What Do Professional Forecasters Actually Predict?

Didier Nibbering, Richard Paap, and <u>Michel van der Wel</u> Erasmus U Rotterdam, CREATES Aarhus, Tinbergen Institute, ERIM 9th ECB Workshop on Forecasting Techniques, June 2016

- We examine what professional forecasters predict. Broad movements like trend or business cycle, or also an irregular component that is hard to predict by models and non-experts?
- Method: Use spectral analysis and state space modelling to decompose real-time economic time series into a trend, a business-cycle, and an irregular component. To examine which components are captured by forecasts of the Survey of Professional Forecasters (SPF), we regress the forecasts on the estimated components.
- Key finding: Forecasters can predict almost all variation

Spectral Analysis

We consider the model $y_t = \mu_t + c_t + \varepsilon_t$, where y_t is the observed time series, μ_t represents the trend, c_t the business cycle, and ε_t the irregular component. In other words, we have a slow-moving component, an intermediate component, and a high-frequency component. We isolate these different frequency bands by a low-pass filter derived by Baxter and King (1999).

due to the trend and the business-cycle, but forecasts contain little information about the irregular component.

State Space Model

The trend-cycle model of Harvey (1990): $y_t = \mu_t + c_t + \varepsilon_t, \qquad \varepsilon_t \sim N(0, \sigma_{\varepsilon}^2).$ The smooth trend component is specified as $\mu_{t+1} = \mu_t + \nu_t, \quad \nu_{t+1} = \nu_t + \zeta_t, \quad \zeta_t \sim \mathcal{N}(0, \sigma_{\zeta}^2),$ The business cycle component is represented by $c_{t+1} = \rho c_t \cos \lambda + \rho c_t^* \sin \lambda + \kappa_t, \qquad \kappa_t \sim N(0, \sigma_{\kappa}^2),$ $c_{t+1}^* = -\rho c_t \sin \lambda + \rho c_t^* \cos \lambda + \kappa_t^*, \quad \kappa_t^* \sim \mathcal{N}(0, \sigma_{\kappa}^2),$ where the unknown coefficients ρ , λ , and, σ_{κ}^2 represent the damping factor, the cyclical frequency, and the cycle error term variance, respectively.

Forecast Regression

The professional forecasts are related to the components of the historical time series by

 $f_t = \beta_0 + \beta_1 \hat{\mu}_t + \beta_2 \hat{c}_t + \beta_3 \hat{\varepsilon}_t + v_t,$ where f_t is the professional forecast for time period t. When the Survey of Professional Forecasters perfectly predicts the actual values, we have $\hat{\beta} = (0, 1, 1, 1)$.

-	Based On Spectral Analysis Based						sed On	On State Space Model			• More results in paper! Including: Sensi-		
	Estimate Wald				nate			tivity analysis state space model identifica-					
	Intercept	Trend	Cycle	Irreg.	Stat ^a	Intercept	Trend	Cycle	Irreg.	Stat ^a			
Perfect fcst	0	1	1	1		0	1	1	1		tion; Comparison to model-based forecast;		
NGDP	-1.178* (0.620)	1.001 (0.001)	0.954 (0.037)	0.249* (0.149)	34.897 {0.000}	-1.242* (0.589)	1.001 (0.001)	1.063 (0.045)	-0.596* (0.301)	42.717 {0.000}	Decomposition of forecasts		
PGDP	-0.197	1.000	0.990	-0.132*	43.620	-0.316	1.001	1.096*	-0.804^{*}	70.909	 In progress: Additional decompositions and 		
FGDF	(0.505)	(0.001)	(0.037)	(0.173)	{0.000}	(0.485)	(0.001)	(0.048)	(0.219)	{0.000}	link between them; Robustness to timing of		
CPROF	-1.552	1.001	0.849*	0.102*	50.164	-1.743	1.002	0.956	-0.621*	52.912			
	(2.548)	(0.005)	(0.041)	(0.155)	{0.000}	(2.538)	(0.004)	(0.034)	(0.283)	{0.000}	releases; Sensitivity to Real-Time data		
UNEMP	1.318	0.997	0.949*	0.581*	44.220	0.015*	1.004	0.980*	-0.024^{*}	53.677			
	(1.960)	(0.011)	(0.016)	x <i>y</i>	c ,	(/	· /	(0.010)	(0.210)	{0.000}			
INDPROD	-3.491 (1.936)	1.006 (0.003)	0.938* (0.030)	0.441* (0.168)	18.540 {0.000}	-3.708* (1.874)	1.006 (0.003)		_	•			
	(/	(/	(/	x <i>y</i>	C J	()	0.866*		onclu	slon	S		
HOUSING	2.555*	0.919*	0.888* (0.038)	0.239*	83.413 {0.000}						do receive weights and by trend and cycle.		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								•	 Conclusions Trend and cycle receive weights close to one: Trend and cycle receive weights close to one: 				
*: 5% level signif difference from perfect forecast; ()=Std. error							ror	(Conclusions Trend and cycle receive weights close to one: Trend and cycle receive weights close to one: SPF can predict most of the variation caused by trend and cycle. SPF can predict most of the variation caused by trend and cycle. 				
^{<i>a</i>} : Tests for <i>joint</i> difference from perfect forecast; {}= <i>p</i> -value							P						
. Tests for joint difference from perfect forecast, $[] = p^{-value}$								•	 Trend and cycle receivers of the variation caused by treased by treased by treased of the variation caused by treased of the second s				
									 Weights irregular components do not signed. Weights irregular components do not signed. SPF does poorly predicting irregular movements. SPF does poorly predicting irregular so not signed. Compared to model-based forecasts, SPF contains no new information. 				
									a model-based forecasts, Street				
									Compared to mea				