) matrix such that γ ′⊥γ = 0(r−q+d)×(q−d). Then,
consider the r × r linear transformation

DFt =

(
γ ′Ft

γ ′⊥Ft

)
=

(
Z1t

Z0t

)
, (C57)
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where Z1t has all (q − d) components which are I(1) while Z0t ∼ I(0) and is of dimension
(r − q + d). Moreover, for Z1t we have the MA representation

∆Z1t = Q(L)ζt, (C58)

ζt
w.n.∼ (0q−d,Σζ) with Σζ positive definite and Q(L) is a (q − d)× (q − d) one-sided, infinite

matrix polynomial with square-summable coefficients and rk(Q(1)) = (q − d).

Because of orthonormality D′D = Ir. Then, the corresponding transformation of the loadings
gives λ′iD′ = (λ′i1 λ

′
i0) such that xit = λ′i1Z1t+λ

′
i0Z0t+ξit and we also have λ̂∗′i D′ = (λ̂∗

′
i1 λ̂

∗′
i0).

Recall that Z1t and Z0t are orthogonal by construction, then we have(
λ̂∗
′
i1 − λ′i1
λ̂∗
′
i0 − λ′i0

)
(C59)

=

 (
1
T 2

∑T
t=1 ξitZ

′
1t

)(
1
T 2

∑T
t=1 Z1tZ

′
1t

)−1
0(q−d)×(r−q+d)

0(r−q+d)×(q−d)

(
1
T

∑T
t=1 ξitZ

′
0t

)(
1
T

∑T
t=1 Z0tZ

′
0t

)−1

 .

By Theorem 1 in Peña and Poncela (1997, 2006), under C1 and C3, and from (C58), as
T →∞,

1

T 2

T∑
t=1

Z1tZ
′
1t ⇒ Q(1)Σ

1/2
ζ

(∫ 1

0
W(u)W(u)′du

)
Σ

1/2
ζ Q(1)′, (C60)

where W(·) is a (q − d)-dimensional standard Wiener process. Thus this term is Op(1) and
positive definite therefore invertible. Last, from (C58) we see that each component of ∆Z1t

has an MA representation with square summable coefficients (∆Z1t ∼ I(0) by construction),
therefore Var(t−1Z1jt) = O(1) for any j = 1, . . . , (q − d) and any t = 1, . . . , T . Thus, by
using Gaussianity (see D2 and D3) and by A2 also independence of factors and idiosyncratic
components, we can prove that, as T →∞,

1

T 2

T∑
t=1

ξitZ
′
1t = Op

(
T−1

)
. (C61)

Moreover, from C1 it is easy to see that Z0t has an MA representation with square summable
coefficients (it is stationary) and because of A2 and C3 we have, as T →∞,

1

T

T∑
t=1

ξitZ
′
0t = Op(T

−1/2),
1

T

T∑
t=1

Z0tZ
′
0t = E[Z0tZ

′
0t] +Op(T

−1/2) = Op(1). (C62)

From (C59), (C60), (C61), and (C62), and since D does not depend on T , we obtain the
result.

Consider the VAR
DFt = (DAD′)DFt−1 + DHut. (C63)

such that DHut = (e′1t e′0t)
′ where e1t and e0t are white noise processes of dimensions (q− d)
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and (r − q + d), respectively. Then, similarly to (C59) we have

D(Â∗ −A)D′ = (C64)

=

 (
1
T 2

∑T
t=1 e1tZ

′
1t−1

)(
1
T 2

∑T
t=1 Z1t−1Z

′
1t−1

)−1 (
1
T

∑T
t=1 e0tZ

′
1t−1

)(
1
T

∑T
t=1 Z0t−1Z

′
0t−1

)−1(
1
T 2

∑T
t=1 e1tZ

′
0t−1

)(
1
T 2

∑T
t=1 Z1t−1Z

′
1t−1

)−1 (
1
T

∑T
t=1 e0tZ

′
0t−1

)(
1
T

∑T
t=1 Z0t−1Z

′
0t−1

)−1


Then, using the fact that e1t and e0t are white noise, it can be shown that

1

T 2

T∑
t=1

e1tZ
′
1t−1 = Op(T

−1),
1

T 2

T∑
t=1

e1tZ
′
0t−1 = Op(T

−1/2), (C65)

1

T

T∑
t=1

e1tZ
′
0t−1 = Op(T

−1),
1

T

T∑
t=1

e0tZ
′
0t−1 = Op(T

−1/2).

Substituting (C60), (C62), and (C65) into (C64) and since D does not depend on T , we have
the result for the VAR parameters. Similar results can be proved for all other parameters. �

Lemma 7. Define the KF and KS estimators of the static factors and their conditional co-
variances when using the QML estimator of the parameters Θ̂∗ as

F∗t|t = E
Θ̂∗ [Ft|X t], P∗t|t = E

Θ̂∗ [(Ft − F∗t|t)(Ft − F∗t|t)
′|X t],

F∗t|T = E
Θ̂∗ [Ft|X T ], P∗t|T = E

Θ̂∗ [(Ft − F∗t|T )(Ft − F∗t|T )′|X T ].

