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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models are now used widely for forecast-

ing. Recently, several studies have shown that standard linearized DSGE models compete

successfully with other forecasting models, including linear reduced-form time-series mod-

els such as vector autoregressions (VAR’s).1 However, little is known about the predictive

importance of omitted non-linearities.

Recent work by Sims and Zha (2006), Justiniano and Primiceri (2008), Bloom (2009), and

Fernández-Villaverde and Rubio-Ramı́rez (2013) has highlighted that time-varying volatil-

ity is a key nonlinearity not only in financial data but also in macroeconomic time series.

The empirical findings reported in Justiniano and Primiceri (2008), Fernández-Villaverde

and Rubio-Ramı́rez (2013), and Curdia et al. (2014), who also consider fat-tailed shock

distributions, indicate that the fit of DSGE models can be improved by allowing for stochas-

tic volatility in the exogenous shock processes. Against this background, we examine the

real-time forecast accuracy (point, interval and density) of linearized DSGE models with

and without stochastic volatility. We seek to determine whether and why incorporation of

stochastic volatility is helpful for macroeconomic forecasting.

Several structural studies find that density forecasts from linearized standard DSGE

models are not well-calibrated, but they leave open the issue of whether simple inclusion of

stochastic volatility would fix the problem.2 Simultaneously, reduced-form studies such as

Clark (2011) clearly indicate that inclusion of stochastic volatility in linear models (vector

autoregressions) improves density forecast calibration. Our work in this paper, in contrast,

is structural and yet still incorporates stochastic volatility, effectively asking questions in the

tradition of Clark (2011), but in a structural environment. Our empirical findings are very

1See, for example, the survey of Del Negro and Schorfheide (2013).
2See Pichler (2008), Bache et al. (2011), Herbst and Schorfheide (2012), Del Negro and Schorfheide (2013)

and Wolters (2015).



similar to those of Clark (2011): the inclusion of stochastic volatility improves predictions in

terms of coverage probabilities of interval forecasts, predictive likelihood values, and coverage

probabilities of density forecasts.

We proceed as follows. In Section 2 we introduce a benchmark DSGE model, with and

without stochastic volatility. In Section 3 we describe our methods for model solution and

posterior analysis. In Section 4 we introduce our approach for real-time DSGE forecast anal-

ysis with vintage data, describing our dataset and procedure, and providing initial stochastic

volatility estimates. In Sections 5, 6 and 7 we evaluate DSGE point, interval and density

forecasts, respectively. We conclude in Section 8. An Online Appendix contains two ro-

bustness exercises that involve the evaluation of 90% probability interval forecasts and the

evaluation of forecasts based on a pre-Great Recession sample that ends in 2007:Q4.

2 A New Keynesian DSGE Model

Here we present the DSGE model that is used in the subsequent empirical analysis. It is

similar to the small-scale New Keynesian model studied by Del Negro and Schorfheide (2013).

The model economy consists of households, firms, a central bank that conducts monetary

policy by setting the nominal interest rate, and a fiscal authority that determines the amount

of government consumption and finances it using lump-sum taxes. In what follows, we

are summarizing the log-linearized equilibrium conditions of this economy. Technology At

evolves according to

logAt = (log γ)t+ z̃t. (1)

The first part is a deterministic trend component, whereas the second component is an

exogenous stochastic process which may be stationary or exhibit a stochastic trend. We
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define the change in the stochastic component as

zt = z̃t − z̃t−1.

To describe the equilibrium conditions, it is convenient to detrend consumption Ct and

output Yt by the level of technology. The detrended variables are defined as Ct/At and

Yt/At, respectively. Even if z̃t follows a unit-root process, the model has a steady state in

terms of the detrended variables. Henceforth we express all variables in log deviations from

steady state values; for example, ct = log(Ct/At)− log c∗, where c∗ is the steady state value

of detrended consumption.

The households determine their supply of labor services to the firms and choose consump-

tion. They receive labor and dividend income as well interest rate payments on nominal

bonds. The consumption Euler equation can be expressed as

ct = Et[ct+1 + zt+1]−
1

τ
(Rt − Et[πt+1]), (2)

where ct is consumption, Rt is the nominal interest rate, and πt is inflation. The parameter

τ captures the relative degree of risk aversion. The discount factor β of the representative

household does not appear in the log-linearized Euler equation.

The production sector consists of monopolistically competitive intermediate-goods pro-

ducing firms and perfectly competitive final goods producers. The former hire labor from

the households, produce their goods using a linear technology with productivity At, and sell

their output to the final goods producers. Nominal price rigidities are introduced by assum-

ing that only a fraction of the intermediate-goods producers can re-optimize their prices in

each period (Calvo mechanism). The final goods producers simply combine the intermediate

goods. In equilibrium the inflation in the price of the final good is determined by a New
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Keynesian Phillips curve:

πt =
ι

1 + ιβ
πt−1 +

β

1 + ιβ
Et[πt+1] +

(1− ζβ)(1− ζ)

(1 + ιβ)ζ
(ct + νlyt), (3)

where ζ is the probability with which price setters are able to re-optimize their prices, ι is

the fraction of price setters that index their price to lagged inflation in the event that they

are unable to re-optimize, and νl is the inverse labor supply elasticity of the households.

We assume that a fraction of output is used for government consumption. The log-

linearized resource constraint takes the form

yt = ct + gt, (4)

where gt is an exogenously evolving government spending shock. The central bank sets

nominal interest rates in response to inflation and output growth deviations from their

respective targets:

Rt = ρRRt−1 + (1− ρR)
[
(1− ψ1)π∗,t + ψ1πt + ψ2(yt − yt−1 + zt)

]
+mt, (5)

where mt is a monetary policy shock and π∗,t is a central bank’s inflation target rate in

log-deviation from its long-run mean log(π∗).

The target inflation rate evolves as a stationary AR(1) process with a homoscedastic

innovations:

π∗t = ρπ∗π∗t−1 + επ∗,t, επ∗,t ∼ N (0, σ2
π∗). (6)

The parameter ρπ∗ is expected to be close to one so that π∗t captures low frequency changes

in inflation that we attribute to slowly evolving changes in monetary policy regimes. The

time-varying target rate is empirically supported by US data. It mainly captures the fact
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that monetary policy was characterized by a shift to a high-inflation period in the 1970s

which ended with Volcker’s stabilization policy. In the forecasting context, the time-varying

target rate captures low frequency shifts in the level of inflation.

We complete the model by specifying laws of motion for the remaining exogenous shock

processes:

mt = εR,t, εR,t ∼ N (0, σ2
R,t), (7)

z̃t = ρz(1− ϕ)z̃t−1 + ϕz̃t−2 + εz,t, εz,t ∼ N (0, σ2
z,t),

gt = ρggt−1 + εg,t, εg,t ∼ N (0, σ2
g,t).

We assume that εR,t, εz,t, εg,t, and επ∗,t are orthogonal at all leads and lags. In a constant-

volatility implementation, we simply take σR,t = σR, σz,t = σz and σg,t = σg. Incor-

porating stochastic volatility is similarly straightforward. Following Fernández-Villaverde

and Rubio-Ramı́rez (2007), Justiniano and Primiceri (2008), and Fernández-Villaverde and

Rubio-Ramı́rez (2013), we take

σi,t = σie
νi,t , νi,t = ρσiνi,t−1 + ηi,t, i ∈ {R, z, g} (8)

where ηi,t and εj,t are independent of each other at all leads and lags for all i and j.

3 Model Solution and Posterior Analysis

Ignoring for a moment the stochastic volatilities of the structural shock innovations εt =

[εR,t, εz,t, εg,t, επ∗,t]
′, Equations (2)-(7) form a linear rational expectations system that can be

solved with a standard algorithm, e.g., Sims (2002). In preliminary work, we also solved the

DSGE model with second-order perturbation techniques. However, except in the vicinity

of the zero lower bound on the nominal interest rate, our New Keynesian model – using a
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parameterization that fits U.S. data – does not generate any strong nonlinearities. Thus,

to simplify the computations, we simply combine the log-linear approximation with the

stochastic volatility processes specified above. This leads to a conditionally (given the three

volatility processes) linear Gaussian state-space model.

