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200 data points are simulated from true DGP

> Add noise to the observed variables (noise to
e signal ratios of 0.5, 1.0 and 2.0)

wa» » Estimate the state vector for h =1, 4 and 8

Calculate MSFE (between the actual state
observations and the smoothed estimates) for
last 50 periods and repeat 1000 times
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» Normally uses a 1-step error to do so, but can
equally use h-step where h > 1, thus using a
vector of errors
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» Might be interpreted as a MOM approach akin
to cross-validation

» Precursor: Frank Schorfheide JoE 2005 VAR
forecasting under misspecification, who
specifies a loss function in terms of prediction
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» Less good post-crisis but multi-step still better
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performance increases dramatically - evaluation
over entire sample even more so

» S&W 1966Q1-2004Q4: we use
1954Q3-1997Q4 to use earlier data while still

. : . » The additional cross-equation restrictions
retaining observations for forecast evaluation

particularly useful for estimation of initial
values of state vector

» Despite shorter and overlapping sample, results
similar to S&W

Global optimum?

» Core results outcome of maxima from 100
starting points

Paper and code

» Published in Economic Letters as A New
Approach to Multi-Step Forecasting using
Dynamic Stochastic General Equilibrium
Models - longer version in BoE WP series

» To check robustness, compared to results from
only 10 starting points

» Code available from Kostas' site:

» Most estimates similar https: / /sites.google.com/site /konstantinostheodoridis/publications
» Where there appear to be large differences, in RMSFE rolling 1998Q1-2010Q2
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