Then, under condition (15) in the text, the following hold, for all t̄ ≤ t ≤ T and as n, T →∞,

min(
√
n,
√
T ) ‖F∗t|t − Ft‖ = Op(1),

min(
√
n,
√
T ) ‖F∗t|T − Ft‖ = Op(1),

min(n,
√
T ) ‖P∗t|t‖ = Op(1),

min(n,
√
T ) ‖P∗t|T ‖ = Op(1).

Proof. We start with three preliminary results. First, from (C50) in the proof of Lemma 5
we have

Ft−1|t−1 − Ft−1 = O(e−(t−1)/2) +O(n−1/2). (C66)

Second, because of Lemma 5 and (C66), we have∥∥∥∥ xt√
n
−

ΛFt|t−1√
n

∥∥∥∥ =

∥∥∥∥ΛFt + ξt√
n

−
ΛFt|t−1√

n

∥∥∥∥ ≤ ∥∥∥∥ Λ√
n

∥∥∥∥ (‖A‖ ‖Ft−1 − Ft−1|t−1‖+ ‖Hut‖
)

+

∥∥∥∥ ξt√n
∥∥∥∥

=

∥∥∥∥ Λ√
n

∥∥∥∥ [‖A‖ (O(e−(t−1)/2) +O(n−1/2)
)

+ ‖Hut‖
]

+

∥∥∥∥ ξt√n
∥∥∥∥ = Op(1),

(C67)

since ut
w.n.∼ (0q, Iq) and ξt ∼ I(0).

Third, from transformation (C57), defined in the proof of Lemma 6, DFt = (Z′1t Z′0t)
′, we

have ‖Z1t‖ = Op(
√
T ) and ‖Z0t‖ = Op(1). Then, since D′D = Ir, as a consequence of Lemma
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6 (see in particular (C59) and (C64)), the following hold

(Â∗ −A)Ft = D′D(Â∗ −A)D′DFt = Op(T
−1/2), (C68)

(λ̂∗
′
i − λ′i)AFt = (λ̂∗

′
i − λ′i)D′DAD′DFt = Op(T

−1/2), i = 1, . . . , n. (C69)

Now, we compare the KF iterations, (B15)-(B18), with those obtained when using Θ̂∗:

F∗t|t−1 = Â∗F∗t−1|t−1, (C70)

P∗t|t−1 = Â∗P∗t−1|t−1Â
∗′ + Ĥ∗Ĥ∗

′
, (C71)

F∗t|t = F∗t|t−1 + P∗t|t−1Λ̂
∗′(Λ̂∗P∗t|t−1Λ̂

∗′ + R̂∗)−1(xt − Λ̂∗F∗t|t−1), (C72)

P∗t|t = P∗t|t−1 −P∗t|t−1Λ̂
∗′(Λ̂∗P∗t|t−1Λ̂

∗′ + R̂∗)−1Λ̂∗P∗t|t−1. (C73)

From (C70) we have

F∗t|t−1 − Ft|t−1 = A(F∗t−1|t−1 − Ft−1|t−1) + (Â∗ −A)(F∗t−1|t−1 − Ft−1|t−1) + (Â∗ −A)Ft−1|t−1

= A(F∗t−1|t−1 − Ft−1|t−1) + (Â∗ −A)(F∗t−1|t−1 − Ft−1|t−1) +Op(T
−1/2),

(C74)

since

(Â∗ −A)Ft−1|t−1 = (Â∗ −A)(Ft−1|t−1 − Ft−1) + (Â∗ −A)Ft−1

= Op(T
−1/2)O(e−(t−1)/2) +Op(T

−1/2)O(n−1/2) +Op(T
−1/2),

because of Lemma 6, (C66) and (C68). Similarly, from (C71) we have

P∗t|t−1 −Pt|t−1 = A(P∗t−1|t−1 −Pt−1|t−1)A′ + (Â∗ −A)(P∗t−1|t−1 −Pt−1|t−1)A′ (C75)

+ (Â∗ −A)(P∗t−1|t−1 −Pt−1|t−1)(Â∗ −A)′ + A(P∗t−1|t−1 −Pt−1|t−1)(Â∗ −A)′

+ (Â∗ −A)Pt−1|t−1A
′ + (Â∗ −A)Pt−1|t−1(Â∗ −A)′ + APt−1|t−1(Â∗ −A)′

+ (Ĥ∗ −H)H′ + (Ĥ∗ −H)(Ĥ∗ −H)′ + H(Ĥ∗ −H)′

= A(P∗t−1|t−1 −Pt−1|t−1)A′ + (Â∗ −A)(P∗t−1|t−1 −Pt−1|t−1)A′

+ (Â∗ −A)(P∗t−1|t−1 −Pt−1|t−1)(Â∗ −A)′ + A(P∗t−1|t−1 −Pt−1|t−1)(Â∗ −A)′ +Op(T
−1/2),

since

(Â∗ −A)Pt−1|t−1A
′ = APt−1|t−1(Â∗ −A)′ = Op(T

−1/2)O(e−(t−1)) +Op(T
−1/2)O(n−1),

(Â∗ −A)Pt−1|t−1(Â∗ −A)′ = Op(T
−1)O(e−(t−1)) +Op(T

−1)O(n−1).