3.1 Transition

We present transition equations with constant and stochastic volatility.

3.1.1 Constant Volatility

A first-order perturbation solution results in a linear transition equation for the state vari-

ables,

st = Φ1(θ)st−1 + Φε(θ)εt

εt ∼ iidN (0, Q(θ)),

(9)

where st = [yt, yt−1, ct, πt, Rt,mct,mt, gt, zt, π
∗
t ]
′ is a (non-minimal) vector of state variables,

Φ1 is a ns × ns matrix, Φε is a ns × ne matrix and Q is a ne × ne matrix, where ns is the

number of state variables and ne is the number of structural shocks. The elements of the

coefficient matrices (Φ1(θ),Φε(θ), Q(θ)) are non-linear functions of θ.

3.1.2 Stochastic Volatility

Linearization is inappropriate with stochastic volatility, as stochastic volatility vanishes un-

der linearization. Instead, at least second-order approximation is required to preserve terms

related to stochastic volatility, as shown by Fernández-Villaverde and Rubio-Ramı́rez (2007,

2013). Interestingly, however, Justiniano and Primiceri (2008) suggest a method to approx-

imate the model solution using a partially non-linear function. The resulting law of motion
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is the same as that of the linearized solution, except that the variance-covariance matrix of

the structural shocks can be time-varying,

st = Φ1(θ)st−1 + Φε(θ)εt

εt ∼ iidN (0, Qt(θ)).

(10)

More specifically, Qt(θ) is a diagonal matrix. The first three diagonal elements are σ2
i e

2νi,t

for i ∈ {R, z, g}. The fourth diagonal element is σ2
π∗ . The νi,t’s have their own transition,

νi,t = ρσiνi,t−1 + ηi,t

ηi,t ∼ iidN (0, σ2
σi

).

(11)

Together with a measurement equation, (10) and (11) form a partially non-linear state-space

representation. One of the nice features of this formulation is that the system remains linear

and Gaussian, conditional on Qt.

3.2 Measurement

We complete the model with a set of measurement equations that connect state variables

to observable variables. We consider quarter-on-quarter GDP growth rates (Y GR) and

inflation rates (INF ), quarterly nominal interest (federal funds) rates (FFR), and 10-year

inflation expectation (INF 10y) from the Survey of Professional Forecasters maintained by

FRB Philadelphia3. We measure INF , FFR, and INF 10y as annualized percentages, and

we measure YGR as a quarterly percentage. We assume that there is no measurement error.

3To obtain longer inflation expectation series, we take inflation expectations from the Livingston Survey
and the Blue Chip Economic Indicators for the period 1979–1991 and from the Survey of Professional
Forecasters (SPF) afterwards. Inflation expectations in this survey are for the CPI, while inflation rates
in our estimation and prediction are for the GDP deflator. To correct for this difference, we subtract the
average difference between CPI and GDP inflation from the beginning of the sample to the initial point for
our forecasting exercise. See Del Negro and Schorfheide (2013) for details.

7



Then the measurement equation is



Y GRt

INFt

FFRt

INF 10y
t


=



100 log γ

400 log π∗

400 log(γπ∗/β)

400 log π∗


+



100
(
yt − yt−1 + zt

)
400πt

400Rt

400IEt

[
1
40

∑40
k=1 πt+k

]


. (12)

We link the observed 10-year inflation expectation to the model-implied 10-year inflation

expectation in the last line. Our 10-year inflation expectations data start in 1979. Prior to

this date, we treat the expectations data as missing and adjust the measurement equation

accordingly. As discussed in Del Negro and Schorfheide (2013), the expectations data help to

identify the time-varying target rate π∗t in real time and ensure that the post-1992 inflation

forecasts are not contaminated by reversion to a mean that reflects the high inflation rates

in the 1970s.

In slight abuse of notation (changing the definition of Y ) we write the measurement

equation as

Yt = Dt(θ) + Zt(θ)st. (13)

Here Yt is now the nt × 1 vector of observed variables (composed of Y GRt, INFt, FFRt,

and INF 10y
t ), Dt(θ) is an nt × 1 vector that contains the DSGE model-implied mean of the

observables, Zt(θ) is an nt × ns matrix that relates the observables to the model states, and

st is the ns × 1 state vector. The dimension of the measurement equation deterministically

changes over time depending on the availability of the 10-year expectation data.

3.3 Estimation

We perform inference and prediction using the Random Walk Metropolis (RWM) algorithm

with the Kalman filter, as facilitated by the linear-Gaussian structure of our state-space
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system, conditional on Qt. In particular, we use the Metropolis-within-Gibbs algorithm

developed by Kim et al. (1998) and adapted by Justiniano and Primiceri (2008) to the

estimation of linearized DSGE models with stochastic volatility.4

4Detailed descriptions of the posterior simulator can be found in Justiniano and Primiceri (2008), Del Ne-
gro and Schorfheide (2011), and Del Negro and Primiceri (2015).
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Table 1: Priors for DSGE model parameters

Parameter Distribution Para (1) Para (2) Parameter Distribution Para (1) Para (2)

τ Normal 1.50 0.37 ρR Beta 0.50 0.20
νl Gamma 2.00 0.75 ρg Beta 0.50 0.20
ι Beta 0.50 0.15 ϕz Uniform -1.00 1.00
ζ Beta 0.50 0.10 100σR InvGamma 0.10 2.00
ψ1 Normal 1.50 0.25 100σg InvGamma 0.10 2.00
ψ2 Normal 0.12 0.05 100σz InvGamma 0.10 2.00

400 log(1/β) Gamma 1.00 0.40 ρπ∗ Beta 0.50 0.20
400 log(π∗) Gamma 2.48 0.40 100σπ∗ InvGamma 0.10 2.00
100 log(γ) Normal 0.40 0.10

Notes: Para (1) and Para(2) contain means and standard deviations for Beta, Gamma, and Normal distri-
butions; the upper and lower bound of the support for the Uniform distribution; and s and ν for the Inverse

Gamma distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

. Priors for stochastic volatility are presented in
the main text. We fix ρz = 1.
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Implementing Bayesian techniques requires the specification of a prior distribution. We

use priors consistent with those of Del Negro and Schorfheide (2013) for parameters that we

have in common and summarize them in Table 1. We fix ρz = 1, imposing a unit root in

technology. For the model with stochastic volatility, we consider two specifications. The first

specification follows Justiniano and Primiceri (2008) and assumes that log volatility evolves

as random walk

SV-RW : νi,t = νi,t−1 + ηi,t, ηi,t ∼ N (0, σ2
σi

), (14)

where we set the autoregressive parameter to one, ρσi = 1. For this specification, we impose

the inverse gamma prior on σ2
σi

:

σ2
σi
∼ IG(2, 0.0001). (15)

This prior specification implies that with 90% probability the standard deviation of a struc-

tural shocks can be 18% smaller or 22% larger at the end of the sample in 2011:Q1 compared

to its initial level in 1964:Q2.

The second volatility specification relaxes the random walk assumption and assumes the

following AR(1) log volatility process:

SV-AR : νi,t = cσi + ρσiνi,t−1 + ηi,t, ηi,t ∼ N (0, σ2
σi

). (16)

Here we reparameterized the volatility process in terms of cσi = (1 − ρσi) log σi. For this

specification, we use the following prior distributions:

cσi ∼ N (0, 10), ρσi ∼ N (0.9, 0.07), σ2
σi
∼ IG(2, 0.05).

We constrain the priors for the AR(1) stochastic-volatility coefficients to be in the stationary
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region, ρσi ∈ (−1, 1). This specification is less restrictive than the first one in terms of the a

priori likely volatility range. The prior implies that standard deviations of structural shocks

can be 50% smaller or 100% larger with 90% chance at any given point in time.

