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Motivation

I Policy relevant forecasts commonly required at
quarterly horizons from 1 - 12

I Policy analysis requires structural models -
often DSGE models

I DSGE Models estimated by ML or Bayesian
methods - in both cases using one-step
prediction errors to build likelihood

I Might h > 1-step forecast errors
I produce sensible estimates?
I improve forecast performance?

Method

I State space representation of the linearised
DSGE model

yt = Hξt, t = 1, ..,T

ξt = Cξt−1 + vt.

I yt observed variables, xt unobserved vector of
states that may be estimated using the Kalman
filter to provide ξ̂t|t−1 = E (ξt|Y1,t−1) and

ξ̂t|t = E (ξt|Y1,t) where Ys,t = (ys , ..., yt)
′

I As parameter matrices H and C are unknown,
can be conveniently estimated using ML based
on the prediction error decomposition

I Normally uses a 1-step error to do so, but can
equally use h-step where h > 1, thus using a
vector of errors

I Might be interpreted as a MOM approach akin
to cross-validation

I Precursor: Frank Schorfheide JoE 2005 VAR
forecasting under misspecification, who
specifies a loss function in terms of prediction
errors

Model

I Use Smets and Wouters 2007

I Seven macro series - output, consumption and
investment growth, inflation, wage growth,
hours, interest rate

I Estimate by maximising likelihood (as in eg
Ireland JEEA 2013)

I S&W 1966Q1-2004Q4: we use
1954Q3-1997Q4 to use earlier data while still
retaining observations for forecast evaluation

I Despite shorter and overlapping sample, results
similar to S&W

Global optimum?

I Core results outcome of maxima from 100
starting points

I To check robustness, compared to results from
only 10 starting points

I Most estimates similar

I Where there appear to be large differences, in
fact not economically significant (as in
insensitive parts of the parameter space)

Forecasts

I Sample 1954Q3-1997Q4 evaluated
1998Q1-2007Q4 to exclude crisis

I Sample 1954Q3-200Q4Q4 evaluated
2001Q1-2010Q2 to include crisis

I Recursive estimates starting 1954Q3-1997Q4
recursively evaluated 1998Q1-2010Q2

RMSFE 1998Q1-2007Q4

I Multi-step outperforms benchmark in most
cases, some cases by large margins

2 4 6 8

0.7

0.8

0.9

1

1.1

h = 1

RR
M

SE

MinQ
2 4 6 8

0.7

0.8

0.9

1

1.1

h = 4

RR
M

SE

MinQ
2 4 6 8

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

h = 8

RR
M

SE

MinQ

2 3 4 5 6 7 8
0.6

0.7

0.8

0.9

1

1.1

h = 12

MinQ

RR
M

SE

 

 
dc
dinve
dy
lab
pinf
dw
r
criterion

I Might hypothesise that forecast performance at
h optimised using h-step errors; but not so

DM stats 1998Q1-2007Q4

I Also significantly better in many cases
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RMSFE 2001Q1-2010Q2

I Less good post-crisis but multi-step still better
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DM stats 2001Q1-2010Q2
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RMSFE rolling 1998Q1-2010Q2

I Again multi-step best performer
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DM stats rolling 1998Q1-2010Q2

I Rather less significant cases
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Why does this work?

I In general, introducing additional moment
conditions

I As parameter estimates largely unchanged, we
hypothesise improvement due partly to
improved estimate of the state

Monte Carlo

I 200 data points are simulated from true DGP

I Add noise to the observed variables (noise to
signal ratios of 0.5, 1.0 and 2.0)

I Estimate the state vector for h = 1, 4 and 8

I Calculate MSFE (between the actual state
observations and the smoothed estimates) for
last 50 periods and repeat 1000 times

Noise to Relative Mean
Signal Ratio Square Forecast Error

MSFR(h=4)
MSFR(h=1)

MSFR(h=8)
MSFR(h=1)

0.5 0.991 0.975
1.0 0.987 0.968
2.0 0.932 0.894

I As h rises estimates improve due to
cross-equation restrictions

I As the noise to signal ratio increases these
restrictions become more important

I Expanding evaluation period from 50 to 200
performance increases dramatically - evaluation
over entire sample even more so

I The additional cross-equation restrictions
particularly useful for estimation of initial
values of state vector

Paper and code

I Published in Economic Letters as A New
Approach to Multi-Step Forecasting using
Dynamic Stochastic General Equilibrium
Models - longer version in BoE WP series

I Code available from Kostas’ site:

https://sites.google.com/site/konstantinostheodoridis/publications

Conclusions

I If concerned with forecasts as well as structure,
may help to optimise over predictive power

I Turns out to improve forecasts with minimal
changes to structure

I In most cases RRMSFE improved, in many
cases significantly