because of Lemma 6 and (C50) in the proof of Lemma 5 and

Ĥ∗Ĥ∗
′ −HH′ = (Ĥ∗ −H)H′ + H(Ĥ∗ −H)′ + (Ĥ∗ −H)(Ĥ∗ −H)′ = Op(T

−1/2),

because of Lemma 6.
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Define
Kt = Pt|t−1Λ

′(ΛPt|t−1Λ
′ + R)−1,

and analogously define K̂
∗
t when using P∗t|t−1, Λ̂∗ and R̂∗. From (C72) we have

F∗t|t − Ft|t = F∗t|t−1 − Ft|t−1 + (K̂
∗
t −Kt)(xt −ΛFt|t−1)

+ (K̂
∗
t −Kt)(ΛFt|t−1 − Λ̂∗F∗t|t−1) + Kt(ΛFt|t−1 − Λ̂∗F∗t|t−1). (C76)

Moreover, because of (C69)

Λ̂∗F∗t|t−1 −ΛFt|t−1
√
n

=
Λ√
n

(F∗t|t−1 − Ft|t−1) +

(
Λ̂∗ −Λ√

n

)
(F∗t|t−1 − Ft|t−1) +

(
Λ̂∗ −Λ√

n

)
Ft|t−1

=
Λ√
n

(F∗t|t−1 − Ft|t−1) +

(
Λ̂∗ −Λ√

n

)
(F∗t|t−1 − Ft|t−1) +Op(T

−1/2),

(C77)

since(
Λ̂∗ −Λ√

n

)
Ft|t−1 =

(
Λ̂∗ −Λ√

n

)
AFt−1|t−1 =

(
Λ̂∗ −Λ√

n

)
A(Ft−1|t−1 − Ft−1) +

(
Λ̂∗ −Λ√

n

)
AFt−1

= Op(T
−1/2)O(e−(t−1)/2) +Op(T

−1/2)O(n−1/2) +Op(T
−1/2),

because of Lemma 6, (C66), (C69) and since ‖A‖ = O(1). Similarly, from (C73)

P∗t|t −Pt|t = P∗t|t−1 −P∗t|t−1 −
[
(K̂
∗
t −Kt)ΛPt|t−1

+ (K̂
∗
t −Kt)(Λ̂

∗P∗t|t−1 −ΛPt|t−1) + Kt(Λ̂
∗P∗t|t−1 −ΛPt|t−1)

]
. (C78)

Moreover,

Λ̂∗P∗t|t−1 −ΛPt|t−1
√
n

=
Λ√
n

(P∗t|t−1 −Pt|t−1) +

(
Λ̂∗ −Λ√

n

)
(P∗t|t−1 −Pt|t−1) +

(
Λ̂∗ −Λ√

n

)
Pt|t−1

=
Λ√
n

(P∗t|t−1 −Pt|t−1) +

(
Λ̂∗ −Λ√

n

)
(P∗t|t−1 −Pt|t−1) +Op(T

−1/2),

(C79)

since (
Λ̂∗ −Λ√

n

)
Pt|t−1 =

(
Λ̂∗ −Λ√

n

)(
APt−1|t−1A

′ + HH′
)

= Op(T
−1/2)O(e−(t−1)) +Op(T

−1/2)O(n−1) +Op(T
−1/2),

because of Lemma 6 and (C50) in the proof of Lemma 5 and since ‖A‖ = O(1) and ‖H‖ =
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O(1). Following the same reasoning we also have

ΛPt|t−1√
n

=
Λ√
n

(
APt−1|t−1A

′ + HH′
)

=
Λ√
n

(
O(e−(t−1)) +O(n−1) + HH′

)
. (C80)

Now, set t = 1. Then, by noticing that F∗0|0 = F0|0 and P∗0|0 = P0|0, from (C74) and (C75) at
t = 1 we have

F∗1|0 − F1|0 = Op(T
−1/2), P∗1|0 −P1|0 = Op(T

−1/2). (C81)

Then, because of (C67), (C81) and Lemma 6, at t = 1 we have

√
n(K̂

∗
1 −K1)

(
x1√
n
−

ΛF1|0√
n

)
= (C82)

=

P∗1|0
Λ̂∗
′

√
n

(
Λ̂√
n

P∗1|0
Λ̂∗
′

√
n

+
R̂∗

n

)−1

−P1|0
Λ′√
n

(
Λ√
n

P1|0
Λ′√
n

+
R

n

)−1
( x1√

n
−

ΛF1|0√
n

)
= Op(T

−1/2).