Finally, we also consider a specification with a deterministic break in the standard de-

viation of the structural shocks. We simply assume that structural break happened during

the Great Moderation at the end of 1984:

DV-SB : σi,t =


σi,0 if t ≤ 1984 : Q4

σi,1 if t > 1984 : Q4,

(17)

where we estimate σi,0 and σi,1 separately. We impose the same inverse Gamma prior dis-

tribution for σi,0 and σi,1 with the same parameter values as in the model with constant

volatility.

3.4 Prediction

We focus on the DSGE model with stochastic volatility. Let νt = [νR,t, νg,t, νz,t]
′. We generate

draws from the posterior predictive density using the decomposition,

p(YT+1:T+H |Y1:T ) (18)

=

∫
(θ,sT ,νT )

[ ∫
sT+1:T+H ,νT+1:T+H

p(YT+1:T+H |sT+1:T+H)

×p(sT+1:T+H , νT+1:T+H |θ, sT , νT , Y1:T )d(sT+1:T+H , νT+1:T+H)

]
×p(θ, sT , νT |Y1:T )d(θ, sT , νT ).

We use the subscript t1 : t2 to indicate sequences from t1 to t2, e.g., Y1:T is shorthand for

Y1, . . . , YT . The decomposition shows how the predictive density reflects uncertainty about

parameters and states at the forecast origin, p(θ, sT , νT |Y1:T ), and uncertainty about future
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states. Motivated by this decomposition, we generate draws from the predictive density,

adapting the algorithm of Del Negro and Schorfheide (2013) to account for the hidden

volatility process νt.

Algorithm 1 (Predictive Density Draws)

For j = 1 to nsim,

1. Draw (θ(j), s
(j)
T , ν

(j)
T ) from the posterior distribution p(θ, sT , νT |Y1:T ).

2. Draw from p(sT+1:T+H , νT+1:T+H |θ(j), s(j)T , ν
(j)
T ) as follows:

(a) Draw the sequence of volatility innovations η
(j)
i,T+1:T+H ∼ N

(
0, (ω2

i )
(j)
)
for i =

R, z, g.

(b) Starting from ν
(j)
T , iterate the volatility law of motion (11) forward to obtain the

sequence ν
(j)
T+1:T+H :

ν
(j)
i,t = ρ(j)σi ν

(j)
i,t−1 + η

(j)
i,t , t = T + 1, . . . , T +H, i = R, z, g.

(c) Draw the structural shock innovations ε
(j)
i,T+1:T+H ∼ N

(
0, σ

2(j)
i e2ν

(j)
i,t
)
for i = R, z, g

and ε
(j)
π∗,T+1:T+H ∼ N

(
0, σ

2(j)
π∗

)
.

(d) Starting from s
(j)
T , iterate the state transition equation (10) forward:

s
(j)
t = Φ1(θ

(j))s
(j)
t−1 + Φε(θ

(j))ε
(j)
t , t = T + 1, ..., T +H.

3. Compute the sequence Y
(j)
T+1:T+H using the measurement equation (13):

Y
(j)
t = Dt(θ

(j)) + Zt(θ
(j))s

(j)
t , t = T + 1, ..., T +H.
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Algorithm 1 produces nsim trajectories Y
(j)
T+1:T+H from the predictive distribution of

YT+1:T+H given Y1:T . In our subsequent empirical work we take 30,000 draws from the

posterior distribution p(θ, sT , νT |Y1:T ). We discard the first 10,000 draws and select every

10th draw to get 1, 000 draws of parameters and initial states. For each of these draws, we

execute Steps 2 and 3 of the algorithm 10 times, which produces a total of nsim = 20, 000

draws from the predictive distribution.

4 Real-Time DSGE Forecast Analysis with Vintage

Data

4.1 Empirical Procedure

We evaluate DSGE forecasts using the real-time data set constructed by Del Negro and

Schorfheide (2013), who built data vintages aligned with the publication dates of the Blue

Chip survey and the Federal Reserve Board’s Greenbook, extending the data set compiled

by Edge and Gürkaynak (2010). In this paper we use the Del Negro-Schorfheide data set

matched to the Blue Chip survey publication dates. The survey is conducted over two days,

typically beginning on the first or second business day of each month, and then published a

few days later. We consider the April, July, October, and January publication dates. The

timing of the survey implies that, say, the April 2005 forecast utilizes the “third” estimate

of GDP for the fourth quarter of 2004, but not the advance estimate for the first quarter of

2005.

Our first forecast origin is January 1992, and our last forecast origin for one-step-ahead

forecasts is April 2011. We recursively estimate the DSGE models for the resulting 78

vintages. The estimation sample starts in 1964:Q2 for all vintages. For example, for the

January 1992 vintage we estimate DSGE models based on the sample 1964:Q2 - 1991:Q3
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and generate forecasts for 1991:Q4 (one step ahead) through 1993:Q2 (eight steps ahead).5

We then expand the sample gradually, eventually incorporating all vintages from January

1992 through April 2011, implying that the last observation in the estimation sample is

dated 2010:Q4. We compute forecast errors based on actuals from the most recent vintage,

which best estimates the “truth.”6 The last observation that we forecast is 2011:Q1. As

a robustness check we present forecast evaluation statistics based on samples ending in

2007:Q4, excluding data from the Great Recession. The key findings are very similar to

those presented subsequently for the longer sample.

4.2 On the Use of Vintage Data

From a model-selection perspective, one might ask whether a full-sample analysis with final-

revised data, as opposed to an expanding-sample analysis with real-time vintage data, would

be more informative. For our purposes in this paper the answer is clearly no, because our

interest is intrinsically centered on real-time performance, which is an expanding-sample

phenomenon involving vintage data. That is, each period we get not only a new observation,

but also an improved estimate of the entire history of all observations. Analysis based on

final-revised data, even pseudo-real-time analysis based on an expanding sample, is simply

not relevant.7

Let us consider real-time vintage data issues from a more formal Bayesian viewpoint

centered on predictive likelihood in its relation to marginal likelihood. By Bayes’ theorem

5At the end of December 1991 the 1991:Q4 NIPA data were not yet available.
6Alternatively, we could have used actuals from the first “final” data release, which for output corresponds

to the “Final” NIPA estimate (available roughly three months after the quarter is over). Del Negro and
Schorfheide (2013) found that conclusions regarding DSGE model forecasting performance are generally not
affected by the choice of actuals, as did Rubaszek and Skrzypczyński (2008).

7See Diebold (2015).

15



the predictive likelihood is a ratio of marginal likelihoods,

p(Yt+1|Y1:t,Mi) =
p(Y1:t+1|Mi)

p(Y1:t|Mi)
,

so that
T−1∏
t=1

p(Yt+1|Y1:t,Mi) =
p(Y1:T |Mi)

p(Y1|Mi)
.

Hence one can say that Bayesian model selection based on the full-sample predictive perfor-

mance record and based on the full-sample marginal likelihood are the same.

The crucial insight is that in our context “full-sample” should not just refer to the full

sample of final-revised data, but rather the union of all samples of vintage data, so we

now introduce notation that distinguishes between the two. Let Y
(T )
1:t be the data up to

time t viewed from the time-T vantage point (vintage T ), and let Y
(t)
1:t be the data up to

time t viewed from the time-t vantage point (vintage t). In our more refined notation, the

predictive-likelihood Bayesian model selection prescription is not
∏T−1

t=1 p(Yt+1|Y (T )
1:t ,Mi), but

rather
∏T−1

t=1 p(Yt+1|Y (t)
1:t ,Mi). That is precisely what we implement.

4.3 The Estimated Volatility Paths

Our hope, explored subsequently, is that stochastic-volatility DSGE models will produce

better forecasts – particularly better interval and density forecasts – than their fixed-volatility

counterparts. A necessary condition is that volatility actually be stochastic and indeed

highly-variable. Hence we begin by examining and comparing estimated structural shock

variances from constant-volatility and stochastic-volatility DSGE models.

In Figure 1 we report posterior-mean stochastic-volatility estimates for the SV-AR spec-

ification (solid lines), constant-volatility estimates (dashed black lines), and estimates based

on the structural-break specification DV-SV (solid grey lines) obtained from three different

real-time data vintages. The vintages are those of January 1992, October 2002, and April
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2011, and the corresponding samples end in 1991:Q3, 2002:Q2, and 2010:Q4. The general

shapes of volatility are very similar across vintages.