Moreover, from (C80)

√
n(K̂

∗
1 −K1)

ΛP1|0√
n

= Op(T
−1/2). (C83)

From (C76) and using (C74), (C77), (C81), and (C82) at t = 1 we have

F∗1|1 − F1|1 = F∗1|0 − F1|0 + (K̂
∗
1 −K1)(x1 −ΛF1|0)

+ (K̂
∗
1 −K1)(ΛF1|0 − Λ̂F∗1|0) + K1(ΛF1|0 − Λ̂F∗1|0) = Op(T

−1/2). (C84)

Similarly, from (C78) and using (C75), (C79), (C81), and (C83) at t = 1 we have

P∗1|1 −P1|1 = P∗1|0 −P∗1|0 −
[
(K̂
∗
1 −K1)ΛP1|0

+ (K̂
∗
1 −K1)(Λ̂∗P∗1|0 −ΛP1|0) + K1(Λ̂∗P∗1|0 −ΛP1|0)

]
= Op(T

−1/2). (C85)

Then substituting (C84) into (C76) and (C85) into (C78) we have

F∗2|1 − F2|1 = Op(T
−1/2), P∗2|1 −P2|1 = Op(T

−1/2). (C86)

Then, because of (C67), (C86) and Lemma 6, at t = 2 we have

√
n(K̂

∗
2 −K2)

(
x2√
n
−

ΛF2|1√
n

)
= Op(T

−1/2), (C87)

and from (C80)

√
n(K̂

∗
2 −K2)

ΛP2|1√
n

= Op(T
−1/2). (C88)
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From, (C76) and using (C74), (C77), (C86), and (C87), at t = 2 we have

F∗2|2 − F2|2 = Op(T
−1/2),

and from (C78) and using (C75), (C79), (C86), and (C88), at t = 2 we have

P∗2|2 −P2|2 = Op(T
−1/2).

By repeating the same reasoning for t = 3, . . . , T we have

‖F∗t|t − Ft|t‖ = Op(T
−1/2), ‖P∗t|t −Pt|t‖ = Op(T

−1/2), (C89)

and also

‖F∗t|t−1 − Ft|t−1‖ = Op(T
−1/2), ‖P∗t|t−1 −Pt|t−1‖ = Op(T

−1/2). (C90)

Because of Lemma 5 and (C89), we have for t̄ ≤ t ≤ T ,

‖F∗t|t − Ft‖ ≤ ‖F∗t|t − Ft|t‖+ ‖Ft|t − Ft‖ = Op(T
−1/2) +O(n−1/2),

‖P∗t|t‖ ≤ ‖P
∗
t|t −Pt|t‖+ ‖Pt|t‖ = Op(T

−1/2) +O(n−1).

Now compare the KS iterations, (B22)-(B26), with those obtained when using Θ̂∗:

F∗t|T = F∗t|t−1 + P∗t|t−1r
∗
t−1, (C91)

r∗t−1 = Λ̂∗
′
(Λ̂∗P∗t|t−1Λ̂

∗′ + R̂∗)−1(xt − Λ̂∗F∗t|t−1) + L∗
′
t r∗t , (C92)

P∗t|T = P∗t|t−1 −P∗t|t−1N
∗
t−1P

∗
t|t−1, (C93)

N∗t−1 = Λ̂∗
′
(Λ̂∗P∗t|t−1Λ̂

∗′ + R̂∗)−1Λ̂∗ + L∗
′
t N∗tL

∗
t , (C94)

L∗t = Â∗ − Â∗P∗t|t−1Λ̂
∗′(Λ̂∗P∗t|t−1Λ̂

∗′ + R̂∗)−1Λ̂∗, (C95)

where r∗T = 0r×1, N∗T = 0r. First notice that obviously at t = T both KF and KS give the
same result hence (C89) applies also in this case, and because of Lemma 6, (C67), (C77), and
(C90), we have

r∗T−1 − rT−1 = Op(T
−1/2), N∗T−1 −NT−1 = Op(T

−1/2). (C96)

Moreover, from (C95), because of Lemma 6 and (C90), we have

L∗t − Lt = Â∗ −A−
√
n

[
Â∗K̂

∗
t

Λ̂∗√
n
−AKt

Λ√
n

]
= Op(T

−1/2). (C97)

Then, from (C92), because of (C67), (C77), (C90), (C96) and (C97), at t = T − 1 we have

r∗T−2 − rT−2 = Op(T
−1/2), N∗T−2 −NT−2 = Op(T

−1/2). (C98)

Therefore, from (C91) and (C93), because of (C90) and (C98), we have

F∗T−1|T − FT−1|T = Op(T
−1/2), P∗T−1|T −PT−1|T = Op(T

−1/2). (C99)
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By repeating the same reasoning for t = (T − 2), . . . , 1, we have

‖F∗t|T − Ft|T ‖ = Op(T
−1/2), ‖P∗t|T −Pt|T ‖ = Op(T

−1/2). (C100)

Because of Lemma 5 and (C100), we have for t̄ ≤ t ≤ T

‖F∗t|T − Ft‖ ≤ ‖F∗t|T − Ft|T ‖+ ‖Ft|T − Ft‖ = Op(T
−1/2) +O(n−1/2),

‖P∗t|T ‖ ≤ ‖P
∗
t|T −Pt|T ‖+ ‖Pt|T ‖ = Op(T

−1/2) +O(n−1),

which completes the proof. �

Lemma 8. Consider the initial estimator of the parameters Θ̂0 defined in (B3), then there
exists an invertible r × r matrix J such that, as n, T →∞:

min(
√
n,
√
T ) ‖λ̂′i0 − λ′iJ−1‖ = Op(1), i = 1, . . . , n,

min(
√
n,
√
T ) ‖Â0 − JAJ−1‖ = Op(1),

min(
√
n,
√
T ) ‖Ĥ0 − JH‖ = Op(1),

min(
√
n,
√
T ) |[R̂]ii,0 − [R]ii| = Op(1), i = 1, . . . , n.

Moreover, under E1 and E2 we have J = Ir.

Proof. When E2 holds the proof Lemmas 3 and 5 in Barigozzi et al., 2016b where is shown
that J is a diagonal matrix with entries ±1. If we impose also E1 the sign indeterminacy is
fixed and J = Ir. �

Lemma 9. Consider the estimator of the parameters obtained at convergence of the EM
algorithm Θ̂ := Θ̂k∗ , then, as n, T →∞:

√
T ‖λ̂ik∗ − λi‖ = Op(1), i = 1, . . . , n,
√
T ‖Âk∗ −A‖ = Op(1),
√
T ‖Ĥk∗ −H‖ = Op(1),
√
T |[R̂]ii,k∗ − [R]ii| = Op(1), i = 1, . . . , n.

Proof. Define the Q×Q matrices

I(Θ) = −∇2
ΘΘ′ `(X T ; Θ),

I0(Θ) = −
∫
Rr×T

∇2
ΘΘ′ `(X T ,FT ; Θ)f(FT |X T ; Θ)dFT = −EΘ[∇2

ΘΘ′ `(X T ,FT ; Θ)|X T ],

I1(Θ) = −
∫
Rr×T

∇2
ΘΘ′ `(FT |X T ,FT ; Θ)f(FT |X T ; Θ)dFT = −EΘ[∇2

ΘΘ′ `(FT |X T ; Θ)|X T ],

then, since I(Θ) does not depend on FT from (B1) and (B11)

I(Θ) = I0(Θ)− I1(Θ). (C101)
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Moreover, at convergence of the EM algorithm (iteration k∗) we have the Taylor approximation

(Θ̂k∗ − Θ̂∗) = (Θ̂k∗−1 − Θ̂∗)R(Θ̂∗) +O
(
‖Θ̂k∗ − Θ̂∗‖2

)
, (C102)

where following Meng and Rubin (1994) we have (see also (C101))

R(Θ̂∗) = I1(Θ̂∗)
(
I0(Θ̂∗)

)−1
= IQ − I(Θ̂∗)

(
I0(Θ̂∗)

)−1
.

Hence, by iterating (C102) k∗ times and neglecting the second term on the rhs which at
convergence is always smaller the the first term, we obtain

‖Θ̂k∗ − Θ̂∗‖ ≤ ‖Θ̂0 − Θ̂∗‖ ‖R(Θ̂∗)‖k∗ . (C103)

Hereafter, denote ζnT := max(n−1/2, T−1/2). Consider (C103) for the estimated loadings, for
any i = 1, . . . , n, and using Gaussianity (see D2 and D3), we have

‖λ̂ik∗ − λ̂∗i ‖ ≤ ‖λ̂i0 − λ̂∗i ‖
∥∥∥Ir − ( T∑

t=1

FtF
′
t

)( T∑
t=1

E
Θ̂∗ [FtF

′
t|X T ]

)−1∥∥∥k∗
= ‖λ̂i0 − λ̂∗i ‖

∥∥∥Ir − ( 1

T 2

T∑
t=1

FtF
′
t

)( 1

T 2

T∑
t=1

(
F∗t|TF∗

′

t|T + P∗t|T

))−1∥∥∥k∗ . (C104)

Therefore, by condition (15) in the text t̄ = O(log T ), because of Lemma 7, we have

( 1

T 2

T∑
t=1

(
F∗t|TF∗

′

t|T + P∗t|T

))−1
=
( 1

T 2

t̄−1∑
t=1

(
F∗t|TF∗

′

t|T + P∗t|T

)
+

1

T 2

T∑
t=t̄

(
F∗t|TF∗

′

t|T + P∗t|T

))−1

=

(
1

T 2

T∑
t=1

FtF
′
t +Op

(
ζnT√
T

)
+Op

(
log T

T

))−1

=
( 1

T 2

T∑
t=1

FtF
′
t

)−1
+ op(T

−1/2), (C105)

since ‖F∗t|TF∗
′

t|T + P∗t|T ‖ = Op(T ) and ‖FtF
′
t‖ = Op(T ), because Ft ∼ I(1) and F∗t|T ∼ I(1),

and

1

T 2

t̄−1∑
t=1

(
F∗t|TF∗

′

t|T + P∗t|T

)
= Op

(
log T

T

)
,

1

T 2

T∑
t=1

FtF
′
t −

1

T 2

T∑
t=t̄

FtF
′
t = Op

(
log T

T

)
.