Overall, the estimates confirm significant time variation in volatility. In particular, all

volatilities fall sharply with the mid-1980’s “Great Moderation.” Technology shock volatility,

moreover, rises sharply in recent years. It is interesting to contrast the stochastic-volatility

estimates to those obtained from the structural-break specification. The latter generally

captures the reduction in volatility after 1984, but not the recent increase during the Great

Recession. Moreover, while the stochastic-volatility specification implies that volatility was

gradually rising throughout the 1970s, the structural-break version is unable to capture this

trend. Finally, the constant-volatility DSGE model systematically overstates volatility once

the Great Moderation begins, because in significant part the model attempts to fit the high

volatility before the Great Moderation.
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Figure 1: Estimated Time-Varying Standard Deviations

Vintage in January 1992

Vintage in October 2002

Vintage in April 2011

Notes: We show estimation results for three different data vintages. We show posterior means (solid line)
and 80 percent credible bands (shaded area) of standard deviations of the structural shocks based on the
DSGE model with SV-AR. The solid grey line is the posterior mean based on the model with a structural
break in volatility (DV-SB). The dashed black line is the posterior mean based on the model with constant
volatility.
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5 Point Forecast Construction and Evaluation

We construct point forecasts as posterior means, which we compute by Monte Carlo averag-

ing,

ŶT+h|T =

∫
YT+h

YT+h p(YT+h|Y1:T )dYT+h ≈
1

nsim

nsim∑
j=1

Y
(j)
T+h,

where the draws Y
(j)
T+h are generated with Algorithm 1. The posterior mean is of course the

optimal predictor under quadratic loss. To compare the performance of point forecasts we

use root mean squared errors (RMSE’s),

RMSE(i|h) =

√√√√ 1

P − h

E+P−h∑
T=E

(Yi,T+h − Ŷi,T+h|T )2,

where E is the starting point of the forecast evaluation sample (meaning it is the first forecast

origin) and P is the number of forecast origins.

In Table 2 we present real-time forecast RMSE’s for 1991:Q4 to 2011:Q1. We show

RMSE’s for the benchmark constant-volatility DSGE model in the first line of each panel,

and RMSE ratios in the subsequent lines. Ratios less than one indicate that the forecasts

from the corresponding time-varying volatility model are more accurate than the benchmark

model forecasts. We use the following abbreviations: “Const.” is constant volatility; “DV-

SB” is deterministic volatility with structural break (17); “SV-AR” is AR(1) stochastic-

volatility process (16); and “SV-RW” is random walk stochastic-volatility process (14). In

parentheses we show p-values of Diebold and Mariano (1995) tests of equal MSE against the

one-sided alternative that the model with time-varying volatility is more accurate.
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Table 2: Point Forecast RMSE’s

Volatility h = 1Q h = 2Q h = 4Q h = 8Q

(a) Output Growth

Const. 0.65 0.64 0.64 0.70
DV-SB 1.00 (0.45) 1.00 (0.57) 1.01 (0.85) 1.01 (0.90)
SV-AR 1.00 (0.64) 1.02 (1.00) 1.02 (0.99) 1.01 (0.95)
SV-RW 1.01 (0.88) 1.01 (1.00) 1.01 (1.00) 1.01 (1.00)

(b) Inflation Rate

Const. 0.24 0.27 0.30 0.37
DV-SB 0.99 (0.16) 1.00 (0.53) 0.99 (0.24) 0.93 (0.01)
SV-AR 1.06 (0.94) 1.01 (0.57) 0.94 (0.12) 0.85 (0.00)
SV-RW 1.00 (0.56) 0.99 (0.29) 0.94 (0.07) 0.86 (0.00)

(c) Fed Funds Rate

Const. 0.19 0.32 0.53 0.74
DV-SB 0.92 (0.00) 0.94 (0.01) 0.94 (0.01) 0.94 (0.01)
SV-AR 0.94 (0.00) 0.93 (0.00) 0.92 (0.00) 0.90 (0.00)
SV-RW 0.91 (0.00) 0.91 (0.00) 0.91 (0.00) 0.89 (0.00)

Notes: The real-time forecast sample is 1991:Q4 to 2011:Q1. We calculate forecast errors using actuals
obtained from the most recent vintage. We show RMSE’s for the benchmark constant-volatility DSGE
model in the first line of each panel, and RMSE ratios in the subsequent lines. “Const.” is constant
volatility; “DV-SB” is deterministic volatility with structural break (17); “SV-AR” is AR(1) stochastic-
volatility process (16); and “SV-RW” is random-walk stochastic-volatility process (14). In parentheses we
show p-values of Diebold-Mariano tests of equal MSE against the one-sided alternative that the model with
time-varying volatility is more accurate, obtained using standard normal critical values. We compute the
standard errors entering the Diebold-Mariano statistics using Newey-West with bandwidth 0 at the 1-quarter
horizon and (P − h)1/3 in the other cases, where P − h is the number of forecasting origins.
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Forecasts from the specifications with time-varying volatility are significantly more ac-

curate for the federal funds rate at all horizons, and for inflation at longer horizons. In

contrast, output growth forecast accuracy is very similar across models and horizons. There

is no clear ranking across the three time-varying volatility specifications. The simple de-

terministic break model performs slightly better in some instances and slightly worse than

the stochastic-volatility versions in other instances. This basic scenario – allowing for time-

varying volatility appears somewhat helpful for point forecasting (presumably due to en-

hanced parameter estimation efficiency), but not massively helpful – is precisely what one

would expect. That is, if time-varying volatility is important, one expects much greater

contributions to interval and density forecasting performance, to which we now turn.

6 Interval Forecast Construction and Evaluation

Posterior interval forecast (credible region) construction is immediate, given the posterior

predictive density, as the interval forecast follows directly from the predictive density. We

focus on single-variable credible intervals as opposed to multi-variable credible regions. We

compute the highest-density 100(1 − α) percent interval forecast for a particular element

Yi,T+h of YT+h by numerically searching for the shortest connected interval that contains

100(1− α) percent of the draws {Y (j)
i,T+h}

nsim
j=1 .

6.1 Relative Evaluation Standards: Coverage and Length

In the interval forecast evaluation that follows, we consider both relative standards (coverage,

length) and absolute standards (conditional calibration).
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6.1.1 Coverage Rates

In Table 3 (first row of each cell) we report the frequency with which real-time outcomes

for output growth, inflation rate, and the federal funds rate fall inside real-time 70-percent

highest posterior density intervals.8 Correct coverage corresponds to frequencies of about

70-percent, whereas a frequency of greater than (less than) 70 percent means that on average

over a given sample, the posterior density is too wide (narrow). In parentheses we show p-

values of t-statistics of the hypothesis of correct coverage (empirical = nominal coverage of

70 percent), calculated using Newey-West standard errors.

Table 3 makes clear that the constant-volatility DSGE model forecasts for output growth

and inflation at all horizons and for the federal funds rate at the one-quarter horizon tend to

be too wide, so that actual outcomes fall inside the intervals much more frequently than the

nominal 70-percent rate. For example, for the one-step-ahead forecast horizon, the constant-

volatility DSGE model coverage rates are around 87 percent. Based on the reported t-

statistic p-values, all empirical departures from 70 percent nominal coverage are statistically

significant.

The coverage of the intervals from the models with time-varying volatility, in contrast,

is strikingly good. For all variables and horizons, estimated coverage is much closer to

70 percent, and the p-values indicate that in the vast majority of cases any deviation is

statistically insignificant. On balance, the SV-RW version yields more accurate coverage

rates than the SV-AR specification. The structural break specification also does quite well.

Thus, accounting for the volatility reduction in 1984 due to the Great Moderation appears

to be of first-order importance for interval forecasts.

8Results for 90% credible intervals are similar; see the Online Appendix for details.
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Table 3: 70 Percent Interval Forecast Evaluation (Coverage & Length)

Volatility h = 1Q h = 2Q h = 4Q h = 8Q

(a) Output Growth

Const. 0.89 (0.00) 0.90 (0.00) 0.91 (0.00) 0.89 (0.00)
1.96 1.99 2.00 2.00

DV-SB 0.76 (0.25) 0.73 (0.61) 0.71 (0.91) 0.69 (0.85)
1.17 1.19 1.18 1.18

SV-AR 0.78 (0.08) 0.79 (0.08) 0.77 (0.21) 0.83 (0.04)
1.40 1.44 1.48 1.54

SV-RW 0.76 (0.25) 0.75 (0.34) 0.76 (0.28) 0.69 (0.86)
1.35 1.38 1.38 1.37

(b) Inflation Rate

Const. 0.87 (0.00) 0.87 (0.00) 0.85 (0.00) 0.86 (0.08)
2.93 3.30 3.54 3.80

DV-SB 0.74 (0.38) 0.70 (0.99) 0.65 (0.54) 0.57 (0.24)
1.96 2.24 2.39 2.57

SV-AR 0.76 (0.25) 0.75 (0.41) 0.79 (0.12) 0.77 (0.42)
2.42 2.62 2.83 3.13

SV-RW 0.76 (0.25) 0.77 (0.25) 0.76 (0.39) 0.66 (0.71)
2.30 2.55 2.70 2.89

(c) Fed Funds Rate

Const. 0.86 (0.00) 0.68 (0.81) 0.63 (0.51) 0.54 (0.26)
2.20 3.05 3.93 4.55

DV-SB 0.62 (0.13) 0.52 (0.11) 0.49 (0.07) 0.51 (0.18)
1.20 1.70 2.23 2.62

SV-AR 0.80 (0.04) 0.66 (0.66) 0.52 (0.11) 0.49 (0.13)
1.46 1.99 2.55 3.02

SV-RW 0.73 (0.54) 0.61 (0.30) 0.51 (0.05) 0.49 (0.13)
1.32 1.82 2.36 2.74

Notes: The real-time forecast sample is 1991:Q4 to 2011:Q1. We obtain “actuals” from the most recent
vintage. “Const.” is constant volatility; “DV-SB” is deterministic volatility with structural break (17); “SV-
AR” is AR(1) stochastic-volatility process (16); and “SV-RW” is random-walk stochastic-volatility process
(14). Top row of each cell: we report the frequencies with which outcomes fall in 70-percent bands computed
from the posterior predictive density. In parentheses we show p-values of t-statistics of the hypothesis of
correct coverage (empirical = nominal coverage of 70 percent), calculated using Newey-West standard errors
with bandwidth 0 at the 1-quarter horizon and (P − h)1/3 in the other cases, where P − h is the number of
forecasting origins. Bottom row of each cell: we report the average lengths of prediction intervals.
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6.1.2 Interval Length

Table 3 (second row of each cell) also shows average prediction interval lengths. Average

lengths based on the time-varying volatility models are roughly 30 percent shorter than those

from the constant-volatility model. Hence the time-varying volatility intervals dominate

on both the coverage and length dimensions. The intervals from the stochastic-volatility

specifications are generally wider than those from the structural break specification. This

seems by and large consistent with Figure 1, which indicates the estimated volatility from

the SV-AR version often exceeds the post-break estimate from the DV-SB specification.

6.2 Absolute Evaluation Standards: Conditional Calibration

We also consider an absolute standard for interval forecasts: conditional calibration. As

detailed in Christoffersen (1998), if interval forecasts are correctly conditionally calibrated,

then the “hit sequence” should have mean (1 − α) and be at most h − 1-dependent, where

the hit sequence is I
(1−α)
t = 1{realized yt falls inside the interval}. Note well the two-part

characterization. The hit series must have the correct mean, (1− α), which corresponds to

correct unconditional calibration, and it must also be at most h− 1-dependent. When both

hold, we have correct conditional calibration.

In Table 4 we present results of Christoffersen’s likelihood-ratio tests for 70-percent 1-

step-ahead interval forecasts, 1991:Q4 to 2011:Q1. We show separate and joint tests for

correct coverage and independence. The coverage tests consistently find no flaws in the

time-varying volatility DSGE intervals, while simultaneously consistently finding severe flaws

in the constant-volatility DSGE intervals. In general, the random-walk stochastic-volatility

specification SV-RW leads to higher p-values than the SV-AR specification. The structural

break specification fairs slightly better than SV-RW for the inflation rate and worse for the

federal funds rate.
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Neither the time-varying volatility nor the constant-volatility DSGE interval forecasts

perform consistently well in terms of the independence test. In particular, the p-values

for the federal funds rate tests are all less than 5 percent. This is not unexpected, however,

because small-scale DSGE models are well-known to have weak propagation mechanisms that

fail to fully capture the conditional-mean dependence (serial correlation) in macroeconomic

time series. Incorporating stochastic volatility can naturally fix mis-calibration problems,

but there is no way for it to fix inadequate conditional-mean dynamics.

Finally, the joint test considers both correct coverage and independence. The highest p-

values are obtained for output growth and inflation forecasts by the random-walk stochastic-

volatility and the structural-break specifications. All of the federal funds rate forecasts fail

the joint test.
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Table 4: Christoffersen Likelihood-Ratio Tests

Volatility Coverage Independence Joint

(a) Output Growth

Const. 15.1 (0.00) 3.50 (0.06) 18.9 (0.00)
DV-SB 1.23 (0.27) 0.62 (0.43) 2.42 (0.30)
SV-AR 2.66 (0.10) 0.26 (0.61) 3.41 (0.18)
SV-RW 1.23 (0.27) 0.04 (0.85) 1.83 (0.40)

(b) Inflation Rate

Const. 12.9 (0.00) 0.10 (0.76) 13.2 (0.00)
DV-SB 0.73 (0.40) 1.10 (0.29) 2.42 (0.30)
SV-AR 1.23 (0.27) 6.43 (0.01) 8.23 (0.02)
SV-RW 1.23 (0.27) 1.90 (0.17) 3.69 (0.16)

(c) Fed Funds Rate

Const. 10.8 (0.00) 4.10 (0.04) 15.22 (0.00)
DV-SB 2.54 (0.11) 33.5 (0.00) 37.98 (0.00)
SV-AR 3.60 (0.06) 9.11 (0.00) 13.17 (0.00)
SV-RW 0.36 (0.55) 13.6 (0.00) 16.61 (0.00)

Notes: We show results for 70-percent 1-step-ahead interval forecasts. The real-time forecast sample is
1991:Q4 to 2011:Q1. We obtain “actuals” from the most recent vintage. “Const.” is constant volatility;
“DV-SB” is deterministic volatility with structural break (17); “SV-AR” is AR(1) stochastic-volatility process
(16); and “SV-RW” is random-walk stochastic-volatility process (14). We show Christoffersen’s individual
asymptotic χ2(1) tests for coverage and for independence, as well as his joint asymptotic χ2(2) test, with
p-values in parentheses.
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7 Density Forecast Construction and Evaluation

Density forecast construction is immediate, given the posterior predictive density. The pre-

dictive density is the density forecast.

7.1 Relative Evaluation Standards: Log Predictive Likelihood

We use the log predictive likelihood for relative density forecast accuracy comparison, as in

Warne et al. (2016).9 The predictive likelihood is

SM(h) =
1

P − h

E+P−h∑
T=E

log p(ỸT+h|Y1:T ), h = 1, 2, ..., H, (19)

where E is the starting point of the forecast evaluation sample, P is the number of forecast

origins, and h is the forecast horizon. We distinguish Ỹ from Y because we exclude the

10-year-ahead inflation expectations INF 10y
t from the predictive likelihood. M denotes

marginal, as opposed to joint, predictive likelihood, which can be defined as

SJ(h) =
1

P − h

E+P−h∑
T=E

log p(ỸT+1:T+h|Y1:T ), h = 1, 2, ..., H.