Moreover, because of Lemmas 8 and 6, we have

‖λ̂i0 − λ̂∗i ‖ ≤ ‖λ̂i0 − λi‖+ ‖λ̂∗i − λi‖ = Op(ζnT ) +Op(T
−1/2). (C106)

By substituting (C105) and (C106) into (C104), we have

‖λ̂ik∗ − λ̂∗i ‖ = op(ζnT T
−k∗/2). (C107)
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Finally, because of Lemma 6 and (C107), we have

‖λ̂ik∗ − λi‖ ≤ ‖λ̂ik∗ − λ̂∗i ‖+ ‖λ̂∗i − λi‖ = op(T
−k∗/2) +Op(T

−1/2).

The proof for the other parameters follows the same steps by taking the appropriate second
derivatives and applying the results in Lemma 7. �

C.4 Proof of Proposition 1

Consistency of the estimated loadings is proved in Lemma 9. Recalling that Θ̂ := Θ̂k∗ and
also λi = K−1′(b′i0 b

′
i1), because of (A12) we prove (16).

Consistency of the estimated static factors is then proved as in Lemma 7 but using the results
of Lemma 9 for the estimated parameters. In particular, for all t̄ ≤ t ≤ T

‖Ft|T,k∗ − Ft‖ ≤ ‖Ft|T,k∗ − Ft|t‖+ ‖Ft|t − Ft‖ = Op(T
−1/2) +O(n−1/2).

Recalling that F̂t := Ft|T,k∗ and also Ft = K(f ′t f
′
t−1)′ because of (A11) we prove (17). A

similar result can be proved for the KF estimator of the static factors, Ft|t,k∗ using again
Lemmas 7 and 9.

Denote ζnT := max(n−1/2, T−1/2). Then, recalling that λ̂′iF̂t := λ̂′ik∗Ft|T,k∗ , because of (16),
(17) and Lemma 5, we have

|χ̂it − χit| = |λ̂′iF̂t − λ′iFt| ≤ ‖(λ̂i − λi)Ft‖+ ‖λi‖ ‖F̂t − Ft‖+ ‖λ̂i − λi‖ ‖F̂t − Ft‖

= ‖(λ̂i − λi)Ft‖+Op(ζnT )

= ‖λ̂i − λ̂∗i ‖ ‖Ft‖+ ‖(λ̂∗i − λi)Ft‖+Op(ζnT ). (C108)

Now, from Lemma 9 (see in particular (C107)) and since ‖Ft‖ = Op(T
−1/2), we have

‖λ̂i − λ̂∗i ‖ ‖Ft‖ = op(ζnT T
−(k∗−1)/2). (C109)

Moreover, from transformation (C57), defined in the proof of Lemma 6, DFt = (Z′1t Z′0t)
′,

we have ‖Z1t‖ = Op(
√
T ) and ‖Z0t‖ = Op(1). Then, since D′D = Ir, as a consequence of

Lemma 6 (see in particular (C59)), we have

(λ̂∗i − λi)′D′DFt = Op(T
−1/2). (C110)

By substituting (C109) and (C110) into (C108) and since k∗ ≥ 1 because we run the EM
algorithm at least once after initialization, we prove (18). �
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Appendix D Data Description and Data Treatment

This Appendix present the dataset used in the analysis. All variables where downloaded from
Haver on June 16th 2017. None of the variables where adjusted for outliers but variables 57,
83, 87, and 94. All variables are from the USECON database but variable 103 that is from
the DAILY database. All monthly and daily series are transformed into quarterly observation
by simple averages.

In order to choose whether or not to de-trend a variable we apply the following procedure:
let mi be the sample mean of ∆yit, γi(j) be the auto-covariance of order j of ∆yit, and

γ̄i =
√

1
T

∑J
j=1 γi(j), then if |mi|γ̄i

≥ 1.96 we estimate ai and bi from an OLS regression of yit
on a constant and a time trend, whereas if |mi|γ̄i

< 1.96 we set âi = mi and b̂i = 0.

List of Abbreviations

Source:
BLS=U.S. Department of Labor: Bureau of Labor Statistics
BEA=U.S. Department of Commerce: Bureau of Economic Analysis
ISM = Institute for Supply Management
CB=U.S. Department of Commerce: Census Bureau
FRB=Board of Governors of the Federal Reserve System
EIA=Energy Information Administration
WSJ=Wall Street Journal
CBO=Congressional Budget Office
FRBPHIL=Federal Reserve Bank of Philadelphia

F = Frequency T=Transformation SA ξ=Idiosyncratic
Q = Quarterly 0 = None 0 = no 0=I(0)
M = Monthly 1 = log 1 = yes 1=I(1)
D = Daily 2 = ∆ log

D = Deterministic Component U=Units
0 = âi = 1

T

∑T
t=1 ∆yit, b̂i = 0 1000–P = Thousands of Persons

1 = OLS Detrending 1000–U = Thousands of Units
BoC = Billions of Chained
$–B = Dollars per Barrel
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N Series ID Definition Unit F S SA T D ξ