Obviously the joint and marginal predictive likelihood concepts lead to the same quantity

when h = 1. To compute the marginal predictive density SM(h), after Step 3 of Algorithm 1

we evaluate the density p(YT+h|ν(j)T+1:T+h, θ
(j), s

(j)
T , ν

(j)
T ). This density is Gaussian and can be

obtained from the Kalman filter, treating the observations YT+1:T+h−1 as missing. Averaging

across draws j leads to the Monte Carlo approximation

p(YT+h|Y1:T ) ≈ 1

nsim

nsim∑
j=1

p(YT+h|ν(j)T+1:T+h, θ
(j), s

(j)
T , ν

(j)
T ). (20)

9We will often refer simply to the “predictive likelihood,” with the understanding that logs have been
taken.
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Figure 2: 1-Step-Ahead Predictive Densities

Recursive Average

Period-By-Period Increments

Notes: The real-time forecast sample is 1991:Q4 to 2011:Q1. We obtain “actuals” from the most recent
vintage. “Const.” is constant volatility; “DV-SB” is deterministic volatility with structural break (17); “SV-
AR” is AR(1) stochastic-volatility process (16); and “SV-RW” is random-walk stochastic-volatility process
(14).
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In Figure 2 we show a time-series plot of 1-step-ahead predictive density values for GDP

growth, inflation, and interest rates. The bottom panel shows period-by-period predictive

likelihoods, whereas the top panel depicts the evolution of the recursive average SM(1) as the

number of prediction periods P increases. Judging from the recursive average, after 1994 the

two stochastic-volatility specifications dominate the constant volatility model. The structural

break specification performs fairly well between 1994 and 2002, but then its performance

starts to deteriorate.

The plot of the period-by-period predictive densities indicates that the relative ranking of

the specifications changes over time. From 1994 to 2002 and 2005 to 2007, the time-varying

volatility models perform better than the constant-volatility model. In the midst of the Great

Recession 2008:Q4 output growth drops substantially and unexpectedly from the perspective

of a wide variety of aggregate time series models. In this period the constant-volatility model

fares better than its competitors because due to the pre-1984 observations, its estimated

shock innovations are relatively large, in particular for the government spending and the

technology shock (see Figure 1). Thus, the large drop in real activity appears less unexpected

than for the time-varying volatility specifications. The stochastic-volatility models are able

to adapt to the increase in macroeconomic volatility during the Great Recession (with a lag),

whereas the structural break model is not.

29



Table 5: Marginal Predictive Likelihoods SM(h)

Volatility h = 1Q h = 2Q h = 4Q h = 8Q

(a) Output Growth

Const. -1.11 -1.11 -1.11 -1.16
DV-SB -0.99 -1.01 -1.03 -1.17
SV-AR -1.04 -1.12 -1.20 -1.62
SV-RW -1.02 -1.08 -1.16 -1.49

(b) Inflation Rate

Const. -1.88 -1.91 -1.93 -2.05
DV-SB -1.71 -1.74 -1.77 -1.92
SV-AR -1.63 -1.66 -1.70 -1.83
SV-RW -1.62 -1.64 -1.71 -1.88

(c) Fed Funds Rate

Const. -2.74 -2.85 -2.98 -3.12
DV-SB -3.37 -3.61 -3.95 -4.46
SV-AR -2.45 -2.57 -2.93 -3.92
SV-RW -2.37 -2.52 -2.96 -4.26

(d) Multivariate

Const. -6.41 -6.59 -6.81 -7.06
DV-SB -7.22 -7.63 -8.27 -9.26
SV-AR -6.36 -6.70 -7.70 -11.46
SV-RW -6.22 -6.61 -7.87 -12.87

Notes: The real-time forecast sample is 1991:Q4 to 2011:Q1. We evaluate the predictive densities at the
actuals obtained from the most recent vintage. “Const.” is constant volatility; “DV-SB” is deterministic
volatility with structural break (17); “SV-AR” is AR(1) stochastic-volatility process (16); and “SV-RW”
is random-walk stochastic-volatility process (14). We present predictive likelihoods for density forecasts at
horizons h = 1, 2, 4, 8, for output growth, the inflation rate, and the fed funds rate. We show in bold the
“winners,” for each horizon and each variable.
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In Table 5 we present marginal predictive likelihoods for density forecasts at horizons

h = 1, 2, 4, 8. From a univariate prediction perspective, the time-varying volatility specifi-

cations dominate the constant-volatility specification at horizons h = 1, 2, 4. The structural

break specification fares slightly better for output growth, whereas the stochastic-volatility

specifications work better for the inflation and federal funds rates. For h = 1, 2 the random

walk stochastic-volatility process is preferred whereas for longer horizons the mean-reverting

autoregressive process generates more accurate density forecasts. From a multivariate per-

spective, the random-walk stochastic volatility model is preferred at the one-step horizon

(see also Figure 2). At h = 2 it is essentially a tie between the SV-RW and the constant-

volatility specifications10, whereas at horizons h = 4, 8 the constant-volatility version comes

out ahead.

7.2 Absolute Evaluation Standards: Conditional Calibration

The predictive log likelihood density forecast comparison approach described above invokes

a relative standard; using the log predictive density, it ranks density forecasts according to

assessed likelihoods of the observed realization sequence. It is also of general interest to assess

density forecasts relative to a different, absolute standard, correct conditional calibration.

10See also the results for the evaluation sample that ends in 2007:Q4 reported in the Online Appendix
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Figure 3: PIT Histograms
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Notes: The real-time forecast sample is 1991:Q4 to 2011:Q1. We calculate forecast errors using actuals
obtained from the most recent vintage. We group PIT’s into five equally-sized bins. Under uniformity, each
bin should contain 20 percent of the PIT’s, as indicated by the horizontal red lines.
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Figure 4: PIT Autocorrelations For Random Walk Stochastic Volatility

1-Step-Ahead Prediction

4-Step-Ahead Prediction

Notes: The real-time forecast sample is 1991:Q4 to 2011:Q1. We calculate forecast errors using actuals
obtained from the most recent vintage.
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Following Diebold et al. (1998), we rely on the probability integral transform (PIT). The

PIT of Yi,T+h based on the time-T predictive distribution is defined as the cumulative density

of the random variable Yi,T+h evaluated at the true realization of Yi,T+h,

zi,h,T =

∫ Yi,T+h

−∞
p(Ỹi,T+h|Y1:T )dỸi,T+h.

We compute PIT’s by the Monte Carlo average of the indicator function,

zi,h,T ≈
1

nsim

nsim∑
j=1

I{Y (j)
i,T+h ≤ Yi,T+h}.

If the predictive distribution is correctly conditionally calibrated, then zi,h,T should be dis-

tributed U(0, 1) and be at most h− 1-dependent.

In Figure 3 we report PIT histograms for forecast horizons h = 1, 4, for DSGE models

with constant and time-varying volatility. We group PIT’s into five equally sized bins. Under

uniformity, each bin should contain 20 percent of the PIT’s, as indicated by the horizontal

red lines in the figure. Checking histograms alone essentially effectively amounts to checking

unconditional calibration.

Histograms for the constant-volatility model appear highly non-uniform. For output

growth, too few PIT’s are in the extreme bins, indicating that the predictive distribution

tends to be too diffuse. Similarly, for the inflation rate, too few PIT’s are in the extreme

left-tail bin (0-0.2), and for the fed funds rate too few PIT’s are in the extreme right-tail

bin (0.8-1). In contrast, histograms for the structural break and the stochastic-volatility

(random walk) specifications appear much more uniform.11

We present PIT sample autocorrelations in Figure 4. They essentially look the same for

all four specifications considered in this paper. For brevity we only plot them for the random-

11The histogram for the mean-reverting stochastic-volatility processes looks similar to the one for the
random-walk process.
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walk stochastic-volatility model. Clear deviations from independence are apparent. Hence,

although the time-varying-volatility DSGE models appear unconditionally well calibrated (in

contrast to the constant-volatility model), they are nevertheless not correctly conditionally

calibrated, because they fail the independence condition. This pattern, and its underlying

reasons, matches precisely our earlier results for interval forecasts.

8 Conclusion

We have examined the real-time accuracy of point, interval and density forecasts of output

growth, inflation, and the federal funds rate, generated from DSGE models with and without

stochastic volatility. The stochastic-volatility versions are superior to the constant-volatility

versions. We traced the superiority of stochastic-volatility forecasts to superior coverage

rates (for interval forecasts) and superior PIT uniformity (for density forecasts) – essentially

superior unconditional calibration of the stochastic-volatility forecasts. We also compared

the performance of the stochastic-volatility specifications to a model with a one-time break

in shock standard deviations at the end of 1984. The structural-break version performs

generally better than the constant-volatility model, but is unable to adapt to the change

in macroeconomic volatility during the Great Recession. Neither model, however, appears

correctly conditionally calibrated, as correct conditional calibration requires both correct

unconditional calibration and a type of “error independence” condition, which fails to hold.
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Online Appendix

Real-Time Forecast Evaluation of DSGE Models with

Stochastic Volatility

Francis X. Diebold, Frank Schorfheide, and Minchul Shin

A Evaluation of 90% Probability Interval Forecasts

We repeat the evaluation of interval forecasts presented in Section 6 for 90% probability

intervals. The results are summarized in Tables A-1 and A-2. Including stochastic volatility

generally improves the actual coverage rate of 90% predictive intervals.
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Table A-1: 90 Percent Interval Forecast Evaluation (Coverage & Length)

Volatility h = 1Q h = 2Q h = 4Q h = 8Q

(a) Output Growth

Const. 0.96 (0.01) 0.96 (0.07) 0.96 (0.08) 0.94 (0.39)
3.12 3.17 3.18 3.18

DV-SB 0.89 (0.67) 0.87 (0.55) 0.87 (0.46) 0.86 (0.50)
1.88 1.90 1.89 1.88

SV-AR 0.92 (0.44) 0.94 (0.33) 0.93 (0.37) 0.94 (0.39)
2.38 2.46 2.56 2.68

SV-RW 0.91 (0.75) 0.90 (0.93) 0.91 (0.87) 0.89 (0.82)
2.20 2.24 2.26 2.27

(b) Inflation Rate

Const. 0.96 (0.01) 0.99 (0.00) 0.99 (0.00) 0.94 (0.35)
4.66 5.25 5.64 6.04

DV-SB 0.90 (0.94) 0.90 (0.91) 0.91 (0.87) 0.91 (0.81)
3.13 3.57 3.82 4.09

SV-AR 0.92 (0.44) 0.96 (0.02) 0.97 (0.00) 0.94 (0.35)
4.09 4.44 4.83 5.38

SV-RW 0.94 (0.20) 0.94 (0.28) 0.93 (0.37) 0.94 (0.35)
3.83 4.26 4.57 4.98

(c) Fed Funds Rate

Const. 0.96 (0.01) 0.91 (0.86) 0.79 (0.16) 0.66 (0.07)
3.50 4.85 6.26 7.27

DV-SB 0.87 (0.46) 0.69 (0.02) 0.59 (0.01) 0.54 (0.01)
1.92 2.71 3.57 4.19

SV-AR 0.94 (0.20) 0.90 (0.94) 0.84 (0.44) 0.74 (0.18)
2.54 3.48 4.52 5.42

SV-RW 0.94 (0.20) 0.87 (0.64) 0.77 (0.12) 0.69 (0.08)
2.23 3.10 4.07 4.81

Notes: The real-time forecast sample is 1991:Q4 to 2011:Q1. We obtain “actuals” from the most recent
vintage. “Const.” is constant volatility; “DV-SB” is deterministic volatility with structural break (17); “SV-
AR” is AR(1) stochastic-volatility process (16); and “SV-RW” is random-walk stochastic-volatility process
(14). Top row of each cell: we report the frequencies with which outcomes fall in 90-percent bands computed
from the posterior predictive density. In parentheses we show p-values of t-statistics of the hypothesis of
correct coverage (empirical = nominal coverage of 90 percent), calculated using Newey-West standard errors
with bandwidth 0 at the 1-quarter horizon and (P − h)1/3 in the other cases, where P − h is the number of
forecasting origins. Bottom row of each cell: we report the average lengths of prediction intervals.
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Table A-2: Christoffersen Tests

Volatility Coverage Independence Joint

(a) Output Growth

Const. 4.19 (0.04) 10.9 (0.00) 15.2 (0.00)
DV-SB 0.20 (0.66) 0.92 (0.34) 1.37 (0.51)
SV-AR 0.50 (0.48) 3.72 (0.05) 4.38 (0.11)
SV-RW 0.09 (0.76) 2.51 (0.11) 2.80 (0.25)

(b) Inflation Rate

Const. 4.19 (0.04) 3.14 (0.08) 7.41 (0.03)
DV-SB 0.01 (0.94) 0.04 (0.84) 0.26 (0.88)
SV-AR 0.50 (0.48) 0.57 (0.45) 1.22 (0.54)
SV-RW 1.26 (0.26) 1.11 (0.29) 2.51 (0.29)

(c) Fed Funds Rate

Const. 4.19 (0.04) 0.24 (0.62) 4.51 (0.11)
DV-SB 0.64 (0.42) 5.60 (0.02) 6.52 (0.04)
SV-AR 1.26 (0.26) 1.11 (0.29) 2.51 (0.29)
SV-RW 1.26 (0.26) 1.11 (0.29) 2.51 (0.29)

Notes: We show results for 90-percent 1-step-ahead interval forecasts. The real-time forecast sample is
1991:Q4 to 2011:Q1. We obtain “actuals” from the most recent vintage. “Const.” is constant volatility;
“DV-SB” is deterministic volatility with structural break (17); “SV-AR” is AR(1) stochastic-volatility process
(16); and “SV-RW” is random-walk stochastic-volatility process (14). We show tests for coverage and for
independence, as well as joint tests, with p-values in parentheses.
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B Ending the Evaluation Period in 2007:Q4

We now only use vintages up until January 2008. This last vintage utilizes NIPA data ending

in 2007:Q3 and the 2007:Q4 observation is the last observation that we forecast.

Table A-3 summarizes the RMSEs for point forecasts. Compared to Table 2 in the main

text the absolute values of the RMSEs are lower if the Great Recession is excluded from the

forecast evaluation. The ranking of constant-volatility and time-varying volatility forecasts

is largely unaffected.

Table A-4 shows the coverage probabilities. The p-values for output growth and inflation

slightly drop, whereas the p-values for the federal funds rate intervals slightly increase. It

remains true that the coverage probability of the models with time-varying volatility is

generally closer to the nominal coverage probability of the predictive interval.

Table A-5 shows the results for the Christoffersen test. With respect to independence,

the p-values for output growth increase whereas the p-values for inflation slightly decrease.

On balance, the table leads to the same conclusions as the results reported in the main text.

Table A-6 shows average marginal predictive likelihoods. The pattern of highest marginal

likelihood specifications is identical to the pattern reported in the main text.

Figure A-1 compares the distribution of one-step-ahead PITs for the samples that end in

2011:Q1 and 2007:Q4, respectively. For the shorter sample it is still true that allowing for

time-varying volatility makes the PIT distribution more uniform. Moreover, the spike in the

0-0.2 for the interest rate forecasts is smoothed out, because there are now fewer periods in

which the interest rate is zero.
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Table A-3: Point Forecast RMSE’s

Volatility h = 1Q h = 2Q h = 4Q h = 8Q

(a) Output Growth

Const. 0.49 0.50 0.51 0.53
DV-SB 1.00 (0.55) 1.00 (0.57) 1.00 (0.69) 1.00 (0.68)
SV-AR 1.02 (0.93) 1.02 (0.99) 1.01 (0.99) 1.01 (0.98)
SV-RW 1.01 (0.97) 1.01 (1.00) 1.02 (1.00) 1.01 (0.99)

(b) Inflation Rate

Const. 0.21 0.24 0.26 0.29
DV-SB 0.99 (0.22) 1.00 (0.64) 1.00 (0.49) 0.93 (0.06)
SV-AR 1.13 (1.00) 1.05 (0.82) 0.98 (0.34) 0.81 (0.02)
SV-RW 1.02 (0.95) 1.00 (0.54) 0.96 (0.21) 0.82 (0.01)