1 GDPH Real Gross Domestic Product BoC 2009$ Q BEA 1 1 1 0
2 GDYH Real gross domestic income BoC 2009$ Q BEA 1 1 1 0
3 FSH Real Final Sales of Domestic Product BoC 2009$ Q BEA 1 1 1 1
4 IH Real Gross Private Domestic Investment BoC 2009$ Q BEA 1 1 1 1
5 GSH Real State & Local∗ BoC 2009$ Q BEA 1 1 1 1
6 FRH Real Private Residential Fixed Investment BoC 2009$ Q BEA 1 1 1 0
7 FNH Real Private Nonresidential Fixed Investment BoC 2009$ Q BEA 1 1 1 1
8 MH Real Imports of Goods & Services BoC 2009$ Q BEA 1 1 1 0
9 GH Real Government∗ BoC 2009$ Q BEA 1 1 1 1
10 XH Real Exports of Goods & Services BoC 2009$ Q BEA 1 1 1 0
14 CH Real Personal Consumption Expenditures (PCE) BoC 2009$ Q BEA 1 1 1 0
11 CNH Real PCE: Nondurable Goods BoC 2009$ Q BEA 1 1 1 1
12 CSH Real PCE: Services BoC 2009$ Q BEA 1 1 1 0
13 CDH Real PCE: Durable Goods BoC 2009$ Q BEA 1 1 1 0
15 GFDIH Real National Defense Gross Investment BoC 2009$ Q BEA 1 1 1 0
16 GFNIH Real Federal Nondefense Gross Investment BoC 2009$ Q BEA 1 1 1 0
17 YPDH Real Disposable Personal Income BoC 2009$ Q BEA 1 1 1 0
18 JI Gross Private Domestic Investment:? 2009=100 Q BEA 1 2 0 0
19 JGDP Gross Domestic Product:? 2009=100 Q BEA 1 2 0 1
20 LXNFU Unit Labor Cost† 2009=100 Q BLS 1 1 1 1
21 LXNFR Real Compensation Per Hour† 2009=100 Q BLS 1 1 1 1
22 LXNFC Compensation Per Hour† 2009=100 Q BLS 1 1 1 1
23 LXNFH Hours of All Persons† 2009=100 Q BLS 1 1 1 0
24 LXNFA Output Per Hour of All Persons† 2009=100 Q BLS 1 1 1 0
25 LXMU Unit Labor Cost‡ 2009=100 Q BLS 1 1 1 1
26 LXMR Real Compensation Per Hour‡ 2009=100 Q BLS 1 1 1 1
27 LXMC Compensation Per Hour‡ 2009=100 Q BLS 1 1 1 0
28 LXMH Hours of All Persons‡ 2009=100 Q BLS 1 1 1 0
29 LXMA Output Per Hour of All Persons‡ 2009=100 Q BLS 1 1 1 1
30 IP Industrial Production (IP) Index 2012=100 M FRB 1 1 1 0
31 IP521 IP: Business Equipment 2012=100 M FRB 1 1 1 1
32 IP511 IP: Durable Consumer Goods 2012=100 M FRB 1 1 1 0
33 IP531 IP: Durable Materials 2012=100 M FRB 1 1 1 1
34 IP512 IP: Nondurable Consumer Goods 2012=100 M FRB 1 1 1 0
35 IP532 IP: nondurable Materials 2012=100 M FRB 1 1 1 0
∗ Consumption Expenditures & Gross Investment
? Chain-type Price Index
† Nonfarm Business Sector
‡ Manufacturing Sector
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N Series ID Definition Unit F S SA T D ξ

36 PCU CPI-U: All Items 82-84=100 M BLS 1 2 0 0
37 PCUSE CPI-U: Energy 82-84=100 M BLS 1 2 0 0
38 PCUSLFE CPI-U: All Items Less Food and Energy 82-84=100 M BLS 1 2 0 0
39 PCUFO CPI-U: Food 82-84=100 M BLS 1 2 0 0
40 JCBM PCE: Chain Price Index 2009=100 M BEA 1 2 0 0
41 JCEBM PCE: Energy Goods & Services–price index 2009=100 M BEA 1 2 0 0
42 JCNFOM PCE: Food & Beverages–price index∗ 2009=100 M BEA 1 2 0 0
43 JCXFEBM PCE less Food & Energy–price index 2009=100 M BEA 1 2 0 0
44 JCSBM PCE: Services–price index 2009=100 M BEA 1 2 0 0
45 JCDBM PCE: Durable Goods–price index 2009=100 M BEA 1 2 0 0
46 JCNBM PCE: Nondurable Goods–price index 2009=100 M BEA 1 2 0 0
47 PC1 PPI: Intermediate Demand Processed Goods 1982=100 M BLS 1 2 0 0
48 P05 PPI: Fuels and Related Products and Power 1982=100 M BLS 0 2 0 0
49 SP3000 PPI: Finished Goods 1982=100 M BLS 1 2 0 0
50 PIN PPI: Industrial Commodities 1982=100 M BLS 0 2 0 0
51 PA PPI: All Commodities 1982=100 M BLS 0 2 0 0
52 PC1 PPI: Intermediate Demand Processed Goods 1982=100 M BLS 1 2 0 0
53 FMC Money Stock: Currency Bil. of $ M FRB 1 2 0 0
54 FM1 Money Stock: M1 Bil. of $ M FRB 1 2 0 1
55 FM2 Money Stock: M2 Bil. of $ M FRB 1 2 0 0
56 FABWC C & I Loans in Bank Credit:† Bil. of $ M FRB 1 1 1 1
57 FABWQ Consumer Loans in Bank Credit:† Bil. of $ M FRB 1 1 1 1
58 FAB Bank Credit:† Bil. of $ M FRB 1 1 1 1
59 FABW Loans & Leases in Bank Credit:† Bil. of $ M FRB 1 1 1 1
60 FABYO Other Securities in Bank Credit:† Bil. of $ M FRB 1 1 1 1
61 FABWR Real Estate Loans in Bank Credit:† Bil. of $ M FRB 1 1 1 0
62 FOT Consumer Credit Outstanding Bil. of $ M FRB 1 1 1 0
63 HSTMW Housing Starts: Midwest 1000–U M CB 1 1 0 0
64 HSTNE Housing Starts: Northeast 1000–U M CB 1 1 0 0
65 HSTS Housing Starts: South 1000–U M CB 1 1 0 0
66 HSTGW Housing Starts: West 1000–U M CB 1 1 0 0
67 HPT Building Permit? 1000–U M CB 1 1 0 0
68 FBPR Bank Prime Loan Rate Percent M FRB 0 0 0 0
69 FFED Federal Funds [effective] Rate Percent M FRB 0 0 0 0
70 FCM1 1-Year Treasury Bill Yield‡ Percent M FRB 0 0 0 0
71 FCM10 10-Year Treasury Note Yield‡ Percent M FRB 0 0 0 0
∗ Purchased for Off-Premises Consumption
† All Commercial Banks
? New Private Housing Units Authorized by ‡ at Constant Maturity
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N Series ID Definition Unit F S SA T D ξ