(c) Fed Funds Rate

Const. 0.16 0.27 0.42 0.58
DV-SB 0.95 (0.00) 0.97 (0.06) 0.97 (0.05) 0.94 (0.03)
SV-AR 0.92 (0.00) 0.92 (0.01) 0.91 (0.01) 0.87 (0.01)
SV-RW 0.91 (0.00) 0.91 (0.01) 0.91 (0.01) 0.87 (0.02)

Notes: The real-time forecast sample is 1991:Q4 to 2007:Q4. We calculate forecast errors using actuals
obtained from the most recent vintage. We show RMSE’s for the benchmark constant-volatility DSGE
model in the first line of each panel, and RMSE ratios in the subsequent lines. “Const.” is constant
volatility; “DV-SB” is deterministic volatility with structural break (17); “SV-AR” is AR(1) stochastic-
volatility process (16); and “SV-RW” is random-walk stochastic-volatility process (14). In parentheses we
show p-values of Diebold-Mariano tests of equal MSE against the one-sided alternative that the model with
time-varying volatility is more accurate, obtained using standard normal critical values. We compute the
standard errors entering the Diebold-Mariano statistics using Newey-West with bandwidth 0 at the 1-quarter
horizon and (P − h)1/3 in the other cases, where P − h is the number of forecasting origins.
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Table A-4: 70 Percent Interval Forecast Evaluation (Coverage & Length)

Volatility h = 1Q h = 2Q h = 4Q h = 8Q

(a) Output Growth

Const. 0.92 (0.00) 0.94 (0.00) 0.94 (0.00) 0.93 (0.00)
1.97 2.00 2.01 2.02

DV-SB 0.78 (0.10) 0.75 (0.32) 0.73 (0.64) 0.69 (0.90)
1.15 1.17 1.17 1.17

SV-AR 0.80 (0.04) 0.83 (0.00) 0.81 (0.04) 0.86 (0.01)
1.34 1.39 1.46 1.58

SV-RW 0.78 (0.10) 0.78 (0.12) 0.79 (0.07) 0.72 (0.79)
1.29 1.32 1.34 1.39

(b) Inflation Rate

Const. 0.91 (0.00) 0.91 (0.00) 0.92 (0.00) 0.97 (0.00)
2.94 3.33 3.59 3.87

DV-SB 0.78 (0.10) 0.75 (0.45) 0.69 (0.93) 0.66 (0.68)
1.93 2.21 2.39 2.58

SV-AR 0.77 (0.19) 0.77 (0.33) 0.81 (0.06) 0.90 (0.00)
2.35 2.56 2.78 3.12

SV-RW 0.77 (0.19) 0.77 (0.31) 0.77 (0.32) 0.72 (0.83)
2.15 2.41 2.58 2.84

(c) Fed Funds Rate

Const. 0.91 (0.00) 0.80 (0.28) 0.76 (0.55) 0.66 (0.76)
2.23 3.11 4.01 4.66

DV-SB 0.69 (0.89) 0.63 (0.48) 0.60 (0.35) 0.62 (0.60)
1.20 1.70 2.25 2.67

SV-AR 0.83 (0.00) 0.73 (0.67) 0.63 (0.50) 0.59 (0.46)
1.34 1.84 2.43 3.04

SV-RW 0.75 (0.31) 0.66 (0.63) 0.58 (0.25) 0.59 (0.46)
1.19 1.65 2.18 2.69

Notes: The real-time forecast sample is 1991:Q4 to 2007:Q4. We obtain “actuals” from the most recent
vintage. “Const.” is constant volatility; “DV-SB” is deterministic volatility with structural break (17); “SV-
AR” is AR(1) stochastic-volatility process (16); and “SV-RW” is random-walk stochastic-volatility process
(14). Top row of each cell: we report the frequencies with which outcomes fall in 70-percent bands computed
from the posterior predictive density. In parentheses we show p-values of t-statistics of the hypothesis of
correct coverage (empirical = nominal coverage of 70 percent), calculated using Newey-West standard errors
with bandwidth 0 at the 1-quarter horizon and (P − h)1/3 in the other cases, where P − h is the number of
forecasting origins. Bottom row of each cell: we report the average lengths of prediction intervals.
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Table A-5: Christoffersen Tests

Volatility Coverage Independence Joint

(a) Output Growth

Const. 19.59 (0.00) 0.85 (0.36) 20.60 (0.00)
DV-SB 2.36 (0.12) 0.00 (0.96) 2.85 (0.24)
SV-AR 3.35 (0.07) 1.90 (0.17) 5.70 (0.06)
SV-RW 2.36 (0.12) 0.65 (0.42) 3.50 (0.17)

(b) Inflation Rate

Const. 16.52 (0.00) 1.24 (0.26) 17.95 (0.00)
DV-SB 2.36 (0.12) 2.39 (0.12) 5.24 (0.07)
SV-AR 1.56 (0.21) 5.36 (0.02) 7.44 (0.02)
SV-RW 1.56 (0.21) 3.44 (0.06) 5.53 (0.06)

(c) Fed Funds Rate

Const. 16.52 (0.00) 3.08 (0.08) 19.79 (0.00)
DV-SB 0.02 (0.89) 28.55 (0.00) 30.96 (0.00)
SV-AR 5.90 (0.02) 10.45 (0.00) 16.73 (0.00)
SV-RW 0.93 (0.33) 16.45 (0.00) 20.23 (0.00)

Notes: We show results for 70-percent 1-step-ahead interval forecasts. The real-time forecast sample is
1991:Q4 to 2007:Q4. We obtain “actuals” from the most recent vintage. “Const.” is constant volatility;
“DV-SB” is deterministic volatility with structural break (17); “SV-AR” is AR(1) stochastic-volatility process
(16); and “SV-RW” is random-walk stochastic-volatility process (14). We show tests for coverage and for
independence, as well as joint tests, with p-values in parentheses.
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Table A-6: Marginal Predictive Likelihoods SM(h)

Volatility h = 1Q h = 2Q h = 4Q h = 8Q

(a) Output Growth

Const. -1.02 -1.02 -1.03 -1.07
DV-SB -0.73 -0.74 -0.76 -0.88
SV-AR -0.85 -0.86 -0.90 -1.03
SV-RW -0.82 -0.84 -0.86 -0.98

(b) Inflation Rate

Const. -1.86 -1.87 -1.90 -2.01
DV-SB -1.63 -1.65 -1.68 -1.84
SV-AR -1.56 -1.58 -1.62 -1.72
SV-RW -1.54 -1.57 -1.62 -1.73

(c) Fed Funds Rate

Const. -2.39 -2.45 -2.52 -2.60
DV-SB -2.71 -2.83 -3.01 -3.27
SV-AR -2.07 -2.11 -2.29 -2.62
SV-RW -2.03 -2.10 -2.34 -2.82

(d) Multivariate

Const. -5.91 -6.02 -6.18 -6.32
DV-SB -6.14 -6.36 -6.75 -7.29
SV-AR -5.67 -5.80 -6.36 -7.52
SV-RW -5.61 -5.80 -6.55 -8.11

Notes: The real-time forecast sample is 1991:Q4 to 2007:Q4. We evaluate the predictive densities at the
actuals obtained from the most recent vintage. “Const.” is constant volatility; “DV-SB” is deterministic
volatility with structural break (17); “SV-AR” is AR(1) stochastic-volatility process (16); and “SV-RW”
is random-walk stochastic-volatility process (14). We present predictive likelihoods for density forecasts at
horizons h = 1, 2, 4, 8, for output growth, the inflation rate, and the fed funds rate. We show in bold the
“winners,” for each horizon and each variable.
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Figure A-1: PIT Histograms
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Notes: The real-time forecast sample is 1991:Q4 to 2011:Q1. We calculate forecast errors using actuals
obtained from the most recent vintage. We group PIT’s into five equally-sized bins. Under uniformity, each
bin should contain 20 percent of the PIT’s, as indicated by the horizontal red lines.
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