72 LP Civilian Participation Rate: 16 yr + Percent M BLS 0 0 0 1
73 LQ Civilian Employment/Population Ratio: 16 yr + Percent M BLS 0 0 0 1
74 LE Civilian Employment: Sixteen Years & Over 1000–P M BLS 0 1 1 0
75 LR Civilian Unemployment Rate: 16 yr + Percent M BLS 0 0 0 0
76 LU0 Civilians Unemployed for Less Than 5 Weeks 1000–P M BLS 0 1 0 0
77 LU5 Civilians Unemployed for 5-14 Weeks 1000–P M BLS 0 1 0 1
78 LU15 Civilians Unemployed for 15-26 Weeks 1000–P M BLS 0 1 0 1
79 LUT27 Civilians Unemployed for 27 Weeks and Over 1000–P M BLS 0 1 0 1
80 LUAD Average [Mean] Duration of Unemployment Weeks M BLS 0 1 0 0
81 LANAGRA All Employees: Total Nonfarm 1000–P M BLS 0 1 1 1
82 LAPRIVA All Employees: Total Private Industries 1000–P M BLS 0 1 1 0
83 LANTRMA All Employees: Mining and Logging 1000–P M BLS 0 1 1 1
84 LACONSA All Employees: Construction 1000–P M BLS 0 1 1 1
85 LAMANUA All Employees: Manufacturing 1000–P M BLS 0 1 1 0
86 LATTULA All Employees: Trade, Transportation & Utilities 1000–P M BLS 0 1 1 1
87 LAINFOA All Employees: Information Services 1000–P M BLS 0 1 1 1
88 LAFIREA All Employees: Financial Activities 1000–P M BLS 0 1 1 1
89 LAPBSVA All Employees: Professional & Business Services 1000–P M BLS 0 1 1 1
90 LAEDUHA All Employees: Education & Health Services 1000–P M BLS 0 1 1 1
91 LALEIHA All Employees: Leisure & Hospitality 1000–P M BLS 0 1 1 1
92 LASRVOA All Employees: Other Services 1000–P M BLS 0 1 1 1
93 LAGOVTA All Employees: Government 1000–P M BLS 0 1 1 0
94 LAFGOVA All Employees: Federal Government 1000–P M BLS 0 1 1 1
95 LASGOVA All Employees: State Government 1000–P M BLS 0 1 1 0
96 LALGOVA All Employees: Local Government 1000–P M BLS 0 1 1 0
97 PETEXA West Texas Intermediate Spot Price FOB∗ $–B M EIA 0 2 0 0
98 NAPMNI ISM Mfg: New Orders Index Index M ISM 1 0 0 1
99 NAPMOI ISM Mfg: Production Index Index M ISM 1 0 0 1
100NAPMEI ISM Mfg: Employment Index Index M ISM 1 0 0 1
101NAPMVDI ISM Mfg: Supplier Deliveries Index Index M ISM 1 0 0 0
102NAPMII ISM Mfg: Inventories Index Index M ISM 1 0 0 0
103 SP500 Standard & Poor’s 500 Stock Price Index 41-43=10 D WSJ 0 1 1 0
∗ Cushing, Oklahoma

Series ID Definition Unit F Source
GDPPOTHQ Real Potential Gross Domestic Product BoC 2009$ Q CBO
NAIRUQ Natural Rate of Unemployment percent Q CBO
GDPPLUS US GDPplus percent Q FRBPHIL
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